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Abstract: In the current paper, we articulate a theory to explain the phenomenology of mental 

effort. The theory provides a working definition of mental effort, explains in what sense mental 

effort is a limited resource, and specifies the factors that determine whether or not mental effort 

is experienced as aversive. The core of our theory is the conjecture that the sense of effort is 

the output of a cost-benefit analysis. This cost-benefit analysis employs heuristics to weigh the 

current and anticipated costs of mental effort for a particular activity against the anticipated 

benefits. This provides a basis for spelling out testable predictions to structure future research 

on the phenomenology of mental effort. 
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1. Introduction  

  

The experience of mental effort is a familiar feature of daily life. Driving a car, solving basic 

math problems, or compiling a grocery list -- everyday activities such as these demand 

sustained attention and self-control to resist distractions and tempting alternatives. As a result, 

we often experience them as effortful, and sometimes postpone them, neglect to complete them 

altogether, or perform them with insufficient attention. This can lead to dangerous situations, 

to financial loss, or to wasted time – as when we wander back and forth among various sections 

of the supermarket because we have been too lazy to prepare a shopping list to help us navigate 

efficiently among the aisles.  

Mental effort is not only a salient feature of everyday life: experimental tasks employed 

throughout the cognitive sciences demand varying degrees of mental effort from participants, 

i.e. along a continuum from effortless to effortful. On a Stroop task, for example, it feels more 

effortful to respond correctly to a non-matching stimulus (when the word ‘blue’ is printed in 

red font) than to a matching one (when the word ‘blue’ is printed in blue font), and it also feels 

particularly effortful to shift back and forth between matching and non-matching trials 

(MacLeod, 1991; Golden & Freshwater, 1978). Similarly, copying a statement using our non-

dominant hand demands greater cognitive effort than writing with our dominant hand (Petrova, 

2006). This means that mental effort is a key parameter that must be carefully calibrated even 

in research that is not directly investigating mental effort. 

Given the centrality of mental effort in everyday life and as a key parameter in 

experimental research in the cognitive sciences, it is no surprise that there has been a wealth of 

theoretical and empirical research investigating mental effort in recent decades. This has led to 

the articulation of theoretical models of mental effort (Shenhav et al., 2017; Inzlicht, Shenhav, 

& Olivola, 2018), to new experimental paradigms for investigating mental effort (Apps et al., 

2015; Lopez-Gamundi & Wardle, 2018), to advances in our understanding of the neural 

underpinnings of mental effort (Chong et al., 2017), and to new insights into pathologies of 

motivation and corresponding clinical applications (Le Heron, Apps & Husain, 2018). 

Nevertheless, a range of fundamental questions remain unanswered, such as: What is mental 

effort? Why does mental effort appear to be a limited resource? What are the factors that 

determine whether or not mental effort is experienced as aversive? 

In the current paper, we articulate a theory to address these basic questions. The core 

of our theory is the conjecture that the sense of effort is the output of a cost-benefit analysis. 
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This cost-benefit analysis employs heuristics to weigh the current and anticipated costs of 

mental effort for a particular activity against the anticipated benefits.  

We begin (Section 2) with a review of current theoretical and empirical research 

investigating mental effort in general, focusing in particular on the three key questions 

identified above. Against this background, we present our own theory in Section 3. In Section 

4 we formulate a range of novel predictions to be investigated in further research. 

  

2. Investigating Mental Effort: Key Concepts and Research Questions 

  

2.1 Defining Mental Effort 

 

One central desideratum for a theory of the sense of effort1 would be to specify a satisfying 

definition of mental effort. As a rough starting point, Inzlicht, Shenhav, & Olivola (2018: 338) 

characterize mental effort as ‘the subjective intensification of mental and/or physical activity 

in the service of meeting some goal.’ While this intuitive characterization provides a rough 

starting point, it would be highly useful in investigating the functions and mechanisms of 

mental effort to identify mental effort with some measurable quantity, and to specify a working 

definition which relates mental effort to other key cognitive constructs while providing a basis 

for operationalizing mental effort in experimental research. We will now briefly review two 

strategies for defining mental effort: one in terms of the function of mental effort, and one in 

terms of the mechanisms underpinning mental effort.  

  

 

 

 

 

The Functional Strategy 

 

One explanatory strategy is to identify mental effort with a functional role. This is the strategy 

adopted by Inzlicht, Shenhav, & Olivola (2018): they identify mental effort with ‘... the process 

 
1
 We will use the term ‘effort’ in the remainder of the paper to refer to mental effort. Whether 

and to what extent our theory may be extended to physical effort is an important question for 
future research. 
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that mediates between how well an organism can potentially perform on some task and how 

well they actually perform on that task’ (338). In more formal terms, Shenhav et al., 2017: 100-

101) have proposed the following working definition: ‘Effort is what mediates between (a) the 

characteristics of a target task and the subject’s available information-processing capacity and 

(b) the fidelity of the information-processing operations actually performed, as reflected in task 

performance.’  

This strategy is based upon the observation that mental effort is a key determining factor 

in task performance. There is reason to doubt, however, that the relationship between capacity, 

mental effort and performance is as straightforward as this definition implies. This is because 

it is not always the case that increasing mental effort leads to an increase in performance. For 

example, it does not do so when the optimal procedure for a task is the default procedure, as 

may be the case for some procedures which have been practiced and automated (Logan, 1988). 

Moreover, we can sometimes exert effort in implementing an unpracticed procedure with the 

intention of performing a task as well as possible -- and yet perform worse as a result because 

we are not yet sufficiently adept with the procedure, or even because we are mistaken about 

what the optimal procedure is. To illustrate, consider the following example. Beth is asked 

which of three cities is the largest: Oxford, Edinburgh or Birmingham. Her first impulse is to 

respond that it must be Oxford, because Oxford is the most famous and therefore has the highest 

degree of ‘availability’ to Beth (Nisbett & Wilson, 1977; Tversky & Kahneman, 1981; 

Kahneman & Frederick, 2002). However, she is able to catch herself before blurting out this 

answer, and reflects that Oxford is famous for its university, which may not imply that it has a 

large population. Edinburgh, on the other hand is the capital of Scotland, so it is likely to have 

a larger population. As it happens, Beth is still wrong: Birmingham has a larger population than 

either Oxford or Edinburgh, as Beth may have realized if she had considered that Birmingham 

was once a major industrial center. In this case, Beth inhibited her first impulse and initiated a 

search of her long-term memory for relevant information. This means that she invested effort 

in attempting to solve the problem correctly. However, her investment of effort did not improve 

her performance. 

Similarly, Christie and Schrater point out that an increase in cognitive effort can harm 

performance on tasks in which expert judgment can be out-performed by simple rules based on 

quantifiable observations. On these tasks, increased deliberation leads people to overweight 

their own judgements rather than relying on simple formulae or heuristics which would actually 

lead to an accurate result. As Christie and Schrater explain: ‘One simple way to reconcile these 

results is to assume the existence of both model-based high-cost deliberative neural 
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computations and low-cost model-free experience-based paths (Daw et al., 2005), with the 

switch to deliberative decision-making resulting in a reduction in performance in cases where 

model-free solutions are superior.’ (Christie and Schrater, 2015: 9). 

Thus, while the observation that effort typically increases performance provides an 

important constraint for the construction of a framework for investigating effort, there is reason 

to be hesitant about adopting the proposal to define effort as the factor mediating between 

capacity and performance. A more cautious approach is to regard effort as a factor which 

typically mediates between capacity and performance. If effort is not to be defined solely in 

terms of its function, then, it will be important to introduce further constraints in developing a 

working definition. Specifically, it will be helpful to attempt to identify the mechanism by 

which effort typically serves the function of improving performance. In other words, we may 

distinguish effort from other factors influencing performance by identifying it with a particular 

mechanism.  

  

  

The Mechanistic Strategy 

 

There is a broad consensus around the idea to equate the exertion of mental effort with the 

exercise of cognitive control (Shenhav et al., 2017; Inzlicht, Schmeichel  & Macrae, 2014). 

Drawing on the familiar analogy between mental and physical effort, the claim is that mental 

effort regulates the engagement of cognitive control in the same way as physical effort regulates 

the engagement of muscles. Assuming, for example, that an individual is able to lift a maximum 

of 100 kg of weight from the ground onto a table, her level of physical effort will determine 

what proportion of this maximum total weight she actually lifts onto the table. With a low level 

of effort, she may lift only 20 kg, whereas with a high level of effort she may lift 80 kg. By the 

same token, mental effort can be conceptualized as mediating between an individual’s capacity 

to perform a cognitive task and her actual performance. For example, while an individual may 

be capable of completing a series of math problems with 80% accuracy in five minutes, she 

may not always reach this maximum performance level. Sometimes, if she does not exercise a 

high level of cognitive control to maintain focus on the task and to ignore distractions and 

tempting alternatives, she may achieve only 60% in the same amount of time, or she may take 

a longer time to achieve 80% accuracy. But how does cognitive control affect information 

processing in the brain and thereby boost performance on cognitively demanding tasks? 
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         Cognitive control, and its effects on performance on cognitive tasks, has been a central 

topic of research in cognitive psychology over many decades (Ulrich et al., 2015; Schneider & 

Chein, 2003; Anderson, 1983; Logan, 1978; Shiffrin & Schneider, 1977; Stroop, 1935). One 

widely accepted idea that has emerged from this research is that there is an information 

processing continuum ranging from automatic processes, which can be simultaneously 

deployed and are experienced as effortless, to control-dependent processes which are serial and 

experienced as effortful.  

Automatic processing is typically fast, efficient and effortless, occurring only after 

practice in a consistent environment through consistent mapping of stimuli to responses (Moors 

& De Houwer, 2006; Shiffrin & Schneider, 1977). For example, in the case of driving a car, 

the act of putting the key into the ignition launches a learned sequence of actions stored in long-

term memory that proceed quickly, efficiently and effortlessly, without the need of cognitive 

control or monitoring. Such automatic processing works well for routine actions in familiar 

environments, although its lack of flexibility makes it less functional in complex, dynamic 

environments. 

By contrast, flexibility is the hallmark of controlled processing (Botvinick & Cohen, 

2014; Shiffrin & Schneider, 1977; Atkinson & Shiffrin, 1968). It is achieved through the 

engagement of executive functions: inhibition of dominant or prepotent responses; updating 

working memory contents in response to changing situational demands; and shifting flexibly 

between tasks (Miyake et al., 2000; Miyake & Friedman, 2012).  

On the other hand, controlled processing is much slower and more effortful than 

automatic processing, operating serially rather than in parallel, and requiring constant 

monitoring and the engagement of executive functions. This may be a clue to understanding 

why people tend to avoid it when possible (Kool et al., 2010; Apps et al., 2015) – as, indeed, it 

is unsurprising that many organisms tend to avoid physical as well as mental effort (Templer, 

Brown & Hampton, 2018). However, we do not always avoid mental or physical effort, and it 

is not always experienced as aversive – for example, people willingly spend their Sunday 

afternoons completing difficult crossword puzzles or exercising at fitness centers. We will 

return to this issue in section 3. Before further discussing the aversive nature of some instances 

of mental effort, however, it will be important to spell out the idea that cognitive control is a 

limited resource. Different ways of spelling out this idea have been proposed in the literature, 

which we will now briefly review. 
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2.2 The Costs of Mental Effort 

  

In approaching the question as to why – and in what sense – cognitive control is a limited 

resource, we will proceed in two steps, one pertaining to the direct costs of cognitive control 

and one pertaining to indirect costs (i.e. opportunity costs).  

  

Direct Costs 

Despite the widespread agreement that controlled processing is limited, there is less consensus 

as to the source of its limitation. In particular, there is no consensus regarding the answer to the 

following question: if cognitive control is a limited resource and the sense of effort is an 

indicator of the expenditure of this resource, what is the resource? Current theorizing offers 

three possible (mutually compatible) explanations: the limit on cognitive control arises either 

from metabolic, structural or representational constraints. 

Metabolic Constraints: Theories of metabolic constraints link mental effort to limited metabolic 

resources in the brain that deplete with use (Baumeister & Heatherton 1996). For example, an 

individual who engages in an effortful task (e.g. suppressing thoughts) over an extended period 

of time would find her capacity to exert effort diminished at a subsequent task that requires 

self-control (e.g., controlling emotional expressions, delaying gratification). Indeed, initial 

evidence provided preliminary support for this hypothesis (Muraven & Baumeister, 2000; 

Hagger et al. 2010). However, recent replication attempts have raised considerable doubts 

concerning the depletion effect (Hagger et al., 2016). Moreover, evidence suggests that the 

brain’s metabolic demands do not change dramatically during task engagement (Kurzban, 

2010) – indeed, perhaps increasing by only around 1% compared to resting state (Raichle & 

Mintun, 2006). Finally, metabolic theories do not explain the finding that increasing rewards 

can lead participants to exert more cognitive effort (Camerer and Hogarth, 1999; Jimura, Locke 

& Braver, 2010) and improve executive function (Krebs, Boehler & Woldorff, 2010) -- i.e. if 

the metabolic resource were truly limited, it should not be possible for participants to improve 

their performance. 

 

Structural Constraints: Another line of explanation suggests that the capacity limitations of 

cognitive control are structural, arising from constraints on working memory storage and 

maintenance on which control-dependent processing depends (Hunt & Lansman, 
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1986; Anderson 1983). The limitation of working memory capacity is well-established: the 

number of meaningful units (chunks) that can be kept active in working memory ranges 

between 3-5 for adults (Cowan, 2001) and its capacity is limited by mutual interference 

between simultaneously held representations in working memory (Oberauer et al., 2016). This 

theory does not obviously explain sequential effects -- i.e. why exercising control on one task 

should lead participants to perform worse on a subsequent task (Muraven & Baumeister, 2000; 

Hagger et al. 2010) -- although, as noted, recent replication attempts have raised doubts 

concerning such effects (Hagger et al., 2016). Like theories based on metabolic constraints, 

this approach fails to provide an explanation of the finding that increasing rewards can lead 

participants to exert more cognitive effort (Camerer and Hogarth, 1999; Jimura, Locke & 

Braver, 2010) and improve executive function (Krebs, Boehler & Woldorff, 2010). 

 

Representational Constraints: The third line of explanation proposes that capacity limitations 

on cognitive control arise from the shared use of representation between tasks (Shenhav et al., 

2017; Cohen, Dunbar & McClelland, 1990). The core idea is that such shared representations 

promote efficient learning at the cost of constraining multi-tasking capacity (Musslick et al., 

2016). Specifically, shared representations support inference and generalization, but they also 

give rise to processing interference and conflict during concurrent task execution. To prevent 

this detrimental crosstalk in the system, the brain limits the number of processes relying on 

shared representations by engaging cognitive control (Musslick and Cohen, 2019) -- i.e. by 

inhibiting some of these processes. Like theories based on metabolic and structural constraints, 

this approach fails to provide an explanation of the finding that increasing rewards can lead 

participants to exert more cognitive effort and to improve executive function. 

 

Opportunity Costs 

 

A separate question arises from the limited nature of the resource (whatever that resource might 

be) that is invested. Specifically, the limited nature of the resource requires the brain to 

prioritize -- i.e. the engagement of cognitive control on one task implies that it cannot be 

devoted to other tasks, meaning that cognitive control always involves opportunity costs 

(Kurzban et al. 2013). Indeed, insofar as the engagement of cognitive control typically involves 

the inhibition of default procedures, there is a further source of opportunity costs arising from 

the failure to perform those default procedures.  
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Opportunity costs arise in three ways corresponding to the three executive functions: 

inhibition, updating and shifting (Miyake et al., 2000; Miyake & Friedman, 2012). First, 

inhibition creates opportunity costs by stopping fast, parallel and automatic processes aimed at 

creating benefits for the organism. The loss of these benefits may be registered as an 

opportunity cost for the organism. For example, in order to boost one’s performance on a task 

that requires one to focus on information presented on a computer screen, such as proofreading 

a text, one may need to inhibit the impulse to gaze around the room. This implies that one 

suspends the default patterns of visual information gathering. Insofar as these patterns are likely 

to have been shaped by evolution and individual learning to serve the function of acquiring 

information, it is costly to suspend them. Second, updating also creates opportunity costs. 

Whenever the content of working memory is filled up with the contents of one task, this 

excludes the contents of other tasks that could generate benefits. Third, shifting from one task 

to another induces a natural extension in the time it takes a person to respond, during which 

time period the previous task process could have created benefits. 

Opportunity costs theories provide an elegant explanation of the finding that increasing 

rewards can lead participants to exert more cognitive effort (Camerer and Hogarth, 1999; 

Jimura, Locke & Braver, 2010) and improve executive function (Krebs, Boehler & Woldorff, 

2010) -- namely, because increasing the reward value of a task decreases the relative 

opportunity costs of alternative tasks. On the other hand, research on the so-called depletion 

effect using sequential task paradigms appears to put pressure on opportunity costs theories. 

For example, when people engage in a demanding activity at timepoint 1, performance 

typically decreases on a different task at timepoint 2. For example, relative to participants who 

were instructed to write freely, participants who were instructed to inhibit the use of common 

letters while writing at timepoint 1 were less effective at recalling strings of digits in reverse 

order at timepoint 2 (Schmeichel, 2007). This pattern appears to support the hypothesis that the 

investment of mental effort depletes some resource; it is not obvious how opportunity costs 

theorists should account for it. However, as noted above, recent replication attempts have raised 

doubts concerning the depletion effect (Hagger et al., 2016) 

One possible response to concerns about depletion effects derives from a version of the 

opportunity costs theory which also incorporates elements of the aforementioned 

representational constraints hypothesis. The idea explains how indirect costs arise from the 

engagement of cognitive control (the engagement of cognitive control on one task implies the 

inhibition of other task processes). Specifically, Musslick and colleagues (2018) have proposed 

that representational constraints on cognitive control reflect an optimal solution to the cognitive 
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stability-flexibility dilemma. When we allocate a high level of cognitive control to one specific 

task, this has the effect that we are less well configured for other tasks. As a result, the more 

control we apply to one task, the longer it takes to reconfigure the shared representational 

pathways to adjust to new task demands, meaning that our exercise of control leads us to 

sacrifice flexibility for stability. Insofar as we anticipate that we will soon have to switch to 

another task, then, it would make sense to resist engaging cognitive control on our current task. 

This anticipated switch cost constitutes the cost of control. Crucially, this hypothesis predicts 

that the cost of control depends on the stability or flexibility of the environment, that is, on task 

switch probability.  

  Responding to similar concerns, Christie and Schrater (2015) have proposed a hybrid 

theory which combines opportunity costs and metabolic constraints. It is based on the idea that 

cognitive costs arise from intelligent resource allocation over time. They write:  

‘We suggest that an individual’s decision of whether or not to incur cognitive costs in 

a given situation can be fruitfully understood as one of decision making strategy: an 

agent will only commit limited resources in cases where the payoff is worth it. Unlike 

‘cost/benefit’ models, however, we treat resources as dynamically utilized and 

replenished. Much like a marathon runner, an agent attempting to optimize long-term 

performance may choose to purposefully limit exertion in order to maintain resource 

reserves for future use. What may appear to be aversion to cognitive effort may in fact 

be strategic resource allocation’(2015: 2).  

This account differs from standard metabolic constraints theories in that it does not attribute 

sequential effects to the absence of energetic resources following upon performance of 

cognitively demanding tasks, but, rather, to the strategic husbanding of cognitive resources. 

This means that it is well-placed to explain why increasing reward increases performance: 

when the reward value of a task increases, it is worth exerting more effort now and sacrificing 

the potential rewards to be gained on later tasks.  

  

 

 

2.3 The Phenomenology of Mental Effort 
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In view of these various costs of cognitive control, it is no wonder that we often (though not 

always) experience mental effort as aversive. In particular, the evolutionary rationale is that the 

aversive experience of mental effort may help us to avoid paying overly high costs, and may 

also help us to anticipate when increasing costs may lead to a deterioration of performance. 

This basic idea goes back at least as far as Hull (1943), who formulated the influential ’Law of 

Least Effort’: agents select actions in order to minimize the effort required for reinforcement. 

Though the law of least effort was initially formulated in relation to physical effort, Kool et al. 

(2010) have also extended the validity of this assumption to mental effort as well. In their novel 

behavioral paradigm, participants faced a recurring choice between two alternative lines of 

action, associated with different levels of cognitive demand. They exhibited a clear bias toward 

the less demanding option. In a similar vein, it has also been demonstrated that people are 

willing to accept lesser rewards to avoid mentally effortful actions (Apps et al., 2015). 

There is also neuroimaging evidence that demonstrates that the reward network of the 

brain shows decreasing activity with increasing effort requirements, and higher default mode 

network activity correlates with higher effort avoidance (Sayali & Badre, 2019). Similarly, a 

mismatch between task difficulty and individual ability is associated with lower levels of 

intrinsic reward and corresponds to increased activity within the default mode network (Huskey 

et al., 2018). 

Importantly, however, mental effort (and indeed physical effort) is not always 

experienced as aversive. Indeed, one important open challenge is to identify the circumstances 

under which mental effort is experienced as aversive and when it is experienced as pleasurable. 

In the rest of this section, we will briefly review research bearing upon this challenge. 

One line of evidence that shows that effort can be experienced as pleasant comes from 

research on learned industriousness. This research provides a framework for understanding 

when and how task-extrinsic rewards can be used to make the exertion of cognitive effort 

pleasurable rather than aversive. According to the principles of associative learning, if high 

effort is consistently paired with high reward, the effort itself can become a secondary 

reinforcer (Eisenberger, 1992), and the reinforced high effort generalizes across behaviours. 

For example, if a child is repeatedly praised for her exertion of effort after task execution, 

instead of her performance, then in the future she will tend to take up learning goals – i.e. goals 

that require the engagement of cognitive control (Dweck, & Leggett, 1988).  

While research on learned industriousness explores the ways in which task-extrinsic 

rewards can lead to positive experiences of effort, there is also research investigating how task-

intrinsic rewards can make the exertion of effort pleasurable rather than aversive. In particular, 
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it is worth considering research on self-determination theory (Deci & Ryan, 1985) and flow 

theory (Getzels & Csikszentmihalyi, 1976), both of which illuminate the conditions under 

which the exertion of cognitive control is experienced as pleasant rather than aversive. Self-

determination theory suggests that the intrinsically rewarding nature of self-determined choice 

can elicit increases in task enjoyment and performance (Lewthwaite, 2015; Leotti & Delgado, 

2011) while flow theory suggests that the state of flow, in which task difficulty is in balance 

with individual ability and the highest levels of intrinsic reward are reached, results from a 

network synchronization process between structures within cognitive control and reward 

networks (Huskey et al., 2018). It is not yet clear, however, why these two factors -- self-

determination and the experience of flow -- make the experience of mental effort pleasant, i.e., 

whether there is one common underlying mechanism which they engage. It would be desirable 

for a theory of the sense of effort to explain why these factors have this effect, and also to 

establish a basis for identifying other factors that would also make the experience of effort 

pleasant. 

There is also evidence that people vary in how they value the exertion of mental effort. 

A short form of assessing individual differences in need for cognition (NFC) was developed 

by Cacioppo, Petty, & Kao (1984), where need for cognition refers to an individual’s tendency 

to engage in and enjoy effortful cognitive endeavours. The NFC scale has proved to be a 

reliable measure of the value and individual places on the exertion of cognitive effort, e.g. it 

correctly predicts the amount of money an individual will forego to avoid a cognitive effortful 

activity (Westbrook, Kester, & Braver, 2013) or an individual’s extrinsic reward-induced 

cognitive effort expenditure (Sandra & Otto, 2018). While it is well-known that there are 

individual differences in the degree to which people are willing to invest mental effort and the 

degree to which they find it aversive, we lack a systematic understanding of the cognitive and 

motivational causes underlying these differences. Moreover, there has been little research 

exploring intra-individual differences across time and between different contexts. A 

comprehensive theory of the sense of effort should aim to illuminate the underlying cognitive 

and motivational causes of these differences.  

  

  

3. A Cost-Benefit Theory of the Sense of Effort 
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So far, we have explored several key issues for a theory of the sense of effort to address, in 

particular focusing on the following three questions: 

-       How should we define mental effort?  

-       Why does mental effort appear to be a limited resource?  

-      What are the factors that determine whether or not mental effort is experienced as 

aversive? 

  

We will now present a theory to address these three questions.  

  

3.1 Mental Effort 

 

Our starting point is to conceptualise mental effort as a measure of the extent to which cognitive 

control inhibits or modifies current default procedures in order to boost performance of an 

activity. Like the working definition offered by Shenhav et al. (2017), our working definition 

links effort to the engagement of cognitive control and to enhanced performance. However, for 

the reasons discussed above (Section 2.1), we do not believe that the relationship between 

capacity, effort and performance is as straightforward as Shenhav and colleagues imply. Most 

importantly, our definition does not make actual performance enhancement a defining feature 

of effort. Instead, it is sufficient that cognitive control be engaged with the function of boosting 

performance. It is important to emphasize that the term ‘function’ should not be taken to imply 

a deliberate choice or intention. Instead, we mean cognitive control is engaged because it raises 

the likely performance level -- i.e. if it did not raise the likely performance level, it would not 

be engaged.  It is also important to emphasize that our working definition does not identify 

mental effort with the engagement of cognitive control full stop; rather, mental effort is a 

measure of the extent to which cognitive control inhibits and/or modifies default procedures in 

order to ensure that the procedures that are implemented are specifically tailored to the task 

context.  

To summarize, it is useful to contrast our definition with that offered by Shenhav et al. (2017). 

They define mental effort as that which mediates between: 

  

(a) ‘the characteristics of a target task and the subject’s available information-processing 

capacity’; and 

(b) ‘the fidelity of the information-processing operations actually performed, as reflected in 

task performance’ (100-101). 
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In contrast, we replace (b) with: 

(b’) the flexible adjustment of information-processing to optimise performance of a specific 

activity. 

  

3.2 The Sense of Effort 

Building on this, we conceptualise the sense of effort (for mental effort) as the output of a 

process which tracks the expected costs and benefits of effortful mental activity and weighs 

them against each other. When the expected costs outweigh the expected benefits, an aversive 

state is generated, the intensity of which is a measure of the anticipated net costs of the current 

effortful activity. If, on the other hand, the effortful mental activity is expected to increase 

benefits more than costs, it is experienced as rewarding.   

To spell out this proposal, we will first need to explain what costs and benefits enter 

into the hypothesized cost-benefit analysis. Our working definition is consistent with many 

different (mutually compatible) answers to the question as to what the costs of cognitive control 

are – i.e. with all of the answers considered in section 2.2. We therefore identify the costs of 

mental effort as the sum of all of the direct costs as well as the indirect (opportunity) costs 

identified in section 2.2. 

What about the benefits? To answer this question, it is useful to carefully consider the 

function of mental effort: the investment of mental effort enables us to carry out activities that 

we would not otherwise be able to perform, or to carry them out at a higher performance level 

than would otherwise be possible, leading to long-term benefits that make the investment of 

effort worthwhile.  

This raises the question as to how we identify those long-term benefits which are to be 

weighed against the costs of cognitive control. Our answer to this question is that evolution has 

equipped us to experience pleasure (or any other experience that is rewarding, such as 

satisfaction, pride, etc) when the exercise of cognitive control serves to improve our 

performance on tasks which, over long periods of evolution, would have enhanced our 

inclusive fitness. Of course, the activities which would have enhanced our fitness over long 

periods of deep evolutionary history do not map perfectly onto the activities which enhance 

our individual long-term benefits as individuals living in the context of modern societies. This 

means that the experience of reward when exercising cognitive control is only an imperfect 

indicator of the benefits to us in the present environment. 
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Continuing with this line of thought, we may speculate that the sense of effort is likely 

to be sensitive to cues that are indicative of high anticipated rewards. Ultimately, the 

association of cues with rewards will have been shaped over the course of evolutionary history, 

so the rewards in question should typically be rewards which imply fitness gains. In some cases, 

however, rewards can also become decoupled from evolutionary benefits, so we might also 

expect the sense of effort to register cues which have been associated with reward through 

ontogeny -- as documented by the research on learned industriousness discussed above. 

Nevertheless, we may advance the conjecture that mental effort/cognitive control is likely to 

have yielded high fitness gains in situations in which an agent needs to gather information, to 

learn, to plan, to navigate or to be vigilant. This means that we should expect cues to these 

factors to be registered as benefits, and thus to increase the pleasure of effort.  

Research on fluency effects provides some preliminary motivation for this hypothesis 

(Ackerman & Zalmanov, 2012; Koriat, 1997; Thompson et al., 2013; Ackerman & Thomson, 

2016; Koriat, Ma'ayan & Nussinson, 2006). This research shows that when information 

processing is quick and smooth, people tend to experience a higher degree of confidence in 

their learning progress and certainty in their judgments. In the present context, we may interpret 

this as indicating that smooth information processing provides a cue that the current investment 

of cognitive resources is tending to yield gains in learning progress or in accurate judgments 

about the current environment. Of course, this does not yet entail that this current learning  

progress or these currently accurate judgments are particularly rewarding. However, our 

proposal generates the prediction that fluency should reduce aversiveness of effort investment 

when there is a high anticipated reward value of learning progress or of accurate judgments. 

On the other hand, we should expect that reductions in these factors should decrease 

from the reward value of effort. For example, this line of thought suggests that effortful 

attempts to learn in unpredictable environments -- even if accompanied by a sense of fluency 

or by rapid progress -- should be experienced as aversive. This is because in unpredictable 

environments, what one learns ceases to be useful once it has been learned (i..e because what 

has been learned is no longer applicable in the new environment). And indeed, this conjecture 

is further motivated by results from agent-based modeling reported by Musslick, Cohen, 

Shenhav (2019). Specifically, they found that the imposition of limitations upon control 

impaired performance of any given task, but reduced the costs associated with task switches. 

Because of this, they conclude, the optimal level of control is lower in environments with a 

higher probability of task switches. Empirical research will be needed in order to probe whether 

actual human participants conform to this pattern.  
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4. Putting Theory to the Test 

  

It will be important for further research to identify and test unique predictions generated by the 

theory. To this end, one general strategy would be to identify conditions under which the 

hypothesized cost-benefit analysis would either generate a more positively valenced experience 

of effort than one might otherwise expect (i.e., in the absence of the theory), or vice versa. In 

order to identify such conditions, we should recall that the theory predicts that effort will be 

experienced as positive whenever the expected rewards outweigh the expected costs, and 

otherwise as negative. This means that the key to identifying conditions under which the theory 

leads to unique testable predictions will be to examine the perceived costs and benefits which 

may modulate the sense of effort. 

         With this in mind, we can predict that an agent may come to find an effortful task 

pleasurable if it has been repeatedly paired with a reward. In other words, they may come to 

find the investment of effort on the task to be pleasurable, not just to be worth enduring for the 

sake of the reward. If so, then they may come to prefer a difficult version of the task to an easy 

version, even when the reward for both versions is the same. More generally, the experience of 

effort should be less aversive and more positive under any conditions which would typically 

(over the course of evolution) indicate a fitness benefit linked to cognitive control. Thus, we 

should expect a more positive experience of effort in situations in which an agent would 

typically benefit from flexible cognition – i.e. from exercising cognitive control – to gather 

information, to learn, to plan, to navigate or to be vigilant.  

In contrast, the exercise of cognitive control should be experienced as more aversive in 

situations in which it is typically not beneficial to gather information, to learn, to plan, to 

navigate or to be vigilant – e.g. in highly unpredictable or changing environments. This implies 

that it should be possible to increase the aversiveness of effort for the same task by 

manipulating the perceived predictability/constancy of an environment. 

In addition to manipulating perceived benefits of cognitive control, a further possibility 

would be to manipulate the perceived direct or indirect (opportunity) costs (Kurzban et al., 

2013). The opportunity costs of an effortful activity could be increased by manipulating the 

benefits of an alternative activity. One way to do this would be to increase the benefits of 

default processes which would otherwise be engaged but which must be halted in order to 

engage cognitive control. For example, the expected reward arising from the default process of 
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gazing around freely within an environment would likely be higher in an unfamiliar 

environment than in a familiar environment, and also higher in a changing environment than 

in a stable environment. We may therefore predict that cognitive control processes which 

prevent an individual from gazing freely around would be experienced as more aversive in an 

unfamiliar environment than in a familiar environment, and also more aversive in a 

dynamically changing environment than in a more stable environment. 

  

5. Outlook 

  

We have presented a novel approach to conceptualizing mental effort, and used this as a starting 

point in spelling out a theory to explain why we sometimes (but not always) experience mental 

effort as aversive. This theory is based on the notion of a cost-benefit analysis which employs 

heuristics to weigh the current and anticipated costs of mental effort for a particular activity 

against the anticipated benefits. The theory not only provides answers to basic questions which 

have remained unanswered so far in research on mental effort, but also gives rise to novel 

predictions which may provide an impetus to further research. 

         We hope that the theory proposed here will provide a starting point for research 

investigating mechanisms and the phenomenology of mental effort, and thereby shedding 

valuable new light upon the cognitive and motivational processes underpinning decision-

making, learning and the allocation of cognitive resources in healthy individuals as well as in 

individuals suffering from motivational disorders such as apathy.  
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