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Abstract

The main aim of this article is to give an assessment of prediction error minimiza-
tion (PEM) as a unifying theoretical framework for the study of social cognition. 
We show how this framework can be used to synthesize and systematically relate 
existing data from social cognition research, and explain how it introduces new con-
straints for further research. We discuss PEM in relation to other theoretical frame-
works of social cognition, and identify the main challenges that this approach to 
social cognition will need to address.

1 Introduction

How do we understand others? For a long time, research on social cognition was 
dominated by two positions. According to the first position, understanding others 
requires a folk psychological theory—a ‘theory of mind’—that allows us to explain 
and predict their behavior. This position is also known as the Theory Theory (TT). 
The second position, by contrast, claims that we understand others by ‘putting our-
selves in their shoes’ and by simulating the mental states we would have in their sit-
uation. This is the Simulation Theory (ST). Both positions were quite successful in 
generating testable hypotheses and structuring research in developmental psychol-
ogy, moral psychology, social neuroscience and comparative psychology.

After several decades of intense debate, however, the consensus seems to be that 
neither TT nor ST can provide a unifying theoretical framework for the study of 
social cognition (Apperly 2008, 2011). As a result, many researchers in the field 
have embraced an alternative framework, such as a hybrid of TT/ST (e.g., Nichols 
and Stich 2003; Goldman 2006), a dual-systems theory (e.g., Apperly and Butterfill 
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2009; De Bruin and Newen 2012; Fiebich 2014), or a multi-systems framework 
(Christensen and Michael 2013).

However, new developments in cognitive neuroscience and computational mode-
ling, in particular the emergence of the Prediction Error Minimization (PEM) frame-
work, suggest that this move might be premature. One of the key selling points of 
PEM is its ability to integrate a broad range of findings into a single coherent frame-
work. The main aim of this article is to assess whether PEM can provide a unifying 
theoretical framework for the study of social cognition.

The article is structured as follows. In Sect. 2 we introduce the basic principles 
and assumptions that underlie PEM. Sections 3 and 4 focus on the application of 
the PEM framework to research on social cognition. We show how PEM sheds new 
light on existing findings, in particular those on false belief understanding, and how 
it can be used to raise interesting new questions for further research. In Sects. 5 and 
6, we discuss PEM in relation to other theoretical frameworks. Finally, in Sect. 7, we 
conclude by identifying the main challenges that a PEM approach to social cogni-
tion will need to address.

2  Prediction Error Minimization: A Primer

Before discussing the basic principles and assumptions of PEM, we want to point 
out that although PEM is a formal apparatus that can be used to generate precise 
quantitative models, it is also a loose general framework in the sense that it can be 
used in the service of different explanatory programs.1 It is only by enriching this 
loose general framework with additional assumptions about a specific domain (such 
as visual perception, motor control or social cognition) that precise quantitative 
models, and thus also precise testable predictions, can be generated. Our strategy 
will be to begin with a brief characterization of the general framework, and then 
to consider how to enrich it with additional assumptions specific to the domain of 
social cognition (Sects. 3, 4).

PEM conceives of the brain as a probabilistic inference system, which attempts 
to predict the input it receives by constructing models of the possible causes of this 
input. The main aim of this system is to minimize the ‘prediction error’—the dis-
crepancy between the predicted and the actual input. If the prediction error is small, 
then there may be no need to revise the model that gives rise to the prediction. If, 
on the other hand, the prediction error is large, then it is likely that the model fails 
to capture the causes of the inputs, and therefore must be revised. In this sense, the 
brain is not concerned with coding input per se but only unexpected input. This is 
nicely illustrated in the area of reward processing by the behavior of dopaminergic 
neurons in the striatum: their rate of firing corresponds to unexpected changes in the 
value of a coming reward (e.g. increases or decreases in the number of drops of juice 

1 The contrast between the formulations of PEM found in Hohwy (2013) and Clark (2013, 2016) serves 
to illustrate this theoretical openness of PEM.
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that are administered after a tone has sounded), not to the actual value of the reward 
itself (Bayer and Glimcher 2005; Nakahara et al. 2004; Tobler et al. 2005).

PEM postulates that the models generated by the brain are not only evaluated 
according to how well they fit the evidence, i.e., how well they predict the input in 
question, but also according to how likely they are in the first place, i.e., their ‘prior 
probability’. When making sense of new input the brain does not start from scratch, 
but rather updates the models with the highest prior probability in order to accom-
modate the new evidence.2

Furthermore, PEM assumes that these models are organized in a hierarchy. At the 
lowest level of the hierarchy, neural populations encode such features as surfaces, 
edges and colors. At a hierarchically superordinate level, these low-level features are 
grouped together into objects, while even further up the hierarchy these objects are 
grouped together as components of larger scenes involving multiple objects. When 
you see a red teacup, for example, there will be a response on the part of neurons in 
your visual system that code for edges, and these neurons will represent edges at a 
particular location in the visual field. In addition, there will be a response on the part 
of neurons that code for surfaces, and there will be a response on the part of neurons 
that code for redness, which will represent a surface and redness at a particular area 
of the visual field. From one millisecond to the next, there will not be much change 
in these inputs, and the neural populations at the hierarchically lowest level (repre-
senting edges, surfaces and colors) may, as a default, predict no change in inputs. If 
the cup is moved, however, the inputs will change. Importantly, they will change in 
a manner that is coherent, given that they are all features of the same cup—if one of 
the edges moves to the left a certain distance, so will the other edges, and so will the 
red surface. In order to draw upon such regularities in anticipating inputs, the brain, 
at a hierarchical level that is superordinate to the representation of such low-level 
features as surfaces and edges and colors, represents the cup as an object. Moreo-
ver, to anticipate changes over longer time scales, superordinate models embed this 
object into larger scenes, such as tea parties, and thereby generate predictions per-
taining to objects and overall scenes in a context-dependent fashion (rather than low-
level features such as edges, surfaces and colors). Thus, by embedding the cup into 
a model of a tea party, it will become possible to predict roughly in what ways the 
cup will be moved, by whom, and where to. On the other hand, since we also lose 
detail and precision as we move up the hierarchy, lower hierarchical levels are still 
required in order to make specific predictions.

Finally, PEM proposes that the brain has two options for reducing prediction 
error. The first option is to revise its model of the world until the prediction error is 
satisfactorily diminished (‘perceptual inference’). The second option is to change the 
world so that it matches the model (‘active inference’). If, for example, one expects 
to see one’s teacup on the desk in front of one, but it turns out not to be there, one 

2 In the Bayesian interpretation of predictive coding estimating the causes comes down to finding the 
most probable causes vm given the input u for that level and the current model parameters θ (Friston 
2002; Blokpoel et al. 2012):
 vm = arg maxv Pr(v∣u;�).
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might simply conclude that one was mistaken (i.e. change the model). But one might 
also adjust one’s head or even one’s bodily position until one does see the cup, e.g. 
behind the laptop or occluded by a stack of books. In this case, one has changed the 
world in the sense of changing the position of one’s body in the world. More radi-
cally, one might go and get a cup of tea and put it exactly on that part of the desk 
where one had expected it to be. Again, this would amount to changing the world to 
match the model one had of it (Friston et al. 2011).

Having laid out the basic principles and assumptions behind the PEM framework, 
let us now consider how they might be applied in the study of social cognition.

3  Applying PEM to Social Cognition Research

In considering how to apply the PEM framework to social cognition, one might start 
out from the observation that other people are a particular kind of cause of sensory 
input on a par with teacups. Just as it is sometimes helpful in reducing uncertainty 
about the behavior of edges and surfaces and colors to postulate teacups as the bear-
ers of those lower-level features, it is also sometimes useful to postulate other peo-
ple. However, the differences between people and cups are at least as interesting as 
the similarities, and this is what motivates the project of examining social cognition 
as a particular subset of cognition in general.

Various differences already manifest themselves at the lowest levels of the hier-
archy, as there are neural populations in early visual areas that specialize in detect-
ing specific features of agents, such as faces (Haxby et al. 2002), eyes (Haxby et al. 
2000), gaze direction (Teufel et al. 2009) and emotions (Tamietto et al. 2009). These 
features trigger the brain to bring a whole set of expectations to bear that are spe-
cific to agents in contrast to non-agentive objects. To focus for a moment just on the 
example of eyes, there is a very deep-seated expectation that one will learn some-
thing useful by following others’ gaze direction. Gaze following occurs by 6 months 
at the latest (Senju and Csibra 2008), and Hood et al. (1998) have even found evi-
dence for it in 2.5 month-olds. And if another agent’s eyes happen to be directed 
at oneself, then (s)he will be able to acquire information about one’s emotions 
from one’s facial expressions and posture, to track the direction of one’s gaze and 
to anticipate one’s movements. Moreover, it is likely that (s)he will initiate certain 
actions directed towards one. Thus, it should come as no surprise that eye contact 
consistently elicits a relatively strong reaction, as evinced, for example, by galvanic 
skin response, electroencephalogram activity (Nichols and Champness 1971; Gale 
et al. 1975), and the activation of specific motivational brain systems (Hietanen et al. 
2008). In fact, the importance of eye contact is so fundamental and pervasive that 
even newborns are sensitive to it. Farroni and colleagues, for example, found that 2- 
to 5-day-old newborns looked longer and more frequently at a photograph of a face 
whose eyes were facing directly to them than a different image of the same face with 
the eyes facing away (Farroni et al. 2002).

It is interesting in this connection to consider the results of Samson et al. (2010)’s 
well-known study on automatic level-1 perspective taking. In this experiment, the 
perspective of an avatar interferes with the ability of participants to judge how many 
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objects they (the participants) could see, suggesting that the participants calculate 
how many objects the avatar can see (Samson et  al. 2010; see also Qureshi et  al. 
2010). The authors argue that this effect is driven by an automatic perspective-tak-
ing process. A different possibility, however, is that the gaze direction of the avatar 
functions as a cue, which directs attention to and facilitates the processing of objects 
at the cued location. The latter interpretation gains support from a recent study by 
Santiesteban et al. (2013), who replicated the effect with arrows rather than avatars. 
This suggests that the effect may not be driven by (automatic) perspective taking 
processes but by attentional cueing. On the basis of the PEM framework, one might 
speculate that the avatar and the arrows have this effect because there is a prior prob-
ability that if a location is cued by an arrow, or if an agent is looking in one direc-
tion, it is likely to be worthwhile to look there (i.e., we would expect high precision 
prediction error there). If so, then it should be possible to modulate the effect by 
changing the prior probability that the avatar’s gaze direction will be a useful cue 
to the location of the targets. For instance, the interference effect should increase 
if the avatar is believed to be highly competent, and it should decrease if she or 
he is believed to have poor vision. Thus, whereas automatic perspective-taking and 
attentional cueing views predict that background knowledge should make no differ-
ence (since the relevant process is entirely stimulus driven, either by domain specific 
representations of perceptual perspectives or domain general directional cues), PEM 
predicts that the right kind of background knowledge should moderate the interfer-
ence effects.

The above discussed findings, seen through the lens of the PEM framework, sug-
gest that the very appearance of a human-like body with features such as eyes trig-
gers a cascade of predictions. However, one might wonder how these processes get 
off the ground in the first place. For example, it might be objected that the develop-
mental findings by Farroni et al. (2002) actually pose a problem for the PEM frame-
work, because it is not immediately obvious that the neonatal preference for direct 
eye contact is based on a prediction or driven by priors. Thus, one might argue that 
attentional biases for face-like shapes in early ontogeny are in fact automatic, stim-
ulus-driven responses to cues in the environment—the product of innate, domain-
specific mechanisms for social learning. But PEM is not necessarily incompatible 
with such an account. For example, it could be argued that neonatal attentional 
biases have a scaffolding function in that they allow children to inductively infer 
generalizations about the relation between eye-movements and what happens in the 
surrounding environment. These generalizations can then support prediction error 
mimization processes in later development.3 On its own PEM does not actually help 
us to decide whether the effects in the dot perspective task are driven by domain 
specific representations of perceptual perspectives or domain general directional 
cues. This illustrates our point that PEM is a general framework that needs to be 
enriched with additional assumptions about a specific domain to generate interesting 
hypotheses.

3 We thank an anonymous reviewer for this suggestion.



 L. de Bruin, J. Michael 

1 3

Human bodies not only look different from teacups, they are also subject to char-
acteristic regularities governing their movements that do not apply to objects in 
general—specifically, human bodies are subjects to biomechanical laws. Thus, by 
hypothesizing the presence of a human body, the brain can bring a whole new set 
of expectations to bear in predicting upcoming sensory inputs. There is evidence 
that some neural populations, especially in the superior temporal sulcus, respond to 
biological motion. Moreover, the (perceptions of) movements that violate these laws 
(such as a finger bending too far backward) induce a greater response in the supe-
rior temporal sulcus than biomechanically predictable movements (Costantini et al. 
2005). Similarly, the perception of a human-like body which, surprisingly, moves 
about in an inhuman, mechanical manner elicits a greater response (prediction error 
signal) than a human-like body moving about in a human-like fashion or a non-
human-like body moving about in a non-human-like manner (Saygin et  al. 2012). 
The brain also utilizes a set of expectations about how humans (and other animals) 
move through space. If a person is walking across the room and passes behind a 
barrier, the default prediction is that they will continue along the same path and 
re-appear on the other side of the barrier moving at the same speed. Again, it is the 
superior temporal sulcus that appears to specialize in generating predictions at this 
level (Saxe et al. 2004).

Moving up to a hierarchically superordinate level, the brain embeds human bodies 
into models of larger situations, thereby making it possible to draw upon knowledge 
about what behavior is likely in light of contextual factors. For example, a prediction 
with high prior probability is that people turn toward objects that suddenly appear or 
suddenly emit bright lights (Pelphrey et al. 2003; Pelphrey and Van der Wyk 2011). 
Moreover, by representing others people as actors within situations, it is possible 
to appeal to situational regularities that derive from the fact that people’s behav-
ior, unlike that of coffee cups and clouds, is governed by various kinds of norms 
and conventions. Social and moral norms, for example, make it highly unlikely that 
people will run up and kiss strangers, strangle cats in public squares, or drive their 
cars on the left side of the road (unless they happen to be in one of the countries in 
which conventions dictate that they do so). Sensitivity towards these norms already 
emerges in early ontogeny. Developmental studies show that when infants begin to 
imitate the actions of adults, they do not merely re-enact the idiosyncratic act of 
individuals, but rather learn something about the general form of the action, and 
how normative dimensions of appropriate and inappropriate performance structure 
it. For example, when 2-year-old infants see someone use a novel object systemati-
cally in an instrumental way, they use the object in similar ways themselves later on, 
and only for this purpose. What is more, they expect other people to do so as well 
(Casler and Kelemen 2005). In a series of studies, Rakoczy and colleagues dem-
onstrated that, in addition to respecting social norms, infants also enforce them on 
third parties. Not only do they protest at norm violations, but they also try to alter 
the norm transgressor’s behavior, for instance, by teaching the ‘right’ way to do it 



1 3

Prediction Error Minimization as a Framework for Social…

(Rakoczy 2008; Rakoczy et al. 2008). This could very well be construed as a form 
of active inference: children minimize prediction error by correcting behavior that 
is ‘out of line’ and by bringing it in line with their expectations about how agents 
should behave in specific situations.4 Furthermore, the results also seem to indicate 
that children acquire the higher-order expectation that behavior conforms to social 
norms and use this to infer particular norms in their social environment. This could 
be interpreted as a case of overhypothesis learning, which focuses on the constraints 
on the hypotheses considered by the learner. Kemp et al. (2007) have shown how 
hierarchical Bayesian models can help to explain how overhypotheses about fea-
ture variability (e.g. the shape bias in word learning) and the grouping of categories 
into ontological kinds (e.g., objects and substances) are acquired during develop-
ment. Perhaps a similar kind of explanation might be given for overhypotheses about 
behavior variability in a social context.5

Moving still further up the hierarchy, there are also psychological features that 
are unique to specific agents and which persist over longer time scales, such as their 
preferences. Thus, agents can be expected to act in ways that are consistent with 
their specific preferences. For example, given that a person who smiles at a mug and 
frowns at a stuffed animal is more likely to reach for the mug than the stuffed ani-
mal, it will be surprising to observe the person to opt for the stuffed animal. This is 
inconsistent with their inferred preference, and indeed the superior temporal sulcus 
is responsive to this surprising event (Van der Wyk et al. 2009).

Similarly, the ascription of specific beliefs and desires to individual agents makes 
it possible to exploit regularities that can span quite long timescales. If an agent 
believes that the object she desires is at one location, she is likely to seek it there 
regardless of whether it really is still there, and indeed even if it happens to have 
been transferred years ago to some other location. Recent findings in developmental 
psychology suggest very strongly that infants are able to anticipate such regularities 
by the second year of life (Baillargeon et al. 2010; Butterfill and Apperly 2013), and 
perhaps even by 6–7 months (Kovács et al. 2010; Southgate and Vernetti 2014). And 
when, in experimental settings in which false belief scenarios are generated, this 
type of pattern is broken, children tend to look longer at the scene, suggesting that 
their expectation has been violated.6

Much has been made of the discrepancy between these findings, on the one hand, 
and the failure of 3–4 year-old children to succeed at false belief tests in which they 
are asked verbally to predict where an agent with a false belief is likely to search for 
the object in question (Wimmer and Perner 1983; Wellman et  al. 2001; Butterfill 
and Apperly 2013). Attempts to account for this developmental puzzle have ranged 
from denial that the data really does reveal a sensitivity to belief states on the part 

4 Although we will sometimes offer interpretations of behavior that are couched in agential terms (e.g., 
children who “minimize prediction error” and “engage in active inference”), we assume that PEM pro-
cesses take place at the sub-personal level.
5 We thank an anonymous reviewer for this suggestion.
6 Many other measures apart from looking time have also been used. For reviews, see Baillargeon et al. 
(2010) and Christensen and Michael (2013).
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of infants (Heyes 2014; Perner and Ruffman 2005), to arguments that the infants 
do represent beliefs per se but have specific difficulties with various task demands 
arising in explicit verbal versions (Baillargeon et al. 2010) to something in between 
(Apperly and Butterfill 2009; De Bruin and Newen 2012).

In what follows, we will highlight some points that are raised by the PEM frame-
work and which may contribute to a satisfying theoretical account of these findings.

4  PEM and False Belief Understanding

A first point worth mentioning is that the PEM framework is neutral with respect to 
the question whether infants have to meta-represent, i.e. to represent another agent’s 
belief about the world (specifically, the location of an object) in order pass these 
tests. The results of the violation-of-expectation false belief test, for example, indi-
cate that infants form expectations about the behavior of another agent, which are 
violated at some point during the experiment. Similarly, the results of the anticipa-
tory-looking false belief test suggest that infants form certain expectations about the 
behavior of another agent, which are manifested in their looking behavior. From a 
PEM perspective, these findings must be explained by specifying how exactly the 
relevant expectations are generated. For example, as was mentioned in the previ-
ous section, it might be the case that these expectations are the product of innate, 
domain-specific mechanisms, which allow infants to infer generalizations about the 
relation between eye-movements and what happens in the surrounding environment. 
But PEM itself does not commit us to assuming that representations of the agent’s 
beliefs provide the best explanation; it could for example be that something like reg-
istrations in Butterfill and Apperly’s (2015) sense provide a better explanation, or 
a radical ecological-enactive approach (Bruineberg et al. 2016). In any case, PEM 
does not resolve this dispute so much as provide a different set of terms and princi-
ples in which to think about it. However, this does not mean that PEM cannot offer 
novels insight on some aspects of the infant mindreading puzzle.

One fresh starting point which PEM offers focuses on the question whether and 
how infants deal with the prediction error that follows when their expectations are 
violated. With this question in mind, it is worth taking a closer look at experiments 
using active-helping as a dependent measure. These studies show that children are 
not merely surprised when their expectations about another agent’s behavior are vio-
lated but actively try to reduce the resulting prediction error by assisting the agent in 
question.7 That is, children engage in active inference by changing the world so that 
it matches their model of it (Michael et al. 2014; Cf. Michael and Székely 2017). 
For example, the experiment by Buttelmann et al. (2009) shows that 18-month-olds, 
when confronted with a mismatch between (their representation of) the preference of 
the agent and the new location of the object, reduce this prediction error by directing 
the agent to the actual location of the object and extracting the object for him.

7 Note that the term ‘surprise’ as we use it here refers to surprisal (the implausibility of some sensory 
state given a model of the world) rather than agent-level surprise.
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Young children’s superior performance in experiments based on active help-
ing compared to elicited response paradigms may provide an important clue for 
explaining the developmental puzzle of false belief understanding. Most accounts 
of false belief understanding (e.g., Baillargeon et al. 2010; Carruthers 2016) assume 
that children have to inhibit their own true belief and select and represent the false 
belief of the other agent in order to correctly predict the action that follows. These 
accounts hypothesize that young children fail the elicited-response false belief test 
because they cannot handle the complexity of the task and therefore default to what 
they themselves believe to be the case. PEM, however, suggests that there might 
be a different reason why younger children in the elicited-response false belief test 
systematically give incorrect answers, rather than confused or arbitrary answers. 
Specifically, it suggests the idea that the elicited-response false belief test is more 
difficult because it confronts children with a prediction error that cannot be reduced 
by perceptual inference, i.e. by updating their model of the agent (specifically the 
agent’s belief about the location of the object). In the active-helping false belief test, 
children can reduce the prediction error by means of active inference. Indeed, this is 
the most effective way to reduce the prediction error. In the elicited-response false 
belief test, by contrast, this option is not available. If we assume that children have a 
natural inclination to reduce prediction error, then the elicited-response false belief 
test might be more difficult because young children need to inhibit their tendency to 
engage in perceptual inference and update their model of the agent’s belief to get rid 
of the discrepancy between the preference of the agent and the new location of the 
object. If correct, this explanation would provide a partial reduction of the explana-
tion recently offered by Helming et al. (2014): they suggest that, since young chil-
dren want to help others, they make the pragmatic error of trying to be informative 
in order to help in elicited-response tasks. The current alternative explanation would 
suggest that in fact kids may want to help in order to reduce prediction error—and 
thus that they may also make the error in a competitive setting (whereas Helming 
and colleagues’ hypothesis would not predict this). In other words, they may often 
help others non-strategically, e.g. in game situations in which it would not be in their 
interest to do so.

Obviously, our proposal would require further development. In particular, some 
account must be given of when infants help. After all, infants and young children 
do not always help with others’ goals. Indeed, they show preferences in whom they 
help, preferring not to help agents with harmful intentions (Vaish et al. 2010; Dun-
field and Kuhlmeier 2010; Dahl et al. 2013). To some extent, it may be possible to 
explain these findings in terms of other factors which are compatible with the active 
inference account—e.g. there is no reason why the active inference account should 
not incorporate a preference to interact with agents who have shown kindness, or 
with specific people, ingroup members, etc. Indeed, infants are probably more likely 
to interact with an agent who has shown kindness than with an agent who has not. 
If so, then active inference would be a probable means of reducing prediction error 
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in the former case but not in the latter. And since prediction errors, on this account, 
will always be reduced by whatever means is most probable, active inference (i.e. 
active helping) may be the most probable means in cases in which the agent has 
shown kindness and/or is familiar, but not in other cases.8

5  Situating PEM in Contemporary Debates on Social Cognition: 
Mindreading

In order to assess the merits of PEM as a research framework, it is important to 
determine whether it can address (some of) the central issues with the existing 
accounts of social cognition. Our aim in this section is not to provide a complete 
overview of these issues or to explain them in detail. Instead, we will simply focus 
on those issues that PEM might be able to illuminate to some extent.

One of the main controversies in the contemporary debate on social cognition 
concerns the centrality of mindreading. Various arguments have been put forward to 
show why overestimating the relative importance of mindreading for social cogni-
tion is problematic. For example, Bermúdez (2003) has claimed that Theory Theory 
(TT) and Simulation Theory (ST) accounts of mindreading are unattractive because 
they are highly demanding in terms of computational complexity. TT is computa-
tionally complex because it requires agents to figure out which theoretical princi-
ples could apply in a given situation, whether appropriate background conditions 
hold, whether there are countervailing factors, etc. ST is computationally complex 
because agents have to identify the mental states that could be relevant to the sim-
ulation process, run pretend versions of these states through their own decision-
making mechanisms, and attribute the outcome (the pretend decision) to the target. 
According to Bermudez, this is problematic because most of our social interactions 
are relatively ‘smooth’ and involve “almost instantaneous adjustments to the behav-
ior of others” (2003, p. 8).

A similar objection might be leveled at proponents of a PEM account of social 
cognition. As far as we can see, there are basically two ways in which they could 
respond. On the one hand, they could argue that even though socio-cognitive pro-
cesses are computationally complex, this does not mean that we have to experience 
them as such. That is, following Clark, they could argue that there is “clearly no 
inconsistency in thinking that the brain’s pervasive use of probabilistic encoding 
might yield conscious experiences that depict a single, unified and quite unambigu-
ous scene.” (2013, p. 16; see Spaulding 2010 for a similar defense of TT and ST)

On the other hand, however, proponents of PEM could also point out that infer-
ences about other agents’ mental states do not need to be concurrently involved 
in the prediction of their behavior—as long as the priors are adequate. This is 
because the brain does not need to engage in rich inferential processing as long as 

8 It must be acknowledged, of course, that other accounts would also generate this same prediction. In 
order to test the active-inference account of active-helping, it would be necessary to identify predictions 
which it uniquely generates. This is an important objective for future research.
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expectations about another agent’s actions are (more or less) met. Instead, it is only 
unexpected input that generates error signals and thus leads the brain to update its 
models, i.e. “an expected event does not need to be explicitly represented or commu-
nicated to higher cortical areas which have processed all of its relevant features prior 
to its occurrence” (Bubic et al. 2010, 10). On a PEM approach, when the predictions 
generated by low-level models are adequate, there is no need for the brain to engage 
in complex computation in order to make sense of incoming sensory information.

Another issue that is frequently brought up in connection with mindreading is the 
frame problem, which arises from the fact that there appears to be no intrinsic limit on the 
scope of the information that is relevant to mindreading processes (McCarthy and Hayes 
1969; Heal 1997; Wilkerson 2001). For TT, the problem is how to decide which theoreti-
cal principle one should apply in a particular situation, given that the information that is 
potentially relevant to this decision is in principle unlimited and could come from any 
domain. For ST, the problem is how we are able to identify the mental states of the other 
agent, when the information that is potentially relevant to this identification is in principle 
unlimited and could come from any domain (Spaulding 2010; Gallagher 2012).

To see why this is not a problem for PEM, let us briefly consider Kilner et  al. 
(2007) account of the mirror neuron system.9 Because of the special visuo-motor 
properties of mirror neurons systems, proponents of ST have been attracted to the 
idea that mirror neurons enable us to understand other people’s intentions simply 
by observing and covertly simulating their actions (Rizzolatti and Craighero 2004; 
Gallese et al. 2004). One way of expressing this idea is that mirror neurons are part 
of a larger system that transforms low-level representations of (observed) movement 
kinematics into high-level representations of action intentions. But how might this 
work? Take the example of the red teacup again. When I reach out in order to grasp 
it, my brain attempts to predict the sensory consequences of my action. It does so 
by means of a forward model, which runs a simulation of the movement kinematics 
on the basis of my action intention (Wolpert et al. 1995, 2003). But when I observe 
another agent reaching out for the cup, this sequence needs to be reversed. In order 
to achieve this, one possibility is that the brain generates an inverse model, which 
infers the intention of the agent from the observed movement kinematics. As Kilner 
et al. (2007) point out, however, the problem is that such a model assumes a one-to-
one relation between the observed movement kinematics and its cause, when in gen-
eral the relation is many-to-many. On the one hand, the same movement kinematics 
can be caused by different action intentions: an agent flipping a light switch may 
have the intention of turning the light either on or off, depending on the context. On 
the other hand, the same intention may issue in different movement kinematics: an 
agent might turn the light on by flipping the switch with her index finger or with her 
middle finger, or, if her hands are occupied, with her knee, etc.10

9 The mirror neuron system is a network of brain regions (i.e. in ventral premotor cortex, inferior pari-
etal lobe, and somatosensory areas) that is active either when an agent performs an action or when that 
agent observes another agent performing the same or a similar action (Frith and Singer 2008; Kilner 
et al. 2007; Michael 2011).
10 See also Jacob and Jeannerod (2005)’s thought experiment, in which Dr. Jekyll may exhibit the same 
motor kinematics in curing his patient as Mr. Hyde does in torturing his victim. In order to differentiate 
between these two scenarios, it is necessary to draw upon some information beyond mere kinematics.
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What we are facing here is basically ST’s problem of determining relevance. 
However, Kilner et al. (2007) show that this problem doesn’t arise if we understand 
the mirror neuron system as a hierarchical model operating in accordance with the 
principles of PEM. On this view, our brains do not need to start from scratch each 
time we observe someone performing an action—they arrive at the scene with prior 
expectations about how action intentions are causally related to movement kinemat-
ics. These prior expectations constrain the hypothesis space, and enable the brain to 
home in on likely interpretations of others’ actions that can be tested and updated 
against the ongoing observation of behavior. Thus, when we observe how another 
agent flicks the light switch, we expect it will turn the lights on (given a certain con-
text, e.g., during the evening or in a dark room), and on the basis of certain priors 
we expect some of the fingers to be involved—although we do not know precisely 
which ones, and we might be mistaken.

At this point it is interesting to reconsider Goldman’s (2006) hybrid ST/TT 
account, which was (at least partly) motivated by the attempt to solve ST’s frame 
problem. Goldman suggested that ‘pure simulationism’ is insufficient insofar as “[t]
heorizing seems necessary to generate hypotheses about states responsible for the 
observed effects, hypotheses presumably prompted by background information.” 
(p. 45) According to him, mindreading is executed at the personal level by simula-
tion, which is in turn implemented at the sub-personal level by an underlying theory. 
“How could simulation be executed unless an algorithm for its execution is tacitly 
represented at some level in the brain? Isn’t such an algorithm a sort of theory?” 
(ibid.).

Indeed, such an algorithm is precisely what PEM provides with Bayes’ theorem. 
Although critics of TT have raised the question of what it means to employ theoreti-
cal principles at the sub-personal level (e.g., Gallagher 2001, 2008), PEM seems to 
offer a straightforward solution to this problem. For its core idea is that all percep-
tion and action is based upon unconscious inference. This suggests that social cogni-
tion is theoretical in the sense that, in order to predict other agents’ future behavior, 
the brain draws inferences about the hidden mental causes of that behavior. But does 
it also mean that simulation is involved? The key claim of ST is that we predict and/
or explain the behavior of another agent by using our own decision-making pro-
cesses as a physical simulation of his or her decision processes. If this is how we 
should interpret ST, then it seems that PEM does not necessarily involve simulation: 
hierarchical models of other agents need not be based on the models that inform our 
own decision-making capacities (except in the trivial sense that all processes imple-
ment Bayesian algorithms). They might be based on our prior experience with the 
actions of a certain type of agent in a certain type of situation, instead of a simula-
tion of how we ourselves would act in that situation. On the other hand, as Kilner 
et al. (2007) have shown, it remains an empirical possibility that the models of other 
agents that are generated by the brain are in fact based on models of ourselves. In 
that case, the models need to be sufficiently similar to allow for the application of 
one’s own models to understand the other’s behavior. As Friston and Frith (2015, p. 
401) argue, “internal or generative models used to infer one’s own behaviour can be 
deployed to infer the beliefs (e.g., intentions) of another—provided both parties have 
sufficiently similar generative models.” (see Quadt 2017 for discussion).
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Let us conclude this section with a general observation about the place of mind-
reading in the PEM framework. In anticipating other people’s behavior, it is impor-
tant not only to keep track of their mental states at a given time but also to draw 
upon information about features obtaining across longer time scales—i.e. personal-
ity traits and reputation, such as the degree to which they are trustworthy, lazy, prone 
to temper tantrums, etc. (Moutoussis et al. 2014). For example, there is evidence that 
people use information about other people’s reputation (i.e. gossip) in order to gen-
erate expectations about how cooperative those people will be in economic games, 
and to calibrate their own behavior accordingly (Sommerfeld et al. 2007). What this 
shows is that PEM expands the scope of interest beyond mindreading to other phe-
nomena that are also crucially important for social cognition. Indeed, mindreading 
does not appear to be so much a keystone of social cognition within this framework 
as one of many components that enhance the more basic domain-general ability to 
predict events in the environment that may or may not involve people.11

6  Situating PEM in Contemporary Debates on Social Cognition: 
Embodied Cognition

Recent embodied cognition approaches to social cognition (e.g., Gallagher 2001, 
2012; Hutto 2004, 2008; Ratcliffe 2005, 2007; Zahavi 2004) have argued that our 
understanding of others is essentially: (1) embodied, i.e. shaped and structured by 
intra- and extra-cranial (bodily) processes, (2) enactive, i.e. not (primarily) about 
passively representing the mental states of others, but rather about dynamically 
interacting with them, and (3) embedded or ‘situated’ in a broader social and prag-
matic context and based on a history of interactions, which constrains the informa-
tion that is relevant to our understanding of them.

To what extent are these insights compatible with the main principles of PEM? 
Let us first consider the third claim that social cognition is embedded. PEM agrees 
that understanding others is situated and based on a history of interactions, insofar 
as it maintains that the predictions made by our brains are contextualized and based 
on prior expectations (Clark 2013, 2016). In fact, as we have argued in the previous 
section, this is how it is able to avoid the frame-problem. Now, given the importance 
accorded to prior expectations by the PEM framework, it is crucial to explain where 
those expectations come from. This is where embodied cognition approaches could 
actually be of help. Since our brains have evolved to make predictions that are spe-
cifically tailored to the bodies in which they reside and to the environments in which 
those bodies live, it only seems to make sense to retain a perspective which gives 
pride of place to bodies and environments As Clark puts it, to identify the structure 
of the space of priors that is specific to the human species, a “deep (but satisfyingly 

11 In fact, given that representations within this framework are distributed across multiple hierarchical 
levels, mindreading itself can be seen to fracture into multiple levels of inference about other agents’ 
minds, as illustrated by the discussion in Sect. 3.
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natural) engagement with evolutionary, embodied, and situated approaches” is 
needed. (p. 200)

PEM is also compatible with the assumption that social cognition emerges as the 
result of dynamic interactive processes. However, PEM suggests that the relevant 
contrast is not between dynamic interaction and passive representation, but instead 
between two ways of reducing prediction errors: active inference and perceptual 
inference. Indeed, it is the notion of active inference that invites us to incorporate 
social interaction in an overall framework for understanding social cognition. Quadt 
(2017) uses the term ‘interactive inference’ to describe the minimization of predic-
tion error in a social environment, which serves to disambiguate competing mod-
els about other agents. She distinguishes between two kinds of interactive inference 
strategies that we employ in our social engagements. In replicative active inference 
the bodily state (e.g., posture, movements) of another person is mimicked in order 
to supplement exteroceptive information about them with interoceptive and proprio-
ceptive information. Mimicry, synchronization and automatic imitation are ways in 
which replicative active inference helps us to make our predictions of other agents 
more precise by increasing the number of signal sources that yield relevant informa-
tion. Complementary interactive inference refers to changing one’s internal or exter-
nal environment in response to another person. This is done to regulate the other’s 
current state (e.g., mothers who lower their bodily temperature to cool down the 
infant’s feverish body; Nyqvist et al. 2010), or to evoke further behavioral responses 
that serve as additional exteroceptive input (e.g., using gestures to express one’s 
uncertainty).

Social interaction not only provides input to individual brains but enables us to 
jointly monitor each other’s actions and speech, communicate error signals to each 
other (Pickering and Garrod 2014), and also to communicate levels of confidence 
(i.e. higher-order predictions) to each other (Bahrami et  al. 2010). These benefits 
make it possible to pool together cognitive resources in order to detect errors all the 
better, and to ensure that the common ground necessary for successful joint decision 
making and joint action is sustained (Bahrami et al. 2012). In fact, Shea et al. (2014) 
have recently proposed that adult humans’ ability to explicitly monitor and evaluate 
their own cognitive processes has been shaped evolutionarily and culturally by the 
primary function of social coordination.

Insofar as active and perceptual inference can be viewed as different ways to 
reduce prediction error, they cannot be characterized as ‘passive’. However, accord-
ing to most proponents of PEM, both types of inference do depend on a robust 
notion of representation (but see Bruineberg et al. 2016 for an exception). And this 
is hard to reconcile with more radical anti-representationalist versions of embod-
ied cognition (e.g., Ratcliffe 2007; Gallagher 2008; De Jaegher et  al. 2010; Hutto 
and Myin 2013). Furthermore, the assumption that prediction error minimization 
relies on a robust notion of representation sometimes leads to a much weaker view 
of the importance of the body. For example, Hohwy (2016) has argued that although 
the concept of active inference entails a central role for the body in reducing pre-
diction error, this role is only significant in the sense that the body is represented 
in the model, as a parameter useful for minimizing prediction error. Others, how-
ever, argue that PEM works with a different notion of representation, one that is 
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‘action-oriented’ rather than ‘action-neutral’, and one that does not “seem to imply 
the presence of inner models or content-bearing states of the kind imagined in tradi-
tional cognitive science. Instead, what are picked out seem to be physical processes 
defined over states that do not bear contents at all.” (Clark 2013, p. 18; see Downey 
2017; Dolega 2017 for further discussion on the role of representations).

In other words, the extent to which PEM is compatible with claims about the 
importance of embodiment and the role of representations (at least) in social cogni-
tion partly depends on the various commitments of proponents of embodied cogni-
tion and proponents of PEM. Unfortunately, a detailed discussion of these commit-
ments falls outside the scope of the present paper. Instead we will focus on some 
challenges that the PEM approach to social cognition still needs to address, and 
point out some general directions for future research

7  Further Questions and Future Research

One of the biggest challenges for the PEM framework—in general, i.e. not only as it 
pertains specifically to social cognition—in the near future will be to find direct neu-
roscientific evidence for the assumption that the brain is actually organized in terms 
of a hierarchical predictive coding model.12

At the moment, there is no conclusive evidence for the existence of two function-
ally distinct sets of neurons (i.e. ‘error units’ and ‘representations units’), nor for any 
particular hypothesis about the interaction between any such sets—although recent 
work by Bastos (2013; see also Bastos et al. 2012) is suggestive in this respect. The 
evidence that does exist falls into three categories: (1) evidence that PEM models 
do a better job of predicting neural responses (e.g. in EEG or imaging studies) than 
competitor models—e.g. Pinotsis et al. (2014)’s recent report of layer-specific evi-
dence for precision optimization, a key element of hierarchical predictive coding 
(see also Spratling 2012; Seth 2013); (2) behavioral demonstrations of Bayesian-
like performance—e.g., binocular rivalry (Hohwy et al. 2008); and (3) simulations 
of predictive coding strategies that explain a variety of observed effects—e.g., Rao 
and Ballard (1999)’s model of predictive coding in the visual cortex.13 Crucially, 
only the first category can directly support any firm conclusions about neural mech-
anisms. Moving forward, then, it will be important to assess to what extent cate-
gory-1 evidence is forthcoming.

As far as social cognition research is concerned, indirect evidence for the PEM 
approach has predominantly been reported in the third category. For example, Baker 
et al. (2011) have presented a Bayesian Theory of Mind framework to model sub-
jects’ joint inferences about another agents’ desires and beliefs about unobserved 
aspects of the environment. One obvious strategy is to take these formal PEM mod-
els as a starting point and try to map them onto what is currently known about the 

12 See Jazayeri (2008) for a review of findings that may be interpreted as providing such evidence; but 
see Bowers and Davis (2012, pp. 404–405) for criticism of Jazayeri’s conclusions.
13 See Clark (2013) for a fuller assessment of this issue.
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neural mechanisms underlying social cognition—in this case the so-called ‘Theory 
of Mind network’, which is usually taken to consist of the anterior cingulate cortex, 
the temporal-parietal junction, the superior temporal sulcus and the temporal poles 
(see Frith and Frith 2003; Amodio and Frith 2006). However, one challenge for this 
strategy is that the PEM approach is very likely to put different kinds of constraints 
on the interpretation of the existing neuroscientific data. For instance, if we take 
for granted that only unexpected input generates an error signal (which is one of 
the central assumptions of PEM), then we should hypothesize that only unexpected 
input causes brain activity in higher cortical regions. This ‘explaining away the 
input’ hypothesis is clearly a solid basis for the generation of hypotheses that would 
be testable by cognitive neuroscience, but it may also require modifications of exist-
ing paradigms. This makes it difficult to apply PEM directly to data from previous 
research on social cognition.

In order to refine the PEM approach as a framework for social cognition research, 
we propose a combination of the following three strategies: (a) to reconsider formal 
PEM models in light of existing neuroscientific and psychological findings in social 
cognition research; (b) to re-interpret existing data from social cognition research in 
terms of the specific constraints that follow from adopting the PEM approach; and 
(c) to refine existing experimental paradigms in order to implement specific hypoth-
eses arising from the PEM framework.

To conclude, it remains to be seen whether or not PEM will prove to be more suc-
cessful as a framework for social cognition research than its predecessors were—just 
as it remains to be seen whether PEM will be successful as a general theory of neu-
ral processing. For the moment, however, we hope at least to have demonstrated that 
it is well worth finding out.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The role of medial frontal cortex in social cog-
nition. Nature Reviews Neuroscience, 7, 268–277.

Apperly, I. A. (2008). Beyond Simulation-Theory and Theory-Theory: Why social cognitive neuroscience 
should use its own concepts to study ‘‘theory of mind’’. Cognition, 107(1), 266–283.

Apperly, I. A. (2011). Mindreaders: The cognitive basis of “theory of mind”. New York: Psychology 
Press.

Apperly, I. A., & Butterfill, S. A. (2009). Do humans have two systems to track beliefs and belief-like 
states? Psychological Review, 116(4), 953–970.

Bahrami, B., Olsen, K., Bang, D., Roepstorff, A., Rees, G., & Frith, C. (2012). Together, slowly but 
surely: The role of social interaction and feedback in the build-up of benefit in collective decision-
making. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 3–8.

Bahrami, B., Olsen, K., Latham, P. E., Roepstorff, A., Rees, G., & Frith, C. D. (2010). Optimally interact-
ing minds. Science, 329, 108141085.

Baillargeon, R., Scott, R. M., & He, Z. (2010). False-belief understanding in infants. Trends in Cognitive 

Sciences, 14, 110–118.

http://creativecommons.org/licenses/by/4.0/


1 3

Prediction Error Minimization as a Framework for Social…

Baker, C. L., Saxe, R. R., & Tenenbaum, J. B. (2011). Bayesian theory of mind: Modeling joint belief-
desire attribution. In Proceedings of the thirty-third annual conference of the cognitive science 

society (pp. 2469–2474).
Bastos, A. M. (2013). Ph.D. thesis, University of California Davis.
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical 

microcircuits for predictive coding. Neuron, 76, 695–711.
Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward pre-

diction error signal. Neuron, 47, 129–141.
Bermúdez, J. L. (2003). The domain of folk psychology. In A. O’Hear (Ed.), Minds and persons (pp. 

25–48). Cambridge: Cambridge University Press.
Blokpoel, M., Kwisthout, J., & van Rooij, I. (2012). When can predictive brains be truly Bayesian? Fron-

tiers in Theoretical and Philosophical Psychology, 3(460), 1–3.
Bowers, J. S., & Davis, C. J. (2012). Bayesian just-so stories in psychology and neuroscience. Psycho-

logical Bulletin, 138, 389–414.
Bruineberg, J., Kiverstein, J., & Rietveld, E. (2016). The anticipating brain is not a scientist: The free-

energy principle from an ecological-enactive perspective. Synthese. https ://doi.org/10.1007/s1122 
9-016-1239-1.

Bubic, A., von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in 

Human Neuroscience, 4, 25. https ://doi.org/10.3389/fnhum .2010.00025 .
Buttelmann, D., Carpenter, M., & Tomasello, M. (2009). Eighteen-month-old infants show false belief 

understanding in an active helping paradigm. Cognition, 112, 337–342.
Butterfill, S., & Apperly, I. (2013). How to construct a minimal theory of mind. Mind & Language, 28(5), 

606–637.
Carruthers, P. (2016). Two systems for mindreading? Review of Philosophy and Psychology, 7(1), 

141–162.
Casler, K., & Kelemen, D. (2005). Young children’s rapid learning about artifacts. Developmental Sci-

ence, 8, 472–480.
Christensen, W., & Michael, J. (2013). Review of Apperly, Ian. Mindreaders: The Cognitive Basis of 

Theory of Mind Phenomenology and the Cognitive Sciences, 12(4), 907–914.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. 

Behavioral and Brain Sciences, 36(3), 181–204.
Costantini, M., Galati, G., Ferretti, A., Caulo, M., Tartaro, A., Romani, G. L., et al. (2005). Neural sys-

tems underlying observation of humanly impossible movements: An FMRI study. Cerebral Cortex, 
15, 1761–1767.

Dahl, A., Schuck, R. K., & Campos, J. J. (2013). Do young toddlers act on their social preferences? 
Developmental Psychology, 49(10), 1964–1970.

De Bruin, L. C., & Newen, A. (2012). An association-based account of false belief understanding. Cogni-

tion, 123(2), 240–259.
De Jaegher, H., Di Paolo, E., & Gallagher, S. (2010). Can social interaction constitute social cognition? 

Trends in Cognitive Sciences, 14(10), 441–447.
Dolega, K. (2017). Moderate predictive processing. In T. Metzinger & W. Wiese (Eds.), Philosophy and 

predictive processing. Frankfurt am Main: MIND Group.
Downey, A. (2017). Predictive processing and the representation wars: A victory for the eliminativist (via 

fictionalism). Synthese. https ://doi.org/10.1007/s1122 9-017-1442-8.
Dunfield, K. A., & Kuhlmeier, V. A. (2010). Intention-mediated selective helping in infancy. Psychologi-

cal Science, 21(4), 523–527.
Farroni, T., Csibra, G., Simion, F., & Johnson, M. H. (2002). Eye contact detection in humans from birth. 

Proceedings of the National Academy of Sciences, 99, 9602–9605.
Fiebich, A. (2014). Mindreading with ease? Fluency and belief reasoning in 4- to 5-year-olds. Synthese, 

191(5), 929–944.
Friston, K. (2002). Functional integration and inference in the brain. Progress in Neurobiology, 68, 

113–143.
Friston, K., & Frith, C. (2015). A duet for one. Consciousness and Cognition, 36, 390–405.
Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. Biological Cyber-

netics, 104(1–2), 137–160.
Frith, C., & Singer, T. (2008). The role of social cognition in decision making. Philosophical Transac-

tions of the Royal Society of London: Biological Sciences, 363, 3875–3886.

https://doi.org/10.1007/s11229-016-1239-1
https://doi.org/10.1007/s11229-016-1239-1
https://doi.org/10.3389/fnhum.2010.00025
https://doi.org/10.1007/s11229-017-1442-8


 L. de Bruin, J. Michael 

1 3

Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Trans-

actions of the Royal Society of London, Series B, Biological Sciences, 358, 459–473.
Gale, A., Spratt, G., Chapman, A. J., & Smallbone, A. (1975). EEG correlates of eye contact and inter-

personal distance. Biological Psychology, 3(4), 237–245.
Gallagher, S. (2001). The practice of mind: Theory, simulation or primary interaction? Journal of Con-

sciousness Studies, 8, 83–108.
Gallagher, S. (2008). Direct perception in the intersubjective context. Consciousness and Cognition, 17, 

535–543.
Gallagher, S. (2012). In defense of phenomenological approaches to social cognition: Interacting with the 

critics. Review of Philosophy and Psychology, 3(2), 187–212.
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends 

in Cognitive Sciences, 8(9), 396–403.
Goldman, A. (2006). Simulating minds: The philosophy, psychology and neuroscience of mindreading. 

New York: Oxford University Press.
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face per-

ception. Trends in Cognitive Sciences, 4, 223–233.
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2002). Human neural systems for face recognition and 

social communication. Biological Psychiatry, 51, 59–67.
Heal, J. (1997). Simulation, theory, and content. In P. Carruthers & P. Smith (Eds.), Theories of theories 

of mind (pp. 75–89). Cambridge: Cambridge University Press.
Helming, K. A., Strickland, B., & Jacob, P. (2014). Making sense of early false-belief understanding. 

Trends in Cognitive Sciences, 18(4), 167–170.
Heyes, C. (2014). False belief in infancy: A fresh look. Developmental Science. https ://doi.org/10.1111/

desc.1214.
Hietanen, J. K., Leppänen, J. M., Peltola, M. J., Linna-aho, K., & Ruuhiala, H. J. (2008). Seeing direct 

and averted gaze activates the approach-avoidance motivational brain systems. Neuropsychologia, 
46(9), 2423–2430.

Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.
Hohwy, J. (2016). The self-evidencing brain. Nous, 50(2), 259–285.
Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An episte-

mological review. Cognition, 108(3), 687–701.
Hood, B., Willen, J., & Driver, J. (1998). Adult’s eyes trigger shifts of visual attention in human infants. 

Psychological Science, 9(2), 131–134.
Hutto, D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content. Cambridge, MA: 

MIT Press.
Hutto, D. D. (2004). The limits of spectatorial folk psychology. Mind and Language, 19, 548–573.
Hutto, D. (2008). Folk psychological narratives: The sociocultural basis of. understanding reasons. Cam-

bridge, MA: MIT Press.
Jacob, P., & Jeannerod, M. (2005). The motor theory of social cognition: A critique. Trends in Cognitive 

Sciences, 9(1), 21–25.
Jazayeri, M. (2008). Probabilistic sensory recoding. Current Opinion in Neurobiology, 18, 431–437.
Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical Bayesian 

models. Developmental Science, 10(3), 307–321.
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron 

system. Cognitive Processing, 8(3), 159–166.
Kovács, Á. M., Téglás, E., & Endress, A. D. (2010). The social sense: Susceptibility to others’ beliefs in 

human infants and adults. Science, 330(6012), 1830–1834.
McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intel-

ligence. Machine Intelligence, 4, 463–502.
Michael, J. (2011). Interactionism and mindreading. Review of Philosophy and Psychology, 2(3), 

559–578.
Michael, J., Sandberg, K., Skewes, J., Wolf, T., Blicher, J., Overgaard, M., et al. (2014). Continuous theta 

burst demonstrates a causal role of premotor homunculus in action interpretation. Psychological 

Science, 25, 963–972. https ://doi.org/10.1177/09567 97613 52060 8.
Michael, J., Sebanz, N., & Knoblich, G. (2016). The sense of commitment: A minimal approach. Fron-

tiers in Psychology, 6, 1968.
Michael, J., & Székely, M. (2017). Goal slippage: A mechanism for spontaneous instrumental helping in 

infancy? Topoi. https ://doi.org/10.1007/s1124 5-017-9485-5.

https://doi.org/10.1111/desc.1214
https://doi.org/10.1111/desc.1214
https://doi.org/10.1177/0956797613520608
https://doi.org/10.1007/s11245-017-9485-5


1 3

Prediction Error Minimization as a Framework for Social…

Moutoussis, M., Trujillo-Barreto, N. J., El-Deredy, W., Dolan, R. J., & Friston, K. J. (2014). A formal 
model of interpersonal inference. Frontiers in Human Neuroscience, 25(8), 160.

Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y., & Hikosaka, O. (2004). Dopamine neurons can repre-
sent context-dependent prediction error. Neuron, 41, 269–280.

Nichols, K. A., & Champness, B. G. (1971). Eye gaze and the GSR. Journal of Experimental Social Psy-

chology, 7, 623.
Nichols, S., & Stich, S. (2003). Mindreading. An integrated account of pretence, self-awareness, and 

understanding of other minds. Oxford: Clarendon Press.
Nyqvist, K. H., Anderson, G. C., Bergman, N., Cattaneo, A., Charpak, N., Davanzo, R., et al. (2010). 

Towards universal Kangaroo Mother Care: Recommendations and report from the First European 
conference and Seventh International Workshop on Kangaroo Mother Care. Acta Paediatrica, 
99(6), 820–826.

Pelphrey, K., Singerman, J., Allison, T., & McCarthy, G. (2003). Brain activation evoked by perception of 
gaze shifts: The influence of context. Neuropsychologia, 41(2), 156–170.

Pelphrey, K., & Van der Wyk, B. (2011). Functional and neural mechanisms for eye gaze processing. 
In A. Calder, G. Rhodes, M. Johnson, & J. Haxby (Eds.), OUP Handbook of face perception (pp. 
591–604). Oxford: Oxford University Press.

Perner, J., & Ruffman, T. (2005). Infants’ insight into the mind: How deep? Science, 308, 214–216.
Pickering, M. J., & Garrod, S. (2014). Self-, other-, and joint monitoring using forward models. Frontiers 

in Human Neuroscience, 8, 132.
Pinotsis, D., Robinson, P., beim Graben, P., & Friston, K. (2014). Neural masses and fields: Modelling 

the dynamics of brain activity. Frontiers in Computational Neuroscience, 8, 149.
Quadt, L. (2017). Action-oriented predictive processing and social cognition. In T. Metzinger & W. 

Wiese (Eds.), Philosophy and predictive processing. Frankfurt am Main: MIND Group.
Qureshi, A., Apperly, I. A., & Samson, D. (2010). Executive function is necessary for perspective-selec-

tion, not Level-1 visual perspective-calculation: Evidence from a dualtask study of adults. Cogni-

tion, 117, 230–236.
Rakoczy, H. (2008). Taking fiction seriously: Young children understand the normative structure of joint 

pretend games. Developmental Psychology, 44(4), 1195–1201.
Rakoczy, H., Warneken, F., & Tomasello, M. (2008). The sources of normativity: Young children’s 

awareness of the normative structure of games. Developmental Psychology, 44(3), 875–881.
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation 

of some extra-classical receptive field effects. Nature Neuroscience, 2(1), 79–87.
Ratcliffe, M. (2005). Folk psychology and the biological basis of intersubjectivity. In A. O’Hear (Ed.), 

Philosophy, biology and life. Royal Institute of Philosophy Supplement (Vol. 56, pp. 211–233). 
Cambridge: Cambridge University Press.

Ratcliffe, M. (2007). Rethinking commonsense psychology: A critique of folk psychology, theory of mind 

and simulation. Basingstoke: Palgrave Macmillan.
Rizzolatti, G., & Craighero, L. (2004). The mirror neuron system. Annual Review of Neuroscience, 27, 

169–192.
Samson, D., Apperly, I. A., Braithwaite, J. J., Andrews, B. J., & Bodley Scott, S. E. (2010). Seeing it their 

way: Evidence for rapid and involuntary computation of what other people see. Journal of Experi-

mental Psychology: Human Perception and Performance, 36, 1255–1266.
Santiesteban, I., Catmur, C., Hopkins, S. C., Bird, G., & Heyes, C. (2013). Avatars and arrows: Implicit 

mentalizing or domain-general processing? Journal of Experimental Psychology: Human Percep-

tion and Performance, 40(3), 929–937.
Saxe, R., Carey, S., & Kanwisher, N. (2004). Understanding other minds: Linking developmental psy-

chology and functional neuroimaging. Annual Review of Psychology, 55, 87–124.
Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. (2012). The thing that should not be: 

Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social 

Cognitive and Affective Neuroscience, 7, 413–422.
Senju, A., & Csibra, G. (2008). Gaze following in human infants depends on communicative signals. 

Current Biology, 18(9), 668–671.
Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sci-

ences, 17(11), 656–663.
Shea, N. J., Boldt, A., Bang, D., Yeung, N., Heyes, C., & Frith, C. D. (2014). Supra-personal cognitive 

control and metacognition. Trends in Cognitive Sciences, 18, 186–193.



 L. de Bruin, J. Michael 

1 3

Sommerfeld, R. D., Krambeck, H.-J., Semmann, D., & Milinski, M. (2007). Gossip as an alternative for 
direct observation in games of indirect reciprocity. Proceedings of the National Academy of Sci-

ence USA, 104, 17435.
Southgate, V., & Vernetti, A. (2014). Belief-based action prediction in preverbal infants. Cognition, 130, 

1–10.
Spaulding, S. (2010). Embodied cognition and mindreading. Mind and Language, 25(1), 119–140.
Spratling, M. W. (2012). Predictive coding accounts for V1 response properties recorded using reverse 

correlation. Biological Cybernetics, 106(1), 37–49.
Tamietto, M., Castelli, L., Vighetti, S., Perozzo, P., Geminiani, G., Weiskrantz, L., et al. (2009). Unseen 

facial and bodily expressions trigger fast emotional reactions. Proceedings of the National Acad-

emy of Sciences of the United States of America, 106(42), 17661–17666.
Teufel, C., Alexis, D. M., Todd, H., Lawrance-Owen, A. J., Clayton, N. S., & Davis, G. (2009). 

Social cognition modulates the sensory coding of observed gaze direction. Current Biology, 19, 
1274–1277.

Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neu-
rons. Science, 307, 1642–1645.

Vaish, A., Carpenter, M., & Tomasello, M. (2010). Young children selectively avoid helping people with 
harmful intentions. Child Development, 81(6), 1661–1669.

Van der Wyk, B. C., Hudac, C. M., Carter, E. J., Sobel, D. M., & Pelphrey, K. A. (2009). Action under-
standing in the superior temporal sulcus region. Psychological Science, 20(6), 771–777.

Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory-of-mind development: The 
truth about false belief. Child Development, 72, 584–655.

Wilkerson, W. S. (2001). Simulation, theory, and the frame problem. Philosophical Psychology, 14(2), 
141–153.

Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of 
wrong beliefs in young children’s understanding of deception. Cognition, 13, 103–128.

Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control 
and social interaction. Philosophical Transactions of the Royal Society of London, Series B, Bio-

logical sciences, 358(1431), 593–602.
Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. 

Science, 269, 1880–1882.
Zahavi, D. (2004). The embodied self-awareness of the infant: A challenge to the theory-theory of mind? 

In D. Zahavi, T. Grünbaum, & J. Parnas (Eds.), The structure and development of self-conscious-

ness: Interdisciplinary perspectives (pp. 35–63). Amsterdam: John Benjamins.


	Prediction Error Minimization as a Framework for Social Cognition Research
	Abstract
	1 Introduction
	2 Prediction Error Minimization: A Primer
	3 Applying PEM to Social Cognition Research
	4 PEM and False Belief Understanding
	5 Situating PEM in Contemporary Debates on Social Cognition: Mindreading
	6 Situating PEM in Contemporary Debates on Social Cognition: Embodied Cognition
	7 Further Questions and Future Research
	References


