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Abstract
Identifying climate refugia is key to effective biodiversity conservation under a changing 
climate, especially for mountain-specialist species adapted to cold conditions and highly 
threatened by climate warming. We combined species distribution models (SDMs) with 
climate forecasts to identify climate refugia for high-elevation bird species (Lagopus muta, 
Anthus spinoletta, Prunella collaris, Montifringilla nivalis) in the European Alps, where the 
ecological effects of climate changes are particularly evident and predicted to intensify. 
We considered future (2041–2070) conditions (SSP585 scenario, four climate models) and 
identified three types of refugia: (1) in-situ refugia potentially suitable under both current 
and future climate conditions, ex-situ refugia suitable (2) only in the future according to 
all future conditions, or (3) under at least three out of four future conditions. SDMs were 
based on a very large, high-resolution occurrence dataset (2901–12,601 independent re-
cords for each species) collected by citizen scientists. SDMs were fitted using different 
algorithms, balancing statistical accuracy, ecological realism and predictive/extrapolation 
ability. We selected the most reliable ones based on consistency between training and test-
ing data and extrapolation over distant areas. Future predictions revealed that all species 
(with the partial exception of A. spinoletta) will undergo a range contraction towards higher 
elevations, losing 17%–59% of their current range (larger losses in L. muta). We identified 
~15,000 km2 of the Alpine region as in-situ refugia for at least three species, of which 44% 
are currently designated as protected areas (PAs; 18%–66% among countries). Our findings 
highlight the usefulness of spatially accurate data collected by citizen scientists, and the im-
portance of model testing by extrapolating over independent areas. Climate refugia, which 
are only partly included within the current PAs system, should be priority sites for the con-
servation of Alpine high-elevation species and habitats, where habitat degradation/altera-
tion by human activities should be prevented to ensure future suitability for alpine species.
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1  |  INTRODUC TION

Anthropogenic climate change is dramatically threatening bio-
diversity as well as key ecosystem services, both directly and 
indirectly (e.g., Weiskopf et al., 2020). Mountain regions are 
particularly sensitive to climatic change because they are home 
to specialized, cold-adapted organisms that are tightly linked to 
the steep environmental gradients occurring in these areas, and 
temperature warming has been especially pronounced at higher 
elevations (Pepin et al., 2015). Mountains systems harbor rich 
biodiversity worldwide (Körner & Ohsawa, 2006), and—although 
they only cover ~25% of Earth's land surface—they host nearly half 
the planet's terrestrial biodiversity hotspots (Myers et al., 2000) 
and are home to a high percentage of endemic species (Essl et al., 
2009).

Many alpine species are adapted to cope with the harsh envi-
ronmental conditions typically found at high elevations (Bettega 
et al., 2020; Cheviron & Brumfield, 2012; Lu et al., 2009). Because 
of their tight link with such conditions, these species may be par-
ticularly vulnerable to environmental changes, which could dra-
matically impact their populations (Martin & Wiebe, 2004; Tingley 
et al., 2009). In particular, the frequent additive or even synergistic 
effects of climate change, land-abandonment, and human-driven 
habitat alterations (Barras et al., 2020, 2021; Mantyka-Pringle 
et al., 2012) are threatening a wide range of species, and espe-
cially those linked to mountain grassland and pastures (Brambilla, 
Gustin, et al., 2020; Chamberlain et al., 2016; García-Navas et al., 
2020). Thus, climate change effects in high elevation regions, 
where large environmental changes are occurring, which may be 
both direct and indirect (Brambilla et al., 2016). Birds track climate 
and environmental changes in general, and are excellent models 
for investigating the impacts of climate change on mountain bio-
diversity (e.g., Chamberlain et al., 2013; Lehikoinen et al., 2019). 
In pyramidal mountain systems such as the European Alps, cold-
adapted species will undergo range contraction even in the case 
of perfect climate-tracking, because of the shape of the mountain 
massif (cf. Elsen & Tingley, 2015), and will also experience increas-
ing isolation of residual suitable patches (Brambilla et al., 2017; 
Jackson et al., 2015).

The strong pressures acting on alpine species call for conser-
vation strategies that explicitly take the potential consequences 
of environmental changes into account and integrate them into 
landscape and conservation planning (Groves et al., 2012; Hannah, 
2011; Williams et al., 2005). For some species, the loss of suitable 
habitat through climate change may be compensated by the colo-
nization of new areas that become suitable in the future (Pearson 
et al., 2002). The dispersal abilities of avian taxa may allow them 
to track suitable climates and environments better than many other 
organisms—at least over relatively fine geographical scales, such as 
within a mountain system. Nearly all strategies of climate change 
adaptation include resilience as a key concept (Morecroft et al., 
2012); for conservation purposes, we can consider resilient popu-
lations as those that are able to recover when favorable conditions 

are re-established (Harrison, 1979). Resistant systems are instead 
able to remain essentially unchanged despite disturbance (Grimm & 
Wissel, 1997). For conservation planning in a changing climate, we 
can define resistant populations or units as those that are expected 
to remain largely unaffected by climate change, at least with respect 
to their distribution (Brambilla et al., 2017; Ficetola et al., 2016). 
Similarly, resilient units in this context are those that can allow the 
re-establishment of populations under future conditions (Brambilla 
et al., 2017; Vos et al., 2008).

Resistant and resilient units can be associated with in-situ and 
reachable ex-situ climate refugia, respectively (see, e.g., Hannah, 
2011; Yang et al., 2022). The identification and preservation of the 
ecological integrity of in-situ refugia, i.e., currently occupied areas 
expected to remain suitable in the future, and ex-situ refugia, i.e., 
areas not currently occupied but expected to become suitable with 
changing environmental conditions, is indeed a key requirement 
for effective biodiversity conservation strategies in a changing cli-
mate (Keppel et al., 2012). On the one hand, resistance-only ap-
proaches (focusing exclusively on in-situ refugia) may fail because 
they may ignore the potential detrimental effects of increasing 
isolation, and the risks of identifying areas too small and isolated 
to allow long-term species’ persistence (Verboom et al., 2001). On 
the other hand, resilience-only strategies based on ex-situ refugia 
may fail to consider the overwhelming importance of in-situ refu-
gia for population persistence (Ficetola et al., 2016; Keppel et al., 
2012). Integrating both these aspects in conservation planning may 
maximize the chances of maintaining high levels of biodiversity in 
a changing climate.

Using citizen-science data, we aimed to identify future climate 
refugia across the entire Alpine mountain system for a group of 
climate-sensitive avian species dependent on high-elevation open 
habitats. We focused on four high Alpine species (rock ptarmigan 
Lagopus muta, water pipit Anthus spinoletta, alpine accentor Prunella 
collaris, and white-winged snowfinch Montifringilla nivalis; hereafter, 
snowfinch) whose distribution encompasses the entire Alpine arc 
and spans the seven European Alpine countries. We relied on species 
distribution models (SDMs), based on a citizen-science bird occur-
rence dataset for the Alpine region of unprecedented size, to obtain 
a spatially explicit evaluation of the potential distribution of the tar-
get species under a range of current and future climatic conditions. 
We built SDMs using five alternative algorithms and evaluated them 
according to multiple aspects of their effectiveness. We focused 
not only on their statistical accuracy and generalizability across dif-
ferent spatial partitions of the study area (Roberts et al., 2017), but 
also on their ecological realism (Guevara & León-Paniagua, 2019) 
and their ability to predict distribution over distant areas (Fourcade 
et al., 2018). Thus, we explicitly tested their extrapolation potential 
and, indirectly, the consistency of species-environment associations 
across different mountain systems.

We aimed to identify those areas in the Alps that maximize 
the long-term persistence of the target species in a changing cli-
mate, i.e., those areas overlapping with in-situ or ex-situ climate 
refugia, respectively (Brambilla et al., 2017; Morelli et al., 2020; 
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Figure 1). This would provide crucial, essential knowledge for pro-
moting effective transnational biodiversity conservation under 
different climate change conditions. We thus overlaid the most 
relevant refugia (type 1) with the current network of protected 
areas (PAs) to assess their adequacy in biodiversity conservation 
under predicted climatic changes. In the Anthropocene, PAs are 
going to play a crucial role in preserving biodiversity and in avert-
ing climate-related extinctions (Cumming, 2016; Gray et al., 2016; 
Lehikoinen et al., 2021; Thomas & Gillingham, 2015). However, 
their static locations and extents could hamper their potential 
to adequately preserve many species undergoing dramatic and 
abrupt distributional changes as a response to rapidly changing cli-
mate conditions (Hannah et al., 2007; Regos et al., 2016). This as-
sessment and gap analysis was therefore intended to identify the 
strengths and weaknesses of the Alpine PA system for the conser-
vation of high-elevation taxa in a changing climate; identifying and 
promoting effective preservation of climate refugia is indeed a key 
strategy for conservation under a changing climate (Game et al., 
2011). High coverage of climate refugia by the current PA system 
would suggest that existing PAs constitute a network of sites likely 
to be efficient for the target species and their associated habi-
tats and communities even in a warmer future. Conversely, low 

coverage of refugia would reveal the likely inadequacy of current 
PA network in the face of climate change.

2  |  METHODS

2.1  |  Study area and selection of model species

This study encompassed all of the European Alps, identified as 
the main area included within the Alpine Convention (Figure 2), 
across seven countries (~190,000 km2). The Alps occupy a central 
position on the European continent, representing one of its most 
prominent features, and are among the most densely populated 
mountain regions in the world. Global warming in the Alps has 
been particularly evident and is expected to continue at a rapid 
pace (Gobiet et al., 2014), threatening alpine habitats (Malfasi & 
Cannone, 2020; Schwager & Berg, 2019). Many high-elevation 
species are expected to contract their range toward higher eleva-
tions in the Alpine region, and notable shifts or contractions have 
already been reported (Furrer et al., 2016; Pernollet et al., 2015; 
Scridel et al., 2017).

Our target species are mountain specialists and/or cold-
adapted species that commonly breed across the Alps (and in at 
least one other mountain region of Central or Southern Europe) 
and have been reported to be already or potentially affected by 
climate change in the Alpine region (Brambilla et al., 2016, 2017, 
2018; Chamberlain et al., 2013; Furrer et al., 2016; Imperio et al., 
2013; Revermann et al., 2012). They are thus highly suitable can-
didates for assessing potential impacts of climate modification and 
identifying climate refugia.

2.2  |  Data collection and preparation

Data were gathered from web portals (from west to east: www.
faune​-france.org, www.ornit​ho.it, www.ornit​ho.ch, www.ornit​
ho.de, www.ornit​ho.at, DOPPS database) collecting bird observa-
tions based on a citizen science approach (see, e.g., Knaus et al., 
2018; see also the details in the Acknowledgements).

We collated 127,309 occurrence records of different spatial 
accuracy, from different time periods (of the year, and from dif-
ferent years), and associated with different levels of breeding 
evidence. We retained only data collected from the year 2000 
onwards, as older records often proved to be less accurate. We 
removed all records with non-breeding or undefined breeding sta-
tus, as well as those with unknown or low accuracy (>1 km), and 
those outside the breeding period of each species (1 May–31 July 
for rock ptarmigan, 15 May–31 July for water pipit and alpine ac-
centor; and 1 June–31 July for snowfinch, given that many records 
even in the second half of May were related to sites hardly suit-
able for the species, likely because they involved individuals not 
yet engaged in reproduction). Further data in April and August for 
rock ptarmigan, early May and August for water pipit and alpine 

F I G U R E  1  Graphical representation of the approach adopted 
to identify climate refugia. Type 1 refugia represent in-situ refugia, 
suitable now and in the future, whereas type 2/3 are ex-situ 
refugia, suitable only under all or most, respectively, possible future 
climates 

http://www.faune-france.org
http://www.faune-france.org
http://www.ornitho.it
http://www.ornitho.ch
http://www.ornitho.de
http://www.ornitho.de
http://www.ornitho.at


4  |    BRAMBILLA et al.

accentor, and the first 15 days of August for snowfinch were, how-
ever, included when associated with probable or certain breeding 
and located in sites potentially suitable for breeding, based on 
expert evaluation of aerial orthophotographs (to avoid individ-
uals dispersing or crossing clearly unsuitable landscapes). Then, 
we proceeded with a final, visual inspection of all records against 
aerial orthophotographs and removed a further few data likely er-
roneously georeferenced or with erroneous species names (e.g., 
occurrence at the bottom of the valleys, in woodlands or urban 
habitats located at >1 km from potentially suitable open habitats). 
This resulted in 96,861 (rock ptarmigan: 8324; water pipit: 66,731; 
alpine accentor: 14,483; snowfinch: 7323) spatially accurate and 
reliable records used for SDMs.

2.3  |  Environmental variables and conditions used 
for modeling current and future distribution

We considered three categories of environmental variables rep-
resenting the main factors potentially affecting species dis-
tribution: land-use/land-cover, topography, and climate. For 
land-use/land-cover, we used the CORINE land cover inventory 
(European Environment Agency, 2016), which provides the finest 

resolution land-use data available for the entire study region (Table 
S1). Topographic predictors were derived from a 25-m resolution 
digital elevation model (DEM; EU-DEM v1.0, publicly provided by the 
European Environment Agency). As climatic predictors, we selected 
mean annual 2-m air temperature, annual range in 2-m air tempera-
ture, annual precipitation sum, and precipitation seasonality, which 
have been previously shown to strongly correlate with species dis-
tributions (Thuiller et al., 2019). Using monthly values from CHELSA 
V2.1 (Karger et al., 2017, 2021), mean annual 2-m air temperature 
was calculated separately for each year, and each occurrence record 
was attributed the value for the year of collection of that specific 
record. For the background points (see below), we considered the 
annual mean temperature for the period 2000–2019. The other pre-
dictors were derived from long-term values provided by CHELSA 
V2.1 for the period 1981–2010 (Karger et al., 2017, 2021).

All variables were computed for 1 × 1 km2 cells: land-use/land-
cover as proportional cover within the cell, topographic, and climatic 
predictors as average values across the cell. All climatic predictors 
have an original resolution of 30 arc sec (corresponding to <1 km at 
the latitude of the Alps); they were resampled to the resolution of 
this study (1 × 1 km, coordinate reference system EPSG 3035) using 
bilinear interpolation. We excluded a priori all land-cover variables 
with negligible cover, and pooled some other variables into single 

F I G U R E  2  Study area showing the Alpine relief (hillshade based on the digital elevation model used for modeling, see Section 2 
for details) and some main cities (boundaries: Alpine Convention area; shapefile produced by the Permanent Secretariat of the Alpine 
Convention and available on https://www.atlas.alpco​nv.org/). The top left inset shows the position of the study area within Southern 
Europe; blue polygons show the distribution of protected areas (all types of protected areas, covering 33.4% of the study area; extracted 
from World Database on Protected Areas, see Section 2 for details) within the Alps 

https://www.atlas.alpconv.org/
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categories (urban and inland waters). The variables obtained were 
not correlated among each other (r < |.7|; cf. Grimmett et al., 2020). 
All environmental variables used for SDMs are reported in Table S1.

To represent medium-term future climate, we used downscaled 
CMIP6 (Coupled Model Intercomparison Project Phase 6) data 
for the period 2041–2070, provided by CHELSA database version 
2.1 (Karger et al., 2017, 2021). We used four climate models (two 
‘warmer’ and two ‘colder’ models) provided by the Intersectoral 
Impact model Intercomparison Project (ISIMIP; Warszawski et al., 
2014), that have been subject to a trend-preserving bias correc-
tion (Lange, 2019; GFDL-ESM4, UKESM1-0-LL, IPSL-CM6A-LR and 
MRI-ESM2-0). The ISIMIP data has been especially tailored for ap-
plications in climate change impact studies. The selection of climate 
models in ISIMIP follows that of ISIMIP3b_BA, where models are 
selected according to process representation, structural indepen-
dence, climate sensitivity, and performance in the historical period 
(Lange, 2019). We selected a ‘worst case’ scenario (SSP585; Eyring 
et al., 2016) in order to evaluate the largest potential changes in 
species’ distribution: climate refugia working for pessimistic sce-
narios are likely to be effective also under less extreme conditions, 
especially for what concerns the overwhelmingly important ‘resis-
tant units’. Hereafter, when we mention future (climate) conditions, 
we refer to the four alternative possible conditions as described by 
these climate models under SSP585.

2.4  |  Species distribution modeling

All analyses were carried out in R (R Development Core Team, 2020), 
using the packages raster (Hijmans, 2020), ENMeval (Muscarella 
et al., 2014), SDMtune (Vignali et al., 2020). All maps were produced 
with QGIS software (version 3.18). Data used for modeling species 
distribution (occurrence, background and environmental variables) 
are available in Brambilla (2022a).

We modeled the potential distribution of the target species 
as a function of climate, topography, and land cover, based on the 
1 × 1 km grid superimposed over the study area. While the several 
available SDM methods all combine spatially explicit information on 
species occurrences with spatially explicit descriptors of climate and 
environment, and from such a combination infer relationships that 
allow predicting the distribution of a species over space and/or time, 
the choice of the specific modeling approach(es) may affect the mod-
eling outcomes. For this reason, selecting a single SDM algorithm 
leaves a major degree of uncertainty when projecting future species 
distributions (Thuiller et al., 2019). We therefore used an ensemble 
of different SDM algorithms: (1) a maximum entropy approach, as 
implemented in Maxent (Phillips et al., 2006), a method that gener-
ally outperforms other approaches when nonstandardized data are 
used and is particularly suited for presence-only data (Elith et al., 
2011; Grimmett et al., 2020; Merow et al., 2013), as in our case; (2) 
boosted regression trees (BRT), an ‘ensemble method’ frequently 
adopted in ecological studies (Elith et al., 2008); (3) Artificial Neural 
Network (ANN; Lek & Guégan, 1999), a method gaining momentum 

in distribution modeling (Lin et al., 2021); and (4) Random Forest (RF), 
another machine learning method (Breiman, 2001) often reported to 
perform very well with distribution data, even for rare species (Mi 
et al., 2017), and recently adopted for modeling alpine species distri-
bution (de Gabriel Hernando et al., 2021).

For presence-background or presence-pseudoabsence meth-
ods, an adequate placement of background/pseudoabsence points 
is crucial (Fourcade et al., 2014; Hertzog et al., 2014): they need to 
mirror the environmental conditions sampled with data collection, 
to avoid the inclusion into the background of conditions where the 
target species was not found simply because such conditions were 
not surveyed. In our study, we did not have any information about 
the sampling effort; therefore, we restricted the background to the 
areas containing occurrence records (cf. Brambilla, Scridel, et al., 
2020) by creating a 2  km-buffer around the occurrence records, 
within which we randomly placed 50,000 background points. This 
way, we could be reasonably certain that background points were 
only placed in actually sampled areas, or very close to them. To make 
models as robust as possible, we partitioned the occurrence data 
of each species into four spatially independent subsets using the 
checkerboard 2 method (aggregation factors: 4 and 2) implemented 
in the R package ENMeval (Muscarella et al., 2014). For each species, 
we thus used the subset containing data from three partitions to 
train the model (training dataset), and the fourth partition to test it 
on spatially independent data (testing dataset). This procedure led to 
the following sample sizes of occupied 1 × 1 km2 (training–testing): 
rock ptarmigan: 2818–1172, water pipit: 9282–3319, alpine accen-
tor: 4348–1635, snowfinch: 2106–795.

ANN, BRT, and RF models were fitted in R using the package 
SDMtune (Vignali et al., 2020). For each species and for all algo-
rithms, we first fit a full model with default parameters (using the 
training dataset). Then, we optimized the model according to the re-
spective hyperparameters, with the command ‘optimizeModel’. The 
parameters involved were: for ANN, size (10–20), decay (0.01, 0.05, 
0.1, 0.2, 0.3, 0.4, 0.5), and maximum iteration (50, 100, 300, 500); 
for BRT, number of trees (steps of 20 between 40 and 1020), inter-
action depth (1–4), and shrinkage (steps of 0.01 between 0.05 and 
0.1); for RF, number of trees (steps of 20 between 420 and 1000, 
number of variables randomly sampled (mtry; 2–5), and node size 
(1–10). Optimization was based on TSS (True Skill Statistic; Allouche 
et al., 2006) values on the test dataset. Successively, we computed 
permutation importance for each variable and, by removing sequen-
tially all predictors with a permutation importance lower than 1%, 
obtained a reduced model, based on a jackknife approach and TSS 
on the test dataset. Finally, we optimized the resulting model, using 
the same procedure described at the second step.

MaxEnt models were built in R using an ad hoc procedure. To 
reduce the risk of overfitting, we only used linear and quadratic 
features. We then built models balancing power and complexity 
(Warren & Seifert, 2011), according to the following procedure: first, 
we selected the regularization multiplier on the basis of the Akaike's 
Information Criterion, corrected for a small sample size (AICc). 
We then removed all variables with Lambda  =  0, suggesting no 
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noticeable effect on species occurrence. Then, with the remaining 
variables, we performed model tuning, which includes selecting (ac-
cording to the AICc value) the regularization multiplier, the features 
to be used (linear and/or quadratic), the number of iterations, and 
the inclusion/exclusion of environmental variables (starting from the 
removal of the variable with the lowest value of permutation im-
portance, i.e., the likely least important ones; Phillips et al., 2006). 
The AICc value was computed using an ad hoc script to calculate 
it only on presence and background points (Appendix S5), instead 
of over all raster layers, as is commonly done by all R packages cur-
rently available for developing MaxEnt models. This seemed more 
coherent with the need to take sampling efforts into account, and 
the environmental conditions actually available to the species. For 
all species, a regularization multiplier of 0.5 and both linear and qua-
dratic features were eventually selected. The number of iterations 
varied from 240 (rock ptarmigan), to 260 and 300 (alpine accentor 
and water pipit, respectively) and 500 (snowfinch).

2.5  |  Model evaluation

We performed a multistep evaluation of model reliability. First, we 
calculated the TSS (True Skill Statistic) and AUC (area under the 
curve of the receiver operating characteristics) values for each spe-
cies over the training and test datasets. Even if the absolute value 
of such statistics should be considered very carefully, as it is highly 
sensitive to prevalence and to the considered extent (see, e.g., criti-
cisms for AUC expressed by Lobo et al., 2008), their use across dif-
ferent algorithms using the same datasets allows comparisons of 
different modeling strategies, whereas their use over independent 
data partitions allows a first evaluation of model robustness and 
generalizability. For MaxEnt, we also computed omission rates at 
selected thresholds (10th percentile on training data, and minimum 
training presence) for the test data, to further check for overfitting. 
Omission rates on test datasets were always close to the expected 
values, i.e., 0.1 for 10th percentile (all values between 0.09 and 0.10) 
and 0 for minimum training presence (Table S2).

We also performed an evaluation of the ecological meaning of 
the species-habitat relationships identified by the models (Figures 
S1–S16), to check whether they corresponded with the current 
knowledge on species’ habitat requirements (Guevara et al., 2018). 
Despite this step being a qualitative evaluation based on expert 
knowledge, such an assessment of the biological reliability of the 
modeled species-habitat relationships is essential to evaluate the 
ecological realism of any models (Elith & Leathwick, 2009; Merow 
et al., 2014), and this is likely to be crucial when models are to be 
projected over different areas or time spans (Fourcade et al., 2018; 
Guevara et al., 2018; Merow et al., 2014). We evaluated the impor-
tance of predictors included in each model according to the relative 
permutation importance, assessed by means of 10 permutations, 
and compared the relative effects with available knowledge.

As a final validation step, we evaluated the transferability of dis-
tribution models over independent, distant areas (see Appendix S2). 

Assessing models’ capacity when transferred to distant areas is the 
most robust method to evaluate the reliability of the modeled rela-
tionships and their outcomes on predicted distribution (cf. Fourcade 
et al., 2018). We thus projected the environmental suitability esti-
mated by the models for the target species across Central-Southern 
Europe, to include other mountain regions where the target species 
occur, as well as many absence areas. We then checked whether the 
main areas predicted to be suitable overlapped with known occur-
rence areas as depicted by BirdLife International shapefiles of spe-
cies distribution (BirdLife International & Handbook of the Birds of 
the World, 2020), the new European breeding bird atlas (Keller et al., 
2020), and vice versa. Given that the European atlas has a 50-km 
resolution and that BirdLife distribution shapefiles are meant to be 
used at a coarse resolution, and are therefore sometimes not accu-
rate for mountain species (cf. Brambilla, Resano-Mayor, et al., 2020), 
we performed a qualitative assessment of the consistency between 
observed and predicted distribution. Models that correctly predict 
the occurrence patterns of a species over distant sites, such as other 
mountain regions or neighboring areas, could be considered as more 
reliable and useful for extrapolation over different contexts (includ-
ing over different time periods) than models that perform poorly 
when projected outside the calibration area.

After comparing model performances by means of accuracy 
statistics and, especially, the assessment of ecological realism and 
projection over different areas, we selected the most reliable algo-
rithm for future projections. Choosing the model able to best predict 
distribution outside the study area based on ecologically realistic 
species-environment relationships likely provides us with the most 
robust and useful tool for predicting future distribution. We there-
fore opted to extrapolate predictions using a single, but well parame-
trized algorithm, without averaging it with other less suitable models 
(Hao et al., 2020; Kaky et al., 2020). MaxEnt invariably proved to be 
the most suitable algorithm (see Supporting Information), and hence, 
it was used for future predictions of species distribution. Notably, 
MaxEnt had been reported as one of the algorithms less prone to 
‘extreme’ predictions over future scenarios (Beaumont et al., 2016), 
and well-parametrized MaxEnt models, based on plausible species-
habitat relationships, have been reported to perform very well in 
identifying range limits (Guevara et al., 2018).

To exclude potential effects due to biases in observation loca-
tions and the climatic variables and methods adopted (Warren et al., 
2021), we simulated the distribution of a virtual species occupying 
the same area of our target ones, randomly distributing 10,000 re-
cords across the same calibration area. These data were processed 
according to the same procedure adopted for the real species occur-
rence records, and a MaxEnt model was then developed according 
to the same method. Had the modeled result been based on biases 
in the approach rather than ecological reasons, we would have ex-
pected similar outcomes to those predicted for real species (Warren 
et al., 2021). However, no valid model was obtained for the virtual 
species: all environmental variables were left out of the model, thus 
indirectly confirming the non-randomness of species-habitat rela-
tionships and of the distribution models we obtained.
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2.6  |  Assessing the potential changes in 
distribution caused by climate change

To simulate the future distribution of the four model species, we 
used the four alternative climatic conditions described above to 
project the selected SDMs to explore the likely impact of climate 
change on the target species in the Alps. A crude estimate of the 
degree of change predicted by different models can be obtained 
by comparing across all future conditions the value of average an-
nual temperature, which is the single most relevant climatic pre-
dictor of environmental suitability for all the model species (see 
Section 3), as well as a main factor of climate change. Mean annual 
2-m air temperature was 5.34°C for the period 1981–2010 and 
6.17°C for the period 2000–2019 over the study area, according 
to CHELSA V2.1 (Karger et al., 2017). The lowest rate of tempera-
ture increase in the Alps is predicted by the MRI-ESM2-0model 
(7.88°C in 2041–2070, 2.54°C more than 2000–2019) and the 
highest by UKESM1-0-LL (10.36 and 4.19°C more than the last 
two decades), with the other two GCMs predicting an intermedi-
ate level of change. For future projections, we adopted the future 
values of the bioclimatic predictors, while keeping the other vari-
ables (land-cover and topographical ones) constant, considering 
the very slow habitat changes at high elevations (but see Section 
4). Notably, given the predominant effect of temperature on spe-
cies’ distributions, and the fact that current warm areas are still 
outside the climatic niche of the target species, there is virtually 
no risk due to extrapolation to non-analogous climates (clamping 
was therefore set to “false”).

We compared the current and future extent, as well as the aver-
age elevation, of suitable areas for each species, according to each 
GCM, by considering as suitable cells all those with an environmen-
tal suitability higher than the 10th percentile threshold (working on 
the cloglog-transformed model). Such a threshold was preferred 
over the others commonly adopted for the reclassification into suit-
able versus unsuitable areas (Liu et al., 2005, 2013, 2016), because 
it provided results that were the most coherent with current knowl-
edge on the species’ actual distribution.

2.7  |  Identification of climate refugia

We defined in-situ and ex-situ refugia based on the outcomes of 
both models and projections. Climate refugia should include areas 
that probably will keep (in-situ, resistant units), or attain (ex-situ, 
resilient units) climate characteristics suitable for each target spe-
cies. For each species, we identified three different types of climate 
refugia (Brambilla et al., 2017; Morelli et al., 2020): (1) type 1 sites 
are suitable for a species under current and all future conditions 
(i.e., the most important sites, suitable for a species irrespectively of 
the period and of the future condition, where population resistance 
is most likely); (2) type 2 depicts the most important sites among 
ex-situ refugia–sites currently unsuitable for a species, but suit-
able under all future modeled conditions; and (3) type 3 identifies 

a broader sample of potential refugia (including refugia of type 2 
as a subset)–ex-situ refugia currently unsuitable for a species, but 
suitable under at least three out of four future modeled conditions. 
While refugia of type 1 are crucial to enhance population resistance, 
refugia of type 2 and 3 are key sites to allow future redistribution, 
promoting resilience.

Finally, we identified all the areas acting as type 1 refugia for at 
least three species. Those areas represent multispecies and tempo-
rally persistent refugia, and are of particular importance for the con-
servation of alpine species. We then overlapped those refugia with 
the current PA network. The latter was obtained by merging Natura 
2000 sites with the European inventory of nationally designated PAs 
(Nationally designated areas; CDDA), updated in 2020 (https://www.
eea.europa.eu/data-and-maps/data/natio​nally​-desig​nated​-areas​-  
natio​nal-cdda-15; accessed 2 February 2021), and coincided ex-
actly with the PAs included in the IUCN WDPA (World Database on 
Protected Areas; available on https://www.prote​ctedp​lanet.net/en; 
accessed on 2 May 2021). We repeated the analyses after excluding 
those PAs not managed with biodiversity conservation as a main ob-
jective. To do this, we kept only the PAs falling under IUCN catego-
ries 1–4 (Dudley et al., 2013), plus some of the non-categorized areas 
(Natura 2000  sites–Sites of Community Importance/Special Areas 
of Conservation, Special Protection Areas; national forest reserve, 
natural monument, national private nature reserve).

3  |  RESULTS

3.1  |  Selected distribution models

The three-step evaluation procedure led us to select, for all four 
species, MaxEnt models as the best compromise between statistical 
accuracy, ecological realism, and consistency with the observed dis-
tribution in the extrapolation areas (Table S3). Permutation impor-
tance showed that mean annual 2 m air temperature was the most 
(or the second most) important predictor of environmental suitabil-
ity for all species (Table 1).

3.2  |  Future projections of distribution models

The future projections showed a sensible reduction of suitable area 
predicted for the period 2041–2070 for rock ptarmigan, alpine accen-
tor, and snowfinch, whereas for water pipit the predicted variation 
changed according to climatic conditions. The three most affected 
species may suffer more or less marked contractions of environmen-
tally suitable range, and hence of potential distribution in all of the 
four GCMs, with less extreme changes according to MRI-ESM2-0 and 
GFDL-ESM4, and the most dramatic ones according to the most ex-
treme climate model UKESM1-0-LL (all species). The predicted con-
traction of potentially suitable area ranged between 24% and 59% 
for rock ptarmigan (average: −35.7%), 17%–43% for alpine accentor 
(average: −26.1%), and 18%–39% for snowfinch (average: −24.5%). 

https://www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-national-cdda-15
https://www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-national-cdda-15
https://www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-national-cdda-15
https://www.protectedplanet.net/en
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Water pipit may undergo minor changes in the extent of suitable area 
(varying from −9% to +7%; average: +2.1%). Snowfinch was the spe-
cies with the smallest extent of suitable habitat both now and in the 
future (with the single exception of a future climatic condition where 
rock ptarmigan is predicted to have a slightly smaller potential range). 
Table 2 displays a summary of the forecast changes in extent and el-
evation of suitable areas for each species, while Appendix S3 shows 
the spatial variation in the occurrence of suitable habitats for each 
target species. The change in potential distribution was matched by a 
concomitant increase in the average elevation of suitable cells for all 
species (Table 3). Snowfinch consistently showed the highest mean 
elevation of suitable areas, both currently and in the future, but also 
the lowest change from 1980–2010 to future conditions. For all spe-
cies, the highest increase in average elevation was forecast by the 
most extreme climate model UKESM1_0_LL (between c. 352 and 
457 m), and the lowest by MRI_ESM1_0 (between c. 190 and 237 m), 
consistently with the predicted distribution changes.

3.3  |  Climate refugia

A variable percentage of the currently suitable area for a species 
was likely to remain suitable in the period 2041–2070, irrespective 
of future climate (type 1 refugia; Table 2). The proportion of such 
areas varied from 35% for rock ptarmigan, to 52%–53% for alpine ac-
centor and snowfinch, to 70% for water pipit. A total of 14,865 km2 
was classified as potential type 1 refugia for at least three species 
(Figure 3). Nearly two thirds (65%) of those areas may be suitable for 
water pipit, and >99% for the other three species. These multispe-
cies refugia can be regarded as priority sites for the conservation of 
alpine avian taxa. The type 2 refugia for at least three species were 
invariably close to analogous type 1 refugia (Figure S33).

Type 2 and 3 refugia had much smaller extents relative to type 1 
refugia (Table 2). Obviously, refugia of type 2 (areas suitable only in 
the future according to all climatic conditions), which are a subset of 
refugia of type 3 (areas suitable only in the future according to most 

Variable
Rock 
ptarmigan

Water 
pipit

Alpine 
accentor Snowfinch

Land-use/land-cover

312 (coniferous forest) 2.3 21.3 33.4 33.3

321 (natural grassland) 13.4 17.2 3.5 0.8

332 (bare rocks) 16.0 3.2 6.9 1.8

333 (sparsely vegetated areas) 11.9 2.6 7.3 5.1

313 (mixed forest) 0.7 2.9 2.0 3.9

231 (pastures) 2.9 0.2 3.7 2.6

311 (broad-leaved forest) — 0.8 1.6 4.0

322 (moors and heathland) 3.8 0.1 — 1.4

324 (transitional woodland-shrub) — 0.3 0.2 2.6

335 (glaciers and perpetual snow) — — — 0.6

Topography

Slope (average slope in °) 5.3 8.9 2.4 11.8

solar_med (summer-spring solar 
radiation)

0.2 0.4 0.5 0.1

Climate

bio1 (annual mean temperature) 40.5 41.0 31.3 32.0

bio15 (precipitation seasonality) 1.1 0.6 4.0 4.7

bio7 (temperature annual range) 1.8 — 2.9 0.2

bio12 (annual precipitation) 0.0 0.6 0.3 0.3

TA B L E  1  Permutation importance 
of environmental variables according to 
MaxEnt models. Standard deviation of 
permutation importance was invariably 
≤.01 across three replicates. Variables 
have been grouped according to three 
main categories (land-use/land-cover, 
topography, climate) and ordered (top to 
bottom) within each category according 
to the average permutation importance 
across species

TA B L E  2  Extent of suitable habitats (km2) from current to alternative future conditions (for all climatic models: SSP 585; see text), 
considering as suitable all sites with environmental suitability higher than the 10th percentile threshold, and the extent of different types of 
refugia (type 1: in-situ refugia; types 2 and 3: ex-situ refugia)

Species
1981–
2010 GFDL_ESM4 IPSL_CM6A_LR MRI_ESM2_0 UKESM1_0_LL Refugia 1 Refugia 2 Refugia3

Rock ptarmigan 38,024 28,721 24,705 28,867 15,455 13,170 1514 1807

Water pipit 42,776 45,565 44,183 46,077 38,795 29,796 5882 6672

Alpine accentor 40,054 33,318 29,636 32,576 22,798 20,874 1093 1362

Snowfinch 29,783 24,410 23,181 24,200 18,157 15,837 1247 1642
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climatic conditions), were smaller than the latter. Spatially explicit 
layers for the different types of refugia for all the target species and 
for the multispecies refugia are available online (Brambilla, 2022b).

3.4  |  Overlap with PAs

A substantial proportion of type 1  multispecies refugia (44%, 
6491 km2) overlapped with the current PA system (Figure 3). The per-
country values ranged from 18% for Switzerland, 52% for Austria, 54% 
for Italy, to 66% for France. In Slovenia and Germany, which have small 
areas classified as multispecies refugia (6 and 31  km2, respectively) 
and smaller extents of the Alpine chain, the coverage of refugia by 

the existing PAs was almost complete (100% and 94%, respectively). 
When considering only selected PAs (see Section 2), the percentages 
of refugia within PAs (39% at the Alpine scale) were lower in most 
countries: 13% for Switzerland, 47% for Austria, 54% for France and 
Italy, 80% for Germany, and 100% for Slovenia. No refugia occurred 
in Liechtenstein (even if one was located along its southern border).

4  |  DISCUSSION

Climate refugia are key areas allowing the persistence of species 
and habitats threatened by climate change (Morelli et al., 2020), be-
cause such sites are the most likely to preserve suitable ecological 

TA B L E  3  Average elevation (m asl) of suitable habitats (all sites with environmental suitability higher than the 10th percentile threshold) 
from current to alternative future (2041–2070) conditions

Species

Average elevation of suitable areas (m asl)

1980–2010 IPSL_CM6A_LR GFDL_ESM4 MRI_ESM2_0 UKESM1_0_LL

Rock ptarmigan 2187 2493 2433 2424 2644

Water pipit 1924 2220 2180 2161 2335

Alpine accentor 2214 2466 2416 2416 2584

Snowfinch 2301 2538 2507 2491 2653

F I G U R E  3  Multispecies type 1 refugia (i.e., areas suitable under current and all future conditions effective for at least three out of 
four target species, whatever the future climate) within (dark blue) and outside (light red) protected areas 
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conditions for these habitats and species. Therefore, they repre-
sent crucial and concrete targets for conservation planning. Here, 
we have identified, within the framework of a spatially explicit as-
sessment at a relatively fine scale, the location of the most likely cli-
mate refugia for four threatened Alpine bird species. These species 
are key representatives of high-altitude Alpine avian communities, 
which are highly sensitive to ongoing climate and habitat changes 
(Chamberlain et al., 2013).

Our findings suggest that the fate of high-elevation specialist 
species may be heavily impacted by climate change and, in partic-
ular, by the increase in temperature, which was among the most 
important drivers of environmental suitability in all target species. 
The four different GCMs were largely consistent in predicting future 
distributions (2041–2070), with only minor changes in the extent 
and elevation of suitable areas associated with the level of tempera-
ture changes forecast by each climate models. Nevertheless, a pre-
dicted contraction of suitable areas, and hence of potential range, 
was beyond doubt for most species, and the general patterns ap-
peared consistent across GCMs. Such a contraction, according to the 
‘worst case’ (SSP585) scenario here considered, may imply a loss of 
17% to 59% of suitable range for rock ptarmigan (most marked con-
tractions), alpine accentor and snowfinch, whereas changes may be 
less marked for water pipit, in accordance with previous studies on 
the target species (Brambilla et al., 2016, 2017; Ceresa et al., 2021; 
Jähnig et al., 2020). The less dramatic range contraction estimated 
here compared to some of the previous studies may be due to a plu-
rality of factors, including an examination of different time periods 
and different GCMs, as well as the coverage of larger areas, encom-
passing all the northern side of the Alps and all the highest peaks. A 
potential additional explanation for the smaller range contractions 
predicted here is that we have assessed the effects of environmental 
predictors in the immediate vicinity of the species’ records (within 
2 km), i.e., at sites that were largely suitable for the target species. 
This likely led to a lower importance being attributed to tempera-
ture in models compared to assessments covering broader areas, 
including climatically unsuitable sites. As an example of the latter 
process, the permutation importance of annual average tempera-
ture for the snowfinch was much higher when modeling involved 
larger spatial extents, including much warmer, unsuitable areas, de-
spite the similarity in the variable effect, with a peak in suitability 
occurring at similar values (Brambilla, Resano-Mayor, et al., 2020). 
This is consistent with the scale-dependent relative importance of 
climate in driving species distribution (Brambilla et al., 2019; Pearson 
& Dawson, 2003). Nevertheless, a rather alarming perspective on 
future conditions emerged for all four species, with the partial ex-
ception of the water pipit. Such an unfavorable outlook is coherent 
with previous similar studies (e.g., Brambilla et al., 2016, 2017; de 
Gabriel Hernando et al., 2021; Furrer et al., 2016; Hotta et al., 2019; 
Schai-Braun et al., 2021; Scridel et al., 2021) and with the observed 
and likely still ongoing range contractions or shifts of many cold-
adapted species in, e.g., Italy (Scridel et al., 2017) and Switzerland 
(Knaus et al., 2018), as well as throughout most of Europe (Keller 
et al., 2020). Together with high elevation avian taxa, other species 

and entire habitats sharing the same ecological space are at high 
risk due to climate change and its indirect effects. Species and hab-
itats currently occurring above the treeline are particularly at risk 
(Malfasi & Cannone, 2020). Grasslands are becoming increasingly 
encroached by shrubs and trees, and often cannot shift upward due 
to abiotic constraints (Cannone et al., 2007). Their contraction is 
exacerbated by processes of land abandonment occurring in many 
mountain systems, implying that extensive grassland and pastures 
are abandoned and the remaining ones are subject to agricultural 
intensification (Assandri et al., 2019), synergistically impacting on 
these habitats with potentially strong negative effects on several 
bird species (Brambilla, Gustin, et al., 2020; Scridel et al., 2018), in-
cluding those less likely to be dramatically impacted by direct effects 
of temperature change per se (e.g., water pipit; Ceresa et al., 2021; 
Jähnig et al., 2020).

4.1  |  Modeling limitations

A critical issue for the reliability of modeling tasks, especially when 
projecting distributions outside the calibration context, is the ro-
bustness and generalizability of distribution models (e.g., Brun et al., 
2020). Here, we coupled the evaluation of statistical accuracy and 
‘robustness’ with an explicit, albeit qualitative, assessment of eco-
logical realism and transferability by means of extrapolation over 
distant areas. Even though advocated several times, a similar ap-
proach, which integrates models’ ecological and extrapolation reli-
ability (Guevara & León-Paniagua, 2019; Guevara et al., 2018) has 
seldom been adopted to date, and we are not aware of previous 
applications to mountain birds. Our results indicate that the statis-
tically best performing algorithm (according to evaluation metrics, 
such as TSS and AUC) did not provide ecologically realistic predic-
tions. A severe overfitting for some models other than MaxEnt was 
already suggested by the differences in accuracy and discriminatory 
statistics between training and testing datasets, and was confirmed 
by the inspection of the species-habitat relationships (see also Brun 
et al., 2020). This also led to inadequate predictions outside the 
study area.

The MaxEnt models we used for forecasting future distributions 
were robust from a statistical point of view, but also ecologically 
sound, and able to correctly predict species’ occurrence over distant 
areas (Table S3; Figures S17–S32). Even if these strengths do not 
imply that the future predictions will necessarily be met (the discrep-
ancy between future conditions indeed suggests some uncertainty), 
they confirm that–based on current data–the models obtained are as 
reliable as possible for this kind of approach. In our study, we delib-
erately considered future land-use/land-cover variables as matching 
the current conditions. This is clearly a simplification, because some 
changes in vegetation cover are already occurring because of climate 
change, especially around and above the tree line (Harsch et al., 
2009; Malfasi & Cannone, 2020), and may be further exacerbated 
by land abandonment, which can lead to further shrub and tree en-
croachment in open habitats (e.g., Laiolo et al., 2004). Our approach 
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is therefore conservative in estimating potential range contractions 
(given the climate predictions used): habitat losses caused by an up-
wards shift of vegetation zones, particularly above the tree line, may 
indeed result in a further reduction of open habitats. Nevertheless, 
such changes could be at least partly counteracted by manage-
ment actions (see below), and large changes are unlikely to occur 
over many areas identified as climate refugia, because of soil and 
topographical constraints at several high elevation sites. Further de-
velopment of this approach could therefore incorporate scenarios 
of future habitat change, although forecasting such changes is chal-
lenging. Similarly, models at finer spatial scales could also incorpo-
rate the local effects of topography and the related buffering against 
warmer temperatures that north-facing slopes could potentially 
offer, especially to species with small spatial requirements (Corradini 
et al., in press; Feldmeier et al., 2020).

We did not consider less pessimistic scenarios than the SSP585. 
This choice assumed that more optimistic future conditions will 
simply lead to intermediate predicted distributions, between the 
current and the pessimistic-future distribution we predicted here, 
considering the overwhelming importance of temperature for the 
distribution of the target species when compared to other biocli-
matic predictors. We therefore also assume that the most relevant 
climate refugia (type 1) identified under the worst scenario adopted 
here will most likely also provide suitable environments under less 
dramatic climate changes.

Finally, our models were built using spatially accurate data col-
lected by citizen scientists. The largely available information regard-
ing spatial accuracy allowed us to perform an initial screening and 
selection of the best records. A careful inspection of data led to the 
removal of a few hundred records, which, despite being reported 
as spatially accurate, occurred in clearly unsuitable sites. Many of 
those data could refer to transient individuals flying over the obser-
vation site, but it is very likely that they also included some records 
attributed by observers to wrong locations or to the wrong species. 
As well as highlighting the enormous potential of citizen science data 
with information on spatial accuracy, our work also emphasizes the 
need to carefully check data accuracy before model building.

4.2  |  Implications for conservation

The availability of high-elevation areas in the Alps may promote 
distributional shifts performed by species to accommodate niche 
tracking: the sensible shift in elevation of suitable areas predicted 
under future climatic conditions will allow alpine species to partially 
buffer the loss of suitable environment through climate change. This 
mountain region is thus particularly important for the conserva-
tion of high-elevation species in Europe, where there are no other 
comparable extents of high-elevation habitats. We suggest that 
identified climate refugia should be considered priority areas for the 
conservation of high-elevation species in the Alps. Type 1 multispe-
cies refugia include the entire future distribution of the three more 

threatened species and two thirds of the water pipit's distribution, 
considering areas suitable for the target species under all future con-
ditions. These are indeed key areas for the conservation of the target 
species, but are also likely of broader relevance for high-elevation 
biodiversity and habitats. In addition, analogous type 2 multispecies 
refugia are invariably close to type 1  multispecies refugia (Figure 
S33): preserving suitable conditions in type 1 multispecies refugia 
will also further the colonization of the new suitable sites, promoting 
population resilience to climate change.

Our findings pose the question of what needs be done in the 
near future to ensure that these crucial climate refugia conserve 
their role for survival of high-elevation species. Above all, hab-
itat degradation (Chamberlain et al., 2016), disturbance and other 
human-induced alterations should be avoided in such areas, preserv-
ing them from direct anthropogenic impacts (Arlettaz et al., 2013; 
Patthey et al., 2008). One of the main threats in some areas of the 
Alps is the development of new ski facilities. Ski pistes and associ-
ated infrastructures represent a major source of impact on biodi-
versity and ecosystems in the Alps (Caprio et al., 2011; Negro et al., 
2010; Rolando et al., 2007, 2013). Climate change is exacerbating 
the potential impact of downhill skiing, because the overlap of areas 
suitable for ski facilities and areas suitable for high-elevation species 
is increasing, and several climate refugia for birds will also be attrac-
tive ‘refugia’ for ski pistes too (Brambilla et al., 2016). Other types of 
anthropogenic impacts that should be avoided or limited in climate 
refugia include new hydroelectric basins and quarries, and direct dis-
turbance of species by recreational activities (Arlettaz et al., 2007; 
Chamberlain et al., 2016). The latter is particularly harmful to rock 
ptarmigan, a highly sensitive species, which is still a game species in 
different Alpine regions, despite ongoing population decline (Furrer 
et al., 2016) and low breeding success (Canonne et al., 2020). Finally, 
suitable habitats in terms of vegetation type and structure should be 
maintained by means of dedicated management, such as carefully 
planned grazing to limit the height of grassland sward at suitable val-
ues for foraging alpine birds (Brambilla et al., 2018), or for the pre-
vention of shrub and tree encroachment (Malfasi & Cannone, 2020).

We suggest that all these conservation actions be adopted in cli-
mate refugia to limit or counteract the negative impacts of climate 
change on sensitive Alpine species. Their concrete implementation 
and application should occur at different levels, from territorial 
planning, to management plans of PAs of all categories in the Alpine 
region. In some cases, the designation of new or the expansion of 
existing PAs could be proposed to include refugia currently located 
outside the boundaries of PAs, especially in Switzerland, where the 
percentage of multi-species refugia actually included in PAs is the 
lowest, but also in some areas in Italy, Austria and France (Figure 3). 
The expansion of PA networks is an even more compelling measure 
considering that PAs potentially buffer climate change impacts on 
birds (Lehikoinen et al., 2021), which is crucial to mitigate losses and 
avert local extinctions (P. Lehikoinen et al., 2019). Nevertheless, 
even in areas where multispecies refugia are largely included within 
PAs, it is essential that PAs are adequately and effectively managed. 
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Weak regulations or low enforcement of protection rules can lead 
to habitat alteration even within PAs, undermining their potential 
significance in conserving refugia, and biodiversity and ecosystems 
in general.

For conservation-oriented research, climate refugia are key sites 
for investigating the fine-scale drivers of species occurrence and 
habitat use, or to begin studies on alpine bird demography. The latter 
is a neglected topic of potentially great relevance to understanding 
the ultimate impact of climate change on wild species; recent studies 
have just started shedding light on this relevant topic, highlighting 
the role of temperature and/or precipitation (e.g., Chiffard et al., 
2019; Strinella et al., 2020). Investigating associations between al-
pine birds and habitat characteristics in relation to management re-
gimes within climate refugia will help promoting the maintenance of 
crucial foraging or nesting habitats for such threatened species at 
the local scale (Brambilla et al., 2018).
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