
Alternation between taxonomically divergent hosts is

not the major determinant of flavivirus evolution
Chiara Pontremoli,1,* Diego Forni,1 Mario Clerici,2,3 Rachele Cagliani,1 and
Manuela Sironi1

1Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy, 2Department of
Physiopathology and Transplantation, University of Milan, Milan 20122, Italy and 3Don C. Gnocchi Foundation
ONLUS, IRCCS, Milan 20121, Italy

*Corresponding author: E-mail: chiara.pontremoli@lanostrafamiglia.it

Abstract

Flaviviruses display diverse epidemiological and ecological features. Tick-borne and mosquito-borne flaviviruses (TBFV and
MBFV, respectively) are important human pathogens that alternate replication in invertebrate vectors and vertebrate hosts.
The Flavivirus genus also includes insect-specific viruses (ISFVs) and viruses with unknown invertebrate hosts. It is
generally accepted that viruses that alternate between taxonomically different hosts evolve slowly and that the evolution
of MBFVs and TBFVs is dominated by strong constraints, with limited episodes of positive selection. We exploited the
availability of flavivirus genomes to test these hypotheses and to compare their rates and patterns of evolution. We esti-
mated the substitution rates of CFAV and CxFV (two ISFVs) and, by taking into account the time-frame of measurement,
compared them with those of other flaviviruses. Results indicated that CFAV and CxFV display relatively different substitu-
tion rates. However, these data, together with estimates for single-host members of the Flaviviridae family, indicated that
MBFVs do not display relatively slower evolution. Conversely, TBFVs displayed some of lowest substitution rates among
flaviviruses. Analysis of selective patterns over longer evolutionary time-frames confirmed that MBFVs evolve under strong
purifying selection. Interestingly, TBFVs and ISFVs did not show extremely different levels of constraint, although TBFVs
alternate among hosts, whereas ISFVs do not. Additional results showed that episodic positive selection drove the evolution
of MBFVs, despite their high constraint. Positive selection was also detected on two branches of the TBFVs phylogeny that
define the seabird clade. Thus, positive selection was much more common during the evolution of arthropod-borne flavivi-
ruses than previously thought. Overall, our data indicate that flavivirus evolutionary patterns are complex and most likely
determined by multiple factors, not limited to the alternation between taxonomically divergent hosts. The frequency of
both positive and purifying selection, especially in MBFVs, suggests that a minority of sites in the viral polyprotein experi-
ence weak constraint and can evolve to generate new viral phenotypes and possibly promote adaptation to new hosts.

Key words: Flavivirus evolution; Dating analysis; Episodic positive selection; Tick-borne flavivirus; Mosquito-borne flavivirus;
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1. Introduction

Flaviviruses (family Flaviviridae, genus Flavivirus) are single-
stranded, positive sense RNA viruses responsible for a number
of emerging and re-emerging diseases. Some of these human

pathogens, such as yellow fever virus, dengue virus (DENV),
West Nile virus (WNV), and Zika virus (ZIKV) are the causative
agents of large-scale epidemics that result in millions of human
infections every year (Gould et al. 2017). Others, including
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Japanese encephalitis virus, St Louis encephalitis virus (SLEV),
Usutu virus, Spondweni virus, and tick-borne encephalitis virus
(TBEV) are responsible for more localized outbreaks. All these
viruses are transmitted to humans, as well as to other domestic
and wild animals, by arthropod vectors.

Most vertebrate-infecting flaviviruses can be divided into
three large groups. Tick-borne flaviviruses (TBFV) and mos-
quito-borne flaviviruses (MBFV) have variable host ranges and
can infect different vertebrate hosts, including birds and mam-
mals (Pandit et al. 2018). However, vertebrate-specific flavivi-
ruses also exist, which seem to have no arthropod vector and
can be transmitted horizontally among mammals. These vi-
ruses are commonly referred to as no known vector flaviviruses
(NKVFV) and can be further divided into bat- and rodent-associ-
ated NKVFVs (Blitvich and Firth 2017). These different transmis-
sion modes are well reflected in the phylogenetic relationships
among flaviviruses (Fig. 1). The only inconsistency involves
three viruses (Entebbe bat virus, Yokose virus, and Sokoluk vi-
rus), which have no known vector but display close genetic sim-
ilarity to MBFVs. It is presently unclear whether these viruses
have lost the ability to infect mosquitoes or if their vectors are
still unknown (Blitvich and Firth 2017).

The Flavivirus genus also includes a growing number of in-
sect-specific viruses (ISFVs) (Fig. 1). The so-called classical ISFVs
(cISFVs) are phylogenetically distinct from all other flaviviruses
and naturally infect mosquitoes, whereas another ISFV group
(dual host-affiliated ISFVs, dISFVs) clusters with MBFVs (Fig. 1).
dISFVs might thus infect unidentified vertebrate hosts or they
may have recently lost the ability to replicate in vertebrates
(Blitvich and Firth 2015). This latter possibility seems to be more
likely, as in vitro experiments indicated that dISFVs cannot repli-
cate in a number of vertebrate cell lines (Blitvich and Firth 2015).

The differences in host ranges and transmission cycles sug-
gest that flaviviruses are subject to diverse selective pressures
and evolutionary trajectories. A long-standing hypothesis holds
that viruses that naturally alternate between different hosts
evolve less rapidly than those that specialize in a single host, as

optimization for replication in one host may reduce fitness for
infection of the other (Weaver et al. 1999; Jenkins et al. 2002;
Jenkins et al. 2002; Holmes 2003; Greene et al. 2005; Coffey et al.
2008, 2013; Vasilakis et al. 2009). This may be especially true for
viruses that infect both vertebrates and invertebrates, as these
hosts display fundamentally different tissue organization and
antiviral responses (Coffey et al. 2013). This hypothesis, how-
ever, was shown to be only partially true in the case of WNV
and SLEV, two MBFVs (Ciota et al. 2007, 2008, 2009; Deardorff
et al. 2011).

Several studies have shown that the intra- and inter-host
evolution of MBFVs and TBFVs is dominated by strong con-
straints, which seems to differ among hosts (Coffey et al. 2013;
Sessions et al. 2015; Grubaugh et al. 2015, 2016a; Nelson et al.
2018). The notion that strong functional constraint drives the
evolution of MBFVs and TBFVs is paralleled by the observation
that positive (diversifying) selection is less common in vector-
borne viruses compared with viruses transmitted by other
routes (Woelk and Holmes 2002).

An additional layer of complexity in the evolution of vector-
borne flaviviruses lies in the severe bottlenecks that occur dur-
ing horizontal transmission from vertebrates to vectors and
within the vectors, as a result of anatomical barriers (Ciota et al.
2012; Forrester et al. 2012; Coffey et al. 2013; Sim et al. 2015;
Gutiérrez et al. 2015; Grubaugh et al. 2016a,b; Lequime et al.
2016; Grubaugh and Ebel 2016). Bottlenecks are non-selective
reductions of the effective viral population size, as well as of ge-
netic diversity. Despite these events, MBFVs and TBFVs recover
diversity through population expansions in different hosts
(Coffey et al. 2013; Grubaugh et al. 2016b; Grubaugh and Ebel
2016). Moreover, genetic diversification is promoted by antiviral
RNAi (RNA interference) responses in vectors (Brackney et al.
2009; Schnettler et al. 2014 ; Brackney et al. 2015; Grubaugh et al.
2016a,b). RNAi, a major antiviral mechanism in insects and
non-insect arthropods, results in the sequence-specific degra-
dation of viral RNA (Pijlman 2014; Olson and Blair 2015;
Leggewie and Schnettler 2018). Thus, RNAi tends to select for

Figure 1. Flavivirus phylogenetic tree. Maximum likelihood phylogeny of representative viruses belonging to the MBFV, TBFV, NKVFV, cISFV, and dISFV groups.

Tamana bat virus was used as the outgroup.
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rare variants, either synonymous or non-synonymous, that
avoid sequence complementarity (Brackney et al. 2009;
Schnettler et al. 2014; Brackney et al. 2015; Lambrechts and
Lequime 2016; Grubaugh et al. 2016a,b).

Because they infect taxonomically diverse hosts and display
distinct transmission routes, flaviviruses are expected to face
extremely different pressures and, consequently, to display dis-
tinctive evolutionary trajectories. We exploited the availability
of fully sequenced genomes of MBFVs, TBFVs, NKVFVs, cISFVs,
and dISFVs to compare their rates and patterns of evolution.

2. Materials and methods
2.1 Sequence selection, alignments, and phylogenies

Sequence data for cell fusing agent virus (CFAV) and Culex flavi-
virus (CxFV) strains with known collection date were retrieved
from the NCBI database (http://www.ncbi.nlm.nih.gov/)
(Supplementary Table S1).

Likewise, MBFV (n¼ 110), TBFV (n¼ 46), NKVFV (n¼ 7), cISFV
(n¼ 16), and dISFV (n¼ 13) coding sequences for the whole poly-
protein were obtained from the NCBI (http://www.ncbi.nlm.nih.
gov/) and ViPR (Virus Pathogen Resource, https://www.viprbrc.
org) databases. For each group, strains were chosen to be repre-
sentative of all species with complete or nearly complete
genomes present in the ICTV flavivirus phylogenetic tree
(https://talk.ictvonline.org/ictv-reports/ictv_online_report/posi
tive-sense-rna-viruses/w/flaviviridae). dISFV strains were se-
lected as in Blitvich and co-workers review (Blitvich and Firth
2015). A list of accession numbers is reported in Supplementary
Table S2 and a representation of the flavivirus phylogenetic tree
is shown in Fig. 1.

MAFFT (Katoh and Standley 2013) was used to generate
multiple sequence alignments and GUIDANCE2 (Sela et al. 2015)
for filtering unreliably aligned codons (confidence score < 0.90)
(Privman et al. 2012).

Alignments were screened for the presence of recombina-
tion using GARD (Kosakovsky Pond et al. 2006). GARD uses
phylogenetic incongruence among segments in the alignment
and the statistical significance of putative breakpoints is
evaluated through Kishino-Hasegawa (HK) tests. No significant
breakpoints (p < 0.01) were detected.

To evaluate the level of substitution saturation at the third
codon position, the Xia’s index implemented in DAMBE (Xia
et al. 2003; Xia 2013) was applied (Supplementary Table S3). This
test compares an entropy-based index of saturation (Iss) with a
critical value (Iss.c). If Iss is significantly lower than Iss.c, sequen-
ces have not experienced substitution saturation.

Finally, phylogenetic trees were reconstructed using the
phyML program (version 3.0) with a maximum-likelihood ap-
proach, a General Time Reversible model plus gamma-distrib-
uted rates and 4 substitution rate categories(Guindon et al.
2009).

2.2 Substitution rate estimates

Sequence data for the coding sequence of the envelope (E)
proteins of CFAV (n¼ 49) and CxFV with known collection date
were analyzed (Supplementary Table S1). For CxFV, the two
major clades (Asia/USA genotype, n¼ 77, and Africa/Caribbean/
Latin America genotype, n¼ 47) (Bittar et al. 2016; Miranda et al.
2019) were separately analyzed. For CFAV, forty-eight coding
sequences of the ns5 and ns3 proteins were retrieved.

To evaluate whether the phylogenies carried sufficient tem-
poral signal, the correlation coefficients (r) of regressions of
root-to-tip genetic distances against sequence sampling years
were calculated (Murray et al. 2016). A method that minimizes
the residual mean squares of the models was applied and zs
were calculated by performing 1,000 permutations of sampling
dates (Duchene et al. 2015; Murray et al. 2016). In the case of
CFAV E coding sequence, one clear outlier (AB488425) was ob-
served and removed from further analyses. The reason(s) why
this sequence, which was the shortest in the dataset, behaved
as an outlier are unknown.

Phylogenetic reconstruction was performed using a
Bayesian approach implemented in the Bayesian Evolutionary
Analysis by Sampling Trees (BEAST, v.1.10.4) software (Suchard
et al. 2018). A Coalescent Exponential tree prior and a relaxed
log normal clock were used in all analyses. We performed
two different runs, one hundred million iterations each, and
sampled every 10,000 steps after a 10% burn-in. Runs were com-
bined after checking for convergence and for heaving effective
sampling sizes >100. A maximum clade credibility tree was
generated using TreeAnnotator (Bouckaert et al. 2014) and visu-
alized with FigTree (http://tree.bio.ed.ac.uk/) (Supplementary
Fig. S1).

The estimated rates of viral evolution scale negatively with
the time-frame over which they are measured (Aiewsakun and
Katzourakis 2016; Simmonds et al. 2019). Because of this time-
dependent rate phenomenon, and to take into account the time
span of sequence sampling, estimates for members of the
Flaviviridae family were retrieved from previous works
(Subbotina and Loktev 2012; McMullen et al. 2013; Karan et al.
2014; Di Giallonardo et al. 2015; Faria et al. 2016; Simmonds
et al. 2019; Clark et al. 2020) and compared with the CFAV and
to the CxFV substitution rates (Supplementary Table S4).
Log10-transformed rates were then plotted as a function of
log10-transformed timescales.

2.3 Positive selection analysis

To obtain an estimate of the selective constraint, the dN/dS pa-
rameter was calculated using the single-likelihood ancestor
counting (SLAC) method (Kosakovsky Pond and Frost 2005) for
all viral proteins (the 2k peptide, which is only 23-bp long, was
merged with the ns4a protein) (Supplementary Table S5).

To investigate whether episodic positive selection acted on
the internal branches of the five flavivirus groups, the adaptive
Branch-Site Random Effects Likelihood method (aBSREL) (Smith
et al. 2015) was used. This method applies sequential likelihood
ratio tests to identify branches under positive selection without
a priori knowledge about which lineages are of interest.
Branches identified using this approach were cross-validated
using BUSTED (branch-site unrestricted statistical test for epi-
sodic diversification) (Pond et al. 2005; Murrell et al. 2015) and
using the branch-site likelihood ratio tests from PAML suite
(Zhang et al. 2005) (Supplementary Table S6). BUSTED is
designed to detect the action of episodic positive selection that
is acting on a subset of branches in the phylogeny in at least
one site within the alignment (Murrell et al. 2015). The PAML
branch-site test compares a model (MA) that allows positive
selection on one or more lineages (foreground lineages) with a
model (MA1) that does not allow such positive selection. Twice
the difference of likelihood for the two models (DlnL) is then
compared with a v2 distribution with one degree of freedom
(Zhang et al. 2005).
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To test whether the selection found in the flavivirus phylog-
enies derived from positive selection or from a relaxation of
constraints, the RELAX methodology was applied (Wertheim
et al. 2015) (Supplementary Table S6). RELAX calculates a selec-
tion intensity parameter, k, by taking into account that, both for
sites subjected to purifying selection (x< 1) and for sites sub-
jected to positive selection (x> 1), relaxation tends to move x

towards 1. RELAX tests whether selection is relaxed or intensi-
fied on a subset of testing branches compared with a subset of
reference branches in a predefined tree. In the null model, se-
lection intensity is constrained to 1 for all branches, whereas in
the alternative model k is allowed to differ between reference
and test groups. The selection on tested branches is intensified
or relaxed compared with background branches when k> 1 or
k< 1, respectively.

SLAC, aBSREL, BUSTED, and RELAX analyses were performed
either through the DataMonkey server (http://www.datamon
key.org) (Delport et al. 2010) or run locally (through HyPhy, ver-
sion 2.5.0) (Pond et al. 2005).

To identified sites evolving under positive selection on spe-
cific branches, the BEB analysis from MA (with a cutoff of 0.95)
was used (Supplementary Table S6).

3. Results
3.1 MBFVs evolve at similar rates as cISFVs and other
members of the Flaviviridae family

It was previously reported that viruses that infect both verte-
brate and invertebrate hosts evolve slower (i.e., have lower sub-
stitution rates) than viruses that replicate in a single host or in
closely related species (Jenkins et al. 2002). In the context of fla-
vivirus evolution, it is thus expected that MBFVs and TBFVs dis-
play lower substitution rates than cISFVs, which only replicate
in insect cells. Whereas several studies have investigated
MBFVs and TBFVs, limited information is available on the sub-
stitution rates of cISFVs. We thus retrieved coding sequence
data for the envelope (E), ns3, and ns5 proteins of CFAV, as well
as for the E protein of CxFV (Supplementary Table S1). Only
sequences with known collection date were included. Indeed,
these two viruses were selected because a sufficient number of
sequences were available with sampling dates spanning a few
decades. For CxFV E coding sequences, we separately analyzed
the two major clades (Asia/USA genotype and Africa/Caribbean/
Latin America genotype) (Bittar et al. 2016; Miranda et al. 2019).
GARD identified no recombination breakpoints in the align-
ments and maximum likelihood phylogenetic trees were con-
structed. We next checked for the presence of a temporal signal
by performing regression of root-to-tip genetic distances
against sampling dates. The date randomization test was used
to assess statistical significance (Murray et al. 2016). These anal-
yses revealed a significant temporal signal for the Asian/USA
CxFV genotype (Fig. 2A), but not for the African genotype. This
is most likely because fewer sequences (n¼ 47) with a shorter
time-span among sampling dates (nine years) were available for
the African genotype compared to the Asian/USA genotype (sev-
enty-seven sequences, sampled over fifteen years). A significant
temporal signal was also detected for the CFAV E phylogeny, al-
though one clear outlier was observed and removed for further
analyses (Fig. 2B). Conversely, despite a similar sampling time-
frame as for E (approximately forty years), no temporal signal
was evident for the CFAV ns5 and ns3 phylogenies (data not
shown); this is most likely due to the limited genetic diversity of
these gene regions. We thus used a Bayesian approach to

estimate substitution rates for the E phylogenies of CxFV
(Asian/USA genotype) and CFAV. Rates resulted equal to
3.94� 10�4 (confidence interval (CI): 2.11� 10�4–5.91� 10�4) sub-
stitutions/site/year (s/s/y) (CxFV) and 5.63� 10�5 s/s/y (CI:
1.48� 10�6–1.25� 10�4) (CFAV).

Evidence is growing that the estimated rates of viral evolu-
tion scale negatively with the time-frame over which they are
measured (Aiewsakun and Katzourakis 2016; Simmonds et al.
2019). Because of this time-dependent rate phenomenon, sub-
stitution rates are best compared by taking into account the
time span of sequence sampling. We thus retrieved rate esti-
mates for members of the Flaviviridae family from previous
works (Subbotina and Loktev 2012; McMullen et al. 2013; Karan
et al. 2014; Di Giallonardo et al. 2015; Faria et al. 2016;
Simmonds et al. 2019; Clark et al. 2020) (Supplementary Table
S4) and we plotted log10-transformed rates as a function of
log10-transformed timescales (Fig. 2C). As generally observed
for viral sequences, the values fit within a line (Aiewsakun and
Katzourakis 2016). The substitution rate of CxFV was similar to
that of several MBFVs and, even accounting for the time-depen-
dent rate phenomenon, the rate for CFAV was one of the lowest
among flaviviruses (Fig. 2C). Whereas members of the
Flaviviridae family that do not alternate vertebrate and inverte-
brate hosts (Hepacivirus and Pegivirus genera) tended to show
faster evolution (no data point below the regression line),
MBFVs did not display particularly low rates (most of them
above the regression line). Also, rates for MBFVs were not lower
than for the two cISFVs. Conversely, TBFVs tended to display
slower rates (Fig. 2C).

3.2 Different levels of constraint shape the long-term
evolution of flavivirus groups

Substitution rates as calculated above reflect relatively short-
term evolutionary processes. To gain insight into the selective
patterns acting over longer time frames, we generated phyloge-
nies for the different flavivirus groups (Fig. 1) and we explored
the patterns of coding gene evolution. Flaviviruses encode a sin-
gle polyprotein, which is cleaved to generate three structural
proteins and seven non-structural ones. We thus generated
multiple sequence alignments of the complete coding sequen-
ces of representative viruses belonging to the MBFV, TBFV,
NKVFV, cISFV, and dISFV groups (Supplementary Table S2).
Sequences were rigorously filtered to ensure high-quality align-
ment. Using GARD (Kosakovsky Pond et al. 2006), all alignments
were screened for recombination, which was not detected in
any case. This is in line with the notion that recombination is
uncommon in this viral genus (Twiddy and Holmes 2003). Also,
no evidence of substitution saturation was detected by Xia’s in-
dex (Xia et al. 2003; Xia 2013) (Supplementary Table S3).

To obtain an estimate of selective constraint, we used SLAC
(Kosakovsky Pond and Frost 2005) to calculate the dN/dS param-
eter (ratio of the rate of non-synonymous and synonymous sub-
stitutions) for all viral proteins (the 2k peptide, which is only 23-
bp long, was merged with the ns4a protein) (Supplementary
Table S5). Comparisons among flaviviruses indicated that, for
most proteins, MBFVs and dISFVs have the lowest dN/dS,
whereas NKVFVs display the highest values (Fig. 3). Relatively
low values were also observed for TBFVs, with the exclusion of
the capsid protein (C), which tended to display fast evolution in
this group, as well as in MBFVs and dISFVs (Fig. 3). In all groups,
ns5 and ns3 displayed the lowest values, possibly in line with
the constraint imposed by the enzymatic activity of the encoded
proteins. Interestingly, dISFVs displayed dN/dS values very
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similar to those of MBFVs, suggesting either that these viruses
have recently lost the ability to infect vertebrates (and the relax-
ation of constraint is still not detectable), or that their vertebrate
hosts have not been yet identified. Also, TBFVs showed, on
average, less constraint than MBFVs, and dN/dS values were
comparable to those of cISFVs. Overall, these results are incon-
sistent with the idea that host cycling independently drives
increased purifying selection (Weaver et al. 1999; Jenkins et al.

2002; Jenkins et al. 2002; Holmes 2003; Greene et al. 2005; Coffey
et al. 2008; Vasilakis et al. 2009; Coffey et al. 2013).

3.3 Episodic positive selection is common in MBFVs and,
to a lesser extent, in TBFVs

We next investigated whether episodic positive selection con-
tributed to the evolution of the five flavivirus groups. As

Figure 2. Temporal signal and flavivirus evolutionary rates. Root-to-tip distances as a function of sampling dates are plotted for Asian CxFV (A) and CFAV (B). Each blue

dot corresponds to a nucleotide sequence for E; the line is the linear regression calculated using a method that minimizes the residual mean squares. The r coefficient

and the corresponding p value are also reported. (C) Substitution rate estimates for members of the Flaviviridae family. log10-transformed rates are plotted against the

log10-transformed time-frames over which they are measured (Supplementary Table S4). A linear regression line (black) with confidence intervals (gray shadow) is

shown. Viral genera are colored as per legend. Superscript numbers refer to Supplementary Table S4.
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previously mentioned, positive selection can target a minority
of residues within a protein that is otherwise constrained.
When selection occurs on one or a few branches of a phylogeny,
it is said to be episodic and it may underlie the adaptation and
emergence of specific viral lineages. To search for evidence of
positive selection without an a priori hypothesis of which
branches may be targeted, we applied aBSREL (adaptive Branch-
Site Random Effects Likelihood). Because aBSREL infers proba-
bilistically the number of omega classes for each branch, it is
well-suited to analyze branches of different lengths, which may
display very different evolutionary patterns. We only analyzed
the internal branches of the phylogenies because, compared
with external branches, they are expected to be less affected by
sequencing errors and to contain fewer transient substitutions.

aBSREL detected no evidence of positive selection in the
cISFV, and dISFV phylogenies (Supplementary Fig. S2).
Conversely, two, three, and forty-two branches in the NKVFV,
TBFV, and MBFV trees, respectively, showed evidence of posi-
tive selection (Supplementary Table S6). To validate these
results, all significant branches were individually tested for evi-
dence of positive selection using the MA/MA1 models imple-
mented in PAML, as well as with BUSTED (Zhang et al. 2005;
Murrell et al. 2015). Both methods apply likelihood ratio tests to
assess whether one (or more) pre-specified foreground lineage
is under positive selection. The two methods did not validate
positive selection on the two branches in the NKVFV phylogeny.
Conversely, both MA/MA1 and BUSTED confirmed positive se-
lection for two out of three branches in the TBFV tree and
thirty-eight out of forty-two branches in the MBFV phylogeny
(Supplementary Table S6, Fig. 4 and Supplementary Fig. S2). In
the case of TBFVs, both positively selected branches separate vi-
ruses that infect seabirds (the so-called seabird clade) (Grard

et al. 2007) from all other viruses (Fig. 4A). Conversely, selection
tends to be more homogeneously distributed in the MBFV phy-
logeny (Fig. 4B).

Relaxation of functional constraint along specific branches
may sometimes generate spurious evidence of positive selec-
tion (Wertheim et al. 2015). To check whether this was the case
for the branches, we identified as positively selected in the
TBFV and MBFV phylogenies, we applied the RELAX method,
which evaluates if selection on one (or more) tested branch
(each branch showing evidence of positive selection) is relaxed
(i.e., the k parameter is <1) compared with background branches
(Wertheim et al. 2015). Most tested branches, both in the MBFV
and in the TBFV phylogenies, had k values >1, and significant
evidence of relaxation was obtained for three MBFV branches
only (Supplementary Table S6, Fig. 4B). Notably, one of these
branches is the one leading to Entebbe bat virus, Yokose virus,
and Sokoluk virus, which have no known vector. Overall, these
data indicate that although they are generally more constrained
than flaviviruses with a single host, MBFVs, and to a lesser ex-
tent TBFVs, evolve by frequent episodes of positive selection.

We next aimed to determine the overall fraction of positively
selected sites and to investigate whether specific proteins or
regions are common targets of positive selection. We thus iden-
tified positively selected sites using the BEB analysis from the
MA model and by imposing a 0.95 significance cutoff. We
detected 136 (4.18%) and 59 (1.82%) positively selected sites in
the TBFV and MBFV phylogenies, respectively (Supplementary
Table S6, Fig. 5). This clearly implies that even if few lineages
evolve by positive selection in TBVFs, the selective pressure is
very strong.

Both in TBFVs and in MBFVs, positively selected sites tended
to be scattered along the polyprotein region and all proteins,

Figure 3. Comparison of dN/dS values. Bee swarm plots comparison of average dN/dS values calculated for all flavivirus proteins.
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with the exclusion of prM (membrane) in MBFVs, showed at
least one positively selected site (Fig. 5). However, TBFVs tended
to display more selected sites in the structural proteins (4.98%)
compared with the non-structural ones (3.96%), whereas the op-
posite was true for MBFVs (structural, 1.13%; non-structural,
2.02%). Thus, episodic positive selection drove the evolution of
most protein products in MBFVs and TBFVs.

4. Discussion

Flaviviruses are an extremely diversified viral family, with dif-
ferent transmission routes and host ranges. Despite sharing an
overall similar genetic structure, these viruses have diverse epi-
demiological and ecological features. MBFVs and TBFVs have

been widely studied, as they represent prevalent pathogens for
humans and domestic animals (Pierson and Diamond 2020).
Insect-specific flaviviruses have also gained attention in recent
years, due to the ability of some ISFVs to enhance or suppress
the replication of dual-host flaviviruses in co-infected mosqui-
toes (Blitvich and Firth 2015; Baidaliuk et al. 2019). Notably,
these viruses are regarded as a possible strategy to control mos-
quito populations and consequently limit disease transmission
(Blitvich and Firth 2015).

Viruses that alternate among taxonomically distant hosts
are generally considered to be slow-evolving and highly con-
strained by the need to respond to distinct selective environ-
ments (Weaver et al. 1999; Jenkins et al. 2002; Jenkins et al. 2002;
Holmes 2003; Greene et al. 2005; Coffey et al. 2008, 2013;

Figure 4. Episodic positive selection in flaviviruses. Phylogenetic trees for (A) TBFV and (B) MBFV. Colored and thick branches indicate evidence of positive selection

detected using aBSREL and confirmed by two other methods (BUSTED and the PAML branch-site models). Asterisks denote branches showing evidence of relaxed con-

straint (as detected by RELAX).
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Vasilakis et al. 2009). Nevertheless, these viruses show a re-
markable propensity to emerge in new geographic areas and to
adapt to novel hosts and/or vectors (Farajollahi et al. 2011; Marr
and Cathey 2013; Fredericks and Fernandez-Sesma 2014;
Abushouk et al. 2016; Pierson and Diamond 2020). Indeed, host
switches have been common during the evolution of flavivi-
ruses (Geoghegan et al. 2017). Conversely, less is known about
the evolution of the other flavivirus groups, and the availability
of sequence data is much more limited compared with MBFVs
and TBFVs. However, enough sequence information is present
in databases for CFAV and CxFV to allow the construction of
phylogenetic trees that show a temporal signal, thus allowing
the application of molecular clock models to estimate evolu-
tionary rates. These viruses offer a good comparison to dual-
host flaviviruses, as they are genetically related but do not alter-
nate between different hosts. Comparison of evolutionary rates
was performed by taking into account the time-frame of mea-
surement. This is expected to result in more reliable compari-
sons, as the time-dependency of substitution rates is a general
phenomenon for viral (and non-viral) species (Aiewsakun and
Katzourakis 2016; Simmonds et al. 2019). It follows that rates per
se are not very informative of the evolutionary process. Our data
indicate that CFAV and CxFV display relatively different substi-
tution rates. This might depend on several factors, including
features specific of their main hosts (Aedes spp. for CFAV and
Culex spp. for CxFV) (Grubaugh et al. 2016a) or transmission
modes (horizontal or vertical), these latter still poorly investi-
gated (Blitvich and Firth 2015; Agboli et al. 2019). Nevertheless,
these data, together with estimates obtained for single-host
members of the Flaviviridae family, indicate that MBFVs do not
display unusually slow evolution. Conversely, TBFVs, with the
exclusion of Kyasanur forest disease virus, displayed some of
lowest substitution rates among flaviviruses. These data are in
agreement with the view that the genetic diversification of
TBFVs mainly occurs during horizontal transmission to the ver-
tebrate hosts (Grubaugh et al. 2016b). However, due to the life
cycle of ticks, which takes approximately three years to com-
plete, such transmissions occur infrequently, eventually result-
ing in slow viral evolution (Grubaugh et al. 2016b; Vechtova
et al. 2020). Moreover, transstadial transmission in ticks most
likely imposes additional bottlenecks, although available evi-
dence suggests that these are relaxed (Grubaugh et al. 2016b).

On the one hand, these results suggest that flavivirus evolution-
ary rates are not mainly determined by the alternation between
vertebrate and invertebrate hosts, but rather by the specific na-
ture and ecological characteristics of individual hosts, as well as
by the number of transmissions. On the other hand, we found
that flaviviruses that only infect vertebrates (i.e. hepaciviruses
and pegiviruses) tend to evolve faster than cISFVs, MBFVs, and
TBFVs. Thus, whereas the cycling between taxonomically differ-
ent hosts may not explain low evolutionary rates, these might
be associated with the infection of invertebrates. Also, we can-
not exclude that host alternation does add some level of con-
straint and that different constraints play out for cISFVs. For
instance, vertical transmission, which is thought to represent a
major mechanism by which cISFVs persist in mosquitoes in na-
ture (Blitvich and Firth 2015), might impose tighter bottlenecks
than horizontal transmission (see also below).

We should add that our analysis of evolutionary rates has
some caveats. First, data for cISFVs refer to two viruses only and
clearly represent estimates of the actual rates. Second, for both
viruses, we only analyzed the E protein, as a sizable number of
CxFV sequences were available only for this protein, whereas
the ns3 and ns5 datasets of CFAV did not hold sufficient tempo-
ral signal. Indeed, even for the CFAV E protein the temporal sig-
nal was not particularly strong, with a borderline p value. This
is most likely due to the fact that the number of available
sequences is low (less than fifty) and the timeframe relatively
narrow (approximately forty years). Whatever the underlying
reasons, we limited our analysis to the E protein of both viruses,
although we found clear differences in the evolutionary pat-
terns among viral proteins (Fig. 3). Nonetheless, it is worth men-
tioning that for all flavivirus groups, dN/dS estimates for E were
very close to the median (Fig. 3) and that the majority of previ-
ous rate estimates, which we used to obtain the regression line,
were derived from the E protein (Supplementary Table S4).
Finally, some differences across previous studies are evident
from our analysis (Fig. 2C). Such discrepancies are likely due to
many factors, including the sequence sampling scheme, the ge-
nomic region used for the analysis, and the methodology ap-
plied to infer substitution rates. Moreover, some estimates
might rely on poorly informative phylogenies. For instance,
Clark and coworkers indicated that the temporal signal for their
TBEV dataset was weak and the one for louping ill virus was

Figure 5. Localization of positively selected sites. Positively selected sites (red sticks) are mapped onto a schematic representation of TBFV and MBFV polyproteins.
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even weaker, making rate estimates not fully reliable (Clark
et al. 2020). However, although some estimates may suffer from
similar or other problems, they showed an overall good fit to
the regression line. Thus, although a larger number of sequence
data, for CxFV, CFAV, and for other ISFVs, will be required to
gain a full picture of insect-specific flavivirus evolution, we con-
sider that our data allow an accurate, albeit preliminary com-
parison of evolutionary rates among flaviviruses.

The evolutionary rates we analyzed above refer to relatively
short-term processes and they are limited to the analysis of sin-
gle viral species over a few decades. Moreover, such analyses
cannot be performed for viruses with limited sampling. To gain
a better understanding of the long-term selective processes act-
ing on flaviviruses—i.e. over the time-frame of viral species
emergence (since �15,000 years ago) (Moureau et al. 2015)—we
analyzed viral phylogenies representative of the five flavivirus
groups. All these are monophyletic, with the exclusion of
dISFVs (Blitvich and Firth 2015). Results indicated that at the
coding sequence level, MBFVs and dISFVs evolve under the
strongest purifying selection. However, while TBFVs and cISFVs
do not show extremely different levels of constraint, the former
alternate among hosts whereas the latter do not. NKVFVs
clearly displayed the lowest level of purifying selection. We
nonetheless note that data on these viruses derive from a lim-
ited number of sequences (n¼ 7) and might thus suffer from
biases related to sample size and sequencing errors. Again
though, these data suggest that the level of purifying selection
is mainly dictated by factors other than alternation among
hosts.

At the level of single proteins, there were commonalities
and differences among flavivirus groups. As mentioned above,
ns3 and ns5 showed the lowest dN/dS in all groups, reflecting
strong selective constraint. Conversely, the capsid protein had
high dN/dS in MBFVs, TBFVs, and dISFVs, but not in the other
groups. The main function of capsid is the packaging of the viral
genome, but the protein is multifunctional and interacts with a
number of host factors (Sotcheff and Routh 2020), possibly sug-
gesting that its relatively faster evolution in dual-host flavivi-
ruses is driven by the need to adapt to distinct cellular
environments. However, our positive selection analysis did not
reveal major signatures for capsid, suggesting that high dN/dS
is more the result of relaxed constraint than of adaptive
evolution.

Several studies have analyzed the degree of selective pres-
sure exerted by different hosts on flavivirus evolution. Albeit
controversial (Nelson et al. 2018; Bialosuknia et al. 2019), the
strength of intra-host purifying selection acting on WNV was
reported to be stronger in birds than in mosquitoes and to even
differ among mosquito and bird species (Jerzak et al. 2008;
Grubaugh et al. 2015; Grubaugh and Ebel 2016). Specifically,
WNV passaging in highly susceptible hosts (e.g. crows) was as-
sociated with mutational tolerance and weaker purifying selec-
tion (Grubaugh et al. 2015). Conversely, transmission
experiments with Powassan virus (POWV) indicated that purify-
ing selection is more efficient in the vector (Ixodes scapularis)
than in the mammalian host (mouse) (Grubaugh et al. 2016b). It
is thus possible that specific, ecologically relevant hosts, either
vertebrate or invertebrate, play a major role in determining the
overall level of purifying selection acting on MBFVs and TBFVs.
Clearly, in the case of cISFVs, the selective pressure can only be
exerted by the arthropod host and most of these viruses have
been isolated from mosquitoes, which seem to exert relatively
modest pressure. However, measures of selective pressure were
obtained for WNV and passaging of the virus in different

mosquito species indicated that the overall intra-host selective
pattern is dictated by virus-vector interactions (Grubaugh et al.
2015). Moreover, MBFV transmission to vertebrates requires in-
fection of the mosquito midgut and salivary glands, both of
which subject the virus to severe bottlenecks (Grubaugh et al.
2016a). This might explain why experimental infection in birds
(i.e. bypassing the vector stage) results in lower genetic diversity
than in vectors (Deardorff et al. 2011; Grubaugh et al. 2015),
whereas similar or even lower levels of selective constraint
were observed in naturally infected birds compared with mos-
quitoes (Nelson et al. 2018; Bialosuknia et al. 2019; Caldwell
et al. 2020). cISFVs are not expected to face the same anatomical
barriers as MBFVs, but most likely experience bottlenecks dur-
ing vertical (e.g. transovarial) transmission (Blitvich and Firth
2015). Further studies will thus be required to clarify the selec-
tive events acting on insect-specific flaviviruses.

Of course, purifying selection is not the only aspect of the
evolutionary process. In the above-mentioned experiments
with WNV in birds, Grubaugh and coworkers found that the
strength of both purifying and positive selection within hosts
were stronger in the less susceptible bird species (robins)
(Grubaugh et al. 2015). This clearly exemplifies the concept that
positive selection can act on a minority of sites against a back-
ground of purifying selection. Indeed, we found ample evidence
that episodic positive selection drove the evolution of MBFVs,
despite their high constraint. Positive selection was also
detected on two branches of the TBFVs phylogeny, which define
the seabird clade. Thus, positive selection was much more com-
mon during the evolution of arthropod-borne flaviviruses than
previously thought. Conversely, we did not detect any evidence
of positive selection in the other flavivirus groups.

The approach we applied to detect positively selected
branches is highly robust and it is based on the intersection of
three methods, as well as on a further check that relaxation of
constraint is not misinterpreted as positive selection.
Interestingly, we found that one of the branches of the MBFVs
phylogeny that experienced a relaxation of purifying selection
was the one leading to the three viruses that have no known ar-
thropod host. The reason for this observation might relate to
the release of these viruses from the alternation of infections in
vertebrates and invertebrates (although data above do not
strongly support this view), from the absence of an arthropod
host (although mosquitoes do not seem to exert a strong selec-
tive pressure), or from the fact that mammals exert weak selec-
tive pressures, as previously shown for Powassan virus (a
TBFVs) and suggested by the higher diversity of DENV in
humans compared with A. aegypti (Lin et al. 2004; Sim et al.
2015).

It is presently unclear why the branches separating the sea-
bird viruses from the other TBFVs show such strong evidence of
positive selection, with a large number of positively selected
sites. The explanation may lie in the adaptation to a new ar-
thropod vector (soft vs hard ticks), to a new vertebrate host
(mainly mammals vs birds) or both. Conversely, the MBFV phy-
logeny is characterized by evidence of positive selection on sev-
eral branches without any apparent preference for specific
lineages or clades. Instances of positive selection at specific
sites associated with higher transmission were previously
reported for MBFVs and other arthropod-borne viruses (Moudy
et al. 2007; Brault et al. 2007; Tsetsarkin et al. 2007; May et al.
2011; McMullen et al. 2011; Tsetsarkin et al. 2014; Stapleford
et al. 2014). Positive selection does not necessarily favor infec-
tion in one host with a loss of fitness in another. For instance,
in the case of ZIKV, a mutation in the ns1 protein that occurred
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in the Asian lineage increases infectivity in mosquitoes and
also allows evasion of mammalian innate immune responses
(Liu et al. 2017; Xia et al. 2018). We found that ns1 evolved under
positive selection in TBFVs and MBFVs, but, overall, we detected
no preferential selection target among flavivirus proteins, with
positively selected sites scattered along the polyprotein se-
quence. This observation also speaks against the possibility
that the signatures of positive selection are secondary to muta-
tions that arise to evade RNAi. In fact, at least in WNV and
POWV, specific regions are preferentially targeted by virus-de-
rived small RNAs (Brackney et al. 2015; Grubaugh et al. 2016b).
Moreover, RNAi does not preferentially generate non-synony-
mous diversity. Rather, it promotes diversity at both synony-
mous and non-synonymous sites, the fate of which is then
dictated by natural selection.

In summary, we provide evidence that the trajectories of fla-
vivirus evolution are complex and most likely determined by
multiple factors, not limited to the alternation between taxo-
nomically divergent hosts. The frequency of both positive and
purifying selection, especially in MBFVs, suggests that a minor-
ity of sites in the viral polyprotein experience weak constraint
and can evolve to generate new viral phenotypes and possibly
promote adaptation to new hosts. This might help explain the
common observation that flaviviruses can rapidly emerge and
spread in multiple locations and invade new ecological niches.
We note, however, that a limitation of our study is that evolu-
tionary analyses were based on consensus sequences, whereas
flaviviruses exist within hosts as viral swarms. Intra-host diver-
sity is still poorly analyzed, but recent data on WNV (Caldwell
et al. 2020) indicated that consensus sequence evolution does
not directly correlate with intra-host variability. Thus, pheno-
typically relevant minority variants may exist in the viral
swarm and never be reflected in consensus sequences (Caldwell
et al. 2020). This is relevant because the composition and
breadth of the intra-host viral population can modulate viral
phenotypes, including fitness, virulence, and immune escape,
eventually facilitating adaptation to diverse hosts and ecosys-
tems (Domingo et al. 2012; Dolan et al. 2018; Lauring 2020). A
deeper understanding of flavivirus evolution will thus require
the joint analysis of inter- and intra-host viral diversity. This is
especially true for ISFVs, for which no data of intra-host diver-
sity is presently available.
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