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Abstract
Twenty years after the cloning, characterization, and identi-
fication of interleukin (IL)-22 in 2000, the precise biological 
role of this cytokine in healthy and unhealthy skin is not com-
pletely known. The aim of this review is to provide an over-
view on the recent knowledge available in literature about 
the origin, sources, targets, molecular mechanism of action, 
and clinical issues regarding IL-22. Last but not least, recent 
experimental evidence obtained in a 3D model of organo-
typic culture of normal human skin highlights its homeostat-
ic role and will be discussed in detail, as personal observa-
tions. As most of the data concerning IL-22 immunomodu-
lating activity are obtained from mouse models, this work 
offers a new perspective on its clinical role. The hypothesis 
herein advanced is that IL-22 profoundly affects keratinocyte 
terminal differentiation, whereas, in order to induce a prolif-
eration impairment, a more complex psoriatic-like microen-
vironment is needed. © 2022 S. Karger AG, Basel

Interleukin-22: Origins, Sources, Targets, and 
Molecular Mechanisms

Across the board of different cytokines able both to act 
on other immune cells and to instruct target cells, as in-
terleukin (IL)-4 and IL-17, the role of IL-22 was poorly 
defined. As stated by Eyerich: “The function of IL-22 is 
difficult to generalize. It is not anti-inflammatory, nor it 
is necessarily proinflammatory” [1]. Depending on the 
context, IL-22 can exert protective functions in barrier 
defense, tissue repair, and homeostasis in various organs, 
including the skin [2], but its continuous and/or exacer-
bated action induces tissue inflammation, leading to im-
mune disorders such as psoriasis [3].

In 2000, IL-22 march started with cloning, character-
ization, and identification originally as IL-10-related T-
cell-derived inducible factor (IL-TIF) [4], and a 25% 
overall sequence identity between human IL-22 and IL-
10 was reported [5]. It was later classified as a novel cyto-
kine related to IL-10 [6], playing a key role in the homeo-
stasis of mucosa and barrier organs [7].

During the first decade of this century, a more precise 
idea about the cellular sources of IL-22 has been taking 
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shape [8]. Previously considered as a T helper (Th) 1-as-
sociated cytokine [9], now IL-22 is recognized to have 
multiple origins. The main source is represented by spe-
cific T cells, such as CD4+, CD8+, γδ T cells [9, 10], and 
blood-derived natural killer (NK) cells, also called NK-22 
[11]. A specific case is represented by type 3 innate lym-
phoid cells (ILCs), which express IL-22 following stimu-
lation with IL-23 alone [12, 13]. Different CD4+ T cells 
are relevant producers of IL-22, namely Th17 and Th22, 
with the former releasing more IL-22 than Th1 cells [14], 
and a noteworthy difference exists between these T help-
er cells. Together with IL-22, Th17 also produces IL-17A 
and, for this reason, IL-17 and IL-22 have been linked to-
gether as the major secretory products of the Th17-cell 
subset. On the other hand, it has been demonstrated that 
a subpopulation of CD4+ T cells expressing IL-22, but not 
IL-17A, is present in the skin, strongly suggesting that, in 
humans, the secretion of the two cytokines is not neces-
sarily associated. This new subset of T cells, named Th22 
cells, is found mainly in tissues and produces IL-22 in re-
sponse to IL-6 and tumor necrosis factor (TNF)-alpha [1, 
15]. IL-22 production has been shown to be regulated also 
by IL-23, transcription factor RORɣt but mostly by aryl 
hydrocarbon receptor, from which IL-22 synthesis in 
Th17/22, Th22, and ILCs depends [5, 13, 16].

The bioactivity of IL-22 starts after its binding with the 
IL-22 receptor (IL-22R), a class II cytokine heterodimeric 
receptor consisting of two subunits, IL-22Rα and IL-10Rβ. 
Both chains are able to bind IL-22 independently, a unique 
feature compared with other receptors, and are required 
for the activation of intracellular signaling. While IL-10Rβ 
is ubiquitously expressed and is found in many immune 
cells, IL-22Rα is present almost exclusively on epithelial 
cells, including skin, pancreas, intestine, liver, eye, lung, 
and kidney, thus limiting and linking IL-22 responsive-
ness to the expression pattern of IL-22Rα [17].

The binding of IL-22 to IL-22R, expressed in epithe-
lial cells only, promotes in keratinocytes the activation of 
the receptor-associated Janus kinases JAK1 and Tyk2, fol-
lowed by the phosphorylation of signal transducer and 
activator of transcription (STAT) 3 and, to a lesser extent, 
of STAT5 [18]. This intracellular signaling is involved in 
the vast majority of IL-22 functions and leads, finally, to 
keratinocyte proliferation and migration [19]. IL-22 sig-
naling can also rely on a noncanonical and phosphotyro-
sine-independent pathway responsible for massive 
STAT3 activation. Recently, the specific abrogation of 
this noncanonical activation resulted in the resistance to 
the development of imiquimod-induced psoriasis in 
mice, with no effect on IL-22-dependent tissue repair or 

barrier defense in organs other than skin [3]. Last but not 
least, the natural and soluble IL-22 receptor, IL-22-bind-
ing protein, antagonizes IL-22 activity in vitro by specifi-
cally binding IL-22 with high affinity [20].

IL-22 and Skin

In vitro studies have demonstrated that IL-22 stimula-
tion induces cell proliferation in normal human keratino-
cytes [21] and in HaCaT cells [22, 23]. After two IL-22 
intradermal injections, acanthosis, i.e., thickening of the 
spinous layer, was evident in mouse skin [18]. Epidermal 
proliferation was also induced in diabetic mice [24] and 
transgenic mice engineered to overexpress IL-22 had ab-
errant skin phenotypes mimicking psoriasis [25, 26]. A 
psoriasis-like skin inflammation can be induced by sub-
cutaneously injecting IL-23 or by painting the skin with 
the Toll-Like Receptor 7 agonist imiquimod [27].

However, the IL-22 contribution to cell processes oth-
er than proliferation and dealing with the fate of kerati-
nocytes is established [28] and claims a particular clini-
cal-oriented attention. One of the first pieces of evidence 
stems from the pioneering work of Boniface et al, in which 
the epidermal hyperplasia induced by IL-22 did not result 
from an increased basal keratinocyte proliferation but 
from the inhibition of keratinocyte differentiation [29]. 
Neonatal human epidermal keratinocytes incubated in a 
psoriatic microenvironment comprising IL-22, IL-17, 
and TNF-alpha showed a phenotypic behavior similar to 
that observed in psoriasis, in particular regarding the de-
crease of keratin 10 [30]. In 2021, Shou’s group demon-
strated a relationship between Th22/Th17 responses and 
lipid oxidation leading to ferroptosis, a new type of pro-
grammed cell death involved in psoriasis [31]. In parallel, 
the lack of IL-22 affects the skin homeostatic balance as 
shown by the impairment of cutaneous wound healing in 
IL-22−/− mice after full-thickness wounding [32]. After 
the topical application of imiquimod, the psoriasiform-
like skin appearance is almost completely absent in IL-
22-deficient mice or in mice treated with a specific IL-22 
blocker [33]. Table 1 reports the implication of IL-22 on 
skin homeostasis.

Human epidermis, as a stratified squamous keratin-
ized epithelium, exhibits a finely-tuned stratification in 
which keratinocytes represent the predominant cytotype 
(Fig. 1a, b) and Langerhans cells, i.e., the first-line defense 
of the skin, are intermingled in the lowermost less differ-
entiated layers (Fig. 1a, c). In our laboratory, in the last 
decade, the standardization of a 3D organotypic culture 
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model of normal human skin [34], because of the similar-
ity to the physiological condition, allowed to dissect pre-
cisely the epidermal response induced by different proin-
flammatory cytokines [35, 36]. A single stimulation with 
IL-22 early impairs keratinocyte maturation as regarding 
keratin 10 expression (Fig. 2), without affecting keratino-
cyte proliferation [37]. On the other hand, other proin-
flammatory cytokines, alone or in combination, exerted 
an antiproliferative effect in the same experimental set-
ting [35]. A very recent study reported that JAK1 was also 
specifically expressed after IL-22 incubation and was fol-
lowed by an increase in pSTAT3/STAT3 ratio [38], in ac-
cordance with the induction of keratin 17 in the spinous 
layer reported previously [37].

Considering the high potential of extrapolating these 
findings to the physio-pathological condition, we ad-
vance the hypothesis that, in normal human epidermis, 
IL-22 primarily exerts a homeostatic role. IL-22 pro-

foundly affects keratinocyte terminal differentiation, 
whereas, in order to induce a proliferation impairment, a 
more complex psoriatic-like microenvironment is need-
ed.

Although the etiopathogenesis of psoriasis and atopic 
dermatitis (AD) is profoundly different, the increase of 
IL-22 levels is a common feature and, for this reason, its 
relevance in both diseases will be discussed. The implica-
tion of IL-22 on skin disorders is summarized in Table 2.

IL-22 and Psoriasis

Psoriasis is characterized by erythematous, scaly 
plaques mainly on extensor surfaces and, especially in its 
more severe forms, by a very low quality of life. In the 
past, it was considered mainly as a hyperproliferative dis-
order of keratinocytes with no immunological implica-

SC

SG

SS

SB

a b

c

a b

Fig. 1. Transmission electron microscopy 
photomicrographs of normal human skin. 
a Epidermal stratification. SC, stratum cor-
neum; SG, granular layer; SS, spinous layer; 
SB, basal layer. b Spinous layer keratino-
cyte. c Langerhans cell. Bars, 5 μm (a); 1 μm 
(b, c).

Fig. 2. Expression of keratin 10 in normal human skin (a) and after 24 h of incubation with IL-22 (b) in a Trans
well system at the air-liquid interface. Bar, 50 μm.
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tions. In the last few decades, thank to basic studies and 
to the introduction of biologics for the treatment of mod-
erate-severe clinical forms of psoriasis, the role of the im-
mune system in its pathogenesis has become dominant 
[39]. Due to the implication of both innate and adaptive 
immune responses, psoriasis is classified as an immune-
mediated inflammatory disease. The paradigm of a Th1-
driven disease has been overcome by the discovery of IL-
23/Th-17 axis in the pathophysiology of psoriasis. Among 
the many T-cells circulating in psoriatic patients, Th22, 
Th1, and Th17 are increased [40] and their pathways can 
be downregulated by treatment with anti-TNF-alpha 
treatment [41]. Standing in continuation with these clin-
ical observations, in the 3D organotypic culture model of 
normal human skin, the psoriatic shift induced by IL-17 
was promptly reverted by a specific anti-IL-17A agent 
and the early cellular mechanisms involved in such an ef-
fect were elucidated [42]. On the other hand, the anti-IL-
17A antibody secukinumab, effective in the treatment of 
psoriasis, did not affect AD progression, suggesting that 
IL-22 may exert pathogenic effects beyond those involv-
ing Th2 cytokines [43]. Psoriatic patients have high IL-22 
levels and the levels of IL-22 correlate with the severity of 
the disease, as proven by PASI score [44, 45] and specific 
treatment lowers it [46]. In psoriatic lesional skin, IL-22 
mRNA is positively expressed [47, 48] and high levels of 
IL-22 are found. Moreover, the expression of the receptor 
of IL-22 is increased in psoriatic skin and the expression 
of IL-22 receptor, as well as its distribution, correlate with 
the severity of the disease [49]. The limited presence of 
IL-22-binding protein, i.e. the natural IL-22 inhibitor, 
supports inflammation in psoriatic skin [50], and its ex-
pression was downregulated in skin biopsies of psoriatic 
patients compared to the skin of healthy donors [51].

In a mouse model of psoriasis-like skin inflammation, 
IL-22 is required to induce and sustain Th-17 response 
[52], suggesting that IL-22 antagonism might be a prom-
ising therapy for the treatment of psoriasis, but possible 
side effects of anti-IL-22 antibodies on the gut should not 
be under evaluated. As STAT3 is known to mediate del-
eterious effects in the development of psoriasis [26], a re-
cent study indicated that preventing IL-22-induced 
STAT3 alternative activation “with a light touch” could 
be able to block the deleterious effects of IL-22 while leav-
ing intact the beneficial ones [53].

It is also well established that IL-22 is able to upregu-
late a group of proinflammatory molecules, CXC-chemo-
kine ligands (CXCLS), and PDGF4, but above all, it down-
regulates genes associated with keratinocyte terminal dif-
ferentiation [54, 55]. Furthermore, the early onset of the 

disease has been correlated with a high-risk haplotype in 
the IL-22 promoter that determines enhanced produc-
tion of IL-22 [16].

IL-22 and AD

AD is associated with a wide burden and is character-
ized clinically by heterogeneous skin lesions varying a lot 
according to the age of onset and to disease progression 
with a very disabling symptom: pruritus [56]. While most 
cases of AD occur in early childhood, mostly presenting 
a recurrent and chronic course that often resolve prior to 
puberty, in up to half of patients it may persist into adult-
hood, becoming a lifelong condition. Both altered immu-
noresponses and barrier defects are key actors of its 
pathogenesis [57]. Proteins contributing to the function-
al epidermal barrier as filaggrin, loricrin, and involucrin 
are all decreased in lesional and non-lesional skin of AD 
[1, 29, 58]. The consequent epidermal barrier dysfunction 
causes the increased colonization of bacteria such as 
Staphylococcus aureus [59, 60]. In some phenotypes of 
AD, there is a genetic mutation of filaggrin [61], lacking 
in others, thus suggesting that filaggrin mutation only 
partly explains filaggrin downregulation in AD.

According to the old paradigm of Th1/Th2 polarization, 
in which AD was considered a type Th2 skin disease, quite 
recent research has revised this paradigm and, even if AD 
is dominated by type Th2 helper and type 2 ILCs, other im-
munopathogenetic pathways seem to play a role [62]. A 
study by Nograles et al. demonstrated that, by analyzing 
lymphocytes directly isolated from skin biopsies or periph-
eral blood of chronic AD and psoriasis patients, AD skin 
had upregulated expression of IL-22, independent from 
Th17 cells. CD4+T and CD8+ T-cells populations were in-
creased in AD skin and IL-22-producing CD8+ T-cell fre-
quency correlated with AD disease severity [63].

While the implications of IL-22 have been extensively 
studied in the pathogenesis of two common chronic in-
flammatory skin diseases as AD and psoriasis, we are will-
ing to address another chronic relevant, often underdiag-
nosed, skin disease: hidradenitis suppurativa (HS). IL-22 
has many effects on keratinocytes together with its differ-
entiative action as it can also induce keratinocytes to pro-
duce (i) antimicrobial proteins, including β-defensin 2, 
β-defensin 3, S100A7, S100A8, S100A9, and lipocalin 2 
[29], (ii) neutrophil-attracting chemokines, such as 
CXCL1, CXCL2, CXCL5, and CXCL8, and can inhibit the 
expression of CCL22, attracting Th17 and Th2 [26]. IL-22 
can also induce the expression of extracellular matrix-de-
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grading enzymes matrix metalloproteinases 1 and 3, 
which are required for epithelial migratory capacity dur-
ing epithelial repair as it happens in defined steps of HS 
[64]. The defective function of keratinocytes in HS has 
been demonstrated through an in vitro scratch assay: ke-
ratinocytes from HS, at variance with normal keratino-
cytes and keratinocytes from chronic wounds, exhibited 
significantly lower amounts of IL-22 (8.01 pg/mL) com-
pared to normal and chronic wound keratinocytes, sug-
gesting that defects in IL-22 signaling may play a role in 
HS pathogenesis [65]. The immune activation in HS, 
demonstrated through the upregulation of 129 genes, is 
significantly higher in lesional HS skin as compared to the 
skin of healthy controls including proinflammatory cyto-
kines (IL-1α, IL-6, TNF-α), IL-17-associated cytokines 
(IL-17A, IL-17F, IL-23A), the IL-10 family of cytokines 
(IL-10, IL-19, IL-20, IL-22, IL-24), and IFN family mem-
bers (IFNA1, IFNB1, IFNG, IL-12B), further supporting 
the role of a heterogenous group of cytokines in the 
pathogenesis of HS and well explaining the opportunity 
for targeted therapies [66]. On the other hand, IL-22 se-
rum levels in HS patients are lower than in controls (in-
dependent of the severity of the disease) and this decrease 
correlates with decreased levels of hepcidin, which is one 
of the regulators of iron storage [67]. Rosi et al. [68] have 
recently reported a deficiency of IL-22 in lesional HS skin 
compared to psoriatic lesional skin and this reduction 
was not linked to a reduced T cell infiltration but to a high 
expression of IL-10 in HS lesions.

Conclusions

According to data from the literature and from our 3D 
skin model, the role of IL-22 in chronic inflammatory dis-
ease as psoriasis and AD is better highlighted. The in-

crease of upregulating proinflammatory molecules in-
duced by IL-22, as discussed above, is a key step in the 
pathogenesis of both skin chronic inflammatory diseases. 
Further studies are necessary in order to establish which 
clinical step better correlates with IL-22 increase to better 
tailor biological treatment.

Key Message

IL-22 impairs keratinocyte terminal differentiation in normal 
human epidermis, exerting a homeostatic role.
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