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Introduction

When the physicists realized that the observable quantities can be described by self-adjoint
operators acting in abstract Hilbert spaces, mathematicians had begun to study this family of
operators. Indeed, it is possible to associate to every self-adjoint operator a real measure µ
so that the action of the self-adjoint operator A in the Hilbert space H is equivalent to the
multiplication operator by the free variable x in L2(µ), [68].

However, why should we limit ourselves to self-adjoint operators? Are there other families
of operators for which there exists a spectral model?

The de Branges spaces, the main topic of this Ph.D. dissertation, were born as functional
models to describe the simple, closed, symmetric operators with deficiency indexes (1,1), [1].

Let us consider for example the stationary Schroedinger equation with Neumann boundary
conditions:

A :=

{
−ü(x) = zu(x) x ∈ (0, π) ,

u̇(0) = 0 , u̇(π) = 0 .

This operator is self-adjoint in L2[0, π] and, if we introduce the measure µ defined as

µ(Ω) :=
∑
n∈N

δn(Ω)

‖cos(n ·)‖2
L2(0,π)

where for every Borel set Ω ⊂ C

δn(Ω) :=

{
1 if n ∈ Ω ,

0 if n /∈ Ω
,

the corresponding spectral transform U is defined as

U : (A,L2(0, π)) −→ (Mx, L
2(µ))

f −→ U[f ](m) = 〈f, cos(m ·)〉L2(0,π) , m ∈ N .

However, what happens if we remove one of the two boundary conditions of A ? The operator
stops being self-adjoint and we can no longer associate it to a spectral transform U. Never-
theless, following the procedure of M. Krein [45] and L. de Branges, [28], [70] and [71], it is
possible to associate it to a space of entire functions: the de Branges space.

These entire function spaces were first introduced in the West by L. de Branges, when he
studied the inverse spectral theory for canonical systems, and in Russia by M. Krein, who
studied functional models for closed, symmetric, simple operators with deficiency indexes (n,
n).

In the early 2000s, some mathematicians start considering the de Branges spaces for other
reasons. In chronological order, V. Havin and N. Nikolski, A. Aleksandrov, K. Seip and Y.
Lyubarskii, and finally Y. Belov, A. Baranov and K. Dyakonov (and many others) aware of the
connection between the model spaces and de Branges spaces, start studying them as spaces of
entire functions. They looked at them independently of their connection with the operators,
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INTRODUCTION iv

simply by investigating the analytical properties of their elements. In this Ph.D. dissertation
with similar goal, I will focus on some analytical properties of de Branges spaces.

This dissertation is divided into three parts, in particular in eight chapters. In the rest of the
introduction, I briefly describe all of them highlighting their relationships with the rest of the
literature.

The first two chapters are preliminary to the rest of the thesis. Although a reader who is already
familiar with de Branges spaces might skip these chapters, I still decided to include them. In
fact, even if there are excellent books on de Branges spaces, one of the main difficulties I faced
at the beginning of my Ph.D experience was studying the classical notions of this topic. As
already anticipated, the de Branges spaces have been studied by different mathematicians with
different interests, approaches and terminologies. Therefore, I think it is necessary explaining
my notation and introducing, with the relative proofs, the elementary properties I need.

In the first chapter, I introduce the de Branges spaces H(E) using the Hermite Biehler
functions E(z), (1.9) and the model spaces, (1.18).

Indeed, it is useful considering the relationship between these two spaces of holomorphic
functions, Proposition 1.12: although many theorems could be stated equivalently for the two
spaces, it is easier to prove some of them by using meromorphic inner functions of C+ and
some others by using Hermite Biehler functions. This approach, which for example was not
explicitly used by L. de Branges, was taught to me by A. Baranov during his Ph.D. course on
the de Branges spaces in Bologna.

There are at least four important classical theorems on the de Branges spaces that would
deserve to be stated: the ordering theorem, the inverse spectral theory, the axiomatic definition
and, finally, the existence of bases of reproducing kernels. In the second chapter I present the
latter result. In fact, I show that every de Branges spaces have a basis of reproducing kernels
centred at real points, Theorem 2.8 and Theorem 2.9. It is only in this chapter that I briefly
talk about the multiplication operatorMz in the de Branges spaces and I show how the density
of its domain is related to the properties of the Hermite Biehler function, [8].

The rest of the thesis gathers my research work.
The first thing I do, is extending some properties holding in the Paley-Wiener spaces, see

Example 5 for the definition, to the general de Branges spaces. In the second part of the thesis,
I study which conditions the Hermite Biehler function E(z) must satisfy so that the translation
operator Tζ and the embedding operator ιp,q are bounded in the corresponding de Branges
space H(E).

In the third and fourth chapters, I focus my attention on the translation operator Tζ . This
operator has never been systematically studied in the de Branges spaces.

First of all, I describe an easy necessary condition that E(z) must satisfy for the boundedness
of Tζ in H(E), Theorem 3.5.

My interest in this problem has got a double origin. I know that the vertical translation
operator Tiτ is bounded in the Paley-Wiener spaces and more generally in the Bernstein spaces,
see Definition 2.14. This fact makes me wonder if the vertical translation operator Tiτ is bounded
also in other de Branges spaces as well.

Secondly, translation operator is closely related to the differentiation operator. The Bern-
stein inequality and the boundedness of the differentiation operator has been already widely
studied by K.M. Dyakonov in [32], and by A. Baranov in [6], [9], [10], among other papers.
For this reason I think that studying the translation operators makes sense as well.
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To do this, I associate to Tiτ some Carleson measures ofK2(Θ) with an approach very similar
to the one used in interpolation problems. The Carleson measures are an extremely useful
instrument in studying analytic functions spaces and for this reason many mathematicians
tried to characterize them. The first fundamental results on this topic were obtained by A.L.
Vol’berg and S.R. Treil’ in [78], where they gave a sufficient condition for a measure to be a
Carleson measure inK2(Θ) and a necessary and sufficient condition to be a Carleson measure in
K2(Θ) when Θ(z) is a connected level set inner function (CLS). Subsequently A. Aleksandrov
gave a different proof of the same theorems in [2].

In the third chapter I study also a necessary condition for the horizontal translation operator
Tσ, Theorem 3.9. Also in this case, I associate it a Carleson measure with real support.

In the fourth chapter I go on studying Tζ , and in particular I present an original necessary
and sufficient condition for the boundedness of Tζ , Theorems 4.9 and 4.12. The approach I use
recalls the standard techniques for studying multipliers in analytic function spaces.

Besides the Hilbert de Branges spaces H2(E), there are also the p-de Branges spaces, see (1.27).
These Banach spaces were first introduced by A. Baranov in [10] and then extensively studied
by other authors. Therefore, it is natural looking for the properties that E(z) needs to satisfy
so that the embedding operator ιp,q from Hp(E) into Hq(E) is continuous. This problem has
already been widely studied in the literature. First of all the continuity of the embedding
operator between different p-Bernstein spaces is a well known result, [5] and [56].

This problem has already been investigated and solved in [32], [30], [34] by K. Dyakonov,
for p > 1. Dyakonov proved that the boundedness of the derivative of the phase function of
the meromorphic inner function Θ(z) is a necessary and sufficient condition for the continuity
of the embedding operator in ∗-invariant subspaces Kp(Θ) of the Hardy space. This condition
can be adapted also to the de Branges spaces.

Instead of focusing on the case p > 1, I fix my attention on the case p = 1, which has already
been studied by A. Baranov in [11]. I prove that

‖φ′‖L∞ <∞

if and only if the embedding operator

ι : H1(E) ↪→ Hq(E)

is continuous. However, to obtain this theorem, Theorem 5.7, I add further conditions to E(z),
(5.9) and (5.10). I point out also that in general the boundedness of the derivative of the
phase function is not necessary for the continuity of the embedding operator, as proved in [11].
Moreover Proposition 4.2 of [11] is similar to my Theorem 5.7. For a characterization of the
Hermite Biehler functions which satisfy (5.9) and (5.10), I recall [48].

In the third part, I study a completely different problem: the characterization of the dual of
the 1-de Branges spaces.

In order to describe it, I first recall what is known about the dual ofHp(E) when 1 < p <∞.
Indeed, it has been already discovered that the duals of the p-de Branges spaces are isomorphic
to the q-de Branges spaces where q = p/(p − 1), [24], [26] and Corollary 6.8. However, as I
show in the sixth chapter, in order to prove this result, I need to use Toeplitz operator with
anti-analytic symbols which are always unbounded when p = 1, Theorems 6.10 and 6.15. For
this reason in order to describe H1(E)

∗, a completely different approach is needed.
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In the last two chapters I firstly describe the dual of the 1-Bernstein spaces and finally of
some 1-de Branges spaces.

My starting point has been [18] where R. Bessonov described the dual of the 1-∗ invariant
subspaces of the 1-Hardy space of the unit disk. He proved that their duals can be identified
with the quotient spaces of sequences BMO(µ) where µ is a discrete measure associate to the
corresponding ∗-invariant subspaces.

Actually, also W. Cohn in [26] studied a subspace of BMOA, K∗Θ := BMOA∩K2(Θ), which
is closely related to K1(Θ)∗ as proved by R. Bessonov in Proposition 4.2 in [18], even if it is
not isomorphic.

I study the dual of the 1-Bernstein space without using the Cayley transform, but introducing
directly the atomic structure of B1

π. By doing this, I obtain the analogue of Bessonov’s result
for B1

π:

B1
π
∗

= BMO(Z) .

I go further and I look for a characterization of (B1
π)∗ in terms of entire functions. Studying some

properties of BMO(Z), I introduce a new space X, Definition 7.16, made by entire functions,
which is isomorphic to BMO(Z), Theorem 7.17.

Unfortunately the elements of X have a rigid structure and it is not easy to verify if, given
an entire function f , it does belong to X. Therefore I study a further description of (B1

π)∗,
fixing my attention on the properties of its elements. By doing this, I introduce the space Y,
which is my definitive description of (B1

π)∗, Theorem 7.21.

Finally, in the last chapter, I characterize H1(E)
∗. I use the atomic decomposition of some

H1(E) which is original for the Branges spaces, Theorem 8.1. Subsequently I give two different
description of the dual of H1(E), Theorems 8.2 and 8.23. The calculations in this case are
much more complicated, since the Fourier transform is not available. Even if these two chapters
partially overlap, I think that separating them makes sense. Indeed the computations in the
Bernstein cases are simpler and they are useful to understand what is necessary to do for the
de Branges spaces.

During my Ph.D. experience, I have also faced other relevant problems which should be men-
tioned here although they have not been solved. I fix my attention only on those related to the
topics of this dissertation.

Even if the connection between the translation operator and the differentiation operator is
clear, I do not know if it is possible to consider a de Branges space H(E) where the translation
operator is bounded but the differentiation operator is not. Looking at Baranov’s calculations
in [6] and at my estimates in Chapter 4, this problem seems to be related to the derivative
of the phase function and to the boundedness of its Hilbert transform. Furthermore, if this
space exists, it is also an example of a semi-group of bounded operators, whose generator is an
unbounded operator.

Another interesting question deals with the atomic decomposition of H1(E). Although in
the seventh chapter I show that when the Hermite Biehler function satisfies some particular
conditions, the associated 1-de Branges space admits an atomic structure, I do not know what
are the minimal conditions necessary for it. I think also that the atomic structure could be a
powerful instrument for studying problems concerning H1(E). Indeed, it might be used also
for studying the boundedness of the embedding operator ι1,q.
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Finally, in the last chapter, I study the dual of H1(E). The characterizations I give, does not
use entire functions. I believe that it would be important characterizing it also in this way, by
using theorems about the zeros of the functions in the Smirnov’s class.
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1. Hermite Biehler functions

and de Branges spaces

These first two chapters are preliminary to the rest of the thesis: we clarify the notations and
we introduce the p-de Branges spaces, explaining some of their well known properties.

In the first section we introduce the Hermite Biehler functions. We highlight their relationship
with the meromorphic inner functions (1.7), and we show their canonical representation form,
Theorem 1.7.

The Hermite Biehler functions are used for defining the de Branges spaces H(E). In the
second section we show thatH(E) is a Hilbert space of entire functions with reproducing kernels,
Theorem 1.10. We also prove that the Hilbert de Branges spaces are unitarily equivalent to the
model spaces of the upper half plane K2(Θ), Theorem 1.12, and we provide two well-known
examples of Hilbert de Branges spaces.

We are interested in some geometric properties of the space H(E) and for this reason in the
fourth section we introduce the phase function φE(x) associated to the Hermite Biehler function
E(z). After having proved the analytic expression of the derivative of the phase function (1.24),
we show the connection between the norm of the reproducing kernel at the real points and the
derivative of the phase function (1.26).

Finally, in the fifth section, we introduce the p-de Branges spaces, when p 6= 2. Unlike the
Hilbert case, these spaces have not been deeply investigated yet. A lot of properties which hold
in the Hilbert case, are true also for the case p 6= 2. Nevertheless, in this thesis, we fix our
attention on their differences and we face some questions whose answers in the non-Hilbert case
are contrary to all the expectations.

1. Hermite Biehler functions

There are several ways to introduce the Hilbert de Branges space. Perhaps, the easiest one,
that we will see in the next section, (1.9), uses the Hardy spaces of the upper half plane C+.
In order to explain this technique, we need the Hermite Biehler functions, which we define and
characterize in this section.

Definition 1.1 Let f(z) be an entire function. The sharp operator, #, is defined as

(1.1) f#(z) := f(z) .

Definition 1.2 An entire function E(z) is a Hermite Biehler function if

(1.2) |E(z)| >
∣∣E#(z)

∣∣ = |E(z)| ∀z ∈ C+ .

2



1. HERMITE BIEHLER FUNCTIONS 3

Obviously the Hermite Biehler function E(z) has no zeros in the upper half plane. Moreover,
in order to avoid some technical computations, we assume also that E(x) 6= 0 for every x ∈ R.

Definition 1.3 An entire function S(z) is said to be real if

(1.3) S(z) = S#(z) ∀z ∈ C .

We associate two important real functions to the Hermite Biehler function E(z):

A(z) =
E(z) + E#(z)

2
, B(z) =

−E(z) + E#(z)

2i
.(1.4)

Therefore, E(z) = A(z)− iB(z).

Example 1 If a ∈ R, the function eiazn is a Hermite Biehler function if and only if n = 1 and

a < 0. Indeed, if z = reiθ, then∣∣eiazn∣∣ = e<iaz
n

= e−ar
n sinnθ ,

∣∣∣eiazn∣∣∣ = e<iaz
n

= ear
n sinnθ .

The function eiazn is in the Hermite Biehler class if and only if |eiazn| <
∣∣eiazn∣∣, that is,

0 < −2arn sinnθ ∀θ ∈ (0, π) ,∀r > 0 .

This last condition is possible if and only if n = 1 and a < 0. We note also that

eiaz = cos(−az)− i sin(−az) .

In the general case, if a = xa + iya ∈ C,∣∣eazn∣∣ = exar
n cos(nθ)−yarn sin(nθ) , while

∣∣eazn∣∣ = exar
n cos(nθ)+yarn sin(nθ) .

Thus, only the sign of the imaginary part of a does matter.

Example 2 The function (1− z/zn) where zn = xn + iyn ∈ C− is in the Hermite Biehler class.

Let us compute as above:

|1− z/zn|2 =
[
(x− xn)2 + (yn − y)2

]
/ |zn|2 ,

|1− z/zn|2 =
[
(x− xn)2 + (yn + y)2

]
/ |zn|2 .

Therefore

|1− z/zn| > |1− z/zn| if and only if[
(x− xn)2 + (yn − y)2

]
/ |zn|2 >

[
(x− xn)2 + (yn + y)2

]
/ |zn|2 ,

which is true if and only if yn < 0.
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Example 3 It turns out that, if zn = xn + iyn ∈ C−, the function (1− z/zn)ez/zn is not in the

Hermite Biehler class. Indeed we know that

(1− z/zn)ez/zn = (1− z/zn)e
−i yn
|zn|2

z
e

xn
|zn|2

z where − yn

|zn|2
> 0 .

Consequently∣∣(1− z/zn)ez/zn
∣∣ = |(1− z/zn)| e

yn
|zn|2

y
e

xn
|zn|2

x and∣∣(1− z/zn)ez/zn
∣∣ = |(1− z/zn)| e−

yn
|zn|2

y
e

xn
|zn|2

x
.

If yn < 0, the condition (1.2) is not satisfied for y large enough.

We associate to every Hermite Biehler function E(z) a meromorphic inner function Θ(z).

Definition 1.4 A meromorphic inner function Θ(z) is an inner function having a meromorphic

extension to the whole C.

As described in [29], [41], [63] a singular inner function S(z) has the expression

S(z) = exp
{
i

∫
R

1 + tz

t− z
dn(t)

}
where n(t) is a Borel measure singular with respect to the Lebesgue measure, and it does not
have any meromorphic extension to C. Indeed, if n(t) contains point mass measures, then S(z)
will have essential singularities. On the other side, if n(t) is singularly continuous, the points
in the support of the measure create singularities that are not isolated.

For this reason, the meromorphic inner functions are described just by the two parameters
(Λ, a), the zeros set of Θ(z) and its mean type.

Definition 1.5 A function Θ(z) ∈ H∞(C+) is a meromorphic inner function if

(1.5) Θ(z) := eiaz
∏
n

eiϕn
z − λn
z − λn

where a > 0, λn = an + ibn ∈ C+ ,

where

(1.6)
∑
n

bn
a2
n + b2

n

<∞ , a ≥ 0 ,

and {λn} does not have a finite accumulation point.

There is a deep relationship between meromorphic inner functions and Hermite Biehler func-
tions.

Proposition 1.6 If E(z) is a Hermite Biehler function, the associated meromorphic inner

function Θ(z) is defined as

(1.7) Θ(z) := E#(z)/E(z) , ∀z ∈ C+ .
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Proof. We know that

|E(z)| < |E(z)| , ∀z ∈ C+ which implies that |Θ(z)| < 1 , ∀z ∈ C+ .

Moreover, the trace of the inner function Θ(x) on R has modulus equal to 1 for all x ∈ R, since

the Hermite Biehler function E(z) is entire. �

We observe that the correspondence between the Hermite Biehler class and the meromorphic
inner function is not one-to-one. Indeed let us consider a real entire function S(z), (1.3). Then,
S(z)E(z) is still Hermite Biehler but ΘSE(z) = ΘE(z) for z ∈ C+.

The condition (1.7) gives us a necessary condition that the zeros of E(z) need to satisfy. Since

ΘE(z) = 0 if and only if E#(z) = 0 ,

then E(zn) = 0, where zn = xn + iyn, if and only if ΘE(zn) = 0. Consequently, the zeros of the
function E(z), that is {zn}n ⊂ C−, satisfy the Blaschke condition, that is:

(1.8)
∑
n

−yn
1 + |zn|2

<∞ or equivalently
∑
n

=
(

1

zn

)
<∞ .

The Blaschke condition (1.6) does not imply any further condition on the rate of growth of the
zeros of E(z). Indeed,∣∣∣∣= 1

zn

∣∣∣∣ ≥ 1

|zn|q
if and only if − yn ≥

1

|zn|q−2 .

For this reason, the Blaschke condition bounds the exponent of convergence of the zeros of E(z)
if and only if its zeros belong to the domain Ω := {z ∈ C− such that − y ≥ |z|2−q}.

To conclude this section, we recall the canonical expression for the functions in the Hermite
Biehler class, see [55]. We use Levin’s notation [55].

Let us consider the function p(z) :=
∑

k(ak + ibk)z
k. Then Rp :=

∑
k akz

k and Ip :=∑
k bkz

k. For sake of brevity, we set Pj(w) := w + · · ·+ 1
j
wj.

Theorem 1.7 Let E(z) be a Hermite Biehler function and let {zn}n ⊂ C− be its zeros. Then,

according to Weierstrass factorization [56], we know that:

E(z) = Czkef(z)
∏
n

(
1− z

zn

)
exp

(
z

zn
+ · · ·+ 1

jn

(
z

zn

)jn)
where

∑
n

1
|zn|jn+1 converges and f(z) is entire. Then the function E(z) is equal to

E(z) = Czkeg(z)+i(mz+d)
∏
n

(
1− z

zn

)
exp (RPjn(z/zn)) ,

where m < 0 and g(z) is a real function.

The above theorem is very important. For example, by using it we describe all the Hermite
Biehler function of order at most 2.
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Proposition 1.8 Let {zn}n ⊂ C− satisfies the Blaschke condition (1.6) and
∑

n
1
|zn|2

< ∞. If

E(z) is Hermite Biehler of order 2 and E(zn) = 0, then

E(z) = ei(az+d)+p2z2+p1z+p0

∏
n

(
1− z

zn

)
ez<

1
zn ,

where a < 0 and p2, p1, p0, d ∈ R.

Proof. Since the exponent of convergence of the zeros of the Hermite Biehler function is

less than or equal to 2, then∏
n

(
1− z

zn

)
e
z
zn

converges to an entire function. Moreover, thanks to the previous formula,

eibz
∏
n

(
1− z

zn

)
ez<

1
zn

converges in C where b =
∑

n=
1
zn
. Consequently,

E(z) = Cep(z)eibz
∏
n

(
1− z

zn

)
ez<

1
zn

= ei(az+d)+p2z2+p1z+p0

∏
n

(
1− z

zn

)
ez<

1
zn ,

and we have proved the statement. �

2. Hilbert de Branges spaces

We define the Hilbert de Branges spaces.

Definition 1.9 Let E(z) be a Hermite Biehler function. The 2-de Branges space H(E) is the

space of entire functions f(z) such that

(1.9)
f(z)

E(z)
and

f#(z)

E(z)
∈ H2(C+) .

It is useful to observe that

(1.10) f#(z)/E(z) ∈ H2(C+) if and only if f(z)/E#(z) ∈ H2(C−) .

Indeed, if a function g(z) ∈ H2(C+), then g#(z) ∈ Hol (C−). Moreover the function g#(z)
belongs to H2(C−) since∥∥g#

∥∥2

H2(C−)
= sup

y<0

∫
R
|g#(x+ iy)|2dx = sup

t>0

∫
R
|g(x+ it)|2dx = ||g||2H2(C+) .

We introduce the inner product of H(E).
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Theorem 1.10 The de Branges space H(E), endowed with the inner product

(1.11) 〈g, f〉H(E) :=

∫
R
g(x)f(x)

dx

|E(x)|2
,

is a Hilbert space. Moreover, for every z ∈ C, the function

(1.12) kz(w) =
1

2πi

E(z)E(w)− E(z)E(w)

(z − w)

is the reproducing kernel at z, that is, for every f ∈ H(E)

〈f, kz〉H(E) = f(z) .

Proof. If we fix f ∈ H(E), f/E and f/E# satisfy the Cauchy integral formula since they

are elements of H2(C+) and H2(C−) respectively. Consequently, it holds that

1

2πi

∫
R

f(x)

E(x)

dx

x− z
=


f(z)
E(z)

if z ∈ C+

0 if z ∈ C−
,

1

2πi

∫
R

f(x)

E#(x)

dx

x− z
=

0 if z ∈ C+

− f(z)
E#(z)

if z ∈ C−
.

Therefore, for every z ∈ C \ R ,

〈f, kz〉H(E) =
1

2πi

∫
R

E(z)E(x)− E(z)E(x)

x− z
f(x)

dx

|E(x)|2

=
E(z)

2πi

∫
R

f(x)

E(x)

dx

x− z
− E#(z)

2πi

∫
R

f(x)

E#(x)

dx

x− z
= f(z) .

The function 〈f, kz〉H(E) is an entire function in the variable z. Indeed, it is clearly holomorphic

in C \ R. Let z = x0 ∈ R. First of all 〈f, kx0〉H(E) is well defined since

| 〈f, kx0〉H(E) | =

∣∣∣∣∣ 1

2πi

∫
R

f(x)

|E(x)|2
E(x0)E(x)− E(x0)E(x)

x− x0

dx

∣∣∣∣∣(1.13)

≤ 1

2π

∫ x0+ε

x0−ε

∣∣∣∣ f(x)

E(x)2

∣∣∣∣ ∣∣∣E(x0)∂zE(x0)− E(x0)∂zE(x0)
∣∣∣ dx

+
1

2π

∫
|x−x0|≥ε

∣∣∣∣ f(x)

E(x)

∣∣∣∣
∣∣∣∣∣E(x0)E(x)− E(x0)E(x)

(x− x0)E(x)

∣∣∣∣∣ dx
≤ Mx0

∥∥∥∥ fE
∥∥∥∥
L2(R)

+
1

2π

∥∥∥∥ fE
∥∥∥∥
L2(R)

∫
|x−x0|≥ε

M ′
x0

(x− x0)2
< ∞ .

With similar computations, it is also possible to show that

(1.14) lim
|h|→0

〈f, kx0+h〉H(E) − 〈f, kx0〉H(E)

h
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exists finite. Since 〈f, kz〉H(E) and f(z) are entire functions and

〈f, kz〉H(E) = f(z)

for every z ∈ C \ R, also for z = x ∈ R it is true that

f(x) = 〈f, kx〉H(E) .

The functions kz belong to H(E). Indeed, they are clearly entire. In fact, kz/E and k#/E

belong to the Hardy space H2(C+). To prove this last statement, let us consider the function

in kz/E. It turns out that if z ∈ C+, the function kz/E is L2-integrable on every horizontal

line of the upper half plane =(z) = y. Indeed, arguing as in (1.13)∫
R

∣∣∣∣kz(x+ iy)

E(x+ iy)

∣∣∣∣2 dx =

∫
R

∣∣∣∣∣E(z)E(x+ iy)− E(z)E(x− iy)

2iE(x+ iy)(z − x− iy)

∣∣∣∣∣
2

dx(1.15)

≤
∫ <z+ε
<z−ε

∣∣∣∣∣E(z)E(x+ iy)− E(x− iy)E(z)

CE(x+ iy)(z − x− iy)

∣∣∣∣∣
2

dx

+

∫
|x−<z|≥ε

∣∣∣∣∣E(z)E(x+ iy)− E(z)E(x− iy)

2iE(x+ iy)(z − x− iy)

∣∣∣∣∣
2

dx

≤ M +

∫
|x−<z|≥ε

M ′

(x−<z)2
dx < ∞ .

With an analogous reasoning, one can also prove that the function k#
z (x)/E(x) in (??) belongs

to H2(C+). Consequently, kz are the reproducing kernels of (H(E), 〈·, ·〉H(E)).

The last thing that we have still to prove is that (H(E), 〈·, ·〉H(E)) is complete. Let {fn} be a

Cauchy sequence of H(E). Since H2(C+) is a Hilbert space,

fn/E → g/E ∈ H2(C+) and f#
n /E → h/E ∈ H2(C+) .

Consequently the functions fn converge to f0 ∈ Hol (C)), where

f0(z) :=

 g(z) if z ∈ C+

h#(z) if z ∈ C−
.

We note that g(x) = h(x) for every x ∈ R since

g(x) = lim
n→∞

fn(x) = lim
n→∞

fn(x) = h(x) ,

and we have proved the theorem. �
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It is worth observing that there are several other different ways to define the Hilbert de Branges
spaces, see [28], [69], [70] and [71]. For example, the axiomatic approach, described in [28], is
extemely useful for the spectral representation of closed, symmetric operators with deficiency
indexes (1, 1), see [4], [45], [59] and [74].

The H(E)-norm of the reproducing kernel is an important tool in the study of the geometric
properties of H(E). For this reason, we observe that

kx(x) = lim
w→ x

kw(w) =|E(x)|2 lim
w→x

1− |Θ(w)|2

4π=w
,

where Θ(z) = eiaz
∏

j bj(z) is defined as in (1.5). Since,

1− |Θ(w)|2 = (1−
∣∣eiaw∣∣2) +

∑
n≥1

∣∣eiaw∣∣2 [n−1∏
j=0

|bj(w)|2
(
1− |bn(w)2

)]
(1.16)

= (1−
∣∣eiaw∣∣2) +

∑
n≥1

∣∣eiaw∣∣2 [n−1∏
j=0

|bj(w)|2 4yn=w
|w − zn|2

]
,

we obtain that

(1.17) kx(x) = |E(x)|2 1

π

(
a

2
+
∑
n

yn

|x− zn|2

)
.

where {zn := xn − iyn} ∈ C− are the zeros of E(z).

There is an important relationship between the model spaces associated to meromorphic inner
functions and the de Branges spaces. Let us first recall the definition of the model spaces. For
a more complete description of these spaces, we refer to [24], [40], [61] and [63].

Definition 1.11 The model space, also known as the 2-∗ invariant subspace of H2(C+), is

defined as

(1.18) K2(Θ) :=
{
f ∈ H2(C+) such that f(x) = Θ(x)g(x) for x ∈ R , where g ∈ H2(C+)

}
,

where Θ(z), defined as in (1.5), is an inner function.

The subspace K2(Θ) can be defined also as the orthogonal complement in H2 of the subspace
ΘH2, [40]. As proved for example in [6], the space K2(Θ) is isometrically isomorphic to H(E),
when (1.7) holds.

Proposition 1.12 Let E(z) be a Hermite Biehler function and let Θ(z) be the corresponding

meromorphic inner function described in (1.7). The map U,

U : H2(E)→ K2(Θ) , where U(F )(z) := f(z) =
F (z)

E(z)
,

is an isometric isomorphism from H2(E) onto K2(Θ).
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Proof. Let F ∈ H2(E), then f = F/E ∈ H2(C+) and Θ(x)f(x) = F (x)/E(x) =

F#(x)/E(x), which is the boundary value of an element of H2(C+).

On the other hand, if f ∈ K2(Θ), let F := fE. Then F/E ∈ H2(C+), F#/E ∈ H2(C+).

Furthermore the function F = fE is entire. �

We observe that the model spaces are closed subspaces of H2(C+) and the functions

(1.19) Kw(z) :
i

2π

1−Θ(w)Θ(z)

z − w
w ∈ C+

are the reproducing kernels of K2(Θ).

3. Some examples

In this short section we provide two examples of Hilbert de Branges spaces [74].

Example 4 (Space of polynomials) We consider the linear space

Pn := {polynomials of degree < n} .

It turns out to be a de Branges space by choosing as Hermite Biehler function any polynomial

whose zeros are all in the lower half plane.

Lemma 1.13 Let q(z) be a a polynomial whose zeros are all in the lower half plane. Then q(z)

is a Hermite Biehler function.

Proof. It is clear that q(z) is an entire function. Furthermore,

q(z) = α(z − λ1) . . . (z − λn) ,

where λi’s are the zeros of q(z), all contained in C−. Since, for every z ∈ C+,

|z − λi|2 = (<z −<λi)2 + (=z −=λi)2 > (<z −<λi)2 + (=z −=λi)2 = |z − λi|2 ,

the condition

|q(z)| > |q(z)| ∀z ∈ C+

is always satisfied. �

We check that Pn is a Hilbert de Branges space.
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Proposition 1.14 Let q(z) be a a polynomial of degree equal to n, whose zeros are all in the

lower-half complex plane. Then

H(q) = Pn .

Proof. It is clear that, for every n ∈ N, zn# = zn. Since

zm/q(z) ∈ H2(C+) if m < n ,

Pn ⊆ H(q). On the other hand, zN cannot be an element of H(q) because zN/q is not in L2(R)

if N ≥ n.

Moreover, if a function f(z) belongs to H(q), then it needs to grow at most as a polynomial.

Indeed f/q belongs to H2(C+ − iε), while f/q# belongs to H2(C− + iε). These two conditions

imply that |f(z)| ≤ c|q(z)| for every z ∈ C, that is f(z) is a polynomial. �

Clearly, H(q) is finite dimensional. Furthermore, to describe H(q) only the zeros in the lower

half plane are relevant. Indeed, it might be proved that H(q) is isometrically isomorphic to

H(qp) where p is any polynomial with all its zeros on R.

Example 5 We recall that the Paley-Wiener spaces, parametrized by a > 0, are defined as

PWa :=

 f entire :
∫
R |f(x)|2dx <∞

and ∀ε > 0 , exists Cf,ε > 0 : |f(z)| ≤ Cf,εe
(a+ε)|z| ∀z ∈ C

 .

These spaces are the most important example of de Branges space. Indeed,

Proposition 1.15 It holds that

PWa = H(e−iaz) .

Proof. It is necessary to characterize the Paley-Wiener spaces by means of the Fourier

transform. Indeed

PWa = F−1 L2(−a, a) ,

that is, PWa coincides with the holomorphic extension of the inverse Fourier transform of the

L2-integrable functions on the symmetric interval (−a, a). To prove that for every function

f ∈ PWa, f ∈ H(e−iaz), we apply the definition (1.9). We check that

(1.20) f(z)/e−iaz ∈ H2(C+) and f(z)/eiaz ∈ H2(C+) .
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Considering the Fourier transform,

(1.21) supp F

[
f(·)
e−ia·

]
⊆ R+

and we obtain the left inclusion in (1.20). With similar reasoning, also the right inclusion in

(1.20) and the inclusion H(e−iaz) ⊆ PWa are obtained. �

It is worth observing that 〈·, ·〉H(e−iaz) is equivalent to 〈·, ·〉PWa
. Indeed, |e−iaz| = 1, whenever

z ∈ R .

The Paley-Wiener spaces have been deeply studied. An important article on them is [64],
where J. Ortega-Cerdà and K. Seip characterize the de Branges spaces which have got some
sampling properties similar to those of the Paley-Wiener spaces.

For other examples of Hilbert de Branges spaces we cite the third part of [28]. We point out also
the reference [12], where A.D. Baranov, Y. Belov and A. Poltoratski characterize the Hermite
Biehler functions associated to Schrödinger operator with integrable potential.

4. The phase function φE

While studying de Branges space H(E), the phase function φE and its derivative are of funda-
mental importance. In this section we describe its expression and we highlight its relationship
with the norm of the reproducing kernel and with the derivative of the associated meromorphic
inner function Θ(z).

Definition 1.16 Let E(z) be a Hermite Biehler function. The real valued function φE(t) such

that

(1.22) eiφE(t)E(t) = |E(t)| ∀t ∈ R

is the phase function of E(z).

Every Hermite Biehler function E(z) admits a phase function.

Theorem 1.17 For every Hermite Biehler function E(z) there exists an associated phase func-

tion φE(t); moreover φE(t) is C∞(R).

Proof. For sake of clearness, let us call φE(t) = φ(t). First of all, since we assume that

E(x) 6= 0 for x ∈ R, we define log(E(z)) for z ∈ C+. This function is holomorphic in a small

neighborhood of C+. For this reason, we define

−iφ(t) = i= logE(t) .
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The function φ(t) is differentiable. Furthermore, because of the Cauchy-Riemann equations,

0 > − ∂

∂y
log |E(z)| |z=t=

∂

∂x
arg(E(z)) |z=t ,

where the first inequality is satisfied because of (1.2). Therefore φ(t)′ > 0 for every t ∈ R. �

From (1.7), we recall that Θ(t) = E#(t)
E(t)

= e2iφE(t) for every t ∈ R. Therefore,

2iφE(t)′e2iφE(t) = Θ′(t) and φE(t)′ =
|Θ′(t)|

2
.(1.23)

The derivative of Θ′ is well defined since the inner function admits an analytic continuation
beyond the real line. Indeed, if (1.5) holds,

|Θ(t)′| =
∑
n

2yn

|t− zn|2
+ a , ∀t ∈ R .

Consequently, because of (1.23),

(1.24) φ′E(t) =
∑
n

yn

|t− zn|2
+
a

2
.

Thanks to (1.22), (1.17) and (1.24) we obtain other equivalent expressions for |kt(x)|/|E(x)|
and ‖kt‖2

H2(E), when t, x ∈ R:∣∣∣∣kt(x)

E(x)

∣∣∣∣ =
1

π
|E(t)|

∣∣∣∣sin(φ(x)− φ(t))

(x− t)

∣∣∣∣ ,(1.25)

kt(t) =
|E(t)|2 φ′E(t)

π
.(1.26)

5. p-de Branges spaces

Unlike the Hilbert case, the p-de Branges spaces have not been completely investigated yet.
They were first formally introduced in [9] and other references on this subject are [10], [43],
[44]; we recall the main definitions.

Definition 1.18 Let 0 < p ≤ ∞. Given the Hermite Biehler function E(z), the p-de Branges

space Hp(E) is defined as:

(1.27) Hp(E) :=
{
f entire such that f/E ∈ Hp(C+), f#/E ∈ Hp(C+)

}
,

where f#(z) := f(z) and Hp(C+) is the p-Hardy space of C+.

If p ≥ 1, Hp(E) is a Banach space with the norm inherited from Hp(C+)

(1.28) ‖f‖Hp := ‖f/E‖Hp =

(∫
R

∣∣∣∣ f(x)

E(x)

∣∣∣∣p dx)1/p

.
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If 0 < p < 1, Hp(E) is just a complete metric space and the distance is described by

(1.29) d(f, g) = ‖f − g‖Hp =

(∫
R

∣∣∣∣f(x)− g(x)

E(x)

∣∣∣∣p dx) .

As it happens for the case p = 2, Theorem 1.12, if p ≥ 1, the p-de Branges spaces are isomet-
rically isomorphic to the ∗-p invariant subspaces of Hp(C+).

Definition 1.19 If Θ(z) is an inner function, the space Kp(Θ) ⊂ Hp(C+) is defined as

Kp(Θ) :=
{
f ∈ Hp(C+) such that 〈f, g〉H2 = 0, ∀g ∈ ΘHq

}
,

where 1/p + 1/q = 1 and 1 < p < ∞. In other words, Kp(Θ) is the subspace of Hp(C+)

annihilated by ΘHq(C+).

Proposition 1.20 Let 1 < p <∞. The space (Kp(Θ), ‖·‖Hp) is a closed subspace of Hp(C+).

Proof. Let {fn} ∈ Kp(Θ) such that fn → f ∈ Hp(C+). Then

〈f, g〉H2 = lim
n→∞

〈fn, g〉H2 = 0 , ∀g ∈ ΘHq(C+) .

Consequently f ∈ Kp(Θ). �

As shown in [63], the elements of Kp(Θ) can be described in a more direct way.

Proposition 1.21 Let Θ(z) be an inner function. It turns out that the trace on R of the

elements of Kp(Θ) is equal to the trace on R of the elements in the intersection between

Hp(C+) and ΘHp(C−), that is,

Kp(Θ)|R =
(
Hp(C+) ∩ΘHp(C−)

)
|R ,

where f |R is the trace of f on the real line.

Proof. For every f ∈ Hp(C+), f ∈ Kp(Θ) if and only if

〈f,Θh〉H2 = 0 ∀h ∈ Hq which is equivalent to saying that
〈
Θf, h

〉
H2 = 0 .

The above relation holds if and only if Θ(x)f(x) ∈ Hp(C−)|R , that is f(x) ∈ Θ(x)Hp(C−) |R .

We note that the fact that Θ(z) is inner has been used to guarantee that Θ(x)Θ(x) = 1 almost

everywhere on R. �

Proposition 1.21 is fundamental. Indeed it allows us to define the 1-∗ invariant subspaces.

Definition 1.22 If Θ(z) is an inner function, the space K1(Θ) ⊂ H1(C+) is defined as

K1(Θ) :=
{
f ∈ H1(C+) such that Θ(x)f(x) ∈ H1(C−)|R

}
,
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As it happens for the model spaces, Proposition 1.12, when 1 ≤ p <∞, Kp(Θ) is isometrically
isomorphic to Hp(E).

Proposition 1.23 If 1 ≤ p <∞, then Hp(E) := EKp(Θ), where Θ(z) is defined according to

(1.7).

Proof. Let f ∈ Kp(Θ) and F = Ef . It is clear that F/E ∈ Hp(C+). On the other

hand Θ(x)f(x) ∈ Hp(C+)|R , which implies that Θ(z)f#(z) ∈ Hp(C+). This last inclusion is

equivalent to saying that F#/E ∈ Hp(C+), which implies that F ∈ Hp(E).

The reverse implication works in the same way. �

If p ≥ 1 and f ∈ Hp(E)

f(z) = 〈f, kz〉H2 ,

where the kernel kz is defined as in (1.12) for the case p = 2. However if p ≤ 1, kz(t) does not
belong to Hp(E). This fact will create some complications in the discussion of the continuity
of the embedding operator (Chapter 5) and it will force us to introduce an atomic structure,
which we will discuss in details in the following chapters.



2. Orthonormal basis of reproducing

kernels in Hilbert de Branges spaces

The 2-de Branges spaceH(E) is a reproducing kernel Hilbert space of entire functions, Theorem
1.10. In this chapter, we look for orthonormal systems of reproducing kernels {ktn(z)}n∈Z with
tn ∈ R.

In order to describe these families, we use the Herglotz functions. This class of meromorphic
functions is identified with the Cayley transforms of the meromorphic inner functions Θ(z),
(2.2).

At the same time, Herglotz functions are also defined as the Poisson integrals of positive,
Borel measures with real support, Theorem 2.5. In particular, for the description of the or-
thonormal basis, we consider Herglotz functions associated to Clark measures, see [23], [39],
[67] and [73].

In the second section, we prove the main theorem of this chapter, Theorem 2.8: we charac-
terize the complete family of orthogonal reproducing kernels of H(E). This theorem is a well
known result, maybe the best known theorem, concerning the de Branges spaces. The original
proof, that we write down here, can be also found in [28].

In the third section, we face the problem of the density of the domain of the multiplication
operator Mz in H(E). The multiplication operator in the de Branges space H(E) is closed,
symmetric and unbounded, [28]. Consequently, because of the Hellinger–Toeplitz theorem [68],
Mz cannot be everywhere defined in H(E). For this reason, we characterize the de Branges
spaces for which the multiplication operatorMz has dense domain, Theorem 2.11. This problem
is deeply connected to the completeness of the orthonormal systems of reproducing kernels and
we characterize these spaces, following the reasonings in [8].

Finally in the fourth section, we study the Plancherel-Pólya inequality for the p-de Branges
spaces, Theorem 2.16. This inequality is the natural generalization of the orthogonal decom-
position possible only in the Hilbert case. It was first discovered for the p-Bernstein spaces,
[56], and it describes some sampling and interpolating systems of Hp(E). In Theorem 2.16,
the Hermite Biehler function E(z) needs to satisfy several hypothesis which we better analyse
in the following chapters.

1. Herglotz functions

The Hermite Biehler class of entire functions is strictly connected to other classes of mero-
morphic functions. As explained in (1.7), every meromorphic inner functions Θ(z) is associated
to a Hermite Biehler function E(z). In this section we introduce the class of Herglotz functions
and we explain its relationship with the Hermite Biehler class.

16
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Definition 2.1 A complex values function m(z), defined on the whole complex plane C, is a

meromorphic Herglotz function if

• it is meromorphic in C .

• =[m](z) > 0 for every z ∈ C+ .

• m(z) = m(z) for every z ∈ C , that is, m(z) = m#(z) .

The meromorphic Herglotz functions m(z) are the Cayley transform of the meromorphic inner
functions Θ(z), as we now see.

Proposition 2.2 If m(z) is a meromorphic Herglotz function, then Θ(z) defined as

(2.1) Θ(z) := ei2πα
m(z)− i
m(z) + i

is a meromorphic inner function, when 0 ≤ α < 1. On the other hand, given a meromorphic

inner function Θ(z), the corresponding meromorphic Herglotz function mα(z) is defined as

(2.2) mα(z) := i
ei2πα + Θ(z)

ei2πα −Θ(z)
.

Proof. We have just to prove that the expressions on the right side of (2.1) and of (2.2)

belong to the required classes. Indeed Θ(z) ∈ Hol (C+) since

m(z) + i 6= 0 for every z ∈ C+ .

Moreover, for every z ∈ C+,

|Θ(z)|2 =
(<m(z))2 + (=m(z)− 1)2

(<m(z))2 + (=m(z) + 1)2
< 1

while |Θ(z)| = 1 if z = x ∈ R, since m(x) ∈ R. Therefore, the function Θ(z) is inner. Finally,

since the singularities are those points z ∈ C− such that m(z) = −i, Θ(z) turns out to be a

meromorphic inner function. On the other hand, in order to prove that the right term of (2.2)

is a Herglotz function, we first check that

=
(
i
ei2πα + Θ(z)

ei2πα −Θ(z)

)
= <

(
1 + 2i= (ei2παΘ(z))− |Θ(z)|2

|ei2πα −Θ(z)|2

)
=

1− |Θ(z)|2

|ei2πα −Θ(z)|2
> 0

if z ∈ C+. Moreover, since

(2.3) 1/Θ(z) = Θ(z) ,

we obtain that(
i
1 + Θ(z)

1−Θ(z)

)
= i
−e−i2πα −Θ(z)

e−i2πα −Θ(z)
= i

ei2πα + Θ(z)

ei2πα −Θ(z)
,

and consequently m(z) is an Herglotz function. �
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We note that equation (2.3) makes sense since Θ(z) = BΛ(z)eiaz, as stated in (1.5). Indeed

1/eiaz = 1/e−iaz = eiaz .

Analogously, manipulating separately every Blaschke factor bλ(z) of BΛ(z), it is also true that

1/bλ(z) =
λ2 + 1

|λ2 + 1|
z − λ
z − λ

=
|λ2 + 1|
λ2 + 1

z − λ
z − λ

= bλ(z) .

There exists another powerful description of the meromorphic Herglotz functions m(z). This
representation is related to Clark measures.

Definition 2.3 A positive, Borel measure σ(t) supported on the real line is said to be Poisson

integrable if

(2.4)
∫
R

dσ(t)

1 + t2
<∞ .

If σ(t) satisfies (2.4), the Schwarz integral

(2.5) S[σ](z) :=
1

πi

∫
R

[
1

t− z
− t

1 + t2

]
dσ(t)

is well defined for every z ∈ C \ R. Indeed

(2.6) |S[σ](z)| ≤ 1

π

∣∣∣∣∫
R

1 + tz

(t− z)(1 + t2)
dσ(t)

∣∣∣∣ ≤ C(z)

∫
R

dσ(t)

1 + t2
<∞ .

It is worth observing that

S[σ] = P[σ] + iQ[σ] ,

where

(2.7) P[σ](z) =
1

π

∫
R

y dσ(t)

(x− t)2 + y2

is the Poisson integral and

(2.8) Q[σ](z) =
1

π

∫
R

[
x− t

(x− t)2 + y2
+

t

1 + t2

]
dσ(t)

is the conjugate Poisson integral. If z ∈ C+, with computations similar to those in (2.6), P[σ](z)
is well defined. Furthermore, if z ∈ C+, |Q[σ](z)| is also well defined. Indeed

|Q[σ](z)| ≤ C

∫
R

|(x− t)(1 + tx)|+ |t| y2

((x− t)2 + y2) (1 + t2)
dσ(t) <∞ .

To describe the meromorphic Herglotz functions through Poisson integrable measures, we use
Herglotz theorem, Theorem 4 in [28].
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Theorem 2.4 Every meromorphic inner function Θ(z) is described by a positive, Poisson

integrable Borel measure σ(t). Indeed

(2.9) <
(

1 + Θ(z)

1−Θ(z)

)
= p0y +

1

π

∫
R

y dσ0(t)

(x− t)2 + y2
for every z = x+ iy ∈ C+ ,

where p0 > 0 is the weight of the measure σ0(t) at infinity.

Considering equations (2.2) and (2.9), the representation formula for m(z) through Poisson
measure σ0(t) appears.

Theorem 2.5 If m(z) is a meromorphic Herglotz function, then

(2.10) m(z) = p0z + c+ iS[σ0](z)

where p0 ≥ 0, c ∈ R and σ0(t) is a positive, Poisson finite Borel measure with support in R.

Proof. The equation (2.10) follows directly from Herglotz theorem, formula (2.9). Indeed

1 + Θ(z)

1−Θ(z)
− i=

(
1 + Θ(i)

1−Θ(i)

)
= S[σ0](z)− ip0z .

Thus, from (2.2),

m(z) = p0z −=
(

1 + Θ(i)

1−Θ(i)

)
+ iS[σ0](z) ,

and we have proved the statement. �

Instead of using Θ(z), in (2.9) we consider also e−i2παΘ(z), which is still an inner function. By
doing this, we obtain other Herglotz functions:

<
(
ei2πα −Θ(z)

ei2πα −Θ(z)

)
= <

(
1 + e−i2παΘ(z)

1− e−i2παΘ(z)

)
= pαy +

1

π

∫
R

y dσα(t)

(x− t)2 + y2
,

and

(2.11) mα(z) = pαz −=
(
e2iπα + Θ(i)

e2iπα −Θ(i)

)
+ iS[σα](z) .

The measures σα(t) + pαδ∞(t) are the Clark measures associated to the inner function Θ(z).
It is also possible to compute D[σα](t), the Radon-Nikodym derivative of σα(t) with respect to
the Lebesgue measure. Since

1− |Θ(z)|2

|e2iπα −Θ(z)|2
= pαy +

1

π

∫
R

y dσα(t)

(x− t)2 + y2
,

by applying Fatou’s theorem, we note that

(2.12) D[σα](t) =
1− |Θ(t)|2

|e2iπα −Θ(t)|2
a.e. on R .

Therefore, from equation (2.12), since |Θ(t)| = 1 ∀t ∈ R, σα(t) is a singular discrete measure.
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Proposition 2.6 The Clark measure σα(t) + pαδ∞(t) defined in (2.9) is a discrete measure

consisting of Dirac masses supported at the points of the set

(2.13) Iα :=
{
tαn ∈ R : Θ(tαn) = e2iπα

}
.

Proof. As Θ(z) is a meromorphic inner function, the set Iα has to be countable and

discrete. We have already checked that σα(t) is a singular measure (2.12); however, we have

still to verify that at every point tαn ∈ Iα, σα(t) has a non-zero Dirac mass. The function

(e2iπα + Θ)/(e2iπα − Θ) is a meromorphic function with poles exactly at Iα while the poles of

S[σα](z) coincide with the support of σα(t). Therefore, since

e2iπα + Θ(z)

e2iπα −Θ(z)
= −ipαz + S[σα](z)− ic ,

the support of σα(t) is equal to Iα and it is made by discrete points. �

We describe explicitly the relationship between the Herglotz functions m0(z), m1/2(z) and the
associated Hermite Biehler function E(z). It allows us to clarify also the value of the point
mass measures which constitute σ1/2(t) in (2.11).

Let us consider the meromorphic inner function ΘE(z), associated to E(z). We compute
the associated Herglotz functions m0

E(z) and m1/2
E (z). If E(z) = A(z)− iB(z) as in (1.4), then

m0
E = i

1 + ΘE

1−ΘE

= i
1 + E#

E

1− E#

E

= i
E + E#

E − E#
= −A

B
,

and

m
1/2
E = i

−1 + ΘE

−1−ΘE

=
B

A
.

Moreover,

m0
E

#
(z) = m0

E(z) , m
1/2
E

#
(z) = m

1/2
E (z) and

= (−A/B) > 0 if and only if = (B/A) > 0 .

Theorem 2.7 Let us consider the entire function E(z) = A(z) − iB(z) defined as in (1.4),

where A(z) and B(z) are real functions. The following sentences are equivalent:

• E(z) is in the Hermite Biehler class.

• B(z)/A(z) is in the Herglotz class.

Proof. Let E(z) be a Hermite Biehler function. Then B(z)/A(z) is real. Furthermore, for

every z ∈ C+,

= (B(z)/A(z)) =
1

4
<(E(z)− E#(z))(E(z) + E#(z))

|A(z)|2
=
|E(z)|2 − |E#(z)|2

4|A(z)|2
≥ 0
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since E(z) is in the Hermite Biehler class. The reverse implication works exactly in the same

way. �

We describe explicitly the Clark measure σ1/2(t) of the Herglotz function B(z)/A(z), as defined
in (2.11). Indeed

B

A
(z) = p1/2z + c+

1

π

∫
R

(
1

t− z
− t

1 + t2

)
dσ1/2(t) .

The set supp(σ1/2) is equal to ZA, that is, the zeros A(z), and

(2.14)
B

A
(z) = p1/2z + c+

1

π

∑
n∈Z

(
1

tn − z
− tn

1 + t2n

)
p1/2
n , where tn ∈ ZA .

We note that p1/2 ≥ 0 and

(2.15)
p

1/2
n

π
= B(tn)/A′(tn) > 0 .

In particular

p
1/2
n

π
=
B(tn)

A′(tn)
=

sin(φE(tn)) |E(tn)|
φ′E(tn) sin(φE(tn)) |E(tn)|+ cos(φE(tn)) |E(tn)|′

(2.16)

=
sin(φE(tn)) |E(tn)|

φ′E(tn) sin(φE(tn)) |E(tn)|
=

1

φ′E(tn)
.

Differentiating (2.14), we obtain(
B

A

)′
(z) = p1/2 +

1

π

∑
n∈Z

p
1/2
n

(tn − z)2
> 0 , ∀z ∈ C+ .

We note that the zeros of B(z) and A(z) interlace with each others.

In order to describe the general expression of σα(t), we introduce

(2.17) Sα(z) := eiπαE(z)− e−iπαE#(z) .

The real function Sα(z) has got simple real zeros {tαn} which coincide with Iα (2.13). Moreover

(2.18)
Sα+1/2(z)

Sα(z)
= i

e2iπα + Θ(z)

e2iπα −Θ(z)
= mα(z) .

Consequently with computations similar to those in (2.16), we obtain that

(2.19) mα(z) = pαz + c+
1

π

∑
n∈Z

(
1

tαn − z
− tαn

1 + tαn
2

)
pαn ,

where

(2.20) pαn :=
π

φ′E(tαn)
.



2. Orthogonal bases of reproducing kernels and Clark measures

Let us consider the Hermite Biehler function E(z) = A(z) − iB(z) defined as in (1.4). Let
{tn} = ZA be the zeros of the real function A(z). We consider the reproducing kernels centred
at tn:

ktn(z) =
1

2πi

E(tn)E(z)− E(tn)E(z)

(tn − z)
=
B(z)A(tn)− A(z)B(tn)

π(z − tn)
(2.21)

=
−A(z)B(tn)

π(z − tn)
=
−B(tn)

π

A(z)

(z − tn)
.

We remind the reader that the function ktn(z) in (2.21) belongs to H(E), Theorem 1.10.

The set ZA is of fundamental importance. The collection {ktn} gives rise to an orthogonal
system of H(E).

Theorem 2.8 If tn ∈ ZA, the set of reproducing kernel {ktn(z)} is an orthogonal system of

H(E). Furthermore, if A(z) /∈ H(E), then {ktn(z)} is an orthogonal basis. On the other hand,

if A(z) ∈ H(E), then {ktn(z)} ∪ {A(z)} is an orthogonal basis.

Proof. First of all, let us check the orthogonality. Indeed

〈ktn , ktm〉H = −B(tn)

π

〈
A

· − tn
, ktm(·)

〉
H

= −B(tn)

π

A(tm)

tm − tn
= 0 ,

since the function A(z)
z−tn ∈ H(E) because of Theorem 1.10. At the same time, if A(z) ∈ H(E),

then

〈A(·), ktn(·)〉H = A(tn) = 0 for every tn ∈ ZA .

Let us consider the Herglotz function (2.14)

h(z) :=
B

A
(z) = pz + c+

1

π

∑
n

(
1

z − tn
− tn

1 + t2n

)
pn

where pn
π

= B(tn)/A′(tn) and
∑

n pn/(1 + t2n) <∞. Then,

B(z)A(w)− A(z)B(w)

(z − w)A(z)A(w)
=
h(z)− h(w)

z − w
= p+

1

π

∑
n

pn
(z − tn)(w − tn)

.

Therefore,

πkw(z) = pA(z)A(w) +
1

π

∑
n

pnA(w)

w − tn
A(z)

z − tn
.(2.22)

If z = w, then

πkw(w) = p |A(w)|2 +
1

π

∑
n

pn

∣∣∣∣ A(w)

w − tn

∣∣∣∣2 <∞
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because of the Poisson summability. Thanks to (1.26),∥∥∥∥ A(·)
· − tn

∥∥∥∥2

H(E)

=
π2

|B(tn)|2
ktn(tn) =

π

|B(tn)|2
|E(tn)|2 φ′E(tn) = πφ′E(tn) ,

and from (2.22) we obtain that

π2 ‖kw‖2
H =p2 |A(w)|2 ‖A‖2

H +
1

π2

∑
n

p2
n

∣∣∣∣ A(w)

w − tn

∣∣∣∣2 ∥∥∥∥ A(·)
· − tn

∥∥∥∥2

H(E)

=p2 |A(w)|2 ‖A‖2
H +

∑
n

pn

∣∣∣∣ A(w)

w − tn

∣∣∣∣2 <∞
since, due to (2.16),

pn
π

=
1

φ′E(tn)
.

Consequently, if p = 0, for every w ∈ C, kw(z) ∈ Span{ktn(z)}n
H
. Otherwise, if p 6= 0, then

A(z) ∈ H(E) and for every w ∈ C, kw(z) ∈ Span{ktn(z)}n ∪ {A(z)}
H
. �

Theorem 2.8 can be generalized to ZSα and {ktαn}, the system of reproducing kernels centred at
the real points tαn ∈ Iα, (2.13).

Theorem 2.9 The set {ktαn} where tαn ∈ Iα is an orthogonal bases for H(E), unless Sα(z) ∈

H(E), defined as in (2.17).

For the proof of the above theorem see Theorem 22 in [28]. It is essentially the same of that
of Theorem 2.8.

When we normalize the sets {ktαn(z)}, we obtain orthonormal basis of H(E).

Corollary 2.10 If Sα(z) /∈ H(E), the set
{√

πktαn(z)/
(
|E(tαn)|

√
φ′E(tαn)

)}
is an orthonormal

bases. Furthermore, ∀f(z) ∈ H(E)

f(z) =
∑
n

f(tαn)
πktαn(z)

|E(tαn)|2 φ′E(tαn)
and ‖f‖2

H =
∑
n

∣∣∣∣ f(tαn)

E(tαn)

∣∣∣∣2 π

φ′E(tαn)
.

3. pα different from zero

Let us consider the de Branges space H(E) and the corresponding meromorphic inner function
Θ := E#/E := eiazBΛ, where a > 0 and BΛ is a Blaschke product, i.e Λ = {λn := an + ibn} ⊂
C+. In this section, we look for the characterization of those Hermite Biehler function E(z)
for which there exists an 0 ≤ α < 1, such that the corresponding system of reproducing kernel
{ktαn}, as defined in Theorem 2.9 is not complete in H(E). In this section we provide the proof
contained in [8].
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Theorem 2.11 Let H(E) be a Hilbert de Branges space. There exists an α such that
{
ktαn
}

is not complete for H(E) if and only if the two following conditions hold:∑
n

bn <∞ and a = 0 .

where bn and a have been defined in (1.5).

Proof. By considering Theorem 2.8 and Theorem 2.9, we know that there exists an α ∈

[0, 1) such that the system {ktαn} is not complete if and only if there exists an α such that the

corresponding value pα of (2.19) is not zero.

The value pα is given by

pα = lim
y→∞

=mα(iy)

y
:= lim

y→∞

1

y
<
(
e2iαπ + Θ(iy)

e2iαπ −Θ(iy)

)
.

Therefore, pα is different from zero if and only if

lim
y→∞
|e2iαπ −Θ(iy)| = 0 .

If this happens, the limit of Θ(iy) as y →∞ has to exist and has to be equal to e2iαπ.

First of all,

|Θ(x+ iy)| = e−ya

∣∣∣∣∣∏
λ

cλ
z − λ
z − λ

∣∣∣∣∣ ≤ e−ya → 0 as y →∞ .

Consequently, if limy→∞Θ(iy) = e2iαπ, then a = 0. On the other hand, if a = 0, Θ(z) = BΛ(z).

Since pα 6= 0, then

pα = lim
y→∞

1

y

1− |Θ(iy)|2

|ei2απ −Θ(iy)|2
≤ lim inf

y→∞

1

y

1 + |Θ(iy)|
|ei2απ −Θ(iy)|

≤ lim inf
y→∞

2

y |ei2απ −Θ(iy)|
.

Consequently

lim sup
y→∞

y
∣∣ei2απ −Θ(iy)

∣∣ ≤ 2

pα
.

Since, due to (1.16),

lim sup
y→∞

y(1− |
∏
|n|<N

bλn(iy)|) = 2
∑
|n|<N

bn ,

we obtain that it is necessary that
∑

n bn <∞.

In order to prove the reverse implication, we suppose that a = 0 and
∑

n bn < ∞ hold.

Therefore, with computations similar to those used above, as y →∞,

BΛ(iy) = Γ exp

(
−2
∑

n bn
y

+ o

(
1

y

))
,
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where |Γ| = 1 and, consequently

BΛ(iy) = Γ

(
1− 2

∑
n bn
y

+ o

(
1

y

))
.

It follows that

lim
y→∞

y |Γ−Θ(iy)| = 2
∑
n

bn ,

and consequently

pα = lim
y→∞

1

y
<
(

Γ + Θ(iy)

Γ−Θ(iy)

)
=

C∑
n bn

,

where α := arg(Γ)/2π. �

As we said at the beginning of this chapter, Theorem 2.11 is used to describe the de Branges
spaces for which the domain of the multiplication Mz is not dense.

Definition 2.12 Let H(E) be a Hilbert de Branges space. The multiplication operator Mz is

defined as

dom(Mz) ⊂ H(E)→ H(E)(2.23)

f(z)→Mz(f) := zf(z) .

As proved in [70] and [71], Mz is symmetric, closed and with deficiency indexes (1,1). We
describe those de Branges spaces for which the domain of Mz is dense in H(E). This charac-
terization has been obtained in Theorem 29 of [28]

Theorem 2.13 A necessary and sufficient condition such that an element S(z) ∈ H(E) is

orthogonal to dom(Mz), is that S(z) = uA(z) + vB(z), where u, v ∈ C.

Therefore, if there exists an α such that {ktαn} is not complete in H(E), the multiplication
operator Mz is not densely defined. Indeed

DomMz
H(E)

= {ktαn(z)}
H(E)

= H(E) \ {Sα(z)} .

4. Plancherel-Pólya inequality for Hp(E)

When one considers Banach spaces, it is clearly impossible finding orthogonal basis. However,
there are other kinds of systems which deserve to be searched. In this section we look for some
sampling and interpolating points for Hp(E).

According to [56], in the Bernstein spaces Bp
π it is possible to use the integers Z to interpolate

`p(Z).
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Definition 2.14 For every 0 < p ≤ ∞, the p-Bernstein space Bp
π are the p-de Branges space

with Hermite Biehler function equal to e−iπz.

The original Plancherel-Pólya inequality states that for every `p(Z) sequence {ak} when 1 <
p <∞, there exists an entire function f ∈ Bp

π such that

f(k) = ak , ∀k ∈ Z .

On the other hand, it states also that for every f ∈ Bp
π the sequence {f(k)} ∈ `p(Z) and

‖{f(k)}‖`p � ‖f‖Bpπ .

Considering the proof of [56] for the Bernstein spaces, we extend these inequalities to some
family of p-de Branges spaces.

Definition 2.15 For every p, we define the vertical translation operator Tiτ as

(2.24) Tiτ : Dom{Tiτ} ⊆ Hp(E)→ Hp(E) f(z)→ Tiτ [f ](z) := f(z+iτ) z ∈ C, τ > 0 .

Theorem 2.16 Let 1 < p <∞. Let E(z) be a Hermite Biehler function such that:

(1) supx∈R

∣∣∣E(x+iτ)
E(x)

∣∣∣ <∞ .

(2) 0 < infx∈R φ
′
E(x) ≤ supx∈R φ

′
E(x) <∞ .

(3) The translation operator Tiτ is bounded in Hp(E) .

Then, for every sequence {ck}, such that

(2.25) ‖{ck}‖p`p(Z,w) :=
∑
k∈Z

∣∣∣∣ ck
A′(tk)

∣∣∣∣p <∞ with tk ∈ ZA ,

the series

(2.26) f(z) :=
∑
k∈Z

ck
ktk(tk)

ktk(z)

converges to an element of Hp(E) so that

(2.27) ‖f‖Hp ≤ K ‖{ck}‖`p(Z,w) .

On the other hand, for every f ∈ Hp(E), the sequence {f(tk)} satisfies (2.25) and

(2.28) ‖{f(tk)}‖`p(Z,w) ≤ K ‖f‖Hp .

Observation We note that, if we define

(2.29) `p(Z, w) :=

{
{cn}n∈Z : ‖{cn}‖p`p(Z,w) :=

∑
n∈Z

∣∣∣∣ cn
A′(tn)

∣∣∣∣p <∞ , where tn ∈ ZA

}
,

then Theorem 2.16 is stating that ZA is a complete interpolating sequence for Hp(E) with

values in `p(Z, w).
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Proof of 2.16. First of all, we note that (2.26) is equivalent to

f(z) =
∑
k∈Z

ck
A′(tk)

A(z)

z − tk
.

We define

ψn,m(z) :=
m∑
k=n

ck
A′(tk)

1

z − tk
, and Ψn,m(z) := ψn,m(z)A(z) .

Consequently

‖Ψn,m‖pHp =

∫
R

∣∣∣∣Ψn,m(t)

E(t)

∣∣∣∣p dt ≤ sup
t∈R

∣∣∣∣E(t+ iτ)

E(t)

∣∣∣∣p ∫
R

∣∣∣∣ Ψn,m(t)

E(t+ iτ)

∣∣∣∣p dt
≤ C

∫
R

∣∣∣∣Ψn,m(t+ iτ − iτ)

E(t+ iτ)

∣∣∣∣p dt
= C

∫
R

∣∣∣∣∣(TiτΨn,m)# (t+ iτ)

E(t+ iτ)

∣∣∣∣∣
p

dt

≤ C ‖Tiτ (Ψn,m)‖p
Hp

= C

∫
R

∣∣∣∣∣
m∑
k=n

ck
A′(tk)

A(t+ iτ)

t+ iτ − tk

∣∣∣∣∣
p

dt

|E(t)|p
.

Since ∣∣∣∣A(t+ iτ)

E(t)

∣∣∣∣ =
1

2

∣∣∣∣E(t+ iτ)

E(t)
+
E#(t+ iτ)

E(t)

∣∣∣∣ <∞ ,

then

‖Ψn,m‖pHp ≤ C ′ ‖ψn,m(·+ iτ)‖pHp .

By using the duality between Hp and Hq when 1/p+ 1/q = 1, we obtain

‖Ψn,m‖Hp ≤ C ′ sup
g, ‖g‖Hq=1

∣∣∣∣∫ ∞
−∞

ψn,m(x+ iτ)g(x)dx

∣∣∣∣
= C ′ sup

g, ‖g‖Hq=1

∣∣∣∣∣
∫ ∞
−∞

m∑
k=n

ck
A′(tk)

1

x− (tk + iτ)
g(x)dx

∣∣∣∣∣
= C ′ sup

g, ‖g‖Hq=1

2π

∣∣∣∣∣
m∑
k=n

ck
A′(tk)

g(tk + iτ)

∣∣∣∣∣
≤ C ′ sup

g, ‖g‖Hq=1

2π

(
m∑
k=n

∣∣∣∣ ck
A′(tk)

∣∣∣∣p
)1/p( m∑

k=n

|g(tk + iτ)|q
)1/q

≤ C ‖{ck}‖`p(Z,w) ,
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since, for every sequence {λk} ⊂ C+ such that 0 < δ < h1 < =λk < h2 and |λn − λk| > 2δ, for

every h ∈ Hq, we have∑
k

|h(λk)|q ≤
h2 + δ

πδ2
‖h‖qHq .

The sequence {tk + iτ} satisfies these hypothesis since

|tn − tk| ≥ |tk+1 − tk| ≥
π

‖φ′E‖∞
.

Since the sequence {Ψn,m} is uniformly bounded in Hp(E) norm, the series in (2.26) belongs

to Hp(E) and, by replacing z with tk, f(tk) = ck.

In order to prove the reverse implication, we note that for every f ∈ Hp(E),∣∣∣∣ f(tk)

A′(tk)

∣∣∣∣ =

∣∣∣∣ f(tk)

E(tk)

∣∣∣∣ ∣∣∣∣E(tk)

A′(tk)

∣∣∣∣ =

∣∣∣∣ f(tk)

E(tk)

∣∣∣∣ 1

φ′E(tk)
.

Therefore∑
k

∣∣∣∣ f(tk)

A′(tk)

∣∣∣∣p ≤ C
∑
k

∣∣∣∣ f(tk)

E(tk)

∣∣∣∣p ≤ C sup
x∈R

∣∣∣∣E(x+ iτ)

E(x)

∣∣∣∣∑
k

∣∣∣∣ f(tk)

E(tk + iτ)

∣∣∣∣p
≤ C ′

∑
k

∣∣∣∣ f(tk)

E(tk + iτ)

∣∣∣∣p
≤ C ′

∑
k

∣∣∣∣f(tk + iτ − iτ)

E(tk + iτ)

∣∣∣∣p
≤ C ′

∑
k

∣∣∣∣Tiτ (f)#(tk + iτ)

E(tk + iτ)

∣∣∣∣p
≤ C

∥∥Tiτ (f)#
∥∥
Hp ≤ C ′ ‖f‖Hp .

�

We highlight that the hypothesis assumed in Theorem 2.16 are far from being optimal. If for
example, instead of the three conditions, we assume that the Hermite Biehler function E(z)
satisfies the CLS condition, see Definition 8.5, then (2.28) is already obtained in [25] and in
[78]. It is also possible to verify that the second condition of Theorem 2.16 implies that the
Hermite Biehler function E(z) satisfies the CLS condition.

In the following sections we analyse in depth the vertical translation operator Tiτ and we
see that the first and the third condition of Theorem 2.16 are deeply connected.

The characterization of complete interpolating sequences for spaces of entire functions is an
active research area. This section, and more generally this dissertation, does not want describe
the results obtained on this topic. However some important papers have to be cited:
[57], where the authors study problems of sampling and interpolation in a wide class of de
Branges spaces. In particular, they completely characterize the class of Hermite Biehler func-
tions for which results on sampling and interpolation related to the classical Paley-Wiener
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spaces can be extended in a direct and natural way.

[64], where the authors consider and solve the classical problem of when a sequence of expo-
nentials with real frequencies Λ = {λk : k ∈ Z} forms a frame.

[60], where an easier proof of the Beurling-Malliavin Theorem is provided.

There are several other more recent articles that should be cited. For a more complete list of
them we refer to the bibliographies of [38] and [40].



II. Boundedness of translations and

embedding operators in

de Branges spaces



3. Necessary conditions for the

boundedness of translation operators

The purpose of this chapter is looking for necessary conditions for the boundedness of the
translation operators in the Hilbert de Branges spaces H(E).

In the first section, we associate to the vertical translation operator the following measure
defined in C+

(3.1) dµ(z) :=
∑
n

π
δtn+iτ (z)

φ′(tn)

∣∣∣∣E(tn + iτ)

E(tn)

∣∣∣∣2 ,

where {tn} = I0 are defined as in (2.13), that is

{tn}n∈Z ⊂ R such that φ(tn) ≡π 0 .

We prove that, if Tiτ is bounded in H(E), dµ(z) is a Carleson measure for the model space
K2(Θ), where Θ(z) satisfies (1.7). For this reason, the characterization of Carleson measures
in model spaces is meaningful for the boundedness of Tiτ .

In the second section we find a necessary condition for the boundedness of Tiτ . We prove
that if Tiτ is bounded in H(E), then the Hermite Biehler function E(z) satisfies the following
condition:

sup
x∈R

∣∣∣∣∣E(x+ iτ)

E(x)
− E(x− iτ)

E(x)

∣∣∣∣∣ 1

τφ′(x)
≤ C̃ .

In order to obtain the above condition, we link the measure dµ(z) to an infinite matrix Γ, which
defines a bounded operator in `2(Z), Theorem 3.5.

Finally, in the third section, we study the horizontal translation operator Tσ; it is defined
in the same way:

(3.2) Tσ : Dom{Tσ} ⊆ H(E)→ H(E) f(z)→ Tσ[f ](z) := f(z + σ) z ∈ C, σ > 0 .

As already done for Tiτ , we associate a Carleson measure to Tσ, which, this time, is supported
on the real line. This fact allows us to give an easier necessary condition that the horizontal
translation operator must satisfy in order to be bounded on H(E), (3.19). The Condition (3.19)
holds only when the derivative of the phase of the Hermite Biehler function E(z) is lower and
upper bounded on R.

The results of this chapter are original and they are published in [15].
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1. Vertical translation, Carleson measures and two

weighted Hilbert transform

In this section we show that the problem of the boundedness of the vertical translation operator
Tiτ in the de Branges space H(E) can be reformulated as a problem concerning Carleson
measures in the model space K2(Θ). This problem is equivalent to the boundedness of the two
weighted Hilbert transform. The measures involved will be purely atomic.

Theorem 3.1 If the operator Tiτ is bounded in H(E), the measure dµ(z) in (3.1) is a Carleson

measure for K2(Θ), the associated model space.

Proof. Let us consider {tn}n∈Z ⊂ R such that φ(tn) ≡π 0. We make the following compu-

tations:

C ‖f‖2
H ≥ ‖Tiτf‖

2
H ≥

∑
n∈Z

∣∣∣∣〈Tiτf, ktn
‖ktn‖H

〉
H

∣∣∣∣2 =
∑
n∈Z

∣∣∣∣f(tn + iτ)

‖ktn‖H

∣∣∣∣2
=
∑
n∈Z

∣∣∣∣〈f, ktn+iτ

‖ktn‖H

〉
H

∣∣∣∣2 =

∫
C+

|f(z)|2
(∑

n

δtn+iτ (z)

‖ktn‖
2
H

)
.

Moving to the model space K2(Θ) 3 F := f/E when f ∈ H(E) ,

C ‖F‖2
K ≥

∫
C+

|F (z)|2
(∑

n

π
δtn+iτ (z)

φ′(tn)

∣∣∣∣E(tn + iτ)

E(tn)

∣∣∣∣2
)

,

that is

(3.3) K2(Θ) ↪→ L2(dµ) continuously .

The above embedding tells us that dµ is a Carleson measure for K2(Θ). �

In the proof of the above theorem, if we consider the points

{tαn}n∈Z ⊂ R such that φ(tn) ≡π απ , for every 0 ≤ α < 1 ,

the measure

dµα(z) :=
∑
n

π
δtαn+iτ (z)

φ′(tαn)

∣∣∣∣E(tαn + iτ)

E(tαn)

∣∣∣∣2
is still a Carleson measure for K2(Θ).

To simplify the notation, we say that E(Θ, µα) is the embedding operator from K2(Θ) to
L2(dµα). In Theorem 3.1, we have proved that the operator E(Θ, µα) is continuous.
Before providing the necessary condition for the boundedness of Tiτ , in the rest of this section
we show the necessary and sufficient condition that the measure dµα must satisfy in order to
be a Carleson measure for K2(Θ) [52]. From now on, we omit the letter α as our calculations
work for any 0 ≤ α < 1. First of all let us show an equivalent description for K2(Θ).
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Theorem 3.2 Let

dσ(z) :=
∑
n∈Z

π
δtn(z)

φ′(tn)
.

If 1−Θ(z) /∈ K2(Θ), then the operator H0, defined as

(3.4) H0(f)(z) := (1−Θ(z))

∫
R

f(t)

t− z
1

2πi
dσ(t)

is a unitary operator from L2(dσ) to K2(Θ).

Proof. This theorem is the Nyquist–Shannon sampling theorem for model spaces, see [28]

and [58]. Indeed for every f ∈ K2(Θ)

f(z) :=
∑
n∈Z

〈
f,

Ktn

‖Ktn‖

〉
Ktn

‖Ktn‖
=
∑
n∈Z

πf(tn)

φ′(tn)
Ktn(z) =

∑
n∈Z

πf(tn)

φ′(tn)

1−Θ(z)

2πi(tn − z)
,(3.5)

where Ktn(z) have been defined in (1.19) and tn satisfies Θ(tn) = 1. �

The boundedness of E(Θ, µ) is equivalent to the boundedness of the two-weights Hilbert trans-
form Hτ .

Theorem 3.3 Let 1−Θ(z) /∈ K2(Θ). The embedding operator E(Θ, µ) is bounded if and only

if the two-weights Hilbert transform Hτ from L2(dσ)→ L2(dτ) is continuous, where

dσ(z) :=
∑
n∈Z

π
δtn(z)

φ′(tn)
,(3.6)

dτ(z) :=
∑
n∈Z

π |1−Θ(tn + iτ)|2
∣∣∣∣E(tn + iτ)

E(tn)

∣∣∣∣2 δtn+iτ (z)

φ′(tn)
,(3.7)

Hτ (f)(z) :=

∫
R

f(t)

t− z
1

2πi
dσ(t) , f ∈ L2(dσ) .(3.8)

Proof. Let us suppose that Hτ : L2(dσ)→ L2(dτ) is bounded. Then we have that∫
R
|(1−Θ(z))Hτ (f)(z)|2

∑
n∈Z

π

∣∣∣∣E(tn + iτ)

E(tn)

∣∣∣∣2 δtn+iτ (z)

φ′(tn)

=

∫
R
|Hτ (f)(z)|2 dτ(z) ≤ C2 ‖f‖2

L2(σ) .

For any g ∈ K2(Θ), let g = H0f according to (3.4); the above inequality says that∫
C+

|g(z)|2
∑
n∈Z

π

∣∣∣∣E(tn + iτ)

E(tn)

∣∣∣∣2 δtn+iτ (z)

φ′(tn)
≤ C2 ‖f‖2

L2(σ) = C2 ‖g‖2
KΘ

.

Thus, we have that ‖Hτ‖2 ≤ C2. Since the argument is completely reversible, we can say that

‖Hτ‖ = C which proves the theorem.

�
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We point out that it is possible, by using the results of Lacey-Sawyer-Shen-Uriarte-Tuero-Wick,
see [53], [49] and [52], completely characterize when the two-weights Hilbert transform Hτ is
bounded.

2. Boundedness of Tiτ and the matrix Γ

In this section we prove a necessary condition that the Hemite Biehler function E(z) must
satisfy if the vertical translation operator Tiτ is bounded in H(E).

Indeed if ‖Tiτ‖ < C, then, due to Theorem 3.1,

C2
∥∥Ktαn

∥∥2

K
≥
∑
l∈Z

∣∣〈Ktαn , Ktαl +iτ

〉∣∣2 |E(tαl + iτ)|2∥∥ktαl ∥∥2

=
∑
l∈Z

∣∣Ktαn(tαl + iτ)
∣∣2 |E(tαl + iτ)|2∥∥ktαl ∥∥2 =

∑
l∈Z

∣∣ktαn(tαl + iτ)
∣∣2 1∥∥ktαl ∥∥2 |E(tαn)|2

.

This inequality implies that ∀n ∈ Z and for every 0 ≤ α < 1

(3.9)
∑
l∈Z

∣∣ktαn(tαl + iτ)
∣∣2 1∥∥ktαn∥∥2 ∥∥ktαl ∥∥2 ≤ C2 .

The above relation assures that there exists a family of uniformly bounded operators Γ(α) in
`2(Z).

Proposition 3.4 For every 0 ≤ α < 1, there exists an infinite matrix Γ(α)

Γ(α) : `2(Z)→ `2(Z)

Γ(α)[(cn)] : =

(∑
n∈Z

〈
ktαn , ktαl +iτ

〉 1∥∥ktαn∥∥∥∥ktαl ∥∥cn
)
l

,(3.10)

which acts in `2(Z), such that for every 0 ≤ α < 1

(3.11) ‖Γ(α)‖ ≤ C .

Proof. First of all, thanks to Shannon’s sampling theorem for de Branges spaces [28], we

know that for every 0 ≤ α < 1,

Span
{
k̃tαn

}
n∈Z

H

↪→ H(E) continuously ,

where k̃w is the normalized reproducing kernel of H(E). We can now identify in the canonical

way the space Span
{
k̃tαn

}
n∈Z

H

with `2(Z) as
〈
k̃tn , k̃tm

〉
H

= δn,m. Therefore we define the
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operator

T(α) : Span
{
k̃tαn

}
n∈Z

H

→ Span
{
k̃tαl

}
l∈Z

H

T(α)(k̃tαn)(z) : =
∑
l∈Z

〈
ktαn , ktαl +iτ

〉 1∥∥ktαn∥∥∥∥ktαl ∥∥ k̃tαl (z) .(3.12)

Thanks to estimate (3.9), for every 0 ≤ α < 1 the operator T(α) is bounded. Consequently we

can define the family of infinite matrices Γ(α) as in (3.10) such that ‖Γ(α)‖ ≤ C. �

We can explicitly described the matrix Γ(α). Indeed

Γ(α) :=

. . .
...

...
... . .

.

. . .
〈
ktα−1

, ktα−1+iτ

〉
1∥∥∥ktα−1

∥∥∥2

〈
ktα0 , ktα−1+iτ

〉
1∥∥∥ktα0 ∥∥∥∥∥∥ktα−1

∥∥∥
〈
ktα1 , ktα−1+iτ

〉
1∥∥∥ktα1 ∥∥∥∥∥∥ktα−1

∥∥∥ . . .

. . .
〈
ktα−1

, ktα0 +iτ

〉
1∥∥∥ktα−1

∥∥∥∥∥∥ktα0 ∥∥∥
〈
ktα0 , ktα0 +iτ

〉
1∥∥∥ktα0 ∥∥∥2

〈
ktα1 , ktα0 +iτ

〉
1∥∥∥ktα0 ∥∥∥∥∥∥ktα1 ∥∥∥ . . .

. . .
〈
ktα−1

, ktα1 +iτ

〉
1∥∥∥ktα−1

∥∥∥∥∥∥ktα1 ∥∥∥
〈
ktα0 , ktα1 +iτ

〉
1∥∥∥ktα0 ∥∥∥∥∥∥ktα1 ∥∥∥

〈
ktα1 , ktα1 +iτ

〉
1∥∥∥ktα1 ∥∥∥2 . . .

. .
. ...

...
...

. . .


Of course, the diagonal elements are bounded. Indeed, for any 0 ≤ α < 1

(3.13)

∣∣∣∣∣〈ktαn , ktαn+iτ

〉 1∥∥ktαn∥∥2

∣∣∣∣∣ ≤ C ∀n ∈ Z .

We are now ready to state the necessary condition that the Hermite Biehler function E(z) must
satisfy when the vertical translation operator Tiτ is bounded in H(E).

Theorem 3.5 Let us assume that the vertical translation operator Tiτ is bounded in H(E).

Then the Hermite Biehler function E(z) satisfies

(3.14) sup
x∈R

∣∣∣∣∣E(x+ iτ)

E(x)
− E(x− iτ)

E(x)

∣∣∣∣∣ 1

τφ′(x)
≤ C̃ .

Proof . As already explained in the above proposition, relation (3.13) holds. We explicitly

compute (3.13) in order to obtain (3.14). Indeed

C̃ ≥
∣∣∣E(tαn + iτ)E(tαn)− E(tαn − iτ)E(tαn)

∣∣∣ 1

τ |E(tαn)|2 φ′(tαn)

=

∣∣∣∣∣E(tαn + iτ)

E(tαn)
− E(tαn − iτ)

E(tαn)

∣∣∣∣∣ 1

τφ′(tαn)
.

By varying 0 ≤ α < 1 and n ∈ Z, we get the estimate (3.14). �
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We point also that the estimate (3.14) can be rewritten as

sup
x∈R

∣∣∣∣∣TτE(x)

E(x)
−
(
TτE(x)

E(x)

)#
∣∣∣∣∣ 1

τφ′(x)
≤ C̃ .

3. Horizontal translation and Carleson measures

In this section we prove a necessary condition for the boundedness of the horizontal translation
Tσ. First of all we have the analogue of Theorem 3.1 with almost the same proof.

Theorem 3.6 If the operator Tσ is bounded in H(E), the measure

(3.15) dνα(z) := π
∑
n∈Z

δtαn+σ(z)

φ′(tαn)

∣∣∣∣E(tαn + σ)

E(tαn)

∣∣∣∣2
is a Carleson measure for K2(Θ).

Therefore if Tσ is bounded the measure dνα(z) is a Carleson measure for K2(Θ) and it is
supported in R.

The following theorem, proved in [6], will give us a necessary and sufficient condition the
measure dνα(z) of (3.15) must satisfy in order to be a Carleson measure for K2(Θ).

Theorem 3.7 Let E(z) be a Hermite Biehler function satisfying

(3.16)
∥∥∥∥(FE

)′∥∥∥∥
H2(C+)

≤ α ‖F‖H(E) ∀F ∈ H(E)

and let µ be a Borel measure on the line R. Then (1) implies (2), where

(1) There are constants L,CL > 0 such that µ(I) < CLL for any interval I such that |I| ≤ L .

(2) The measure µ satisfies

(3.17)
∫
R

∣∣∣∣FE
∣∣∣∣2 dµ ≤ C ‖F‖2

H ∀F ∈ H(E) .

Under the additional condition |φ′(t)| > 0, the condition (2) implies (1).

We can apply the above result to the measure dνα(z) of (3.15).

Proposition 3.8 Suppose that 0 < c1 ≤ |φ′(x)| ≤ c2 <∞, ∀x ∈ R. The measure

dνα(z) := π
∑
n∈Z

δtαn+σ(z)

φ′(tαn)

∣∣∣∣E(tαn + σ)

E(tαn)

∣∣∣∣2
is a Carleson measure for K2(Θ) if and only if

(3.18)
∑

tαn+σ∈I

π

φ′(tαn)

∣∣∣∣E(tαn + σ)

E(tαn)

∣∣∣∣2 ≤ CLL

for every interval |I| < L.
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We can finally state the necessary condition that the Hermite Biehler function E(z) has to
satisfy so that Tσ is bounded.

Theorem 3.9 Suppose that 0 < c1 ≤ |φ′(x)| ≤ c2 < ∞, ∀x ∈ R. If the horizontal translation

operator Tσ is bounded, then

(3.19) sup
x∈R

∣∣∣∣E(x+ σ)

E(x)

∣∣∣∣ ≤ C .

Proof. The Condition (3.19) comes directly from (3.18) by varying α ∈ [0, 1) and n ∈ Z.

Indeed, for every x ∈ R, x = απ + nπ for some 0 ≤ α < 1 and n ∈ Z. Consequently, since CL

in (3.18) does not depend on α,∣∣∣∣E(x+ σ)

E(x)

∣∣∣∣2 =

∣∣∣∣E(tαn + σ)

E(tαn)

∣∣∣∣2 ≤ supx∈R |φ′(x)|
π

(
π

φ′(tαn)

∣∣∣∣E(tαn + σ)

E(tαn)

∣∣∣∣2
)

≤ supx∈R |φ′(x)|
π

CLL ,

which proves the theorem. �



4. Necessary and sufficient condition for

boundedness of translation operator

in de Branges spaces

In the previous pages we found some necessary conditions for the boundedness of the translation
operator Tζ in the de Branges space H(E). In that case we used the Carleson measures for the
associated model space. In this chapter we start from the Pancherel-Polya inequality in the
Paley-Wiener space and from the Bernstein inequality in the de Branges space. This different
approach allows us to obtain new conditions, in some cases necessary and sufficient, for the
boundedness of Tζ in the de Branges space.

In the next sections we study the necessary and sufficient conditions for the boundedness of the
vertical translation operator Tiτ . After showing the general sufficient conditions (Section 1) and
the general necessary conditions (Section 2), we present a necessary and sufficient condition
(Section 3). However, to do this we require some additional properties for the Hermite Biehler
function E(z), (4.14) and (4.16).

Next, we move to the study of the horizontal translation operator Tσ (Section 4). As it
happens for Tiτ , in order to obtain the necessary and sufficient condition for the boundedness
of Tσ, we are forced to impose stronger hypothesis on the Hermite Biehler function E(z) (Section
5). In the final section (Section 6), adding some hypotheses, we prove that if Tσ is bounded,
also Tσ1 is bounded when 0 < σ1 < σ.

The results of this chapter are original and they are presented in an article, [17].

1. Sufficient conditions for vertical translation

We first prove the sufficient conditions for the boundedness of Tiτ , τ > 0.

38
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Theorem 4.1 Let z = x+ iy. If the following three conditions are satisfied

E(z + iτ)

E(z)
∈ H∞(C+) ,(4.1)

sup
0<y≤τ

sup
x

∣∣∣∣∣(TiτE)# (z)

E(z)

∣∣∣∣∣ = sup
0<y≤τ

sup
x

∣∣∣∣∣E(x− iy + iτ)

E(x+ iy)

∣∣∣∣∣ <∞ ,(4.2)

sup
τ<y

sup
x

∣∣∣∣T−iτE(z)

E(z)

∣∣∣∣ = sup
τ<y

sup
x

∣∣∣∣E(x+ iy − iτ)

E(x+ iy)

∣∣∣∣ <∞ ,(4.3)

then the operator Tiτ is bounded.

Proof. Let f ∈ H(E). Then

sup
y>0

∫
R

∣∣∣∣f(x+ iy + iτ)

E(x+ iy)

∣∣∣∣2 dx ≤ sup
y>0

(∫
R

∣∣∣∣ f(x+ iy + iτ)

E(x+ iy + iτ)

∣∣∣∣2 dx
)

sup
y>0, x∈R

∣∣∣∣E(x+ iy + iτ)

E(x+ iy)

∣∣∣∣2
≤ ‖f‖2

H ‖Tiτ (E)/E‖2
H∞(C+) ,

which is finite because of (4.1). It is also clear that Tiτ (f)(z) is entire and that Tiτf/E(z) is

holomorphic in C+.

We note that (Tiτf)
E

#
(z) ∈ Hol (C+). Finally, we check that (Tiτf)#/E ∈ H2(C+). Indeed,

sup
y>0

∫
R

∣∣∣∣∣(Tiτf)# (z)

E(z)

∣∣∣∣∣
2

dx = sup
y>0

∫
R

∣∣∣∣f(x− iy + iτ)

E(x+ iy)

∣∣∣∣2 dx
≤ max

{
sup
τ≥y

(∫
R

∣∣∣∣ f(x− iy + iτ)

E(x− iy + iτ)

∣∣∣∣2 dx
)

sup
τ≥y

∥∥∥∥E(· − iy + iτ)

E(·+ iy)

∥∥∥∥2

∞
,

sup
τ<y

(∫
R

∣∣∣∣ f(x− iy + iτ)

E(x+ iy − iτ)

∣∣∣∣2 dx
)

sup
τ<y

∥∥∥∥E(·+ iy − iτ)

E(·+ iy)

∥∥∥∥2

∞

}

≤ ‖f‖2
H max

{
sup

0<y≤τ

∥∥∥∥E(· − iy + iτ)

E(·+ iy)

∥∥∥∥2

∞
, sup
τ<y

∥∥∥∥E(·+ iy − iτ)

E(·+ iy)

∥∥∥∥2

∞

}
,

which is bounded because of (4.2) and (4.3). �

We note that the conditions (4.1) and (4.2) are related to the necessary condition of Theorem
3.5.

We observe that the previous calculations provide us with an upper estimate for the operator
norm of Tiτ . Indeed, it holds that

‖Tiτ‖ ≤
∥∥∥∥TiτEE

∥∥∥∥
H∞

.
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The sufficient condition may seem a bit artificial. Therefore, we find more natural ones.

Corollary 4.2 The translation operator Tiτ is bounded if

(4.4)
TiτE

E
∈ H∞(C+),

(TiτE)#

E
∈ H∞(C+),

T−iτE

E
∈ H∞(C+) .

Corollary 4.3 The translation operator Tiτ is bounded if

(4.5)
∥∥∥∥TisEE

∥∥∥∥
H∞(C+)

< C <∞ ∀s ∈ [−τ, τ ] .

Proof. We prove that the condition (4.2) is implied by the condition (4.5). Indeed

sup
0<y≤τ

sup
x

∣∣∣∣∣E(x− iy + iτ)

E(x+ iy)

∣∣∣∣∣ = sup
0<y≤τ

sup
x

∣∣∣∣∣E(x+ iy − i2y + iτ)

E(x+ iy)

∣∣∣∣∣
≤ sup

0<y≤τ

∥∥∥∥Ti(τ−2y)E

E

∥∥∥∥
H∞

< C ,

because of (4.5). �

The sufficient condition becomes simpler if we ask E(z) to be more regular. For example, the
condition (4.3) is automatically satisfied by the functions E(z) in the Polya class [28].

Definition 4.4 An entire function E(z) is said to be in the Polya class if it has no zeros in the

upper half-plane, if |E(x− iy)| < |E(x+ iy)| for y > 0, and if |E(x+ iy)| is a nondecreasing

function of y > 0 for each fixed x.

2. Necessary condition for vertical translation

We focus our attention on finding some necessary conditions.
First of all, let us recall the following lemma, whose proof can be found in [7] and [41].

Lemma 4.5 Let Θ(z) be an inner function and h1, h2 > 0. Then

1

8
min

(
h1

h2

,
h2

h1

)
≤ 1− |Θ(x+ ih1)|

1− |Θ(x+ ih2)|
≤ 8 max

(
h1

h2

,
h2

h1

)
.

We describe the necessary conditions.

Theorem 4.6 If Tiτ is bounded in H(E), then there exists C(h, τ) > 0 such that the following

three conditions hold:

(4.6) ∀ h > 0 , sup
x∈R

∣∣∣∣E(x+ ih+ iτ)

E(x+ ih)

∣∣∣∣ ≤ C(h, τ) ,
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(4.7) ∀ h > τ , sup
x∈R

∣∣∣∣E(x+ ih− iτ)

E(x+ ih)

∣∣∣∣ ≤ C(h, τ) ,

(4.8) ∀ 0 < h ≤ τ , sup
x∈R

∣∣∣∣E(x− ih+ iτ)

E(x+ ih)

∣∣∣∣ ≤ C(h, τ) .

Proof. Let us prove that (4.6) holds. For the other conditions the reasoning is similar

starting from different functions G. Let

G(z) := −2πi
Kw(z)

E(w)
=
E(z)E(w)− E#(z)E(w)

(z − w)E(w)
∈ H(E) .

Then

Tiτ (G)(z)

E(z)
=
G(z + iτ)

E(z)
=

E(z + iτ)

E(z)(z + iτ − w)
− E#(z + iτ)E(w)

E(z)E(w)(z + iτ − w)

=
Tiτ (E)(z)

E(z)

1

z + iτ − w
− E#(z + iτ)

E(z)
Θ(w)

1

z + iτ − w

=
Tiτ (E)(z)

E(z)

1

z + iτ − w

[
1− E#(z + iτ)

E(z + iτ)
Θ(w)

]
,

where we set Θ := E#/E |C+ and w, z ∈ C+. Thus,∣∣∣∣Tiτ (G)(z)

E(z)

∣∣∣∣ =

∣∣∣∣Tiτ (E)(z)

E(z)

∣∣∣∣ ∣∣∣∣ 1

z + iτ − w

∣∣∣∣ ∣∣∣1−Θ(z + iτ)Θ(w)
∣∣∣

≥
∣∣∣∣Tiτ (E)(z)

E(z)

∣∣∣∣ 1

|z + iτ − w|
(1− |Θ(w)|) .

Therefore∣∣∣∣Tiτ (E)(z)

E(z)

∣∣∣∣ ≤ ∣∣∣∣Tiτ (G)(z)

E(z)

∣∣∣∣ |z + iτ − w| 1

1− |Θ(w)|
.(4.9)

We have∣∣∣∣Tiτ (G)(z)

E(z)

∣∣∣∣ =
1

|E(z)|
|〈TiτG,Kz〉| ≤

1

|E(z)|
‖Kz‖H ‖TiτG‖H ≤

1

|E(z)|
‖Kz‖H ‖Tiτ‖ ‖G‖H ,(4.10)

and

‖Kz‖H
|E(z)|

=

√
Kz(z)

|E(z)|2
=

√
i

2π

|E(z)|2 − |E(z)|2

|E(z)|2 (z − z)
=

√
1

4π=z
(
1− |Θ(z)|2

)
(4.11)

and

‖G‖H =

√
4π2

Kw(w)

|E(w)|2
=

√
π

=w
(
1− |Θ(w)|2

)
.(4.12)
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We substitute (4.11) and (4.12) into (4.10). Let z = x+ ih and w = x+2ih; then (4.9) becomes∣∣∣∣Tiτ (E)(z)

E(z)

∣∣∣∣ ≤‖Tiτ‖ |z + iτ − w|
√

π

=w
(
1− |Θ(w)|2

)√ 1

4π=z
(
1− |Θ(z)|2

) 1

1− |Θ(w)|

=
‖Tiτ‖

2
|z + iτ − w|

(
1

=w=z

(
1− |Θ(w)|2

) (
1− |Θ(z)|2

)
(1− |Θ(w)|)2

)1/2

≤‖Tiτ‖(τ + 3h)

(
1

2h2

(1− |Θ(z)|)
(1− |Θ(w)|)

)1/2

≤‖Tiτ‖(
τ

h
+ 3)81/2 .

In the last inequality we have used Lemma 4.5.

In order to obtain (4.7) we proceed in the same way starting with the function

G(z) := 2πi
Kw(z)

E(w)
= − E(z)E(w)

(z − w)E(w)
+
E#(z)

z − w
,

where w = x− 2ih ∈ C− and z = x+ ih so that z − iτ ∈ C+.

In order to obtain (4.8) we use the function

G(z) := −2πi
Kw(z)

E(w)
=

E(z)

z − w
− E#(z)E(w)

E(w)(z − w)
,

where w = x+ 2ih and z = x+ ih so that z + iτ ∈ C+. �

From the previous computations we note that we have proved that if Tiτ is bounded in H(E),
then

(4.13) ∀ z ∈ C+ ,

∣∣∣∣E(z + iτ)

E(z)

∣∣∣∣ ≤ C
( τ

=z
+ c
)
.

3. The case of no zeros in the horizontal strip

We are not able to obtain a necessary and sufficient condition for the boundedness of Tiτ in the
general case. However, this fact should not come as a surprise, since even for the boundedness
of the differentiation operator in [6] the necessary condition usually does not coincide with the
sufficient one. Nevertheless, adding some regularity we get a necessary and sufficient condition.

From now on, in this section, we assume that the zeros of the Hermite Biehler function {zk}
are separated from the real line, that is

(4.14) inf
k
|=zk| = M > 0 .
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Proposition 4.7 If E(z) satisfies condition (4.14), then the exponent of convergence of its

zeros is less than or equal to 2.

Proof. Let zn = an − ibn be the zeros of E(z). Then∑
n

1

|zn|2
=
∑
n

1

a2
n + b2

n

=
∑
n

1

M

M

a2
n + b2

n

≤ 1

M

∑
n

bn
a2
n + b2

n

<∞ ,

because of the Blaschke condition (1.6). �

Using Krein’s theorem for the representation of the Hermite Biehler functions, Theorem 1.7,
we note that if E(z) satisfies (4.14), then

(4.15) E(z) := S(z)Ẽ(z) := E(0)S(z)e−iaz
∏
n

(
1− z

zn

)
e

an
|zn|2

z

where S(z) = S#(z) is a real function , a > 0 and zn = an + ibn ∈ C+.

We first analyze the case S(z) = 1, that is

(4.16) E(z) := E(0)e−iaz
∏
n

(
1− z

zn

)
e

an
|zn|2

z
.

We describe the ratio E(z + iτ)/E(z) in a different way when z = x + iy ∈ C+ by using the
following estimate:

log(1 + t) ≥ t

k
if 0 ≤ t ≤ k − 1 .

Indeed ∣∣∣∣E(z + iτ)

E(z)

∣∣∣∣2 = e2aτ

∣∣∣∣∣
[∏

n

(
1− z + iτ

zn

)
e

an
a2
n+b2n

z

]/[∏
n

(
1− z

zn

)
e

an
a2
n+b2n

z

]∣∣∣∣∣
2

(4.17)

= e2aτ

∣∣∣∣∣∏
n

an − x− i(bn + y + τ)

an − x− i(bn + y)

∣∣∣∣∣
2

= e2aτ
∏
n

(
1 +

τ 2 + 2τ(y + bn)

(an − x)2 + (bn + y)2

)

≥ e2aτ exp
1

k

(∑
n

τ 2 + 2τ(y + bn)

(an − x)2 + (bn + y)2

)
with the choice of k so that

0 ≤ τ 2 + 2τ(y + bn)

(an − x)2 + (bn + y)2
≤ τ 2 + 2τ(y + bn)

(bn + y)2
≤ µ .

If Tiτ is bounded in H(E), we note from (4.13) that

τ

(
a+

1

2k

∑
n

τ + 2(y + bn)

(an − x)2 + (bn + y)2

)
≤ logC

(
τ

y
+ c

)
(4.18)
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when z = x+ iy ∈ C+ . In particular,

τ

(
a+

1

2k

∑
n

σ + 2(τ/4 + bn)

(an − x)2 + (bn + τ/4)2

)
≤ τ

(
a+

1

2k

∑
n

τ + 2(τ/4 + bn)

(an − x)2 + (bn + τ/4)2

)
(4.19)

≤ logC (4 + c)

when σ ≤ τ .

Theorem 4.8 Let E(z) satisfy (4.14) and (4.16). If Tiτ is bounded in H(E), then

(4.20) sup
x∈R

∣∣∣∣E(x+ iτ)

E(x)

∣∣∣∣ ≤ C(τ) .

Proof. Reasoning similarly to (4.17), we have∣∣∣∣E(x+ iτ)

E(x)

∣∣∣∣2 = e2aτ

∣∣∣∣∣
[∏

n

(
1− x+ iτ

zn

)
e

an
a2
n+b2n

x

]/[∏
n

(
1− x

zn

)
e

an
a2
n+b2n

x

]∣∣∣∣∣
2

= e2aτ
∏
n

(
1 +

τ 2 + 2τbn
(an − x)2 + b2

n

)

≤ e2aτ exp

(∑
n

τ 2 + 2τbn
(an − x)2 + b2

n

)

= e2aτ exp

(
τ
∑
n

τ/2 + 2(bn + τ/4)

(an − x)2 + b2
n

)

≤ e2aτ exp

[
τ

(∑
n

τ/2 + 2(bn + τ/4)

(an − x)2 + (bn + τ/4)2

)
sup
n

(
1 +

τ 2/16 + bnτ/2

(an − x)2 + b2
n

)]
where the last term is bounded since bn > M . Therefore,

sup
x

∣∣∣∣E(x+ iτ)

E(x)

∣∣∣∣2 ≤ C ′ ,

thanks to (4.19). �

Even if (4.20) is satisfied, we are looking for a necessary and sufficient condition when (4.14)
holds and the Hermite Biehler function does not have real factors (4.16).

Theorem 4.9 Let E(z) satisfy (4.14) and do not have real factor (4.16). Then

(4.21)
E(z + iτ)

E(z)
∈ H∞(C+)

if and only if Tiτ is bounded in H(E).

Proof necessary condition. We know that the function TiτE
E

(z) ∈ Hol (C+) and TiτE
E

(z) 6=

0 in C+. Consequently, from (4.17),
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<
(

log

(
TiτE

E
(z)

))
≥ τ

[
a+

1

2k

(∑
n

τ 2 + 2τ(y + bn)

(an − x)2 + (bn + y)2

)]
≥ 0 .

Therefore

log

(
TiτE

E
(z)

)
is in the Smirnov class of the upper half plane .

For the definition of the Smirnov class we refer to [28] and [29]. Since log
(
TiτE
E

(x)
)
∈ L∞(R)

because of Theorem 4.8, then log
(
TiτE
E

(z)
)
∈ H∞(C+). In particular

TiτE

E
(z) ∈ H∞(C+) .

�

Proof sufficient condition. We prove that if

TiτE

E
(z) ∈ H∞(C+) implies that

TisE

E
(z) ∈ H∞(C+) ∀ s ∈ [−τ, τ ] ,

which is the sufficient condition obtained in (4.5). Indeed, because of (4.17), then

1 ≤
∣∣∣∣E(z + iτ)

E(z)

∣∣∣∣ ≤ ∥∥∥∥TiτEE
∥∥∥∥
H∞

= µ z ∈ C+ ,

and

0 ≤ 1

2
log

∣∣∣∣E(z + iτ)

E(z)

∣∣∣∣2 ≤ log µ .

Let z = x+ iy ∈ C+, then, arguing as in (4.17),

∣∣∣∣E(z + is)

E(z)

∣∣∣∣2 = e2as

∣∣∣∣∣
[∏

n

(
1− z + is

zn

)
e

an
a2
n+b2n

z

]/[∏
n

(
1− z

zn

)
e

an
a2
n+b2n

z

]∣∣∣∣∣
2

= e2as exp

(∑
n

log

(
1 +

s2 + 2s(y + bn)

(an − x)2 + (bn + y)2

))

≤ e2as exp

(∑
n

s2 + 2s(y + bn)

(an − x)2 + (bn + y)2

)

≤ e2kaτ exp k

(
1

k

∑
n

τ 2 + 2τ(y + bn)

(an − x)2 + (bn + y)2

)

≤ C

∣∣∣∣E(z + iτ)

E(z)

∣∣∣∣k ≤ Cµk

for every s ∈ [−τ, τ ] and k fixed in (4.17). �
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When (4.16) holds, if Tiτ is bounded, then also Tik is bounded for every 0 < k ≤ τ , since the
function E(z) belongs to the Polya class, as shown in [51]. Moreover∥∥∥∥TikEE

∥∥∥∥
H∞
≤
∥∥∥∥TikETiτE

∥∥∥∥
H∞

∥∥∥∥TiτEE
∥∥∥∥
H∞

<∞

and consequently, when a vertical translation operator Tiτ is bounded, any other vertical trans-
lation operator Tik with 0 < k < τ is bounded.

From now until the end of this section, we consider Hermite Biehler functions with expression
(4.15). Even if we will not characterize when the translation operator in H(SE), that is
T SEiτ , is bounded, we will highlight some connections between the boundedness of T SEiτ and the
boundedness of TEiτ . Until the end of this section, we assume that E(z) satisfies (4.14).

First of all, if S(z) = eAz, with A ∈ R, and TEiτ is bounded, then T SEiτ is bounded. Indeed the
sufficient condition (4.5) is satisfied by S(z)E(z) since∣∣∣∣S(z + is)E(z + is)

S(z)E(z)

∣∣∣∣ =

∣∣∣∣E(z + is)

E(z)

∣∣∣∣ < ∥∥∥∥TiτEE
∥∥∥∥
H∞
∀s ∈ [−τ, τ ] ,

where the last inequality has been proved in Theorem 4.9. However it is not clear whether also
the reverse implication is true: we do not know whether the boundedness of T SEiτ implies also
the boundedness of TEiτ and the fact that S(z) = eAz.

Nevertheless, we can prove something more about the relationship between T SEiτ and TEiτ . First
of all, if S(z) = eAz, then if T SEiτ is bounded also TEiτ is bounded. Indeed we check that

sup
y>0

∫
R

∣∣∣∣f(x+ iy + iτ)

E(x+ iy)

∣∣∣∣2 dx = sup
y>0

∫
R

∣∣∣∣eA(x+iy+iτ)f(x+ iy + iτ)

eA(x+iy)E(x+ iy)

∣∣∣∣2 dx
=
∥∥T SEiτ eA·f

∥∥2

H(SE)
≤
∥∥T SEiτ ∥∥2 ‖f‖2

H(E) ,

and that

sup
y>0

∫
R

∣∣∣∣f(x− iy + iτ)

E(x+ iy)

∣∣∣∣2 dx = sup
y>0

∫
R

∣∣∣∣eA(x−iy+iτ)f(x− iy + iτ)

eA(x+iy)E(x+ iy)

∣∣∣∣2 dx
=
∥∥∥(T SEiτ eA·f

)#
∥∥∥2

H(SE)
=
∥∥T SEiτ eA·f

∥∥2

H(SE)
≤
∥∥T SEiτ ∥∥2 ‖f‖2

H(E) .

Moreover, let us suppose that TEiτ is bounded and that S is of finite order. Then if T SEiτ is
bounded, we obtain that S(z) = eAz. Indeed the Hermite Biehler function S(z)E(z) has to
satisfy the necessary conditions (4.6) and (4.7). Since

(4.22) inf
x

∣∣∣∣E(x+ ih+ iτ)

E(x+ ih)

∣∣∣∣ ≥ 1 ,

because of (4.7), then

(4.23) sup
h>τ

sup
x

∣∣∣∣S(x+ ih+ iτ)

S(x+ ih)

∣∣∣∣ < C ,
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due to (4.6) and (4.22). At the same time, since, when h > τ ,

(4.24) inf
x

∣∣∣∣E(x+ ih− iτ)

E(x+ ih)

∣∣∣∣ = inf
x

∣∣∣∣ E(x+ iu)

E(x+ iu+ iτ)

∣∣∣∣ ≥ 1

‖TiτE/E‖H∞(C+)

,

then

(4.25) sup
h>τ

sup
x

∣∣∣∣S(x+ ih− iτ)

S(x+ ih)

∣∣∣∣ < C ′ ,

because of (4.7) and (4.24). However, it is easy to see that the only real function of finite order
which satisfies both (4.23) and (4.25) is S(z) = eAz with A ∈ R.

4. Sufficient condition and necessary condition

for horizontal translation

In this section we focus our attention on the horizontal translation operator Tσ. In particular,
we first find some sufficient conditions and, subsequently, some necessary conditions. The proofs
are similar to those of Theorems 4.1 and 4.6.

Theorem 4.10 Let z = x+ iy. If

E(z + σ)

E(z)
∈ H∞(C+) ,(4.26)

then the operator Tσ is bounded.

Proof. We easily find some upper bounds:

‖Tσf‖2
H(E) = sup

y>0

∫
R

∣∣∣∣f(x+ σ + iy)

E(x+ iy)

∣∣∣∣2 dx
≤ sup

y>0

(∫
R

∣∣∣∣ f(x+ iy + σ)

E(x+ iy + σ)

∣∣∣∣2 dx
)

sup
z∈C+

(∣∣∣∣E(z + σ)

E(z)

∣∣∣∣2
)

= ‖f‖2
H(E) ‖Tσ(E)/E‖2

H∞(C+) .

Furthermore, Tσ(f)(z) is entire and Tσf/E(z) is holomorphic in C+. We check also that

sup
y>0

∫
R

∣∣∣∣∣(Tσf)# (x+ iy)

E(x+ iy)

∣∣∣∣∣
2

dx = sup
y>0

∫
R

∣∣∣∣f(x− iy + σ)

E(x+ iy)

∣∣∣∣2 dx
≤ sup

y>0

(∫
R

∣∣∣∣ f(x− iy + σ)

E(x+ iy + σ)

∣∣∣∣2 dx
)

sup
z∈C+

∥∥∥∥E(z + σ)

E(z)

∥∥∥∥2

∞

= ‖f‖2
H(E)

∥∥∥∥TσEE
∥∥∥∥2

H∞(C+)

,

which proves the statement. �
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We point out that the previous computations provide us with a bound for the norm of Tσ.
Indeed, it holds that ‖Tσ‖ ≤

∥∥TσE
E

∥∥
H∞

.
We state now the necessary condition. As already done in Theorem 4.6, we will adapt the

proof of Proposition 2.2 of [6] to the operator Tσ.

Theorem 4.11 If the horizontal translation operator Tσ is bounded in H(E), then

(4.27) ∀ h > 0, sup
x∈R

∣∣∣∣E(x+ ih+ σ)

E(x+ ih)

∣∣∣∣ ≤ C(h, σ) .

Proof. Let

G(z) := −2πi
Kw(z)

E(w)
=
E(z)E(w)− E#(z)E(w)

(z − w)E(w)
∈ H(E) .

Then

Tσ(G)(z)

E(z)
=
G(z + σ)

E(z)
=

E(z + σ)

E(z)(z + σ − w)
− E#(z + σ)E(w)

E(z)E(w)(z + σ − w)

=
Tσ(E)(z)

E(z)

1

z + σ − w

[
1− E#(z + σ)

E(z + σ)
Θ(w)

]
where we set Θ := E#/E |C+ and w, z ∈ C+. Thus∣∣∣∣Tσ(G)(z)

E(z)

∣∣∣∣ =

∣∣∣∣Tσ(E)(z)

E(z)

∣∣∣∣ ∣∣∣∣ 1

z + σ − w

∣∣∣∣ ∣∣∣1−Θ(z + σ)Θ(w)
∣∣∣

≥
∣∣∣∣Tσ(E)(z)

E(z)

∣∣∣∣ 1

|z + σ − w|
(1− |Θ(z + σ)| |Θ(w)|) .

Therefore∣∣∣∣Tσ(E)(z)

E(z)

∣∣∣∣ ≤ ∣∣∣∣Tσ(G)(z)

E(z)

∣∣∣∣ |z + σ − w| 1

1− |Θ(z + σ)| |Θ(w)|
.(4.28)

We have∣∣∣∣Tσ(G)(z)

E(z)

∣∣∣∣ =
1

|E(z)|
|〈TσG,Kz〉| ≤

1

|E(z)|
‖Kz‖H ‖TσG‖H ≤

1

|E(z)|
‖Kz‖H ‖Tσ‖ ‖G‖H .(4.29)

We substitute (4.11) and (4.12) into (4.29). Let z = x + ih and w = x + ih; Then (4.28)

becomes,∣∣∣∣Tσ(E)(z)

E(z)

∣∣∣∣ ≤‖Tσ‖ |z + σ − w|
√

π

=w
(
1− |Θ(w)|2

)√ 1

4π=z
(
1− |Θ(z)|2

) 1

1− |Θ(z + σ)| |Θ(w)|

≤‖Tσ‖
2
|σ + 2h|

(
1

=w=z

(
1− |Θ(w)|2

) (
1− |Θ(z)|2

)
(1− |Θ(w)|)2

)1/2

≤‖Tσ‖(σ + 2h)

(
1

h2

(1− |Θ(z)|)
(1− |Θ(w)|)

)1/2

≤ ‖Tσ‖
(σ
h

+ 2
)

.

�



5. Necessary and sufficient condition with no zeros

in the horizontal strip

In order to obtain a necessary and sufficient condition for the boundedness of Tσ we assume
that E(z) satisfies condition (4.14). Consequently the Hermite Biehler function E(z) has the
expression (4.15).

Theorem 4.12 Let E(z) satisfies (4.14) and σ < M/2. The horizontal translation operator is

bounded in H(E) if and only if

(4.30)
TσE

E
∈ H∞(C+) .

In Theorem 4.10, we have already proved that condition (4.30) is sufficient for the boundedness
of the horizontal translation. We want to prove that, when (4.14) holds, (4.30) is also necessary.
We need the following lemma.

Lemma 4.13 Let Θ be a meromorphic inner function which satisfies (4.14) and σ < M/2.

Then, ∀ x ∈ R and h > 0

(4.31)
1− |Θ(x+ ih)|

1− |Θ(x+ σ + ih)|
≤ 32 .

Proof. First of all let z = x+ ih; then, because of (1.5),

(4.32) log |Θ(z)| ≤ −
∑
n

2hbn
(x− an)2 + (h+ bn)2

.

Indeed,

(4.33) log |Θ(z)|2 ≤
∑
n

log

∣∣∣∣z − znz − zn

∣∣∣∣2 =
∑
n

log

(
1− 4hbn

(x− an)2 + (h+ bn)2

)
.

Considering that log(1− t) < −t, t ∈ (0, 1), then

log |Θ(z)| ≤ −
∑
n

2hbn
(x− an)2 + (h+ bn)2

.

Let us come back to the proof of (4.31). If 1− |Θ(x+ σ + ih)| ≥ 1/2, then

1− |Θ(x+ ih)|
1− |Θ(x+ σ + ih)|

≤ 2 (1− |Θ(x+ ih)|) ≤ 2 .

On the other hand, when 1− |Θ(x+ σ + ih)| < 1/2, since 2(1− t) ≥ − log(t), if 1/2 < t ≤ 1,

then

2 (1− |Θ(x+ σ + ih)|) ≥ − log |Θ(x+ σ + ih)| ≥ +ah+2h
∑
n

bn
(x+ σ − an)2 + (h+ bn)2



4. NECESSARY AND SUFFICIENT CONDITION WITH NO ZEROS IN THE HORIZONTAL STRIP 50

because of (4.32). Now

(x+ σ − an)2 + (h+ bn)2 = (x− an)2 + (h+ bn)2 + σ2 + 2σ(x− an) .

If σ2 + 2σ(x − an) ≤ 0, then (x + σ − an)2 + (h + bn)2 ≤ (x − an)2 + (h + bn)2. On the other

side, when σ2 + 2σ(x− an) > 0, then

(x+ σ − an)2 + (h+ bn)2 ≤(x− an)(x− an + 2σ) + 2(h+ bn)2

≤ |x− an| (|x− an|+ 2σ) + 2(h+ bn)2 ,

since σ < M/2. If |x− an| < 2σ, then

(x+ σ − an)2 + (h+ bn)2 ≤2σ(2σ + 2σ) + 2(h+ bn)2

≤4(bn + h)2

≤4
(
(x− an)2 + (bn + h)2

)
.

If, on the other hand, |x− an| ≥ 2σ, then

(x+ σ − an)2 + (h+ bn)2 ≤2(x− an)2 + 2(h+ bn)2 ≤ 2
(
(x− an)2 + (bn + h)2

)
.

Consequently in any case, we state that

2 (1− |Θ(x+ σ + ih)|) ≥ h

(
a+ 2

∑
n

bn
(x+ σ − an)2 + (h+ bn)2

)

≥ h

(
a+

1

2

∑
n

bn
(x− an)2 + (h+ bn)2

)
.

Therefore

1− |Θ(x+ ih)|
1− |Θ(x+ σ + ih)|

≤ 4
1− |Θ(x+ ih)|

h
(

2a+
∑

n
bn

(x−an)2+(h+bn)2

) .(4.34)

If h
∑

n
bn

(x−an)2+(h+bn)2 ≥ 1/8, then (4.34) < 32. Now, If h
∑

n
bn

(x−an)2+(h+bn)2 < 1/8, then, since

1− t ≤ − log(t), t ∈ (0, 1), using (4.33)

1− |Θ(x+ ih)| ≤ − log |Θ(x+ ih)|

=ah+
1

2

∑
n

∑
k≥1

1

k

(
4hbn

(x− an)2 + (h+ bn)2

)k
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≤ ah+
1

2

∑
k≥1

(
4h
∑
n

bn
(x− an)2 + (h+ bn)2

)k

≤ ah+ 4h
∑
n

bn
(x− an)2 + (h+ bn)2

≤ 2ah+ 4h
∑
n

bn
(x− an)2 + (h+ bn)2

.

Therefore

1− |Θ(x+ ih)|
1− |Θ(x+ σ + ih)|

≤ 4
1− |Θ(x+ ih)|

h
(

2a+
∑

n
bn

(x−an)2+(h+bn)2

)
≤ 4

2a+ 4
∑

n
bn

(x−an)2+(h+bn)2

2a+
∑

n
bn

(x−an)2+(h+bn)2

≤ 4 + 12 .

�

We now prove Theorem 4.12.

Proof of Theorem 4.12. As we did in the proof of Theorem 4.11, we know that∣∣∣∣Tσ(E)(z)

E(z)

∣∣∣∣
≤ ‖Tσ‖ |z + σ − w|

√
π

=w
(
1− |Θ(w)|2

)√ 1

4π=z
(
1− |Θ(z)|2

) 1

1− |Θ(z + σ)| |Θ(w)|
.

However, in this case we consider z = x+ ih and w = x+ σ + ih. Consequently,∣∣∣∣Tσ(E)(z)

E(z)

∣∣∣∣ ≤‖Tσ‖2
2h

(
1

=w=z

(
1− |Θ(z)|2

)(
1− |Θ(w)|2

))1/2

≤‖Tσ‖h
(

2

h2

(1− |Θ(x+ ih)|)
(1− |Θ(x+ σ + ih)|)

)1/2

≤8‖Tσ‖ .

Consequently, if Tσ is bounded, then

sup
z∈C+

∣∣∣∣Tσ(E)(z)

E(z)

∣∣∣∣ <∞ .

�

We note that (4.30) implies the necessary condition of Theorem 3.9 of [15], without any request
about the phase of E(z).

Observation We strongly believe that Theorem 4.12 is true also without the condition σ <

M/2. However, in this case, another argument would be needed.



6. Boundedness of Tσ1 from the boundedness of Tσ

As proved in Theorem 4.12, under the assumption (4.14), the condition (4.30), that is TσE
E
∈

H∞(C+) is equivalent to the boundedness of Tσ.
Let the Hermite Biehler function E(z) satisfy condition (4.14). In addition to that, we

assume also that the Hermite Biehler function E(z) has the following simplified expression:

(4.35) E(z) := E(0)eAze−iaz
∏
n

(
1− z

zn

)
where zn = an + ibn ∈ C+ .

In fact, in (4.35) we are considering only Hermite Biehler functions of order less or equal than
1.

With this new hypothesis, we prove the boundedness of Tσ1 from that of Tσ, if 0 < σ1 < σ.

Theorem 4.14 Let E(z) satisfy condition (4.14) and have the expression (4.35). If 0 < σ1 < σ,

and σ ≤M/2, then also Tσ1 is bounded.

Proof. To prove the theorem, we want to check that

(4.36)
Tσ1E

E
∈ H∞(C+) .

This is true since∣∣∣∣Tσ1E(z)

E(z)

∣∣∣∣2 = e2Aσ1

∣∣∣∣∣∣
∏

n

(
1− z+σ1

zn

)
∏

n

(
1− z

zn

)
∣∣∣∣∣∣
2

= e2Aσ1

∏
n

(an − x− σ1)2 + (y + bn)2

(an − x)2 + (y + bn)2

≤ e2Aσ1

∏
n

(an − x− σ)2 + (y + bn)2

(an − x)2 + (y + bn)2
sup
n

(an − x− σ1)2 + (y + bn)2

(an − x− σ)2 + (y + bn)2
.

We check that the last factor is bounded. Indeed if y + bn ≥ |an − x− σ1|, then

sup
n

(an − x− σ1)2 + (y + bn)2

(an − x− σ)2 + (y + bn)2
≤ sup

n

2(y + bn)2

(y + bn)2
= 2 .

On the other hand, if y + bn < |an − x− σ1|, then

M < |an − x− σ1| ≤ |an − x− σ|+ (σ − σ1) and

|an − x− σ| > M − (σ − σ1) ≥ σ + σ1 .

Consequently

(an − x− σ1)2 + (y + bn)2

(an − x− σ)2 + (y + bn)2
=

(an − x− σ + (σ − σ1))2 + (y + bn)2

(an − x− σ)2 + (y + bn)2

≤1 +
(σ − σ1)2

(an − x− σ)2 + (y + bn)2
+

2(σ − σ1) |an − x− σ|
(an − x− σ)2 + (y + bn)2
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≤

1 +
σ2

M2
+

2(σ − σ1)

|an − x− σ|
(

1 + M2

(an−x−σ)2

)


≤
(

1 +
σ2

M2
+

2σ

σ + σ1

)
< 4.

Therefore∣∣∣∣Tσ1E(z)

E(z)

∣∣∣∣ ≤ 2eA(σ1−σ)

∣∣∣∣TσE(z)

E(z)

∣∣∣∣
and we have obtained the statement. �

Previously we proved a similar result for the vertical translation operator. However, in that
case the computations were easier since the Hermite Biehler function in (4.16) belongs to the
Polya class (4.4).

From Theorem 4.14, we highlight a condition sufficient for the boundedness of any translation
Tσ.

Corollary 4.15 Let E(z) satisfy condition (4.14) and have the expression (4.35). If there exists

a σ0 ≤M/2 such that Tσ0 is bounded, then any other horizontal translation Tσ is bounded.

Proof. Let us suppose σ = nσ0 + r, with r < σ0 and n ∈ N. Then, thanks to the Theorem

4.14, also the horizontal translation Tr is bounded. Consequently any operator Tσ is bounded,

since it is the composition of bounded operators, that is

Tσ := Tr ◦ T nσ0
.

�

In the above situation we can even estimate the norm of Tσ. Indeed, if σ = nσ0 + r, then

‖Tσ‖ ≤
∥∥∥∥TσEE

∥∥∥∥
H∞
≤
∥∥∥∥Tσ0E

E

∥∥∥∥n
H∞

∥∥∥∥TrEE
∥∥∥∥
H∞

.



5. Continuous embedding between

p-de Branges space

In this chapter, we study which conditions the Hermite Biehler function E(z) must satisfy so
that the embedding operator

(5.1) ι : Hp(E) ↪→ Hq(E) when 0 < p < q ≤ ∞

is continuous.
This chapter is divided in three short sections. In the next section we prove Theorem 5.1,

the necessary and sufficient condition for the continuity of the embedding ι when p > 1, and
we highlight where our proof is different from that of [34]. In the third section, we study the
necessary condition for p = 1, proving Theorem 5.7. Finally, in the last section, we prove some
other partial results, which we write down for completeness. We also give an overview of what
happens to the case p < 1, even if these spaces behave very differently (1.29).

The results of this chapter are published in [16].

1. Proof in the case p > 1

In this section we fix our attention on the necessary and sufficient condition for the continuity
of the embedding operator when p > 1. The proof that we present works directly at the level
of the de Branges spaces.

Theorem 5.1 Let 1 < p < q ≤ ∞ and let E(z) be a Hermite Biehler function. The embedding

operator ι : Hp(E) ↪→ Hq(E) is continuous if and only if ‖φ′‖∞ <∞.

Let us start with the sufficiency. We need this preliminary lemma.

Lemma 5.2 Let φ(x)′, the derivative of the Hermite Biehler function E(z) (1.24) be bounded

on R and let p ≥ 1. Then for every f ∈ Hp(E) and for every x ∈ R

(5.2)
∣∣∣∣ f(x)

E(x)

∣∣∣∣ ≤ C(E, p) ‖f‖Hp

(
1 +

1

infξ∈R,0<η<τ |Θ(ξ + iη)|p
)1/p

,

where Θ(z) is defined as in (1.7) and τ depends only on E(z).
54
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Proof. Thanks to Lemma 1 of [34], if φ′ ∈ L∞(R), then for some δ > 0,

(5.3) inf {|Θ(z)| : 0 < =z < δ} > 0 where Θ = E#/E .

Due to the subharmonicity of |f/E|p in a strip which contains the real line, we know that∣∣∣∣ f(x)

E(x)

∣∣∣∣ ≤ ( 1

πτ 2

∫
Bτ (x)

∣∣∣∣ f(ξ)

E(ξ)

∣∣∣∣p dξ)1/p

if τ < δ .

Thus, we obtain that∣∣∣∣ f(x)

E(x)

∣∣∣∣ ≤ ( 1

πτ 2

∫ τ

τ

∫
R

∣∣∣∣ f(x+ ξ + iη)

E(x+ ξ + iη)

∣∣∣∣p dξdη)1/p

=

[
1

πτ 2

(∫ τ

0

∫
R

∣∣∣∣ f(ξ + iη)

E(ξ + iη)

∣∣∣∣p dξdη +

∫ 0

−τ

∫
R

∣∣∣∣ f(ξ + iη)

E(ξ + iη)

∣∣∣∣p dξdη)]1/p

≤
[

1

πτ 2

(
τ ‖f‖pHp +

∫ 0

−τ

∫
R

∣∣∣∣ f(ξ + iη)

E(ξ − iη)

∣∣∣∣p ∣∣∣∣E(ξ − iη)

E(ξ + iη)

∣∣∣∣p dξdη)]1/p

≤
[

1

πτ 2

(
τ ‖f‖pHp + sup

ξ,η

∣∣∣∣E(ξ − iη)

E(ξ + iη)

∣∣∣∣p ∫ 0

−τ

∫
R

∣∣∣∣f#(ξ − iη)

E(ξ − iη)

∣∣∣∣p dξdη)]1/p

≤

 1

πτ 2

τ ‖f‖pHp + sup
ξ∈R, 0<−η<τ

1∣∣∣E#(ξ−iη)

E(ξ−iη)

∣∣∣p τ
∥∥f#

∥∥p
Hp

1/p

=

(
1

πτ

)1/p

‖f‖Hp

(
1 +

1

infξ∈R, 0<η<τ |Θ(ξ + iη)|p
)1/p

.

�

Proof Sufficiency 5.1. At this point, the proof is an easy consequence of (5.2). We

recall that, thanks to Smirnov Theorem [29], if f ∈ Hp(C+) ∩ Lq(R), then f ∈ Hq(C+).

Consequently we have just to check the relation between the two norms. For every f ∈ Hp, we

note that(∫
R

∣∣∣∣ f(x)

E(x)

∣∣∣∣q dx)1/q

≤
(∫

R

∣∣∣∣ f(x)

E(x)

∣∣∣∣p dx)1/q
(

sup
x∈R

∣∣∣∣ f(x)

E(x)

∣∣∣∣q−p dx
)1/q

≤ ‖f‖p/qHp C(E, p, q) ‖f‖1−p/q
Hp ≤ C ‖f‖Hp ,

with the obvious changes if q =∞. �

Observation We point out that the proof of the sufficiency condition is similar to that of [34].

The main difference is the use of Lemma 5.2, instead of some estimates on the reproducing

kernel. We think that this lemma is more similar to the techniques used to prove the continuity

of the embedding in Bernstein spaces.
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We move on to the proof of the necessary condition for the continuity of the embedding operator
Hp(E) ↪→ Hq(E) when 1 < p < q ≤ ∞. We need some preliminaries estimates.

Proposition 5.3 Let {zn = an − ibn}n∈Z be the zeros of the Hermite Biehler function E(z). If

ι : Hp(E) ↪→ Hq(E) is continuous, then there exists M > 0 such that (4.14) holds.

Proof. Let us consider

kzn(t) =
1

2πi

E(t)E#(zn)− E#(t)E(zn)

zn − t
=

1

2πi

E(t)E#(zn)

zn − t
,

since E(zn) = 0 for every n ∈ Z. Since ι is continuous∣∣E#(zn)
∣∣

2π

(∫
R

1

|zn − t|q
dt

)1/q

= ‖kzn‖Hq

≤ C ‖kzn‖Hp = C

∣∣E#(zn)
∣∣

2π

(∫
R

1

|zn − t|p
dt

)1/p

and consequently

b1/q−1
n ≤ C ′b1/p−1

n , that is b1/q−1/p
n ≤ C ′ ,

for every n ∈ Z, which implies that (4.14) holds. �

In the following estimates we will repeatedly use condition (4.14) and the constant M will be
used for the lower bound of imaginary parts of the zeros of E(z).

Lemma 5.4 Let ι : Hp(E) ↪→ Hq(E) be continuous. It holds that

(5.4) φ′(s) ≤ 4φ′(t) for every s such that |s− t| ≤M .

Proof. We know form (1.24) that

φ′(s) =
a

2
+
∑
n

bn
(an − s)2 + b2

n

≤ a

2
+
∑
n

bn
(an − t)2 + b2

n

sup
n

(an − t)2 + b2
n

(an − s)2 + b2
n

≤ a

2
+
∑
n

bn
(an − t)2 + b2

n

sup
n

(
1 +

(s− t)2 + 2 |(s− t)(an − s)|
(an − s)2 + b2

n

)
,

where a is defined as in (1.24). If |an − s| < bn

sup
n

(
1 +

(s− t)2 + 2 |(s− t)(an − s)|
(an − s)2 + b2

n

)
≤ sup

n

(
1 +

M2 + 2Mbn
b2
n

)
≤ 4 .

On the other hand, if |an − s| ≥ bn ≥M

sup
n

(
1 +

(s− t)2 + 2 |(s− t)(an − s)|
(an − s)2 + b2

n

)
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≤ sup
n

(
1 +

M2 + 2M |an − s|
(an − s)2

)
≤ sup

n

(
1 +

(an − s)2 + 2(an − s)2
n

(an − s)2

)
= 4 .

Therefore in any cases, we have (5.4). �

Lemma 5.5 Let ι : Hp(E) ↪→ Hq(E) be continuous. It holds that

(5.5) φ′(s) ≥ 1

2
φ′(t) for every s such that |s− t| ≤ M

4
.

Proof. We know from (1.24) that

φ′(s) =
a

2
+
∑
n

bn
(an − s)2 + b2

n

≥ a

2
+
∑
n

bn
(an − t)2 + b2

n

inf
n

(an − t)2 + b2
n

(an − s)2 + b2
n

,

where a is defined as in (1.24). If |an − s| ≤ bn

inf
n

(an − t)2 + b2
n

(an − s)2 + b2
n

≥ inf
n

b2
n

2b2
n

=
1

2
.

On the other hand, if |an − s| > bn, and we know also that bn ≥ M > M/4 > |s− t| due to

(4.14) and (5.5),

inf
n

(
1 +

(s− t)2

(an − s)2 + b2
n

+
2(s− t)(an − s)
(an − s)2 + b2

n

)
≥ inf

n

(
1− 2 |s− t| |an − s|

(an − s)2 + b2
n

)
≥ inf

n

(
1− M |an − s|

2(an − s)2

)
= inf

n

(
1− M

2 |an − s|

)
≥ 1− 1

2
=

1

2
.

Therefore in any cases we have (5.5). �

The two lemmas above are fundamental for the proof of the following proposition.

Proposition 5.6 Let ι : Hp(E) ↪→ Hq(E) be continuous. If ‖φ′‖∞ = ∞, there exists a

sequence {tn}n∈N ⊂ R which goes to infinity such that

(5.6)
∫
R

∣∣∣∣sin(φ(x)− φ(tn))

x− tn

∣∣∣∣p dx � φ′(tn)p−1 .

Proof. Since ‖φ′‖∞ =∞, there exist {tn}n∈N such that

lim
n→∞

φ′(tn) =∞ .

Therefore∫
R

∣∣∣∣sin(φ(x)− φ(tn))

x− tn

∣∣∣∣p dx =

∫
R

∣∣∣∣sin(φ(x+ tn)− φ(tn))

x

∣∣∣∣p dx
≥
∫ M/4

−M/4

∣∣∣∣sin(φ(x+ tn)− φ(tn))

x

∣∣∣∣p dx .
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If

(5.7) |x| ≤ π

24φ′(tn)
,

then

|φ(x+ tn)− φ(tn)| ≤ φ′(s) |x| ≤ 4φ′(tn) |x| ≤ π

6
where |s− tn| ≤ |x| ≤M/4 .

Therefore, since

|sin(x)| ≥ 3

π
|x| for |x| ≤ π

6
,

we have that

|sin(φ(x+ tn)− φ(tn))| ≥ 3

π
|φ(x+ tn)− φ(tn)| when x satisfies (5.7) .

We can assume that π
24φ′(tn)

< M/4 if tn is large enough. Thus∫
R

∣∣∣∣sin(φ(x)− φ(tn))

x− tn

∣∣∣∣p dx ≥ ∫ π
24φ′(tn)

− π
24φ′(tn)

∣∣∣∣ 3πφ′(tn + s(x))

∣∣∣∣p dx
≥
∫ π

24φ′(tn)

− π
24φ′(tn)

∣∣∣∣ 3

2π
φ′(tn)

∣∣∣∣p dx =
1

8

(
3

2π

)p−1

φ′(tn)
p−1

.

On the other hand∫
R

∣∣∣∣sin(φ(x)− φ(tn))

x− tn

∣∣∣∣p dx =

∫
R

∣∣∣∣sin(φ(x+ tn)− φ(tn))

x

∣∣∣∣p dx
≤
∫ π

24φ′(tn)

− π
24φ′(tn)

∣∣∣∣sin(φ(x+ tn)− φ(tn))

x

∣∣∣∣p + 2

∫ ∞
π

24φ′(tn)

1

xp

≤(4φ′(tn))p
π

12φ′(tn)
+

(24)p−12

(p− 1)πp−1
φ′(tn)p−1

≤Cφ′(tn)p−1 ,

since we assumed that π
24φ′(tn)

< M for tn large enough. �

Proof Necessity 5.1. First of all we suppose that ι : Hp(E) ↪→ H∞(E) is continuous.

Assume towards a contradiction that ‖φ′‖∞ = ∞. Then, as proved in Proposition 5.6 there

exists a sequence {tn}n∈N such that (5.6) holds. Thanks to the boundedness of the embedding

operator, we know that

‖ktn‖H∞ ≤ C ‖ktn‖Hp = C

(∫
R

∣∣∣∣sin(φ(x)− φ(tn))

(x− tn)

∣∣∣∣p dx)1/p

|E(tn)|

≤ C̃(φ′(tn))1−1/p |E(tn)| ,
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where the first equality has been proved in (1.25). Therefore, ∀ tn, because of (1.26)

C̃φ′(tn)1−1/p |E(tn)| ≥ ‖ktn‖H∞ ≥
∣∣∣∣ktn(tn)

E(tn)

∣∣∣∣ =
φ′(tn)

π
|E(tn)| .

Consequently we obtain that

|φ′(tn)| ≤ C ,

but it is impossible. For this reason ‖φ′‖∞ <∞.

Let us move on to the general statement for q < ∞. As done before, let us assume that

‖φ′‖∞ =∞. Then, as proved in Proposition 5.6 there exist {tn}n∈N such that (5.6) holds. We

know that for every tn, ‖ktn‖Hq ≤ C ‖ktn‖Hp and consequently,

C∗φ′(tn)1−1/q ≤
(∫

R

∣∣∣∣sin(φ(x)− φ(tn))

x− tn

∣∣∣∣q dx)1/q

≤ C

(∫
R

∣∣∣∣sin(φ(x)− φ(tn))

x− tn

∣∣∣∣p dx)1/p

≤ C̃φ′(tn)
1−1/p

that is

(5.8) φ′(tn)1/p−1/q ≤ C̃∗ .

However this last inequality cannot hold if φ′(tn) goes to infinity when n goes to infinity. For

this reason ‖φ′(tn)‖ <∞. �

Observation The proof of the necessity condition is more complicated than the same proof of

[34]. However, it can be generalized to the case 1/2 < p ≤ 1 as we show in the next section.

2. Proof in the case p = 1

In this section we prove what happens when p = 1.

Theorem 5.7 Let {zn = an − ibn}n∈Z be the zeros of the Hermite Biehler function E(z). Let

the derivative of the phase function φ′(x) be uniformly bounded away from zero, that is

(5.9) inf
x∈R

φ′(x) ≥ δ > 0

and let

(5.10) inf
n∈Z
|bn| ≥M > 0 .

Let 1 < q ≤ ∞. Then, ι : H1(E) ↪→ Hq(E) is continuous if and only if ‖φ′‖∞ <∞.
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The sufficiency of Theorem 5.7 is equal to the proof of the sufficiency of Theorem 5.1 and for
this reason we omit the proof.

It is clear that (5.9) implies that for every t, s ∈ R such that φ(t) = φ(s) + π,

t− s = π/φ′(ζ) ≤ π/δ , where s ≤ ζ ≤ t .

In the proof of the following lemma, we use the relations (5.4) and (5.5).

Lemma 5.8 Let us assume that the function E(z) satisfy (5.9) and (5.10). Furthermore, let

us consider

s, t ∈ R so that φ(t) = φ(s) + π .

Then

(5.11)
∫
R

∣∣∣∣sin(φ(x)− φ(s))(t− s)
(x− t)(x− s)

∣∣∣∣ dx ≤ C (| log(φ′(t))|+ | log(φ′(s)|+K) .

In particular, if {sn}n∈Z ⊂ R and φ′(sn) ≥ φ′(tn)→∞,∫
R

∣∣∣∣sin(φ(x)− φ(sn))(t− sn)

(x− tn)(x− sn)

∣∣∣∣ dx ≤ C ′ log(φ′(sn)) .

Proof. We have to consider three possible situations. First of all, let us assume that

(5.12)
π

24

1

φ′(s)
<

(t− s)
2

,
π

24

1

φ′(t)
<

(t− s)
2

.

We split the integral in (5.11) in five parts:∫
R

∣∣∣∣sin(φ(x)− φ(s))(t− s)
(x− t)(x− s)

∣∣∣∣ dx =

∫
R

∣∣∣∣sin(φ(s+ ζ)− φ(s))(t− s)
ζ(t− s− ζ)

∣∣∣∣ dζ(5.13)

=

∫ − π
24

1
φ′(s)

−∞
+

∫ π
24

1
φ′(s)

− π
24

1
φ′(s)

+

∫ t−s− π
24

1
φ′(t)

π
24

1
φ′(s)

+

∫ t−s+ π
24

1
φ′(t)

t−s− π
24

1
φ′(t)

+

∫ ∞
t−s+ π

24
1

φ′(t)

= A+B + C +D + E .

We know that

A =

∫ − π
24

1
φ′(s)

−∞

∣∣∣∣sin(φ(s+ ζ)− φ(s))(t− s)
ζ(t− s− ζ)

∣∣∣∣ dζ ≤ ∫ − π
24

1
φ′(s)

−∞

∣∣∣∣1ζ +
1

t− s− ζ
dζ

∣∣∣∣
≤
∣∣∣∣log

(
π

24

1

φ′(s)

)∣∣∣∣+ | log(Cπ/δ)| .

After a change of variables, we have the same estimate for E:

E ≤ log(Cφ′(t)) + | log(Cπ/δ)| .
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Let us move to B; we know that

B =

∫ π
24

1
φ′(s)

− π
24

1
φ′(s)

∣∣∣∣sin(φ(s+ ζ)− φ(s))(t− s)
ζ(t− s− ζ)

∣∣∣∣ dζ ≤ π

12

1

φ′(s)
4φ′(s)2 = π

2

3
.

The same calculations work also for D, for which we obtain the same estimate. Finally

C ≤
∫ t−s− π

24
1

φ′(t)

π
24

1
φ′(s)

∣∣∣∣1ζ +
1

t− s− ζ

∣∣∣∣ dζ
≤
∣∣∣∣log

(
π

24

1

φ′(s)

)∣∣∣∣+

∣∣∣∣log

(
t− s− π

24

1

φ′(s)

)∣∣∣∣
+

∣∣∣∣log

(
π

24

1

φ′(t)

)∣∣∣∣+

∣∣∣∣log

(
t− s− π

24

1

φ′(t)

)∣∣∣∣
≤ 2 log(Cφ′(t)) + 2 log(C ′φ′(s)) + 2| log(π/δ)| .

Considering all the estimates, we proved relation (5.11).

Secondly, we assume that

(5.14)
π

24

1

φ′(s)
≥ (t− s)

2
,

π

24

1

φ′(t)
≥ (t− s)

2
.

We split the integral in (5.11) in four parts:

(5.15)
∫
R

∣∣∣∣sin(φ(x)− φ(s))(t− s)
(x− s)(x− t)

∣∣∣∣ dx =

∫
R

∣∣∣∣sin(φ(s+ ζ)− φ(s))(t− s)
ζ(t− s− ζ)

∣∣∣∣ dζ
=

∫ − (t−s)
2

−∞
+

∫ (t−s)
2

− (t−s)
2

+

∫ 3(t−s)
2

(t−s)
2

+

∫ ∞
3(t−s)

2

= A + B + C + D .

We know that

A ≤
∫ − (t−s)

2

−∞

∣∣∣∣1ζ +
1

t− s− ζ

∣∣∣∣ dζ ≤ ∣∣∣∣log

(
1

2
(t− s)

)∣∣∣∣+

∣∣∣∣log

(
3

2
(t− s)

)∣∣∣∣
≤ 2

∣∣∣∣log

(
C

π

φ′(p)

)∣∣∣∣ ≤ 2

∣∣∣∣log

(
C

3π

φ′(s)

)∣∣∣∣ .
After a change of variables, we have the same estimate for D:

D ≤ 2 log (Cφ′(t)) .

Let us work on B; we know that

B =

∫ (t−s)
2

− (t−s)
2

∣∣∣∣sin(φ(s+ ζ)− φ(s))(t− s)
ζ(t− s− ζ)

∣∣∣∣ dζ ≤ (t− s)φ′(p)2 ≤ π

12

1

φ′(s)
4φ′(s)2 =

2

3
π .

Analougsly we estimate

C ≤ π

12

1

φ′(t)
4φ′(t)2 =

2

3
π .
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Considering all the estimates, we proved relation (5.11).

Finally, we assume that

(5.16)
π

24

1

φ′(s)
<

(t− s)
2

,
π

24

1

φ′(t)
≥ (t− s)

2
.

We split the integral in (5.11) in five parts:

(5.17)
∫
R

∣∣∣∣sin(φ(x)− φ(s))(t− s)
(x− t)(x− s)

∣∣∣∣ dx =

∫
R

∣∣∣∣sin(φ(s+ ζ)− φ(s))(t− s)
ζ(t− s− ζ)

∣∣∣∣ dζ
=

∫ − π
24

1
φ′(s)

−∞
+

∫ π
24

1
φ′(s)

− π
24

1
φ′(s)

+

∫ (t−s)/2

π
24

1
φ′(s)

+

∫ 3(t−s)/2

(t−s)/2
+

∫ ∞
3(t−s)/2

= A+ B + C +D + E .

The only integral we have not already considered, is C:

C ≤
∫ (t−s)/2

π
24

1
φ′(s)

∣∣∣∣1ζ +
1

t− s− ζ

∣∣∣∣ dζ
≤ 2 log

(
t− s

2

)
+ 2

∣∣∣∣log

(
π

24

1

φ′(s)

)∣∣∣∣ ∣∣∣∣log

(
t− s− π

24

1

φ′(s)

)∣∣∣∣
≤ 2 log (Cπ/δ) + 2

∣∣∣∣log

(
π

24

1

φ′(s)

)∣∣∣∣ .
Considering all the estimates, we proved relation (5.11) also in this final case. �

Proof Necessity 5.7. Towards a contradiction, let us assume that ‖φ′‖∞ = ∞. Then,

there exists a sequence of points {sn} such that φ′(sn) → ∞ as n goes to infinity and E(z)

satisfies (5.9). First of all, we consider the function

Λn(x) := ksn(x) +
|E(sn)|
|E(tn)|

ktn(x) =
|E(x)| |E(sn)|

π

sin(φ(x)− φ(sn))(tn − sn)

(x− tn)(x− sn)
,

where sn, tn ∈ R so that φ(tn) = φ(sn) + π. Thanks to Lemma 5.8,

‖Λn‖H1 ≤ C |E(sn)| log(φ′(sn)), when φ′(sn) > φ′(tn) .

If, on the other hand, φ′(sn) ≤ φ′(tn), we consider

Λ̃n(x) := ktn(x) +
|E(tn)|
|E(sn)|

ksn(x) =
|E(x)| |E(tn)|

π

sin(φ(x)− φ(tn))(tn − sn)

(x− tn)(x− sn)
,

for which∥∥∥Λ̃n

∥∥∥
H1
≤ C |E(tn)| log(φ′(tn)) holds.

For simplicity, from now on, we assume φ′(sn) ≥ φ′(tn).

We start by the case q = ∞. Thanks to the boundedness of the embedding operator, we

know that
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‖Λn‖H∞ ≤ C ‖Λn‖H1 = C ′ |E(sn)| log(φ′(sn)) .

Therefore, ∀ sn,

C ′ |E(sn)| log(φ′(sn)) ≥ ‖Λn‖H∞ ≥
∣∣∣∣Λn(sn)

E(sn)

∣∣∣∣ =
φ′(sn)

π
|E(sn)| ,

which is impossible. Consequently,

|φ′(sn)| ≤ C , and ‖φ′‖∞ <∞ .

Let us move on to the general statement for q < ∞. We know that for every n, ‖Λn‖Hq ≤

C ‖Λn‖H1 . We know also that, when n is large enough,

‖Λn‖qHq = |E(sn)|q
∫
R

∣∣∣∣sin(φ(x)− φ(sn))(sn − tn)

(x− sn)(x− tn)

∣∣∣∣q dx
≥
∫ π

24φ′(sn)

− π
24φ′(sn)

∣∣∣∣ 3πφ′(sn + ζ(x))

∣∣∣∣q dx
∣∣∣∣∣ tn − sn
tn − sn + π

24φ′(sn)

∣∣∣∣∣
q

≥
∫ π

24φ′(sn)

− π
24φ′(sn)

∣∣∣∣ 3

4π
φ′(sn)

∣∣∣∣q dx =
1

8

(
3

4π

)q−1

φ′(sn)
q−1

.

Therefore

C ′ |E(sn)|φ′(sn)1−1/q ≤ |E(sn)|
∫
R

∣∣∣∣sin(φ(x)− φ(sn))(sn − tn)

(x− sn)(x− tn)

∣∣∣∣ dx
≤ C ′′ |E(sn)| log(φ′(sn))

However this last inequality cannot hold if φ′(sn) goes to infinity when n goes to infinity.

Consequently ‖φ′‖∞ <∞. �

Observation We strongly believe that Theorem 5.7 is true even without condition (5.9). How-

ever, in this case, completely different computations would be needed.

Observation We note that the previous proof with some natural changes shows also that

Theorem 5.7 holds even when 1/2 < p < 1.

3. More observations and further results

In this final section we give some different proofs of the preceding results and we collect some
other results concerning the embedding operators. The following propositions hold even if (5.9)
and (5.10) do not hold.
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Let us start from some sufficiency. The following proposition is inspired by some results con-
tained in [43].

Proposition 5.9 Let us suppose that φ′ ∈ L∞(R); then Hq(E) ↪→ H2(E) ↪→ Hp(E) when

1 < q < 2 < p ≤ ∞.

Proof. First we show that H2(E) ↪→ H∞(E). If F ∈ H2(E), then∣∣∣∣F (t)

E(t)

∣∣∣∣ ≤ ‖F‖H2 ‖kt‖H2

|E(t)|
≤ ‖F‖H2

√
‖φ′‖∞
π

.

Consequently

‖F‖H∞ ≤ C ‖F‖H2 .

By using the log-convexity of the Lp norms, see [29], we state that

‖F‖Hp ≤ ‖F‖1−θ
H2 ‖F‖θH∞ ≤

√
‖φ′‖∞
π
‖F‖H2 ,

that is H2(E) ↪→ Hp(E) continuously for every p > 2.

In order to prove that Hq(E) ↪→ H2(E), when 1 < q < 2, we note that this embedding

operator is the adjoint of the embedding between H2(E) ↪→ Hp(E), when p is the conjugate

exponent of q and that the adjoint of a bounded operator in a locally convex space is still a

bounded operator. �

What we are interested more is the reverse implication, that is, which conditions the Hermite
Biehler function E(z) must satisfy when H2 ↪→ Hp continuously and 2 < p ≤ ∞ [43].

Proposition 5.10 Let 2 < p < ∞. If the embedding operator from H2(E) to Hp(E) is

continuous, then

(5.18) sup
t∈R

∫
R

∣∣∣∣∣sin(φ(x)− φ(t))

(x− t)
√
φ′(t)

∣∣∣∣∣
p

dx <∞ .

Moreover, if p = ∞ and the embedding operator from H2(E) to H∞(E) is continuous, again

φ′ ∈ L∞.

Proof. These conditions come from easy computations. Indeed, if the embedding operator

ι is continuous, then

(5.19) ‖kt‖Hp ≤ C ‖kt‖H2 ∀ t ∈ R .
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Therefore, replacing ‖kt‖H2 with its explicit expression, we get(∫
R

∣∣∣∣E(t)

π

sin(φ(x)− φ(t))

x− t

∣∣∣∣p dx)1/p

≤ C

√
φ′(t)

π
|E(t)| ∀ t ∈ R ,

which implies that

sup
t∈R

∫
R

∣∣∣∣∣sin(φ(x)− φ(t))

(x− t)
√
φ′(t)

∣∣∣∣∣
p

dx ≤ (
√
πC)p .

If p =∞, thanks to the boundedness of the embedding operator, we know that

‖kt‖H∞ ≤ C ‖kt‖H2 = C

√
φ′(t)

π
|E(t)| .

Therefore, ∀ t ∈ R,

C

√
φ′(t)

π
|E(t)| ≥ ‖kt‖H∞ ≥

∣∣∣∣kt(t)E(t)

∣∣∣∣ =
φ′(t)

π
|E(t)| .

Consequently we can conclude that

‖φ′‖L∞ ≤ C
√
π ,

which is the statement. �

It is clear that (5.18) is equivalent to (5.19). Moreover, (5.19) implies that ι∗, the embedding
operator between Hq(E) and H2(E), is a closed operator, as we are going to prove in the
following proposition.

Proposition 5.11 Let E(z) be a Hermite Biehler function and 2 < p. If ‖kt‖Hp ≤ C ‖kt‖H2

for every t ∈ R, then the embedding operator

(5.20) ι∗ : Hq(E) ↪→ H2(E)

is closed, where 1/q + 1/p = 1.

Proof. Let us suppose that {fn}n∈N ⊂ H2(E) ∩Hq(E) and

fn → f in H2(E) while fn → g in Hq(E) .

We want to prove that g = f . Indeed

|f(t)− g(t)| ≤ |f(t)− fn(t)|+ |g(t)− fn(t)|(5.21)

≤ (‖f − fn‖H2 + C ‖g − fn‖Hq) ‖kt‖H2 ≤ ε ‖kt‖H2

for every ε arbitrarily small. Thus, by varying t ∈ I, a bounded interval of R, we find that

f(t) = g(t) for every t ∈ I. Since f and g are entire functions, they coincide everywhere. �



III. Duality results



6. Duality and Toeplitz operator

In this chapter, we start studying the dual of p-de Branges spaces.
In the first section, we describe Hp(E)∗ when 1 < p <∞. In order to obtain this classical

result, Corollary 6.8, we use the relationship between the kernels of the Toeplitz operators and
the p-∗ invariant subspaces, Proposition 6.3.

Actually we are mainly interested in the description of the dual when p = 1, which is
extremely more complicated and, for this reason, left for the following chapters. Nevertheless,
in the second section, we show why the characterization of the dual of the p-de Branges spaces
cannot be adapted to the case p = 1. The main obstacle is due to the fact that the Toeplitz
operators TΘ are not continuous in H1(C+), Theorem 6.10 and Theorem 6.15.

The third section deals with a different topic: we describe the domain of the multiplication
operator MΘ in BMO(R). This problem, besides being related to the domain of the Toeplitz
operators in H1(R), is interesting in itself and deserves further investigation.

1. The dual of Hp(E) when p > 1

We describe the dual of the p-de Branges spaces when 1 < p <∞. First of all, we remind the
reader that Hp(E) are isomorphic to the p-∗ invariant subspaces of the Hardy space Hp(C+),
Proposition 1.23. Therefore, in order to compute Hp(E)∗, it is enough describing the dual of
the p-∗ invariant subspace Kp(Θ) and, subsequently, applying to these spaces the adjoint of
the isomorphism described in Proposition 1.23.

We recall that the expression of the Cauchy projection from Lp(R) onto the trace of the Hardy
space, Hp(C+)|R , [76].

Definition 6.1 Let

P+(f)(z) :=
1

2πi

∫
R

f(t)

t− z
dt for z ∈ C+

when f ∈ Lp(R), 1 < p <∞. The Cauchy projection P+ from Lp(R) onto Hp(C+)|R is defined

as

(6.1) P+(f)(x) := lim
y→0+

P+(f)(x+ iy) for almost all x ∈ R .

By using P+, we can introduce the Toeplitz operators.

67
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Definition 6.2 Let P+ be the Cauchy projection. The Toeplitz operator with symbol g ∈

L∞(R) is defined as

(6.2) Tg : Lp(R)→ Hp(C+)|R , Tg(f) := P+(gf) ,

for 1 < p <∞.

Let Θ be a meromorphic inner function. The Toeplitz operator TΘ is defined on the whole
Hp(C+) and it is bounded in Hp(C+), 1 < p <∞. Indeed

‖TΘ(f)‖Hp =
∥∥P+(Θf)

∥∥
Hp =

∥∥P+(Θf)
∥∥
Lp
≤ Cp

∥∥Θf
∥∥
Lp
≤ Cp ‖f‖Hp ,

where we used the fact that the Cauchy projector is bounded in Lp(R) if p > 1, [76].
We highlight the relationship between Kp(Θ) and the kernel of the Toeplitz operator with

anti-analytic symbol TΘ.

Proposition 6.3 Let Θ be a meromorphic inner function. Then Kp(Θ) = ker(TΘ) ∩Hp(C+),

1 < p <∞, where the Toeplitz operator TΘ is defined as

(6.3) TΘ(f) := P+(Θf) .

Proof. Let f ∈ ker(TΘ)∩Hp(C+). Then f ∈ Hp(C+) and P+(Θf) = 0. This last condition

implies that Θ(x)f(x) ∈ Hp(C−)|R . Therefore, according to Proposition 1.21, f ∈ Kp(Θ).

On the other hand, if f ∈ Kp
Θ, then f ∈ Hp(C+) and P+(Θf) = 0, because of Proposition

1.21. Therefore f ∈ ker(TΘ). �

Thanks to Proposition 6.3, Kp(Θ)∗ = (ker (TΘ))∗. Therefore, since TΘ is bounded, kerTΘ is a
closed subspace of Hp(C+) .

We compute the adjoint of TΘ.

Proposition 6.4 Let Θ(z) be an inner function. When 1 < p <∞,

(TΘ)∗ = TΘ .

Proof. The domain of the operator TΘ is the whole Hp(C+). On the other hand,

〈TΘ(f), g〉 =
〈
P+(Θ(f)), g

〉
= 〈f,Θg〉 = 〈f, TΘg〉 ,

for every f ∈ Hp(C+) and for every g ∈ Hq(C+), when 1/p+ 1/q = 1. �

When Θ is an inner function of H∞(C+), the subspace TΘH
q(C+) = ΘHq(C+) is a closed

subspace of Hq(C+), [19], [54], [63].

Before proving the duality result, we recall some well know theorems concerning the quotient
spaces and their duals. For sake of completeness, we provide the proofs, which can be found
also in any functional analysis textbook, for example [68], [72] and [79].
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Theorem 6.5 If M is a closed subspace of the Banach space X, then M∗ is isometrically

isomorphic to X∗/M⊥, where M⊥ is the annihilator of M .

Proof. Given l ∈M∗, Hahn–Banach theorem tells us that there exists an extension l̃ ∈ X∗

such that∥∥∥l̃∥∥∥
X∗

= ‖l‖M∗ .

Consider the mapping

ι : M∗ → X∗/M⊥ , l 7→ l̃ ,

it is well-defined and ι is a bijection of M∗ onto X∗/M⊥. Since

‖l‖M∗ ≤ inf
g∈M⊥

∥∥∥l̃ + g⊥
∥∥∥
X∗

=
∥∥∥l̃ +M⊥

∥∥∥
X∗/M⊥

and

‖l‖M∗ =
∥∥∥l̃∥∥∥

X∗
≥ inf

g∈M⊥

∥∥∥l̃ + g⊥
∥∥∥
X∗

=
∥∥∥l̃ +M⊥

∥∥∥
X∗/M⊥

,

ι is an isometric isomorphism from M∗ onto X∗/M⊥. �

Theorem 6.6 Let U be a linear operator on the Banach space X whose dual space is X∗. If

U∗ is well defined, then ker(U) = ⊥ran(U∗), the pre annihilator of the range of the adjoint

operator U∗.

Proof. If x ∈ ker(U), that is, Ux = 0, then 〈Ux, y∗〉 = 0 for every y∗ ∈ X∗. Consequently

〈x, U∗y∗〉 = 0, which implies that x ∈ ⊥ran(U∗).

The reverse inclusion works in the same way �

Theorem 6.7 Let N be a subspace of X∗, the dual space of the Banach space X. Then(⊥N)⊥ = N
w∗, the weak-∗ closure of N .

Proof. If x∗ ∈ N , then 〈x, x∗〉 = 0 ,∀x ∈ ⊥N . The subspace
(⊥N)⊥ contains the weak-∗

closure of N . If x∗ /∈ Nw∗, the Hahn-Banach theorem implies the existence of an x ∈ ⊥N such

that 〈x, x∗〉 6= 0; thus x∗ /∈
(⊥N)⊥, and we have obtained the result. �

At this point we are ready to prove the duality result.

Corollary 6.8 Let 1 < p <∞. Then

Kp(Θ)∗ =
(
ker(TΘ) ∩Hp(C+)

)∗
= Hq(C+)/

(
ΘHq(C+)

)
= Kq(Θ) ,

where 1/p+ 1/q = 1.
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Proof. We have proved all the equalities but the last one: the first equivalence is proved

in Proposition 6.3 while the second is due to the above theorems.

Let f ∈ Hq(C+), then

Θf = g+ + g− ,

where, since Θf ∈ Lq(R), 1 < q < ∞, g+ := P+(Θf) ∈ Hq(C+)|R and g− := (id − P+)(Θf) ∈

Hq(C−)|R . Since, when 1 < q <∞,

Lq := Hq(C+)|R +Hq(C−)|R ,

we obtain

f = Θg+ + Θg− ∈ ΘHq(C+)|R + ΘHq(C−)|R .

From this last expression and Definition 1.19, we obtain Kq(Θ) = Hq(C+)|R
/

ΘHq(C+)|R . �

It is clear, thanks to Proposition 1.23, that Hp(E)∗ is isomorphic to Hq(E), when 1/p+1/q = 1
and 1 < p <∞.

2. Toeplitz operator in H1(C+)

When p = 1 the reasoning of the above section cannot be applied and we have to put a much
greater effort to characterize the dual of K1(Θ). Indeed, when p = 1, the Toeplitz operator TΘ

is unbounded on H1(C+) and its domain does not coincide with the whole H1(C+)|R.
In this section we explain this problem: we prove that the Toeplitz operator TΘ with anti

analytic symbol Θ(z), is unbounded in H1(C+)|R . We adapt to the upper half-plane some
reasonings contained in [50], [65] and [75].

While manipulating and studying the Toeplitz operators, an extremely important instrument
is the class of Hankel operators.

Definition 6.9 For every f ∈ L1(R) and Θ ∈ H∞(C+), the Hankel operator with symbol Θ is

defined as

(6.4) HΘ(f)(z) := P−
(
Θf
)

(z)

where

P−(f)(z) :=
−1

2πi

∫
R

f(t)

t− z
dt for z ∈ C+

and, when it is well defined,

(6.5) P−(f)(x) := lim
y→0+

P−(f)(x+ iy) .
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We note that for every f ∈ L1(R) for which the two projectors P+, see (6.1), and P−, see (6.5),
are well defined, it holds also that

(6.6) P+ + P− = id .

Indeed, for almost every x ∈ R,

P+(f)(x) + P−(f)(x) = lim
y→0+

(P+(f)(x+ iy) + P−(f)(x+ iy))

= lim
y→0+

1

2πi

(∫
R
f(t)

(
1

t− z
− 1

t− z

)
dt

)
= lim

y→0+

1

2πi

(∫
R
f(t)

(
t− z
|t− z|2

− t− z
|t− z|2

)
dt

)
= lim

y→0+

1

2πi

(∫
R
f(t)

2iy

|t− z|2
dt

)
= f(x)

Our interest in Hankel operators is justified by the following theorem.

Theorem 6.10 The operators HΘ is bounded in H1(C+) if and only if TΘ is bounded in

H1(C+).

Proof. We control the H1(C+)-norm of TΘ(f) with the sum of the H1(C+)-norms of f

and HΘ(f). Indeed

‖TΘf‖L1 =

∥∥∥∥ lim
y→0+

P+

(
Θf
)

(·+ iy)

∥∥∥∥
L1

=

∥∥∥∥ lim
y→0+

(Id− P−)
(
Θf
)

(·+ iy)

∥∥∥∥
L1

=

∥∥∥∥ lim
y→0+

Θf(·+ iy)− lim
y→0+

P−
(
Θf
)

(·+ iy)

∥∥∥∥
L1

≤
∥∥∥∥ lim
y→0+

Θf(·+ iy)

∥∥∥∥
L1

+

∥∥∥∥ lim
y→0+

P−
(
Θf
)

(·+ iy)

∥∥∥∥
L1

≤‖f‖H1 + ‖HΘf‖L1 ≤ ‖f‖H1 (C + 1) .

On the other hand, if we switch P+ with P−, with almost the same computations, we obtain

‖HΘf‖L1 ≤
∥∥Θf

∥∥
L1 + ‖TΘf‖L1 ≤ ‖f‖H1 (C ′ + 1) ,

which proves the theorem. �

Therefore, in order to prove that the operator TΘ is unbounded on H1(C+), we prove that the
Hankel operator HΘ is unbounded on H1(C+).

The Cauchy projection P+ (6.1) and its direct counterpart P− (6.5) are strictly associated with
the Hilbert transform, [76].
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Definition 6.11 The Hilbert transform H is defined as

(6.7) Hf(x) := −i(P+ − P−)

= lim
y→0+

−1

2π

(∫
R
f(t)

(
t− z
|t− z|2

+
t− z
|t− z|2

)
dt

)
= p.v.

1

π

(∫
R

f(t)

x− t
dt

)
,

for every f(x) which belongs to the domain of H.

In order to prove the unboundedness of HΘ we need another operator.

Definition 6.12 Let MΘ be the multiplication operator defined as

(6.8) MΘ(f)(z) = Θf(z) .

The commutator [Θ, H] is defined as MΘH −HMΘ. Our interest in [Θ, H] is justified by the
following lemma.

Lemma 6.13 The operator [Θ, H] is bounded inH1(C+)|R+H1(C−)|R if and only if the Hankel

operator HΘ is bounded from H1(C+)|R to H1(C−)|R .

Proof. Let H1(C+)|R 3 f = P+f . Therefore

i[Θ, H]f := Θf − iH(Θf) = Θf − P+(Θf) + P−(Θf) = 2P−(Θf) .

On the other hand, if H1(C−)|R 3 f = P−f , then

−i[Θ, H]f := Θf + iH(Θf) = −Θf + P+(Θf)− P−(Θf) = −2P−(Θf) = −2Θf ,

which is automatically bounded since f ∈ H1(C−)|R . Combining these two equalities, we obtain

the lemma. �

For 0 < p ≤ 1 the space Hp + Hp has a real-variable description in terms of atoms. However,
in order to prove our result we need less: it is enough checking that the commutator [Θ, H] is
unbounded on the H1(R) atoms. The 1-atoms belong to H1 +H1 since they belong to H1(R),
[76].

Definition 6.14 The function a(x) is an H1-atom if there is a compact interval I ⊂ R such

that supp(a) ⊂ I, |a| ≤ |I|−1, and∫
R
a(x)dx = 0 .

.

Theorem 6.15 If Θ is not a constant inner function, the commutator [Θ, H] is unbounded on

H1(C+)|R +H1(C−)|R .



6. TOEPLITZ OPERATOR IN H1(C+) 73

Proof. We prove this theorem by contradiction. We consider any atoms a(x) ∈ H1(R)

with supporting interval equal to I. Let Ĩ be the double of I with the same center x0. If [Θ, H]

is bounded, then for any atoms a(x)∫
R\Ĩ

∣∣[Θ, H](a)(x)
∣∣ dx ≤ ∫

R

∣∣[Θ, H](a)(x)
∣∣ dx ≤ K

where K is the norm of the commutator [Θ, H]. We prove that the left member of the above

inequality is unbounded, thus giving a contradiction.

We know that

[Θ, H]a(x) =
1

π

∫
I

(
Θ(x)−Θ(t)

) a(t)

x− t
dt

=
1

π

∫
I

[(
Θ(x)−ΘI

)
+
(
ΘI −Θ(t)

)] a(t)

x− t
dt = T1(x) + T2(x) ,

where

ΘI :=
1

|I|

∫
I

Θ(x)dx .

Computing the first term, we note that

|T1(x)| =
∣∣∣∣ 1π
∫
I

(
Θ(x)−ΘI

)
a(t)

1

x− t
dt

∣∣∣∣
=

∣∣∣∣ 1π
∫
I

(
Θ(x)−ΘI

)
a(t)

(
1

x− t
− 1

x− x0

)
dt

∣∣∣∣
≤ 1

π

∫
I

∣∣Θ(x)−ΘI

∣∣ 1

|I|

(
|t− x0|

|(x− t)(x− x0)|

)
dt

≤ 1

π

∫
I

∣∣Θ(x)−ΘI

∣∣ C
|I|

(
|t− x0|

(x− x0)2

)
dt

≤ 1

π

∫
I

∣∣Θ(x)−ΘI

∣∣ C
|I|

|I|
(x− x0)2

dt

≤ 1

π

∣∣Θ(x)−ΘI

∣∣ C

(x− x0)2
|I|

where C ≤ 3. Therefore∫
R\Ĩ
|T1(x)| dx ≤ 1

π
2C |I| ‖Θ‖∞

∫
R\Ĩ

1

(x− x0)2
≤ 1

π
4C |I| ‖Θ‖∞ ,
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which is bounded. For the other term,

T2(x) =
1

π

∫
I

(
ΘI −Θ(t)

) a(t)

x− t
dt

=
1

π

∫
I

(
ΘI −Θ(t)

)
a(t)

(
1

x− t
− 1

x− x0

)
dt

+
1

π

∫
I

(
ΘI −Θ(t)

)
a(t)

1

x− x0

dt = T21 + T22 .

We split this last expression into two parts, which we estimate separately. The first part behaves

well; indeed

|T21(x)| ≤ 1

π

∫
I

∣∣ΘI −Θ(t)
∣∣ |a(t)|

∣∣∣∣ 1

x− t
− 1

x− x0

∣∣∣∣ dt
≤ 1

π

1

|I|

∫
I

∣∣ΘI −Θ(t)
∣∣ dt C |I|

(x− x0)2 ,

whose L1−norm is bounded on R \ Ĩ:∫
R\Ĩ
|T21(x)| dx ≤C

π

∥∥Θ
∥∥
BMO

|I|
∫
R\Ĩ

1

(x− x0)2
dx

≤C
π

∥∥Θ
∥∥
BMO

2 .

The second term has L1-norm unbounded. Indeed

|T22(x)| =
∣∣∣∣ 1π
∫
I

(
ΘI −Θ(t)

)
a(t)

1

x− x0

dt

∣∣∣∣
=

1

|x− x0|
1

π

∣∣∣∣∫
I

(
ΘI −Θ(t)

)
a(t)dt

∣∣∣∣ ,
whose L1-norm is∫

R\Ĩ
|T22(x)| dx =

1

π

∣∣∣∣∫
I

(
ΘI −Θ(t)

)
a(t)dt

∣∣∣∣ ∫
R\Ĩ

1

|x− x0|
dx .

The latter quantity is unbounded unless∣∣∣∣∫
I

(
ΘI −Θ(t)

)
a(t)dt

∣∣∣∣ = 0

However since the H1-atom a(x) can be chosen arbitrarily we have that for almost every t ∈ R,

ΘI = Θ(t) ,

which implies that Θ(z) has to be constant. �

Observation We note that our symbol Θ is in BMO(R), [42], since it belongs to L∞(R).

Thanks to Theorem 6.15, Lemma 6.13 and Theorem 6.10, we have proved that no Toeplitz
operator TΘ is bounded in H1(C+).



3. Domain of Multiplication operator in BMO(R)

For every meromorphic inner function Θ, the Toeplitz operator TΘ is unbounded in H1(C+)|R .
For this reason, studying the domain of the operator TΘ makes sense.

In this section, instead of fixing our attention on the domain of the Toeplitz operators acting on
H1(R) or on H1(C+)|R , we describe the domain of the multiplication operatorMΘ on the space
BMO(R) and of the Toeplitz operator TΘ in BMOA(R). The reason why we are interested
in this problem instead of the original one, is multifold. First of all, the two pairs of spaces
H1(R)-BMO(R) and H1(C+)|R-BMOA(R) are linked to each others. Indeed, as proved for
example in [41] and in [42], the space BMO(R) is identified with the topological dual of H1(R)
and BMOA(R) is identified with the topological dual of H1(C+)|R . Therefore, when Dom(TΘ)
is dense in H1(C+)|R , we are studying the domain of the adjoint operator TΘ

∗.
Even if Sundberg in [77] provides a complete description for the domain ofMΘ in BMO(R),

we think that this subject is still incomplete. In this section besides characterizing the domain,
see [77] and [31], we present also a still open problem that we face while approaching this
subject.

For a preliminary description of the spaces BMO(R) and BMOA(R) we cite [22], [41], [42]
and [46] as good references.

Let us describe the domain of MΘ, when Θ is a meromorphic inner function. Given a function
f ∈ BMO(R), we consider its harmonic extension to C+, that is,

[f ](z) := Pz ∗ f =
1

π

∫
R

y

(x− t)2 + y2
f(t)dt when z = x+ iy ,

where Pz is the Poisson kernel, (2.7). The above extension makes sense for every function
f(x) ∈ L1(R, dt

1+t2
), and, for this reason, for every function f ∈ BMO(R), [41].

Given the almost everywhere defined function f(x) on R, we recall that

fI :=
1

|I|

∫
I

f(t)dt ,

the mean of the function f(x) on the interval I.
The characterization we write down was first discovered by C. Sundberg in [77].

Theorem 6.16 Let f ∈ BMO(R) and Θ be a non-constant inner function of C+. The function

Θf ∈ BMO(R) if and only if

(6.9) sup
I

1

|I|
|fI|
∫
I

|Θ−ΘI| <∞ ,

where I is any compact interval of R.
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Proof. This theorem follows from easy computations. Indeed, we already know that if

f ∈ BMO(R), then Θf ∈ L1
loc(R). Therefore,

‖fΘ‖BMO = sup
I

1

|I|

∫
I

|fΘ− (fΘ)I|

≤ sup
I

1

|I|

∫
I

|fΘ− (f)IΘ|+ |fIΘ− fIΘI|+ |fIΘI − (fΘ)I|

≤ ‖f‖BMO + sup
I

1

|I|
|fI|
∫
I

|Θ−ΘI|+ sup
I

1

|I|

∫
I

|fΘ−ΘfI|

≤2 ‖f‖BMO + sup
I

1

|I|
|fI|
∫
I

|Θ−ΘI| .

On the other hand,

sup
I

1

|I|
|fI|
∫
I

|Θ−ΘI| = sup
I

1

|I|

∫
I

|fIΘ− fIΘI|

≤ sup
I

1

|I|

∫
I

|fΘ− (fΘ)I + fIΘ− fΘ + (fΘ)I − fIΘI|

≤ ‖fΘ‖BMO + 2 sup
I

1

|I|

∫
I

|fΘ− fIΘ|

≤ ‖fΘ‖BMO + 2 ‖f‖BMO ,

which proves the theorem. �

There are two other similar description for Dom(MΘ) in BMO(R).

Theorem 6.17 Let f ∈ BMO(R) and let Θ be an inner function of H∞(C+). The function

Θf ∈ BMO(R) if and only if

(6.10) sup
z∈C+

|[f ](z)|2
∫
R
|Θ(t)−Θ(z)|2 Pz(t)dt <∞ .

Proof. If f ∈ BMO(R) then∫
R

|f(t)|2

1 + t2
dt <∞ ,

which implies that also∫
R

|Θ(t)f(t)|2

1 + t2
dt <∞ .

Therefore

sup
z∈C+

∫
R
|f(t)Θ(t)− [fΘ](z)|2 Pz(t)dt

= sup
z∈C+

∫
R
|f(t)Θ(t)− [f ](z)Θ(t) + [f ](z)Θ(t)− [f ](z)Θ(z) + [f ](z)Θ(z)− [fΘ](z)|2 Pz(t)dt
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≤3 sup
z∈C+

(∫
R
|f(t)Θ(t)− [f ](z)Θ(t)|2 Pz(t)dt+

+

∫
R
|[f ](z)Θ(t)− [f ](z)Θ(z)|2 Pz(t)dt+ |[f ](z)Θ(z)− [fΘ(z)]|2

)
≤C ‖f‖2

BMO + 3 sup
z∈C+

(
|[f ](z)|2

∫
R
|Θ(t)−Θ(z)|2 Pz(t)dt+∣∣∣∣∫

R
([f ](z)Θ(t)− f(t)Θ(t))Pz(t)dt

∣∣∣∣2 )
≤C ‖f‖2

BMO + 3 sup
z∈C+

|[f ](z)|2
∫
R
|Θ(t)−Θ(z)|2 Pz(t)dt

+ 3 sup
z∈C+

∫
R
|[f ](z)Θ(t)− f(t)Θ(t)|2 Pz(t)dt

∫
R
Pztdt

≤C ‖f‖2
BMO + 3 sup

z∈C+

|[f ](z)|2
∫
R
|Θ(t)−Θ(z)|2 Pz(t)dt+ C ‖f‖2

BMO .

On the other hand

sup
z∈C+

|[f ](z)|2
∫
R
|Θ(t)−Θ(z)|2 Pz(t)dt = sup

z∈C+

∫
R
|[f ](z)Θ(t)− [f ](z)Θ(z)|2 Pz(t)dt

= sup
z∈C+

∫
R
|f(t)Θ(t)− [fΘ](z) + [f ](z)Θ(t)− f(t)Θ(t) + [fΘ](z)− [f ](z)Θ(z)|2 Pz(t)dt

≤3 sup
z∈C+

(∫
R
|f(t)Θ(t)− [fΘ](z)|2 Pz(t)dt+

+ |[f ](z)Θ(t)− f(t)Θ(t)|2 Pz(t)dt+ |[fΘ](z)− [f ](z)Θ(z)|2
)

≤C ‖fΘ‖2
BMO + C ‖f‖2

BMO + sup
z∈C+

∣∣∣∣∫
R

([f ](z)Θ(t)− f(t)Θ(t))Pz(t)dt

∣∣∣∣2
≤C ‖fΘ‖2

BMO + C ‖f‖2
BMO + sup

z∈C+

∫
R
|[f ](z)Θ(t)− f(t)Θ(t)|2 Pz(t)dt

≤C ‖fΘ‖2
BMO + 2C ‖f‖2

BMO ,

which proves the theorem. �

With the help of Theorem 6.17, we are able to provide an extremely more practical character-
ization for the domain of MΘ.

Theorem 6.18 Let f ∈ BMO(R) and let Θ be an inner function of C+. Then Θf ∈ BMO(R)

if and only if

(6.11) sup
z∈C+

|[f ](z)|2 (1− |Θ(z)|2) <∞ .

Proof. This result is a quick consequence of Theorem 6.17. Indeed
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sup
z∈C+

|[f ](z)|2 (1− |Θ(z)|2) = sup
z∈C+

|[f ](z)|2
∫
R

(1− |Θ(z)|2)Pz(t)dt

= sup
z∈C+

|[f ](z)|2
∫
R

(|Θ(t)|2 − |Θ(z)|2)Pz(t)dt

= sup
z∈C+

|[f ](z)|2
∫
R
|Θ(t)−Θ(z)|2 Pz(t)dt .

Since (6.10) is equivalent to the fact that f ∈ Dom(MΘ), we obtain the desired statement.

�

Theorem 6.18 provides us with a satisfactory condition. In [31], K. Dyakonov characterizes the
domain of the Toeplitz operator TΘ in BMOA(R).

Theorem 6.19 If f ∈ BMOA(R) and Θ is inner, the following conditions are equivalent:

(i) Θf ∈ BMO(R) ;

(ii) fΘ ∈ BMOA(R) ;

(iii) supC+ |f |2 (1− |Θ|2) <∞ ;

(iv) supΩ(Θ,ε) |f | <∞ , for every 0 < ε < 1 ;

(v) supΩ(Θ,ε) |f | <∞ , for some 0 < ε < 1 .

The set Ω(Θ, ε) is the level set of Θ and it is defined as

Ω(Θ, ε) := {z ∈ C+ |Θ(z)| < ε} .

We omit the proof of Theorem 6.19. However we note that the third condition in Theorem 6.19
is equal to (6.11) of Theorem 6.18.

Before concluding this chapter and coming back to the study of p-de Branges spaces, we describe
another possible approach which can be used to characterize the domain of MΘ in BMO(R).

To the best of our knowledge, this technique was first used by Dyakonov in [33] where the
author describes the elements of the Lipschitz spaces with the help of the pseudocontinuation.
Subsequently this approach was used again by Dyakonov and Girela in [35] in Qp spaces
when 0 < p < 1. This family of spaces is deeply related to BMO(R), since “BMO(R) =
Q1”. In [35], the two authors characterize the elements of these spaces with the help of the
pseudocontinuation. Their approach seems useful also in BMO(R) and, therefore, it seems
possible to describe the elements of BMO(R) by using it.

Unfortunately, we did not manage to obtain this description for BMO(R) and, to the best
of our knowledge, a characterization of the elements of the space BMO(R) with the help of the
pseudocontinuation is still unknown. It is clear that, once this description is available, we could
have another possible characterization for the domain of MΘ in terms of pseudocontinuation.



7. Dual of 1-Bernstein space

Even if in the second part of [56], B. Levin describes some properties of the p-Bernstein spaces,
the description of the dual of the 1-Bernstein space B1

π is still unknown. In this chapter we
present three different but equivalent characterizations of its dual space.

This chapter is divided in four sections. In the first section, we recall the atomic description
of the 1-Bernstein space; this characterization was first discovered by C. Eoff and by S. Boza
and M.J. Carro in [37] and [20].

In the second section, we introduce the quotient space of sequences BMO(Z) and we prove
that it is isomorphic to (B1

π)
∗. This quotient space of sequences has many interesting properties,

which we investigate and prove.
In the third section we introduce the space X, a new quotient space in the space of entire

functions, and, thanks to the results of the previous section, we prove that X is isomorphic to
BMO(Z).

After having studied some properties of X, in the fifth section, we introduce the space Y

and we prove that it is isomorphic to X.

In this work we fix our attention on functions of exponential type less than or equal to π.
However, the properties we will prove hold in any Bernstein space B1

α, α > 0.

1. The 1-Bernstein space

In this preliminary section we describe the atomic structure of the 1-Bernstein space. We recall
the definition.

Definition 7.1 The 1-Bernstein space, B1
π, is the space of the entire functions of exponential

type less than or equal to π, whose restriction to the real line belongs to L1(R). The norm of

B1
π is the same as the norm of L1(R).

For our purpose, we need to introduce the spaces H1(Z) and H1
at(Z).

Definition 7.2 The space H1(Z) is made up of all the `1-sequences for which the discrete

Hilbert transform H is in `1(Z). Furthermore, ∀ {an} ∈ H1(Z) ,

(7.1) ‖{an}‖H1(Z) = ‖{an}‖`1 + ‖{(H (an))k}‖`1 .

79
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We recall that the discrete Hilbert transform is defined as

(7.2) {(H(an))k} :=


(∑
n 6=k

an
k − n

)
k

 .

Instead on consideringH, one can describeH1(Z) by using the shifted discrete Hilbert transform
Hc defined as

{(Hc{an})k} :=

{(∑
n∈Z

an
k − n+ c

)
k

}
for any fixed c ∈ (0, 1) and for any sequences {an} ∈ `1(Z). Through Hc one obtains an
equivalent norm for H1(Z) since, as proved in [37], for every 0 < c < 1

C1 ‖H(an)‖`1 ≤ ‖Hc(an)‖`1 ≤ C2 ‖H(an)‖`1 ,

where C1, C2 > 0. Together with H1(Z), we introduce the atomic space of sequences H1
at(Z).

Definition 7.3 A sequence {αn} is an atom of H1(Z) if it satisfies these three conditions:

• The cardinality of the support of the sequence {αn} is finite:

(7.3) # {n ∈ Z such that αn 6= 0} <∞ .

• The elements of the sequence {αn} satisfy the growth condition:

(7.4) |α(n)| ≤ 1

# supp({αn})
.

• The sequence {αn} satisfies the zero mean property:

(7.5)
∑
n∈Z

αn = 0 .

The H1(Z) atoms are the building blocks of H1
at(Z) .

Definition 7.4 We define the space of sequences H1
at(Z) as

(7.6) H1
at(Z) :=

{
{gn} such that gn =

∑
j

λjα
j
n ,∀n ∈ Z

}
,

where {αjn} are atoms of H1(Z) and λj ∈ C. Furthermore,

(7.7) ‖{gn}‖H1
at

= inf
{λj}

∑
j

|λj| .

In theorems 3.10 and 3.14 of [20], S. Boza and M. Carro have proved that the two spaces H1(Z)
and H1

at(Z) are isomorphic.
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We note, and it is important for the following computations, that H1
at(Z) embeds into `1(Z).

Indeed, if {gn} ∈ H1
at(Z), then

(7.8) ‖{gn}‖`1 =

∥∥∥∥∥
{∑

j

λjα
j
n

}∥∥∥∥∥
`1

≤
∑
j

|λj|
∥∥{αn}j∥∥`1 ≤∑

j

|λj| ,

since ‖{αn}‖`1 = 1 for every H1(Z) atom. Because (7.8) holds for any sequence {λj}, then
‖{gn}‖`1 ≤ ‖{gn}‖H1

at(Z) .

As proved by C. Eoff in Theorems 6 and 7 of [37], the two spaces B1
π andH1(Z) are isometrically

isomorphic.

Theorem 7.5 The 1-Bernstein space is isomorphic toH1(Z). In particular, T , the isomorphism

between the two spaces, is given by:

(7.9) T : B1
π → H1(Z) , f(x) 7→ {fn} := {(−1)nf(n)}

and

(7.10) T−1 : H1(Z)→ B1
π , {an} 7→

∑
n∈Z

(−1)nansinc(π(z − n)) ,

where sinc(x) is the cardinal sine.

Because H1(Z) is isomorphic to H1
at(Z) , we are able to describe the atoms of B1

π.

Definition 7.6 The “atoms” a(z) of the space B1
π are defined as

(7.11) T−1({αn})(z) :=
∑
n

(−1)nαn sinc(π(z − n)) ,

where {αn} is an atom of H1(Z). With A we denote the set made of all the atoms of B1
π.

Thanks to the isomorphism T , we note that the subspace containing A is dense in B1
π. Indeed,

let f ∈ B1
π. Therefore for the sequence {fn} we have that

{(−1)nf(n)} ∈ H1
at(Z) ,

which means that there exists a family of atoms αj := {αjn} such that

(−1)nf(n) =
∑
j

λjα
j
n and 2 ‖{(−1)nf(n)}‖H1(Z) ≥

∑
j

|λj| .

Consequently,∥∥∥∥∥f −
N∑

j=−N

λj

(∑
n

(−1)nαjn sinc(· − n)

)∥∥∥∥∥
B1
π

≤ C

∥∥∥∥∥{(−1)nf(n)} −
N∑

j=−N

λj{αn}j
∥∥∥∥∥
H1
at

≤ C
∑
|j|≥N

|λj| ,



7. BMO(Z): THE DUAL OF H1(Z) 82

which is small if N is large enough.

We note that if f(z) ∈ B1
π, then∫

R
f(x) cos(πx)dx :=

∫
R
f(x)

(
eiπx + e−iπx

2

)
dx =

1

2
(Ff(π) + Ff(−π)) = 0 ,(7.12)

where F(f) is the Fourier transform of the L1-integrable function f . The last sum has to be
equal to zero since Ff has to be continuous and its support has to be contained in [−π, π].

2. BMO(Z): the dual of H1(Z)

Our interest in the space H1
at(Z) is justified by the fact that we are able to characterize its dual.

Definition 7.7 The space B̃MO(Z) is made by all the sequence {gn} such that

‖{gn}‖BMO := sup
A⊂Z

1

#A

∑
n∈A

|gn − 〈gn〉A| <∞

where A is an interval of Z and

〈gn〉A :=
1

#A

∑
n∈A

gn .

The operator ‖·‖BMO does not satisfy the conditions required to be the norm of ˜BMO(Z), since

for every {cn} = {k} with k 6= 0, it holds ‖{cn}‖BMO = 0 .

For this reason, we have to introduce the quotient space

BMO(Z) := B̃MO(Z)
/{
{fn} ∈ B̃MO(Z) such that ‖{fn}‖BMO = 0

}
, that is

BMO(Z) := B̃MO(Z)
/
{{cn} = {k} , k ∈ C} ,(7.13)

and the operator

(7.14) ‖{fn}‖BMO := sup
A⊂Z

1

#A

(∑
n∈A

|f(n)− 〈fn〉A|

)
is the norm of BMO(Z).

We note that if there exist constants cA such that

sup
A⊂Z

1

#A

∑
n∈A

|bn − cA| <∞

for every bounded interval of Z, then

sup
A⊂Z

1

#A

∑
n∈A

|bn − 〈bn〉A| ≤ sup
A⊂Z

2

#A

∑
n∈A

|bn − cA| <∞ ,
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and consequently {bn} ∈ B̃MO(Z).

Proposition 7.8 Let {bn} ∈ BMO(Z). Then {<bn} ∈ BMO(Z) and {=bn} ∈ BMO(Z).

Proof. We have to check that (7.14) is bounded for the sequences {<bn} and {=bn}.

Indeed

‖{<bn}‖BMO ≤
1

2

(
‖{bn}‖BMO +

∥∥{bn}∥∥BMO

)
= ‖{bn}‖BMO .

With the same computations we obtain also (7.14) for {=bn}. �

The space `∞(Z) is a proper subspace of BMO(Z). Indeed the sequence

{bn} :=

{
0 |n| = 0, 1

log |n| elsewhere
∈ BMO(Z) \ `∞(Z) .

In order to prove that {bn} ∈ BMO(Z), we note that, for any constant CA ∈ R,

(7.15)
1

#A

∑
n∈A

|log |n| − CA| ≤ 2
1∣∣∣Ã∣∣∣
∫
Ã

|log |x| − CA| dx .

Therefore

‖{bn}‖BMO ≤ 2 ‖log |·|‖BMO(R) <∞ .

In any case, any sequence {cn} ∈ BMO(Z)\`∞(Z) can be approximated by sequences in `∞(Z).
We need this auxiliary proposition.

Proposition 7.9 Let cn ∈ R, for every n ∈ Z. Then

{cMn } :=


−M if cn <M ,

M if cn >M ,

cn otherwise

∈ BMO(Z) .

Proof. This proposition is a consequence of the fact that the set of all the real sequences

in BMO(Z) is a lattice. Indeed, if {fn} ∈ BMO(Z) and {gn} ∈ BMO(Z), then also

‖{min(fn, gn)}‖BMO ≤ 2 max (‖{fn}‖BMO , ‖{gn}‖BMO) ,

‖{max(fn, gn)}‖BMO ≤ 2 max (‖{fn}‖BMO , ‖{gn}‖BMO) .

This inclusion is justified by the fact that if {bn} ∈ BMO(Z), then

‖{|bn|}‖BMO ≤ 2 ‖{bn}‖BMO .
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Indeed,

‖{|bm|}‖BMO = sup
A⊂Z

1

#A

∑
n∈A

||bn| − 〈|bn|〉A| ≤ sup
A⊂Z

2

#A

∑
n∈A

||bn| − |〈bn〉A||

≤ 2 ‖{bn}‖BMO ,

which proves the theorem. �

Proposition 7.10 Let {bn} ∈ BMO(Z). There exists a family {cjn} of `∞(Z) sequences such

that ∥∥{cjn}∥∥BMO ≤ C ‖{bn}‖BMO and lim
j→∞

cjn = bn , for every fixed n ∈ Z .

Proof. According to proposition 7.8 and proposition 7.9, it is enough defining the sequence

{cjn} as

cjn = (<bn)j + i (=bn)j , as j > 0 and it goes to infinity.

�

The following proposition describes another property of BMO(Z) that will be fundamental for
the characterization of (B1

π)
∗ described in the following section.

Proposition 7.11 Let {φn} ∈ BMO(Z). Then∑
n∈Z

|φn|
n2 + 1

<∞ .

Proof. Assume {φn} ∈ BMO(Z) and let z = m+ i ∈ C+ and k ∈ N0 . Let I0 be the interval

I0 := {n ∈ Z such that |n−m| < 1} and let Ik be the interval Ik :=
{
n ∈ Z such that |n−m| < 2k

}
.

Then

#Ik = 2k+1 − 1

and

P d
1 (n−m) :=

1

(n−m)2 + 12
≤ 1, n ∈ I0 , while P d

1 (n−m) ≤ 1

4k−1
, n ∈ Ik \ Ik−1 .

Consequently,∑
n

∣∣φn − 〈φn〉I0∣∣P d
1 (n−m)

≤
∑
n∈I0

∣∣φn − 〈φn〉I0∣∣+
∑
k≥1

4

22k

∑
n∈Ik\Ik−1

∣∣φn − 〈φn〉Ik∣∣+
∑
k≥1

4

22k

∑
n∈Ik\Ik−1

∣∣〈φn〉I0 − 〈φn〉Ik∣∣
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≤ ‖{φn}‖BMO + 4
∑
k

1

2k
‖{φn}‖BMO +

∑
k

k32

2k
‖{φn}‖BMO ,

where we used the fact that∣∣∣〈φn〉Ik − 〈φn〉Ik−1

∣∣∣ ≤ 1

#Ik−1

∑
n∈Ik−1

∣∣φn − 〈φn〉Ik∣∣
≤ #Ik

#Ik−1

1

#Ik

∑
n∈Ik

∣∣φn − 〈φn〉Ik∣∣ ≤ 4 ‖{φn}‖BMO ,

and consequently∣∣〈φn〉Ik − 〈φn〉I0∣∣ ≤ k∑
i=1

∣∣∣〈φn〉Ii − 〈φn〉Ii−1

∣∣∣ ≤ 4k ‖{φn}‖BMO .

Therefore∑
n

|φn|P d
1 (n−m) :=

∑
n

|φn|
1

(m− n)2 + 1
<∞ .

If we fix m = 0, we obtain∑
n

|φn|
n2 + 1

<∞ ,

which proves the theorem. �

We note that the above proposition tells us that every {φn} ∈ BMO(Z) is Poisson summable.
However, we do not have any uniform bound for the Poisson sum and we could not even state
that the Poisson sum of {φn} is controlled by the BMO norm of {φn}. We recall that the same
property holds also in BMO(R) [41].

We have introduced the quotient space BMO(Z) and we have described some of its first prop-
erties. With the help of all these propositions, we want to prove the main result of this section:
we show that (H1

at(Z))
∗ is isometrically isomorphic to BMO(Z). However, in order to prove this

theorem, we need to know the H1
at(Z) norm of some particular sequences; we estimate them in

the following propositions.

Proposition 7.12 Let {bn} ∈ `2(Z) such that #supp({bn}) <∞ and
∑

n bn = 0. If

(7.16)

(
1

#supp({bn})
∑
n

|bn|2
)1/2

≤ 1

#supp({bn})
,

then

(7.17) ‖{bn}‖H1(Z) ≤ C ,

where the constant C is independent of {bn}.
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Proof. First of all,

‖{bn}‖`1 ≤ (#supp({bn}))1/2 ‖{bn}‖2 ≤ 1

due to (7.16). Let us now estimate ‖Hc{bn}‖`1 where 0 < c < 1. Let B∗ be the interval

concentric with the supp({bn}) but having the measure doubled. Then

∑
j∈B∗

∣∣∣(Hc{bn})j
∣∣∣ ≤(∑

j∈B∗

∣∣∣(Hc{bn})j
∣∣∣2)1/2

(2#supp({bn})1/2 ≤ C ,

thanks to the continuity of the discrete Hilbert transform in `2(Z) and (7.16). On the other

side, when j ∈ B∗c, then∣∣∣(Hc{bn})j
∣∣∣ =C

∣∣∣∣∣∑
n

bn

(
1

j − n+ c
− 1

j −M + c

)∣∣∣∣∣ = C ‖{bn}‖`2 ‖{cn}‖`2 ,

where M is the centre of B∗ and

cn :=


−M+n

(j−n+c)(j−M+c)
if n ∈ supp({bn}) ,

0 elsewhere
.

Therefore, going on with the previous estimate, we obtain∣∣∣(Hc{bn})j
∣∣∣ ≤C ′ (#supp({bn}))−1/2 #supp({bn})

|j −M |2
(#supp({bn}))1/2

=C ′ (#supp({bn}))
1

|j −M |2
,

thanks to (7.16). Consequently∑
j∈B∗c

∣∣∣(Hc{bn})j
∣∣∣ ≤C ′#supp({bn})

∑
j∈B∗c

1

|j −M |2

≤C ′′#supp({bn})
∫
|t|>#supp({bn})

1

t2
dt ≤ C ,

where C does not depend on the sequence {bn}. �

Proposition 7.13 Let {bn} ∈ `2(Z) such that #supp({bn}) <∞. If
∑

n bn = 0, then

(7.18) ‖{bn}‖H1(Z) ≤ C ‖{bn}‖`2 (#supp({bn}))1/2 .

Proof. Given the sequence {bn}, for every n ∈ Z, we consider

an :=
bn
‖bn‖`2

(#supp({bn}))−1/2 .
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The sequence {an} satisfies all the hypothesis of proposition 7.12 and consequently

‖{an}‖H1(Z) ≤ C2 ,

which implies that

‖{bn}‖H1(Z) ≤ C ′ ‖{bn}‖`2 (supp({bn}))1/2 ‖{an}‖H1(Z) ≤ C2 ‖{bn}‖`2 (supp({bn}))1/2 ,

which proves the theorem. �

We are finally ready to prove that the dual of B1
π is isomorphic to BMO(Z).

Theorem 7.14 The dual space of B1
π is isomorphic to BMO(Z).

Proof. In order to obtain this equivalence, we have to check that (H1(Z))
∗ is isomorphic

to BMO(Z). First of all, we prove that (H1(Z))
∗ ⊆ BMO(Z). Let us consider {an} ∈ `2(Z)A,0,

where

`2(Z)A,0 :=

{
{an} ∈ `2(Z) such that supp({an}) = A, #A <∞ and

∑
n

an = 0

}
.

Let β ∈ H1(Z)
∗. It is clear that {an} ∈ H1

at(Z), since it is a multiple of a H1(Z) atom. By

using proposition 7.13 , when an ∈ `2(Z)A,0, we note that

|β(an)| ≤ ‖β‖∗ ‖{an}‖H1(Z) ≤ C ′‖β‖∗(#A)1/2 ‖{an}‖2 .

Therefore, the functional β belongs to
(
`2
A,0

)∗, which means that there exists {bAn} ∈ `2
A,0 such

that

β(an) =
∑
n∈A

anbAn and
∥∥{bAn}∥∥`2A ≤ C2‖β‖∗(#A)1/2 .

Since we want to consider {bn} for every n ∈ Z, we define

b̃m := bAm when m ∈ A .

We check that {b̃m} is well defined. Let us consider Q ⊂ A. Then,〈
fn, b

Q
n − bAn

〉
`2

= 0 for every {fn} ∈ `2(Z)Q,0 .

Consequently, for every {fn} ∈ `2(Q),

0 =
〈
fn − 〈fn〉Q , b

Q
n − bAn

〉
`2

=
〈
fn, b

Q
n − bAn −

〈
bQn − bAn

〉
Q

〉
`2
,

which means that {bQn − bAn} is a constant sequence when n ∈ Q and for this reason {bQn } and

{bAn} represent the same element in the quotient space BMO(Z).
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Finally,

1

(#A)

∑
n∈A

∣∣∣b̃n − 〈b̃n〉
A

∣∣∣ =
1

(#A)

∑
n∈A

∣∣bAn − 〈bAn 〉A∣∣
≤ (#A)1/2−1

(∑
n∈A

∣∣bAn − 〈bAn 〉A∣∣2
)1/2

= (#A)1/2−1
(∥∥{bAn}∥∥`2(A)

+
∥∥{bAn}∥∥`2(A)

)
≤ (#A)1/2−1 ‖β‖∗ (#A)1/22 = 2 ‖β‖∗ .

On the other hand, let {bn} ∈ BMO(Z) and let {αn} be anH1-atom, such that supp({αn}) = A.

Therefore∣∣∣∣∣∑
n

αnbn

∣∣∣∣∣ =

∣∣∣∣∣∑
n

αnbn −
∑
n

αn〈bn〉A

∣∣∣∣∣ ≤ 1

#A

∑
n∈A

|bn − 〈bn〉A| ≤ ‖{bn}‖BMO .

If gn =
∑

j λjα
j
n and 2 ‖{gn}‖H1

at(Z) ≥
∑

j |λj|, then∣∣∣∣∣∑
n

gnbn

∣∣∣∣∣ ≤∑
n

∑
j

|λj|
∣∣αjnbn∣∣ =

∑
j

|λj|
∑
n

∣∣αjnbn∣∣ ≤ 2 ‖{gn}‖H1
at(Z) ‖{bn}‖BMO ,

when {bn} ∈ BMO(Z) ∩ `∞(Z). To extend the above computation to {bn} /∈ `∞(Z), we note

that if {bn} ∈ BMO(Z), there exists a bounded sequence {bMn } defined as in proposition 7.10,

such that∥∥{bMn }∥∥BMO ≤ C ‖{bn}‖BMO .

Consequently

lim
M→∞

〈
fn, b

M
n

〉
`2

defines a bounded functional of H1(Z) that we call L. Thanks to the first part of this theorem,

there exists {βn} ∈ BMO(Z) such that

L(fn) = 〈fn, βn〉H1(Z),BMO(Z) .

We conclude by observing that {bn} is a representative of the class of {βn}. Indeed {bn − βn}

is equal to a constant sequence, since they act in the same way on the H1 atoms, and

〈fn, bn〉 = L(fn) = lim
M→∞

〈
fn, b

M
n

〉
≤ lim

M→∞
2C
∥∥{bMn }∥∥BMO ‖{fn}‖H1

≤ 2C2 ‖{bn}‖BMO ‖{fn}‖H1 .

�



3. The dual of B1
π: the space X

Let bn ∈ B̃MO(Z); then

(7.19) T̃−1({bn})(z) :=
∑

06=n∈Z

(
(−1)nbn
z − n

+
(−1)nbn

n

)
sin π(z − n)

π
+ b0

sin πz

zπ

is well defined. Indeed (7.19) is equal to

(7.20) T̃−1({bn})(z) :=
∑

06=n∈Z

bn

(
1

z − n
+

1

n

)
sinπz

π
+ b0

sin πz

zπ
,

where the series converges because of Proposition 7.11. For the same reason, the function
T̃−1({bn})(z) is entire, since it is the uniform limit of entire functions on compact subset of C.
Furthermore, if m ∈ Z, we obtain that

T̃−1({bn})(m) : = (b0 + bm)
sin πm

mπ
+

∑
0,m 6=n∈Z

bn

(
1

m− n
+

1

n

)
sin πm

π
+ bm(−1)m(7.21)

= (−1)mbm .

The expression (7.20) is similar to the representation of Mittag-Leffler for the meromorphic
functions [27] and sometimes it is called Tschakaloff’s interpolation formula [21].

We note that the operator T̃−1 is injective. Indeed if T̃−1({bn})(z) is the zero function, then
T̃−1({bn})(m) = 0 for every m ∈ Z, which implies that {bn} = {0}n∈Z because of (7.21).
We define∥∥∥T̃−1({bn})

∥∥∥
X

:=
∥∥∥{((−1)mT̃−1({bn})(m)

)
m

}∥∥∥
BMO

= ‖{bn}‖BMO .

Thanks to the observation (7.21), ‖·‖X is a seminorm in T̃−1
(
B̃MO

)
.

The operator ‖·‖X is not a norm in T̃−1
(
B̃MO

)
. Indeed if we consider {bn} := {c}, then∥∥∥T̃−1 ({bn})

∥∥∥
X

= 0, but T̃−1 ({bn}) is not the zero function. For this reason we have to consider
a quotient space.

We define the operator T̃−1 in BMO(Z), checking that it is well defined on the equivalence
classes. To do this, we use the following representation for the cosine function, see for example
[28] or [55].

Lemma 7.15 The entire function cos(πz) is represented by the series

cos(πz) =
∑

06=n∈Z

(
1

z − n
+

1

n

)
sin(πz)

π
+

sin(πz)

πz
for every z ∈ C.

Let {bn} ∈ B̃MO(Z) and

T̃−1({bn})(z) :=
∑

06=n∈Z

bn

(
1

z − n
+

1

n

)
sin(πz)

π
+ b0

sin πz

zπ
.
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We consider {cn} ∈ B̃MO(Z) defined as

cn := bn + γ ∀n ∈ Z and γ ∈ C ;

{cn} and {bn} represent the same element of BMO(Z). Furthermore, thanks to Lemma 7.15,

T̃−1({cn})(z) : = T̃−1({bn})(z) + γ

( ∑
06=n∈Z

(
1

z − n
+

1

n

)
sin(πz)

π
+

sin πz

zπ

)
= T̃−1({bn})(z) + γ cos(πz) .

Therefore, the difference of the images of two representative elements of the same class in
BMO(Z) is equal to a multiple of cos(πz). We are now ready to introduce the dual space X.

Definition 7.16 We define the space

(7.22) X := T̃−1(B̃MO(Z))/ 〈cosπz〉 ,

and, if X 3 g := T̃−1({bn})(z) with {bn} ∈ B̃MO(Z), then

‖g‖X := ‖{bn}‖BMO .

The ‖·‖X is well defined. Indeed, let f, g ∈ [g]X and f = T̃−1({bn}), g = T̃−1({cn}). Since
f(z) − g(z) = k cos(πz), then bn − cn = k for every n ∈ Z and consequently {bn} = {cn} in
BMO(Z). This reasoning proves that ‖·‖X is well defined.

We note also that ‖·‖X is a norm. Indeed we have already shown that it is a seminorm due
to observation (7.21). Furthermore, ‖f‖X = 0 if and only if f = T̃−1(k), that is f = k cos(πz)
which implies that f ∈ [0]X.
The space X is another isomorphic description of the dual of B1

π.

Theorem 7.17 The space X is isomorphic to (B1
π)
∗.

Proof. In order to prove that X is isomorphic to (B1
π)
∗, it is enough checking that X is

isomorphic to BMO(Z).

Let us introduce the isomorphism V from BMO(Z) to X defined as

(7.23) V ({bn})(z) :=
∑

06=n∈Z

bn

(
1

z − n
+

1

n

)
sin(πz)

π
+ b0

sin(πz)

πz
.

The operator V is well defined in BMO(Z). Indeed if {bn}, {cn} ∈ [{bn}]BMO, then, thanks to

lemma 7.15, V ({bn}) − V ({cn}) = k cos(πz), that is V ({bn}), V ({cn}) ∈ [V ({bn})]X. Due to

the definition of X, V is surjective. Finally, we check that V is injective. Indeed,

V −1(γ cos(πx)) = T̃−1(γ cos(πx)) = {γ}n∈Z

which corresponds to the zero element of BMO(Z). The operator V is clearly an isomorphism

since
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‖g‖X = ‖{bn}‖BMO(Z) when g = T̃−1({bn}) ,

which proves the theorem. �

We define the duality product between B1
π and X. Let f ∈ B1

π and g ∈ X, then

〈f, g〉B1
π ,X

=
〈
T (f), V −1(g)

〉
H1(Z),BMO(Z)

,

where T has been defined in (7.9) and V in (7.23). This definition does not depend on the
choice of the representative element g, since∫

R
f(x)cos(πx)dx = 0

for every f ∈ B1
π as shown in (7.12).

For every a(z) atom of B1
π, the duality product 〈a, g〉B1

π ,X
can be better described: if g =

V ({bn}), then

〈a, V ({bn})〉B1
π ,X

:= lim
N→∞

∫
R
a(x)

∑
|n|≤N

bn

(
1

x− n
+

1

n

)
sin(πx)

π
+ b0

sin πx

xπ

dx .(7.24)

Indeed, since

a(z) :=
∑
n∈A

(−1)nαnsinc(π(z − n)) , and #A <∞ ,

then

〈a, V ({bn})〉B1
π ,X

= lim
N→∞

∑
n∈A

∑
|m|≤N

(−1)n(−1)mαnbmδmn

+ lim
N→∞

∑
06=n∈A

∑
06=|m|<N

(−1)nαn
bm
πm

∫
R
sinc(π(x− n))sin(πx)dx

=
∑
n∈A

a(n)b(n) := 〈an, bn〉H1(Z),BMO(Z) ,

since

(7.25)
∫
R
sinc(π(x− n))sin(πx)dx :=

1

2i

∫
R
sinc(π(x− n))(eiπx − e−iπx)dx

= C
(
eiπnχ[−π,π](π)− e−iπnχ[−π,π](−π)

)
= 0 .

We conclude this section by describing some properties of the space X. First of all, we study
the type of the functions which belong to the equivalence classes of X.

Theorem 7.18 The space X ⊂ Eπ, that is, its elements are equivalence classes of entire func-

tions of exponential type less than or equal to π.
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Proof. In order to prove this theorem, it is enough to check that

(7.26) f(z) = sin(πz)
∑

06=n∈Z

cn

(
1

z − n
+

1

n

)
is entire of exponential type less than or equal to π when {cn} ∈ B̃MO(Z). We notice that f(z)

in (7.26) is entire. By computing its exponential type, we obtain∣∣∣∣∣sin(πz)
∑

06=n∈Z

cn

(
1

z − n
+

1

n

)∣∣∣∣∣ ≤
≤

∑
0<|n|<2|z|

|cn|
∣∣∣∣sin π(z − n)

z − n

∣∣∣∣ |z||n| + 2
∑
|n|≥2|z|

|cn|
|sin(πz)|
|n|

|z|
|n|

≤ Ceπ|=(z)|

|=z|
∑

0<|n|<2|z|

|cn| |z|
|n|

+ 2C ′eπ|=(z)|
∑
|n|≥2|z|

|cn| |z|
n2

≤ Ceπ|=(z)|

|=z|
∑

0<|n|<2|z|

|cn| |2z2|
n2

+ 8C ′eπ|=(z)|
∑
|n|≥2|z|

|cn| |z|
n2 + 1

≤ 2Ceπ|=(z)|

|=z|
∑
n∈Z

|cn| |2z2|
n2 + 1

+ 8C ′eπ|=(z)|
∑
n

|cn| |z|
n2 + 1

.

Consequently f(z) in (7.26) is of exponential type less than or equal to π.

�

We can also compute the rate of growth on the real line of f ∈ [f ]X.

Theorem 7.19 Let f be any element of any equivalence class of X. Then

(7.27) f(x) = o(x3), |x| → ∞ when x ∈ R .

Proof. In order to prove this theorem, it is enough to check that (7.27) holds for

(7.28) f(x) = sin(πx)
∑

06=n∈Z

cn

(
1

x− n
+

1

n

)
when {cn} ∈ B̃MO(Z). Therefore∣∣∣∣∣sin(πx)

∑
06=n∈Z

(
cn

1

x− n
+

1

n

)∣∣∣∣∣ ≤ ∑
0<|n|<2|x|

|cn|
∣∣∣∣sin π(x− n)

x− n

∣∣∣∣ |x||n|+
2
∑
|n|≥2|x|

|cn|
|sin(πx)|
|n|

|x|
|n|

≤
∑

0<|n|<2|x|

|cn| |x|
|n|

+ 2
∑
|n|≥2|x|

|cn| |x|
n2
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≤
∑

0<|n|<2|x|

|cn| 2x2

n2
+ 8

∑
|n|≥2|x|

|cn| |x|
n2 + 1

≤ 8x2
∑
n∈Z

|cn|
n2 + 1

+ 8 |x|
∑
n

|cn|
n2 + 1

.

Consequently |f(x)| = o(x3). �

When we sample the function g ∈ X on translated sets of the integers, that is {n + a} when
0 < a < 1, the resulting sequence is in BMO(Z).

Theorem 7.20 Let g ∈ X, then

(7.29) {((−1)ng(n+ a))n} ∈ BMO(Z) for every 0 < a < 1 .

In particular

(7.30) ‖{((−1)ng(n+ a))n}‖BMO ≤ ‖{((−1)ng(n))n}‖BMO =
∥∥V −1(g)

∥∥
BMO .

Proof. Let L be the functional of B1
π described by the sequence {bn} in BMO(Z), as proved

in Theorem 7.14. Furthermore, let g(z) = V ({bn})(z), as described in theorem 7.17.

It is well known that the horizontal translation operator Sa is a surjective isometry in B1
π

[13], [56]:

Sa(f)(x) := f(x− a) and ‖f‖B1 = ‖Sa(f)‖B1 ,∀f ∈ B1
π .

Therefore, we consider S∗a(L). Let f be a B1
π atom. Then

(S∗aL)(f) : = L(Sa(f))

= lim
k→∞

∫
R

(∑
n

f(n)sinc(π(x− a− n))

)∑
|j|≤k

(−1)jbjsinc(π(x− j))

dx
= lim

k→∞

∑
n

∑
|j|≤k

f(n)(−1)jbj 〈sinc(π(· − a− n)), sinc(π(· − j))〉L2(R)

= lim
k→∞

∑
n

∑
|j|≤k

f(n)(−1)jbj sinc(π(j − a− n))

=
∑
n

(−1)nf(n)βn

where

βn := (−1)n lim
k→∞

∑
|j|≤k

bj

(
1

n+ a− j
+

1

j

)
sin(π(n+ a))

π
.
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Since S∗a(BMO(Z)) ⊆ BMO(Z) and S∗a({bn}) = βn := (−1)ng(n + a), we obtain (7.29). Fur-

thermore, since Sa is bounded, and

S∗a({((−1)ng(n))n} = {((−1)ng(n+ a))n} ,

we obtain (7.30). �

4. The analytic dual of B1
π: the space Y

Untill now, we have described (B1
π)
∗ by using the space of sequences BMO(Z). In this final

section, we give an analytic description of the space (B1
π)
∗.

Let us introduce two new spaces: let Ỹ the space of the entire functions of exponential type
less than or equal to π such that∥∥∥∥{(−1)kf

(
k +

1

2

)}∥∥∥∥
BMO

+
∥∥{(−1)kf(k)}

∥∥
BMO <∞ and

|f(x)| = o(x3) as |x| → ∞ , and x ∈ R .

We define

Y := Ỹ/ 〈sin(π(z)), cos(π(z))〉 .(7.31)

In the quotient space Y, we consider

‖f‖Y :=

∥∥∥∥{(−1)kf

(
k +

1

2

)}∥∥∥∥
BMO(Z)

+
∥∥{(−1)kf(k)}

∥∥
BMO(Z)

.

The norm is well defined. Indeed if f, g ∈ [g]Y, then f(z) − g(z) = A cos(πz) + B sin(πz).
Therefore {(−1)kf(k)} = {(−1)kg(k)+A}, and

∥∥{(−1)kf(k)}
∥∥

BMO(Z)
=
∥∥{(−1)kg(k)}

∥∥
BMO(Z)

.
Furthermore the operator ‖·‖Y is a norm. Indeed, let us assume that ‖f‖Y = 0. Then

(−)kf(k) = C ∀k ∈ Z ,

which implies that f(z) = C cos(πz) + sin(πz)g(z), where g(z) is an entire function of π-
exponential type. However, we know also that

(−1)kf(k +
1

2
) = G ∀k ∈ Z ,

which means that

(−1)kf(k +
1

2
) = (−1)k sin(π(k +

1

2
))g(k +

1

2
) =

(−1)kg(k +
1

2
)
(

sin(πk) cos(
π

2
) + cos(πk) sin(

π

2
)
)

= g(k +
1

2
) = G ,

that is

g(k +
1

2
)−G = 0 ∀k ∈ Z ,
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which implies that g(z) = G+sin(π(x− 1
2
))h(z), where h(z) is an entire function of π-exponential

type. However h(z) has to be zero. Indeed

f(z) = C cos(πz) +G sin(πz) + sin(πz) sin(π(z − 1

2
))h(z) .

The order of h(z) is less than or equal to 1, since, otherwise f(z) would not be of exponential
type. Furthermore∣∣h(re−iπ/2)

∣∣ , ∣∣h(reiπ/2)
∣∣ ≤M ,

∣∣h(reiπ5/4)
∣∣ ∣∣h(reiπ/4)

∣∣ ≤M ′, r ∈ R+ .

Since the order of h(z) is less than or equal 1, by applying Phragmén–Lindelöf theorem,

|h(z)| ≤ max{M,M ′} ,

and consequently it has to be 0. Therefore

f(z) = C cos(πz) +G sin(πz) ,

that is

f(z) ∈ [0]Y .

We are now ready to prove that Y is isomorphic to (B1
π)
∗. Indeed

Theorem 7.21 The quotient space Y is isomorphic to (B1
π)
∗.

Proof. In order to prove the theorem, it is enough to check that Y is isomorphic to X and

then applying theorem 7.17. Let us define the operator W from X to Y such that

W([g]X) := [g]Y ,

which is well defined since if f, g ∈ [f ]X, then f(z) − g(z) = A cos(πz) and for this reason

f, g ∈ [f ]Y. Moreover, thanks to theorem 7.18 and theorem 7.20, we know that X ⊂ Y.

Let us prove that W is an isomorphism. First of all, W is injective; indeed, ∀g ∈ [0]Y,

‖{(−1)ng(n)}‖BMO(Z) = 0 ,

which implies that (−1)ng(n) = A for every n ∈ Z and in particular

T̃−1({(−1)ng(n)}) ∈ [0]X .

The operator W is also surjective. Indeed, if f ∈ [f ]Y ∈ Y, there exists g ∈ [g]X ∈ X such that

g ∈ [f ]Y. Indeed we consider

g(x) := T̃−1 ({(−1)nf(n)}) (x) .

Due to (7.21), we know that

g(n) = T̃−1
(
{(−1)kf(k)}

)
(n) = (−1)2nf(n) = f(n) .
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For this reason, f(z) − g(z) = sin(πz)h(z), where h is an entire function of finite exponential

type. We prove that h(z) has to be a constant. Since f(z) and g(z) are in Ỹ , also the function

sin(πz)h(z) ∈ Ỹ , which implies that

|sin(πx)h(x)| = o(|x|3) , as |x| → ∞ .

We need to use lemma 1 of [36] which says that if f(z) be entire function of exponential type

π and f(x) = o(x3), then

|f(z)| = o
(
|z|3 eπ|=(z)|) , as |z| → ∞ .

Consequently

|sin(πz)h(z)| = o
(
|z|3 eπ|=(z)|) , as C 3 |z| → ∞ ,

which implies that

|h(z)| = o
(
|z|3
)
, as C 3 |z| → ∞ .

The last condition forces h(z) to be a polynomial of degree less or equal than 2. However, since

h(z) has to be Poisson integrable over Z + 1/2 because of proposition 7.11, it has to be equal

to a constant. �



8. Dual of 1-de Branges space

In this chapter, we consider the 1-de Branges spaces H1(E). We first prove the atomic descrip-
tion of H1(E) and, in order to obtain it, we use the Clark measures of K1(Θ).

Our first main result is the following theorem.

Theorem 8.1 Let E(z) be a Hermite Biehler function such thatH1(E) ↪→ H2(E) continuously.

Let Θ(z) be the associated meromorphic inner function and let ∞ belong to the spectrum of

Θ(z). If Θ(z) satisfies the connected level set condition and σα is one of its Clark measures, then

f ∈ H1
at(σα) if and only if Ef admits an analytic continuation to C as a function F ∈ H1(E).

Moreover, such a function F is unique and the norms ‖f‖H1
at(σα), ‖F‖H1(E) are comparable.

The above theorem introduces several objects which we use to describe the geometry of the
∗-invariant subspaces and in the following section we recall all of them. We note also that the
embedding condition

(8.1) H1(E) ↪→ H2(E) ,

has been already extensively analyzed in the fifth chapter.
Contrary to what one might think, for the proof of Theorem 8.1, it is not possible to use

the Cayley transform and apply the results of [18]. In fact, if we do this, the atoms of H1(E)
would not have been equal to linear combinations of ktn .

In this chapter we characterize also the dual of the 1-de Branges space H1(E).

Theorem 8.2 Let the meromorphic inner function Θ(z) satisfy the connected level set condition

and let ∞ belong to the spectrum of Θ(z). If H1(E) ↪→ H2(E), then H1(E)
∗ is isomorphic to

the quotient space

X(E) :=

{
f(z) := B(z)

∑
n∈Z

b(tn)

(
1

tn − x
− tn
t2n + 1

)
1

φ′(tn)

}/
〈A(z)〉 ,

where E(z) = A(z) − iB(z), φ(tn) = nπ, {ktn(z)}n∈Z is an orthogonal basis of H2(E) and

b(x) ∈ BMO(σ0).

This chapter is divided in six sections. After having recalled the definitions of the objects that
appear in the above theorems, in the second section we describe some important properties of
the Clark measures. In the third and fourth sections we prove Theorem 8.1. The fifth and
sixth sections are devoted to the description of H1(E)

∗. We need first to introduce the space
BMO(σα). We describe some of its properties and we explain in details the duality result.
Finally in the sixth section we prove Theorem 8.2.
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1. Preliminaries

Besides K1(Θ) and H1(E), the other important space that in this chapter we use several times
is H1

at(σ), where σ is a positive, Borel measure.

Definition 8.3 Let σ be a positive Borel measure on R. A function a(x) is a σ-atom if it

satisfies these three properties:

• a(x) has σ mean zero:

(8.2)
∫
a(x)dσ(x) = 0 .

• The σ measure of the support of a(x) is finite:

(8.3) σ(supp(a)) <∞ .

• a(x) satisfies the growth condition:

(8.4) |a(x)| ≤ 1

σ(supp(a))
, ∀x ∈ supp(σ) .

The space H1
at(σ) is defined as

(8.5) H1
at(σ) :=

{
f =

∑
k

λkak : where ak are σ-atoms, and
∑
k

|λk| <∞

}
,

and

(8.6) ‖f‖H1
at(σ) =

{
inf
{λk}

∑
k

|λk| : f =
∑
k

λkak , where ak are σ-atoms

}
.

As stated in Theorem 8.1, it is possible to obtain an atomic decomposition of H1(E) if the
Hermite Biehler function E(z) satisfies some additional conditions.

First of all, it is worth recalling the expression of the Clark measure σα of Θ(z), see [23]
and [67].

Definition 8.4 Let Θ(z) be a meromorphic inner function. Given α ∈ [0, 1), we consider the

set

(8.7) I :=
{
tα ∈ R : Θ(tα) = ei2πα

}
.

Then the Clark measure σα is defined as

(8.8) dσα(x) :=
∑
n∈Z

π

φ′(tαn)
δtαn(x) where Θ(x) = e2iφ(x)

and δt(x) denotes the dirac measure at x = t.
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Another important instrument for the study of the ∗-invariant subspaces is the spectrum of the
inner function Θ, see [24]. To every inner function we can associate its spectrum ρ(Θ), which
is a closed subset of C+. If Θ(z) is meromorphic, it coincides with its zeros and possibly with
∞.

(8.9) ρ(Θ) :=
{
ζ ∈ C+ ∪ {∞} : there exists {zn} ⊂ C+, lim

n→∞
zn = ζ , Θ(zn) = 0

}
.

This closed set is linked to several properties of the elements of K2(Θ). For example it is
studied for the analytically extendability of the elements of K2(Θ), see [39] and [59]. In the
following sections, we call

(8.10) Gθ := C− \ ρ(Θ) , where ρ(Θ) :=
{
z ∈ C− | z ∈ ρ(Θ)

}
.

Finally, the functions Θ(z) has to satisfy the connected level set condition (CLS).

Definition 8.5 The meromorphic inner function Θ(z) satisfies the connected level set condition

(CLS) if there exists 1 > ε > 0 such that the set

Ω(Θ, ε) :=
{
z ∈ C+ such that |Θ(z)| < ε

}
is connected.

The connected level set property is used for the description of the Carleson measure of K2(Θ),
[25]. Furthermore, as shown in [3] and[18], it is also related to Clark measures.

2. Properties of Clark measures

From now on, we assume that Θ(z) is a connected level set meromorphic inner function, with
∞ ∈ ρ(Θ). We need the above hypothesis in order to estimate |Θ′(x)|−1, as done in (26) of
[10]. Indeed, if Θ(z) is (CLS) and ∞ ∈ ρ(Θ), then

(8.11) B dist(x, ρ(Θ)) ≤ |Θ′(x)|−1 ≤ C dist(x, ρ(Θ)) ∀x ∈ R

where B,C > 0 do not depend on x.
We prove some preliminary lemmas similar to those contained in [14].

Lemma 8.6 Let Θ(z) be a connected level set meromorphic inner function and let ∞ ∈ ρ(Θ).

For every x < y ∈ R such that

φ(y)− φ(x) ≤ π

N
, where N satisfies

2πC

N
< 1 ,

and C has been defined in (8.11), then C1 |Θ′(x)| ≤ |Θ′(y)| ≤ C2 |Θ′(x)|, where C1, C2 > 0.

Proof. We know that

π

N
≥
∫ y

x

φ′(t)dt ≥ 1

2
inf
t∈[x,y]

|Θ′(t)| (y − x) =
1

2
|Θ′(τ)| (y − x) ,
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where

|Θ′(τ)| = inf
t∈[x,y]

|Θ′(t)| ,

and, according to (1.5),

|Θ′(x)| = 2φ′(x) =
∑
n

2bn
(x− an)2 + b2

n

+ a .

Thanks to (8.11),

(y − x) ≤ 2π

N

1

|Θ′(τ)|
≤ 2π

N
C dist (τ, ρ(Θ)) .

Consequently, with the right choice of N ,

|Θ′(τ)| ≤ |Θ′(x)| = 2
∑
n

bn∣∣x− λn∣∣2 + a

= 2
∑
n

bn∣∣τ − λn∣∣2
∣∣∣∣τ − λnx− λn

∣∣∣∣2 + a

≤ 2
∑
n

bn∣∣τ − λn∣∣2
(

|τ − λn|
|τ − λn| − |x− τ |

)2

+ a

≤ K

(
2
∑
n

bn∣∣τ − λn∣∣2 + a

)
= K |Θ′(τ)| .

Therefore, we have obtained that

1

K
|Θ′(y)| ≤ |Θ′(x)| ≤ K |Θ′(y)| ,

where K does not depend on x. �

In the following proposition, we compare two different Clark measures. We assume that R ⊂ R
is an interval containing at least two points of the supp(σα).

Proposition 8.7 Let Θ(z) be a connected level set meromorphic inner function and let ∞ ∈

ρ(Θ). Then, for any compact interval R ⊂ R,

(8.12) σα(R) � σβ(R) ,

where σα and σβ are two different Clark measures of Θ(z).

Proof. Let

T` := {τ `m} :=

{
x ∈ R : φ(x) ≡π

`

N
π

}
, T :=

N−1⋃
`=0

T` = {τm} ,
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where N is defined as in Lemma 8.6. Analogously,

Sk := {skm} :=

{
x ∈ R : φ(x) ≡π

(
1

N + π
+
k

N

)
π

}
, S :=

N−1⋃
ι=0

Sk = {sm} .

Thanks to Lemma 8.6, we know that if

x, y ∈ [τm, τm+1], then C1 |Θ′(x)| ≤ |Θ′(y)| ≤ C2 |Θ′(x)|

and if

x′, y′ ∈ [sm, sm+1], then D1 |Θ′(x′)| ≤ |Θ′(y′)| ≤ D2 |Θ′(x′)| .

We observe also that S ∩ T = ∅. Consequently, by repeatedly applying the estimate of Lemma

8.6, if

(8.13) x, y ∈ [tαn, t
α
n+1], then

1

K2N+1
|Θ′(x)| ≤ |Θ′(y)| ≤ K2N+1 |Θ′(x)| ,

where {tαn} have been defined in (8.7). Therefore

σα(R) =
∑
tαn∈R

π

φ′(tαn)
≤ 2K2N+1σβ(R)

and

σα(R) =
∑
tαn∈R

π

φ′(tαn)
≥ 1

2K2N+1
σβ(R) ,

which proves the theorem. �

We define

(8.14) Dσα(k) :=
⋃

x ∈ supp(σα)

Dx(k) ,

where

(8.15) Dx(k) := {z ∈ C , |=(z)| ≤ kσα(x), |<z − x| ≤ kσα(x)} .

When Θ(z) satisfies (CLS), then the Clark measure σα of Θ(z) is controlled by the Lebesgue
measure.
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Lemma 8.8 Let Θ(z) satisfy (CLS) and let ∞ ∈ ρ(Θ). There exists A > 0 such that for every

interval I ⊂ R containing at least one atom of the measure σα, we have that

(8.16) |I| ≤ Aσα(I) .

On the other hand, there exists B > 0 such that for every I containing at least two atoms of

σα, we have that

(8.17) σα(I) ≤ 2B |I \Dσα(k)| .

The constant A depends only on Θ(z) while B depends on Θ(z) and k. With | · | we mean the

Lebesgue linear measure on R.

Proof. Thanks to Lagrange’s theorem,

π =
1

2
|Θ′(x)| (tαn+1 − tαn) where x ∈ [tαn, t

α
n+1] .

Therefore, by using formula (8.13), we note that

2π

K2N+1

1

|Θ′(tαn)|
≤ (tαn+1 − tαn) ≤ 2πK2N+1 1

|Θ′(tαn)|
.

Consequently,

|I| ≤
∑
k∈M

∣∣[tαk , tαk+1]
∣∣ ≤ 2K2N+1

∑
k∈M

σα(tkα) = Aσα(I) ,

where I ⊆ [tαinf M−1, t
α
supM+1] and A = 2K2N+1. On the other hand, by using (8.14) and (8.15),

we obtain that

σα(I) =
∑
tαk∈I

σα(tαk ) ≤ B |I| ≤ B |I \Dσα(k)|+B2k σα(Dσα(k)) ,

where B = 2K2N+1. If we chose k < 1
4B

, then

σα(I) ≤ 2B |I \Dσα(k)| ,

that is

(8.18) 2kσα(I) ≤ |I| ,

which we will use in the following theorems. �

From (8.17) and (8.18), we note also that the sets Dx(k), x ∈ supp(σα) are disjoint if k is small
enough.
Before describing the atomic decomposition of the de Branges space H1(E), we state three
more lemmas that we will use in the proof of Theorem 8.1.
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Lemma 8.9 Let Θ(z) be a (CLS) inner function with ∞ ∈ ρ(Θ). If p > 0, it holds that∫ a−p

−∞

1

(a− t)2
dσα(t) ≤ C

∫ a−p

−∞

1

(a− t)2
dt ,∫ ∞

b+p

1

(b− t)2
dσα(t) ≤ C

∫ ∞
b+p

1

(b− t)2
dt ,

where C depends only on Θ(z).

Proof. It is clear that∑
tαn≤a−p

1

(a− tαn)2

π

φ′(tαn)
≤

∑
tαn≤a−p

1

(a− tαn)2
C(tαn+1 − tαn) ≤ C

∫ a−p

−∞

1

(a− t)2
dt .

Anlogously ,∑
tαn≥b+p

1

(b− tαn)2

π

φ′(tαn)
≤
∑

tαn≥b+p

1

(b− tαn)2
C(tαn − tαn−1) ≤ C

∫ ∞
b+p

1

(b− t)2
dt ,

which proves the theorem. �

Lemma 8.10 Let Θ(z) be a (CLS) meromorphic inner function with ∞ ∈ ρ(Θ). Then, there

exists δ > 0 such that |α−Θ(z)| ≥ δ for all z ∈ C+ \Dσα(k).

Proof. We define

(8.19) d0(x) := dist(x, ρ(Θ)) and dε(x) := dist(x,Ω(Θ, ε)) ,

where Ω(Θ, ε) has been specified in Definition 8.5. We consider z ∈ C+ \
⋃
x∈R Dx

(
k

|Θ′(x)|

)
.

Hence,

(8.20) =(z) ≥ k

|Θ′(<z)|
.

There are two possibilities: if

=(z) > d0(<(z)) ≥ dε(<(z)) , then |Θ(z)| ≤ ε .

Otherwise, =z ≤ d0(<(z)), that is, |z − zn| ≤ |z −<z| + |<z − zn| ≤ 2 |<(z)− zn|, where

Θ(zn) = 0 . Therefore, with computations similar to those in [10],

log(|Θ(z)|2) ≤− 2a=(z)−
∑
n

4=(z)
=(zn)

|z − zn|2

≤ − 2k

|Θ′(<(z))|
|Θ′(<(z))| inf

n

∣∣∣∣<z − znz − zn

∣∣∣∣2 ≤ −k2 ,
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which implies that |Θ(z)| ≤ e−k/4. Therefore, in any case, |Θ(z)| ≤ ε̃ and we have |α−Θ(z)| >

δ1. Now let z ∈ C+ ∩Dx

(
k

|Θ′(x)|

)
, where x ∈ R, and assume that z /∈ Dσα(k). We have

|Θ(<z)− α| ≥ dist(<z, supp(σα)) inf
<z≤t≤ξ

|Θ′(t)| ≥ 2k
Θ′(τ)

Θ′(ξ)
≥ 2ε2 ,

since z /∈ Dσα(k), where Θ(ξ) = α, |<z − ξ| = dist(<z, supp(σα)) and

Θ′(τ) = inf
<z≤t≤ξ

|Θ′(t)| .

We note also that

ε2 =
k

K2N+1

thanks to (8.13). Using the fact that

|Θ′(z)| ≤ |Θ′(<z)| ,

we obtain that

|Θ(z)−Θ(<z)| ≤ =z |Θ′(<z)| ≤ k
|Θ′(<z)|
|Θ′(x)|

≤ ε2 .

Therefore, it follows that

|Θ(z)− α| > δ := min(δ1, ε2) ,

which proves the theorem. �

Lemma 8.11 Let Θ(z) be an inner function and let g ∈ K1(Θ). Then, there exist functions

g1(z), g2(z) ∈ K1(Θ) such that g(z) = g1(z) + ig2(z), gj(x) = Θ(x)gj(x) for x ∈ R with

‖gj‖L1(R) ≤ ‖g‖L1(R), j = 1, 2 .

Proof. Let us consider g∗(x) := Θ(x)g(x). We know

g∗ ∈ ΘH1(C+) ∩H1(C+) = K1(Θ) .

Now we define

g1 :=
g + g∗

2
and g2 :=

g − g∗

2i

and the conclusion follows. �



3. Atomic decomposition: H1
at(σα) ⊆ H1(E)

In this section we will show that there exists a continuous embedding from the space H1
at(σα)

into H1(E), when σα is a Clark measure for Θ(z) := E#/E.
Let us first introduce the reverse Clark transform, see [23]. Given a function f ∈ L1(σα),

we define

(8.21) V −1
α (f)(z) :=

i

2π

∫
R
f(t)

1−Θ(z)Θ(t)

(t− z)
dσα(t) when z /∈ supp(σα) .

Since f ∈ L1(σα) and 1−Θ(z)Θ(·)
(·−z) ∈ L∞(σα) for every z /∈ supp(σα), V −1

α (f)(z) is well defined.
When Θ(z) is a meromorphic inner function, (8.21) can be rewritten as

V −1
α (f)(z) =

i

2π

∫
R
f(t)

1−Θ(z)Θ(t)

t− z
dσα(t)

=
i

2π

∫
R
f(t)

1−Θ(z)Θ(t)

t− z
∑
n

δtαn(t)
π

φ′(tαn)

=
i

2

∑
n

f(tαn)
1−Θ(z)Θ(tαn)

tαn − z
1

φ′(tαn)

=
i

2

∑
n

E(tαn)f(tαn)

E(tαn)

E(z)E(tαn)− E#(z)E(tαn)

E(tαn)E(z)(tαn − z)

1

φ′(tαn)

=
1

E(z)

∑
n

F (tαn)
ktαn(z)

ktαn(tαn)
,

where F/E = f and kt(z) has been defined in (1.12). We introduce the isometry from H1
at(σα)

into H1(E).

Definition 8.12 Let f =
∑

k λkak where ak(x) are the atoms of H1
at(σα), see Definition 8.3.

We define

V−1
α (f)(z) :=

∑
k

λkV
−1
α (ak)(z) .

If a(x) ∈ H1
at(σα) is an atom, then

(8.22) V−1
α (a)(z) :=

∑
n

A(tαn)
ktαn(z)

ktαn(tαn)
,

where A(tαn) := a(tαn)E(tαn) and kx(z) is the reproducing kernel of H2(E).

We note that the sum in (8.22) is finite and for this reason V−1
α (a)(z) ∈ H2(E).

In the rest of this section we prove that V−1
α (f) ∈ H1(E) and that

(8.23)
∥∥V−1

α (f)
∥∥
H1(E)

≤ C ‖f‖H1
at(σα) ,∀f ∈ H

1
at(σα) .

Let us first consider a(x), an atom of H1
at(σα) as described in Definition 8.3. It is clear that

V−1
α (a) ∈ H1(E). Indeed, since V−1

α (a) is in the Smirnov class, [29], we have to check only the



8. ATOMIC DECOMPOSITION: H1
at(σα) ⊆ H1(E) 106

integrability condition; We write (8.22) in the following way:

V−1
α (a)(x) =

∑
n

E(tαn)a(tαn)
ktαn(x)

ktαn(tαn)

=
i

2

∑
n

E(tαn)a(tαn)
|E(x)| |E(tαn)|
|E(tαn)|2 φ′(tαn)

sin(φ(x)− φ(tαn))

x− tαn

=
i |E(x)|

2
sin(φ(x)− απ)

∑
n

a(tαn)
e−iφ(tαn)(−1)n

φ′(tαn)

1

x− tαn

=
i |E(x)|

2
e−iαπ sin(φ(x)− απ)

∑
n

a(tαn)

φ′(tαn)

1

x− tαn
.

Consequently,∥∥V−1
α (a)

∥∥
H1(E)

≤
∫
R

∣∣∣∣∣∑
n

a(tαn)

φ′(tαn)

1

x− tαn

∣∣∣∣∣ dx <∞
thanks to the zero mean property of the atom a(x).

At this point we prove that

(8.24)
∥∥V−1

α (a)
∥∥
H1(E)

≤ C ‖a‖H1
at(σα) = C for every atom a ∈ H1

at(σα) .

We need the Aleksandrov-Clark disintegration formula, [66], that we write down for sake of
completeness.

Theorem 8.13 For every f ∈ L1(R), it holds

(8.25) ‖f‖L1(R) =

∫ 1

0

∫
R
|f(t)| dσβ(t)dβ .

Therefore, by applying (8.25), we know that∥∥V−1
α (a)

∥∥
H1(E)

=
∥∥V −1

α (a)
∥∥
L1(R)

=

∫ 1

0

∫
R

∣∣Vβ (V −1
α (a)

)
(x)
∣∣ dσβ(x)dβ .

Now

(8.26)
∫
R

∣∣Vβ (V −1
α (a)

)
(x)
∣∣ dσβ(x)

=

∫
R\2R

∣∣Vβ (V −1
α (a)

)
(x)
∣∣ dσβ(x) +

∫
2R

∣∣Vβ (V −1
α (a)

)
(x)
∣∣ dσβ(x) ,

where R is an interval containing supp(a). We start from estimating the second term:∫
2R

∣∣Vβ (V −1
α (a)

)
(x)
∣∣ dσβ(x) =

∑
tβn∈2R

∣∣V −1
α (a)(tβn)

∣∣ π

φ′(tβn)

≤
√
σβ(2R)

∑
tβn∈2R

∣∣V −1
α (a)(tβn)

∣∣2 π

φ′(tβn)

1/2

.
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Consequently, thanks to (8.25),

∫ 1

0

√
σβ(2R)

∑
tβn∈2R

∣∣V −1
α (a)(tβn)

∣∣2 π

φ′(tβn)

1/2

dβ

≤
(∫ 1

0

σβ(2R)dβ

)1/2
∫ 1

0

∑
tβn∈2R

∣∣V −1
α (a)(tβn)

∣∣2 π

φ′(tβn)

 dβ

1/2

≤ |2R|1/2
(∫ 1

0

∫
R

∣∣V −1
α (a)(x)

∣∣2 dσβ(x) dβ

)1/2

≤ |2R|1/2
(∫

R

∣∣V −1
α (a)(x)

∣∣2 dx)1/2

≤ |2R|1/2
∥∥V −1

α (a)
∥∥
H2

≤ |2R|1/2
∑
tαn∈2R

∣∣V −1
α (a)(tαn)

∣∣2 π

φ′(tαn)

1/2

.

Since ∑
tαn∈2R

∣∣V −1
α (a)(tαn)

∣∣2 π

φ′(tαn)
≤
∑
tαn

|a(tαn)|2 π

φ′(tαn)
≤ 1

σα(R)
,

we obtain, due to Lemma 8.8, that∫ 1

0

∫
2R

∣∣Vβ (V −1
α (a)

)
(x)
∣∣ dσβ(x) dβ ≤

√
2

√
|R|
σα(R)

≤ C ′ .

We estimate now the first term in (8.26); let R be [a, b] and c = b−a
2
. Then∫

R\2R

∣∣Vβ (V −1
α (a)

)
(x)
∣∣ dσβ(x)

=

∫
R\2R

∣∣∣∣∣
∫
R
a(t)

1−Θ(t)Θ(x)

2πi(t− x)
dσα(t)

∣∣∣∣∣ dσβ(x)

≤
∫
R\2R

∣∣∣∣∫
R
a(t)

(
1− e−2iπα+2iπβ

)( 1

2πi(t− x)
− 1

2πi(c− x)

)
dσα(t)

∣∣∣∣ dσβ(x)

≤ 1

2π2

∫
R\2R

∫
R
|a(t)|

∣∣∣∣ c− t
(t− x)(c− x)

∣∣∣∣ dσα(t)dσβ(x) ,
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where we have used condition (8.2). Changing the order of integration and using (8.25), we
obtain that∫ 1

0

∫
R\2R

∣∣Vβ (V −1
α (a)

)
(x)
∣∣ dσβ(x) dβ

≤ (b− a)/2

2π2

∫
R
|a(t)|

∫ 1

0

∫
R\2R

∣∣∣∣ 1

(t− x)(c− x)

∣∣∣∣ dσβ(x)dβ dσα(t)

≤ b− a
4π2

∫
R
|a(t)|

(∫ 1

0

∫ a− b−a
2

−∞

1

(a− x)2
dσβ(x) dβ

+

∫ 1

0

∫ ∞
b+ b−a

2

1

(x− b)2
dσβ(x) dβ

)
dσα(t)

=
b− a
4π2

∫
R
|a(t)|

(∫ a− b−a
2

−∞

1

(a− x)2
dx+

∫ ∞
b+ b−a

2

1

(x− b)2
dx

)
dσα(t)

≤ C2

π2
‖a‖L1(σα) =

2C

π2
,

since a satisfies (8.4). Considering the two estimates together, we have obtained (8.24).
If f ∈ H1

at(σα), we know that there exist atoms {ak} and coefficients {λk} such that

f =
∑
k

λkak and
∑
k

|λk| ≤ 2 ‖f‖H1
at(σα) .

Consequently we note that

V−1
α (f)(z) :=

∑
k

λkV
−1
α (ak)(z)

and ∥∥V−1
α (f)

∥∥
H1(E)

=
∥∥V −1

α (f)
∥∥
L1(R)

≤
∑
k

|λk|
∥∥V −1

α (ak)
∥∥
L1(R)

≤ C
∑
k

|λk| ≤ C ′ ‖f‖H1
at
.

With this computations we have obtained that V−1
α (f) ∈ H1(E) and (8.23), and therefore

H1
at(σα) ↪→ H1(E).

4. Atomic decomposition: H1(E) ⊆ H1
at(σα)

Thanks to condition (8.1), ∀F ∈ H1(E), F/E ∈ K2(Θ). We denote

f(x) :=
F (x)

E(x)
when x ∈ supp σα .

Our aim is to proving that f ∈ H1
at(σα) and

(8.27) ‖f‖H1
at(σα) ≤ C ‖F/E‖L1(R) = C ‖F‖H1(E) .

First of all, let us assume that

(8.28) F (x) = F (x) , that is f(x) = Θ(x)f(x) when x ∈ R .
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At the end, we will briefly consider the general case.

We denote by Sx the angular region

(8.29) Sx :=
{
z ∈ C+ such that π/4 ≤ arg(z − x) ≤ 3π/4

}
and we define the maximal function

(8.30) f ∗(x) := sup
z∈Sx
|F (z)/E(z)| when x ∈ R .

We consider

(8.31) Sf (λ) := C+ \
{
z ∈ C+ such that there exists x ∈ R , z ∈ Sx and f ∗(x) < λ

}
.

We denote

(8.32) Rf (λ) :=
⋃
i

Ei where Ei are the connected components of Sf (λ) ∪Dσα(k)

such that Ei ∩ Sf (λ) 6= ∅ , Ei ∩Dσα(k) 6= ∅ .

We first prove some properties of the set Rf (λ). First of all, Rf (λ) is closed. Secondly, if
λ1 < λ2, then Rf (λ2) ⊆ Rf (λ1). Furthermore,

Lemma 8.14 |f(x)| < λ for σα-almost all points x ∈ R \Rf (λ) .

Proof. It is clear that if x ∈ supp(σα), then x ∈ Dσα(k). Therefore x /∈ Rf (λ) if and only

if Dx(k) ∩ Sf (λ) = ∅, that is f ∗(x) < λ. �

Lemma 8.15 |f(z)| ≤ λ and |α−Θ(z)| ≥ ε for all z ∈ ∂Rf (λ) ∩ C+.

Proof. The second inequality is a direct consequence of Lemma 8.10. Furthermore, if

f(z) > λ, z could not be a boundary point of Sf (λ), since, in this case, z ∈ Sx and f ∗(x) >

λ. �

In the following lemma, we will prove some other properties of the set Rf (λ).
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Lemma 8.16 Let E be one of the connected components of Rf (λ). Put γ = ∂E ∩ C+ and

R = ∂E ∩ R. There exist constants depending only on Θ(z) such that

(1) γ is a rectifiable curve and |γ| ≤ Cσα(R);

(2) σα(R) ≤ G |R ∩ Sf (λ)| if E contains at least two atoms of σα;

(3)
∣∣∫
R
fdσα

∣∣ ≤ Kλσα(R) .

Proof. First of all, by the construction and Lemma 8.8, we know that

|γ| ≤ C ′ |R| ≤ Cσα(R) .

Furthermore, if R contains at least two points of supp(σα), then

σα(R) ≤ Bσα |R \Dσα(k)| ≤ G |R ∩ Sf (λ)| .

Let us now prove the third condition. We define γ∗ := {z ∈ C such that z ∈ γ} and Γ = γ∪γ∗.

It is clear that |Γ| ≤ 3 |γ|. Therefore, due to Lemma 8.15 ,∣∣∣∣ f(z)

1− αΘ(z)

∣∣∣∣ ≤ λ

ε
, z ∈ Γ ∩ C+.

On the other hand, the function

z → f(z)/Θ(z)

is analytic in Gθ defined in (8.10) and coincides with the function f on R. By the uniqueness

of the analytic continuation, we know that f(z) = f(z)/Θ(z) for all z ∈ Gθ. Now take a point

z ∈ Gθ; we compute

f(z)

1− αΘ(z)
=

f(z)/Θ(z)

1− α/Θ(z)
=

(
f(z)

Θ(z)− α

)
.

Therefore∣∣∣∣ f(z)

1− αΘ(z)

∣∣∣∣ ≤ λ

ε
, z ∈ Γ ∩Gθ.

It is also true that∮
Γ

f(z)

1− αΘ(z)
dz =

i

2π

∮
Γ

1

1− αΘ(z)

∫
R
f(t)

1− αΘ(z)

z − t
dσα(t)dz

=
i

2π

∫
R
f(t)

∮
Γ

1

z − t
dzdσα(t) =

∫
R
f(t)χR(t)dσα(t) ,

because f ∈ K2(Θ) and the function is absolutely integrable. Consequently∣∣∣∣∫
R

f(t)dσα(t)

∣∣∣∣ ≤ λ

2πε
|Γ| ≤ λ

ε

3

2π
|γ| ≤ λ

ε

3

2π
Cσα(R) .
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This reasoning gives us property (3) when γ ∩ ρ(θ) = ∅. The general case can be reduced to

the just considered one by a small perturbation of the contour γ. �

For each λ > 0 the set Rf (λ) = Rf (λ) ∩ R is a union of closed disjoint interval, that is,

Rf (λ) =
⋃
k∈Iλ

Rk
f (λ) .

We consider the functions

(8.33) Gλ(x) :=

{
f(x) x ∈ R \ Rf (λ)

〈f〉Rkf (λ),σα
otherwise , Bλ(x) :=

{
0 x ∈ R \ Rf (λ)

f(x)− 〈f〉Rkf (λ),σα
otherwise ,

where

〈f〉Rkf (λ),σα
=

1

σα(Rk
f (λ))

∫
Rkf (λ)

f(t)dσα(t) .

Thanks to Lemma 8.14 and to property (3) of Lemma 8.16, we know that

(8.34) |Gλ(x)| ≤ max(K, 1)λ ∀x ∈ supp(σα) ,

and, from an easy computation, that

(8.35) 〈Bλ(x)〉Rkf (λ),σα
= 0 .

We define gn := G2n and bn := B2n where −∞ < n <∞. It is clear that

(8.36) f(x) = lim
N→∞

N∑
n=−N

(gn+1(x)− gn(x)) , x ∈ supp(σα) .

Indeed, if we consider N large enough, we have that∣∣∣∣∣f(x)−
N∑
−N

(gn+1(x)− gn(x))

∣∣∣∣∣ = |g−N(x)| ≤ K2−N .

Furthermore, we note that

f = bn + gn and consequently gn+1 − gn = bn − bn+1 .

Let I ′2n be the set of indices k ∈ I2n such that the set Rk
f (2

n) contains at least two atoms of the
measure σα. The function gn+1 − gn vanishes σα-almost everywhere on each of the sets Rk

f (2
n)

where k ∈ I2n \ I ′2n . Indeed, for such index k, we have

Rk
f (2

n) ∩ supp(σα) = {x} and gn(x) = gn+1(x) = f(x) .

We define

(8.37) an,k(x) = χRkf (2n)(x) (bn(x)− bn+1(x)) , where k ∈ I ′2n .

The function an,k(x) has got zero σα-mean. Indeed∫
R
an,k(x)dσα(x) =

∫
Rkf (2n)

bn(x)− bn+1(x) dσα(x) = −
∑
m∈I

∫
Rmf (2n+1)

bn+1(x)dσα(x) = 0 ,
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where I denotes the set of indexes m such that Rm
f (2n+1) ⊂ Rk

f (2
n). We note also that

|an,k(x)| ≤ (|gn+1(x)|+ |gn(x)|) ≤ 2 max(K, 1)2n+1 .

Now we consider

(8.38) An,k(x) =
an,k(x)

2 max(1, K)2n+1σα(Rk
f (2

n))
, k ∈ I ′2n ,

and we observe that An,k(x) are atoms with respect to the measure σα. From (8.36), we note
that

(8.39) f(x) =
∑
n∈Z

∑
k∈I′2n

λn,kAn,k(x) , x ∈ supp(σα) ,

where

(8.40) λn,k := 2n+2 max(1, K)σα(Rk
f (2

n)) .

It remains to check (8.27), that is,

(8.41)
∑
n

∑
k∈I′2n

λn,k ≤ C ‖f‖L1(R) .

Indeed, by using property (2) of Lemma 8.16 and the fact that f ∈ H1(C+), we obtain that∑
n

∑
k∈I′2n

2nσα(Rk
f (2

n)) ≤
∑
n

∑
k∈I′2n

G2n
∣∣Rk

f (2
n) ∩ Sf (2n)

∣∣
≤
∑
n

G2n |R ∩ Sf (2n)|

= G
∑
n

2n |{x ∈ R | f ∗(x) ≥ 2n}|

≤ G
∑
n

2n
∞∑
l=0

∣∣{x : 2n+l < f ∗(x) ≤ 2n+1+l
}∣∣

≤
∑
m∈Z

2m
(

1 +
1

2
+

1

4
+ . . .

) ∣∣{x : 2m < f ∗(x) ≤ 2m+1
}∣∣

≤ 2 ‖f ∗‖L1(R) ≤ C ′ ‖f‖L1(R) ,

from which we have proved (8.41).

Untill this point, we have studied the problem assuming that the function f satisfies (8.28). In
the general case, let f1, f2, be the functions from Lemma 8.11 associated to f . We apply the
above argument to fi and since f = f1 + if2, we obtain also the atomic decomposition for f .

5. The dual of H1
at(σα)

In the previous sections we have proved that the two spaces H1(E) and H1
at(σα) are isomorphic

with equivalence of norms. Indeed when the meromorphic inner function Θ(z) := E#(z)/E(z)
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satisfies (8.5) and ∞ ∈ ρ(Θ), if H1(E) ↪→ H2(E), then the space H1(E) is isomorphic to
H1

at(σα). In particular, the surjective isomorphism between the two spaces is given by:

(8.42) Vα : H1(E)→ H1
at(σα) , F (x) 7→ f(x)|supp(σα) :=

{
F (tαn)

E(tαn)

}
,

and

(8.43) V−1
α : H1

at(σα) → H1(E) , f(x)|supp(σα) 7→
∑
n

f(tαn)E(tαn)
ktαn(z)

ktαn(tαn)
,

where ktn(z) are the reproducing kernels of H2(E). Furthermore

C1 ‖Vα(F )‖H1
at(σα) ≤ ‖F‖H1(E) ≤ C2 ‖Vα(F )‖H1

at(σα) .

We are interested in the space of sequences H1
at(σα) since we are able to characterize its dual.

Definition 8.17 The space B̃MO(σα) is made by all the function g(x) such that

(8.44) ‖g‖BMO(σα) := sup
A⊂R

1

σα(A)

∫
A

∣∣∣g(x)− 〈g〉A,σα
∣∣∣ dσα(x) <∞

where A ⊂ R is connected and

〈g〉A,σα :=
1

σα(A)

∫
A

g(x)dσα(x) .

We note that the operator ‖·‖BMO(σα) is not a norm in B̃MO(σα), since

c(tαn) := c 6= 0 but ‖c‖BMO(σα) = 0 .

Therefore, we have to consider the quotient space. We define

BMO(σα) := B̃MO(σα)

/{
f ∈ B̃MO(σα) such that ‖f‖BMO(σα) = 0

}
,

that is

(8.45) BMO(σα) := B̃MO(σα)
/
{c(x) : c(tαn) = k , k ∈ C} .

With the help of this quotient, the operator

(8.46) ‖f‖BMO(σα) := sup
A

1

σα(A)

∫
A

∣∣∣f(x)− 〈f〉A,σα
∣∣∣ dσα(x)

defines a norm in BMO(σα).

We note that almost all the properties of BMO(R) hold also for BMO(σα). First of all, if there
exist constants cA such that

sup
A⊂R

1

σα(A)

∫
A

|b(x)− cA| dσα(x) <∞

for every bounded interval of R, then

sup
A⊂R

1

σα(A)

∫
A

∣∣∣b(x)− 〈b〉A,σα
∣∣∣ dσα(x) ≤ sup

A⊂R

2

σα(A)

∫
A

|b(x)− cA| dσα(x) <∞ ,
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and consequently b(x) ∈ B̃MO(σα).

Proposition 8.18 Let b ∈ BMO(σα). Then <b(x),=b(x) ∈ BMO(σα).

Proof. We have to check that (8.46) is bounded for <b and =b. Indeed

‖<b‖BMO(σα) ≤
1

2

(
‖b‖BMO(σα) +

∥∥b∥∥BMO(σα)

)
= ‖b‖BMO(σα) .

With the same computations we obtain also (8.46) for =b(x). �

Any function c(x) ∈ BMO(σα) can be approximated by sequences in L∞(σα). We need this
auxiliary proposition.

Proposition 8.19 Let c(x) be a real function. Then

cM(x) :=


−M if c(x) <M ,

M if c(x) >M ,

c(x) otherwise

∈ BMO(σα) .

Proof. This proposition is a consequence of the fact that the set made up of all the real

sequences in BMO(σα) is a lattice. Indeed, if f(x), g(x) ∈ BMO(σα), then also

‖{min(f(x), g(x))}‖BMO(σα) ≤ 2 max
(
‖f‖BMO(σα) , ‖g‖BMO(σα)

)
,

‖{max(f(x), g(x))}‖BMO(σα) ≤ 2 max
(
‖f‖BMO(σα) , ‖g‖BMO(σα)

)
.

The above inequalities are justified by the fact that if b(x) ∈ BMO(σα), then

‖{|b|}‖BMO(σα) ≤ 2 ‖{b}‖BMO(σα) ,

which proves the theorem. �

Proposition 8.20 Let b(x) ∈ BMO(σα). There exists a family c(x)j of L∞(σα) function such

that ∥∥cj∥∥BMO(σα)
≤ C ‖b‖BMO(σα) and lim

j→∞
c(x)j = b(x) , for every fixed x ∈ supp(σα) .

Proof. According to Proposition 8.18 and Proposition 8.19, it is enough defining the func-

tion cj(x) as

cj(x) = (<b)j (x) + i (=b)j (x) , as j > 0 and goes to infinity.

�
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The following proposition describes a fundamental property of the elements of BMO(σα), which
will allows us to provide an analytic description of H1(E)

∗.

Proposition 8.21 Let Θ(x) be a meromorphic (CLS) inner function and ∞ ∈ ρ(Θ). If φ(x) ∈

BMO(σα), then∫
R
|φ(x)| dσα(x)

1 + x2
<∞ .

Proof. Let us consider φ(x) ∈ BMO(σα) and let z = w + i ∈ C+. I0 is the interval

I0 := {tαn ∈ R : |w − tαn| < s}

where we choose s so that # (supp(σα) ∩ I0) ≥ 2. On the other hand, Ik is the interval

Ik =
{
tαn ∈ R : |w − tαn| < 2ks

}
where k ∈ N0 . Then, because of Lemma 8.8, σα(Ik) ≤ Ks2k+1 , and |Ik| ≤ Bσα(Ik) .Moreover

P1(w − tαn) :=
1

(tαn − w)2 + 1
≤ 1 when tαn ∈ I0 ,

P1(tαn − w) ≤ 4/s222k when tαn ∈ Ik \ Ik−1 .

Consequently, if we define I−1 := ∅, then∫ ∣∣∣φ(x)− 〈φ〉I0,σα
∣∣∣P1(w − x)dσα(x)

=
∑
k∈N

∫
Ik\Ik−1

∣∣∣φ(x)− 〈φ〉I0,σα
∣∣∣P1(w − x)dσα(x)

≤ 1

s2

∫
I0

∣∣∣φ(x)− 〈φ〉I0,σα
∣∣∣ dσα(x) +

∑
k∈N0

4

s222k

∫
Ik\Ik−1

∣∣∣φ(x)− 〈φ〉Ik,σα
∣∣∣ dσα(x)

+
∑
k∈N0

4

s222k

∫
Ik\Ik−1

∣∣∣〈φ〉Ik,σα − 〈φ〉I0,σα∣∣∣ dσα(x)

≤ 2K

sσα(I0)

∫
I0

∣∣∣φ(x)− 〈φ〉I0,σα
∣∣∣ dσα(x) +

∑
k∈N0

4K

s2k
1

σα(Ik)

∫
Ik

∣∣∣φ(x)− 〈φ〉Ik,σα
∣∣∣ dσα(x)

+
∑
k∈N0

4

s2k

∣∣∣〈φ〉Ik,σα − 〈φ〉I0,σα∣∣∣
≤ 2K

s
‖φ‖BMO(σα) +

4K

s
‖φ‖BMO(σα) +

∑
k∈N0

kBK

s2k
‖φ‖BMO(σα)

≤ C ‖φ‖BMO(σα) ,
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where we used the fact that∣∣∣〈φ〉Ik,σα − 〈φ〉Ik−1,σα

∣∣∣ ≤ 1

σα(Ik−1)

∫
Ik−1

∣∣∣φ(x)− 〈φ〉Ik,σα
∣∣∣ dσα(x)

≤ σα(Ik)

σα(Ik−1)

1

σα(Ik)

∫
Ik

∣∣∣φ(x)− 〈φ〉Ik,σα
∣∣∣ dσα(x)

≤ BKs2k+1

2k+1s
‖φ‖BMO(σα)

and consequently,∣∣∣〈φ〉Ik,σα − 〈φ〉I0,σα∣∣∣ ≤ k∑
i=1

∣∣∣〈φ〉Ii,σα − 〈φ〉Ii−1,σα

∣∣∣ ≤ BKk ‖φ‖BMO(σα) .

Therefore∫
R

|φ(x)|
1 + x2

dσα(x) =

∫
|φ(x)|P1(0− x)dσα(x)

≤ C ‖φ‖BMO(σα) +
∣∣∣〈φ〉I0,σα∣∣∣ ∫

R

dσα(x)

1 + x2
<∞ ,

which proves the theorem. �

Before characterizing H1
at(σα)

∗, we need another preliminar lemma.

Lemma 8.22 Let b(x) ∈ L2(σα) such that σα(supp(b)) <∞. If∫
R
b(x)dσα(x) = 0 ,

then

(8.47) ‖b‖H1
at(σα) ≤ C ‖b‖L2(σα) [σα(supp(b))]1/2 .

Proof. First of all, we note that b(x) ∈ H1
at(σα), since it is a multiple of an H1

at(σα)-atom.

To obtain (8.47), we have to use Aleksandrov-Clark disintegration formula, (8.25). Indeed

‖b‖H1
at(σα) =

∥∥V−1
α (b)

∥∥
H1(E)

=
∥∥V −1

α (b)
∥∥
L1(R)

=

∫ 1

0

∫
R

∣∣Vβ (V −1
α (b)

)
(x)
∣∣ dσβ(x)dβ .

With the same computations we did in the previous section, we obtain (8.47), since

‖b‖H1
at(σα) ≤ Cσα(supp(b))1/2

∥∥V −1
α (b)

∥∥
L2(R)

+ C ′ ‖b‖L1(σα)

≤ Cσα(supp(b))1/2
∥∥V−1

α (b)
∥∥
H2(E)

+ C ′σα(supp(b))1/2 ‖b‖L2(σα)

= C̃σα(supp(b))1/2 ‖b‖L2(σα) ,

which proves the theorem. �
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Theorem 8.23 Let Θ(z) be a meromorphic (CLS) inner function, and let ∞ ∈ ρ(Θ). If

H1(E) ↪→ H2(E), then the dual space of H1(E) is isomorphic to BMO(σα).

Proof. Thanks to Theorem 8.1, in order to prove this result, it is enough checking that

the dual of H1
at(σα) is isomorphic with equivalence of norms to BMO(σα).

First of all, we prove that (H1
at(σα))

∗ ⊆ BMO(σα). Let us consider a(x) ∈ L2(σα)A,0, where

(8.48) L2(σα)A,0 :={
a(x) ∈ L2(σα) : supp(a) ⊂ A, #(A ∩ supp(σα)) <∞ and

∫
a(x)dσα(x) = 0

}
.

Let β ∈ H1
at(σα)

∗. Then, since the elements of L2(R, σα)A,0 are multiples of atoms of H1
at(σα),

we obtain that

|β(a)| ≤ ‖β‖∗ ‖a‖H1
at(σα) ≤ ‖β‖∗ ‖a‖L2(R,σα) (σα(A))1/2 ,

where the second inequality is justified by (8.47). Therefore the functional β belongs to

L2(σα)A,0
∗ and there exists bA ∈ L2(σα)A,0 such that∫
A

|bA(x)|2 dσα(x) ≤ ‖β‖2
∗ σα(A)

and such that

β(a) =

∫
A

a(x)bA(x)dσα(x) .

Hence for every set A the function bA(x) is well defined. However we want a single function

b̃ such that b̃|A − bA is constant. To construct it, we consider that if A1 ⊂ A2, bA1 − bA2 is

constant in A1. Therefore, we modify bA, defining b̃A(x) := bA(x) − bA(tα0 ). It follows that if

A1 ⊂ A2, then b̃A1 = b̃A2 on A1. We can therefore consider unambiguously b̃A(x) when x ∈ A.

Furthermore

1

σα(A)

∫
A

∣∣∣b̃A(x) + bA(tα0 )
∣∣∣ dσα(x) =

(
1

σα(A)

∫
A

∣∣∣b̃A(x) + bA(tα0 )
∣∣∣2 dσα(x)

)1/2

=

(
1

σα(A)

∫
A

|bA(x)|2 dσα(x)

)1/2

≤ ‖β‖∗ .

The representative for the functional β is b̃, which does not depend on the choice of the set A.

For the other inclusion, we consider a(x), an H1
at(σα)-atom, such that supp(a) = A and let

b(x) ∈ BMO(σα). Then
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∣∣∣∣∫ a(x)b(x)dσα(x)

∣∣∣∣ =

∣∣∣∣∫ a(x)
(
b(x)− 〈b〉A,σα

)
dσα(x)

∣∣∣∣
≤ 1

σα(A)

∫
A

∣∣∣b(x)− 〈b〉A,σα
∣∣∣ dσα(x) ≤ ‖b‖BMO(σα) .

If g(x) =
∑

j λja
j(x), 2 ‖g‖H1

at(σα) ≥
∑

j |λj| and b(x) ∈ BMO(σα) ∩ L∞(σα), then∣∣∣∣∫
R
g(x)b(x)dσα(x)

∣∣∣∣ ≤ ∫
R

∑
j

|λj|
∣∣aj(x)b(x)

∣∣ dσα(x)

=
∑
j

|λj|
∫
R

∣∣aj(x)b(x)
∣∣ dσα(x) ≤ 2 ‖g‖H1

at(σα) ‖b‖L∞(σα) ,

and consequently∣∣∣∣∫
R
g(x)b(x)dσα(x)

∣∣∣∣ =

∣∣∣∣∣∑
j

λj

∫
R
aj(x)b(x)dσα(x)

∣∣∣∣∣
≤
∑
j

|λj| ‖b‖BMO(σα) ≤ 2 ‖g‖H1
at(σα) ‖b‖BMO(σα) .

To extend the above computations to b(x) /∈ L∞(σα), we observe that if b(x) ∈ BMO(σα), there

exists a sequence bM(x) ∈ L∞(σα) , such that∥∥bM∥∥BMO(σα)
≤ C ‖b‖BMO(σα) .

Therefore∥∥bM∥∥
H1

at(σα)
∗ ≤ C ′

∥∥bM∥∥BMO(σα)
≤ C ‖b‖BMO(σα) .

Consequently

L(f) := lim
M→∞

〈
f, bM

〉
L2(σα)

, ∀f ∈ H1
at(σα)

and L ∈ H1
at(σα)

∗. Thanks to the first part of the theorem, when f is an H1
at(σα)-atom

L(f) = 〈f, β〉L2(σα) , where β ∈ BMO(σα) .

Consequently b(x) is a representative of β(x). Indeed b(x)− β(x) is equal to a constant and

L(f) = lim
M→∞

〈
f, bM

〉
L2(R,σα)

≤ lim
M→∞

2C
∥∥bM∥∥BMO(σα)

‖f‖H1(σα)

≤ 2C2 ‖b‖BMO(σα) ‖f‖H1(σα) ,

which proves the theorem. �



6. The dual of H1(E): the space X(E)

In this section we give another equivalent description of H1(E)
∗: we associate to every b(x) ∈

B̃MO(σα) an entire function.

If b(x) ∈ B̃MO(σα), we consider T̃−1
α (b)(z), defined as:

(8.49) T̃−1
α (b)(z) :=∑

n∈Z

(
E(tαn)b(tαn)

tαn − z
− E(tαn)b(tαn)tαn

tα2
n + 1

)
E(z)E(tαn)− E#(z)E(tαn)

2πi

π

φ′(tαn) |E(tαn)|2
.

When z ∈ R, we write (8.49) in a different way:

T̃−1
α (b)(x)

=
∑
n∈Z

E(tαn)b(tαn)

(
1

tαn − x
− tαn
tα2
n + 1

) |E(tαn)| |E(x)|
(
ei(φ(tαn)−φ(x)) − e−i(φ(tαn)−φ(x))

)
2iφ′(tαn) |E(tαn)|2

=
∑
n∈Z

E(tαn)b(tαn)

(
1

tαn − x
− tαn
tα2
n + 1

)
|E(x)| sin(φ(tαn)− φ(x))

φ′(tαn) |E(tαn)|

= |E(x)|
∑
n∈Z

E(tαn)b(tαn)

(
1

tαn − x
− tαn
tα2
n + 1

)
sin(απ + nπ − φ(x))

φ′(tαn) |E(tαn)|

= |E(x)| (sin(απ) cos(φ(x))− cos(απ) sin(φ(x)))
∑
n∈Z

b(tαn)

(
1

tαn − x
− tαn
tα2
n + 1

)
E(tαn)(−1)n

|E(tαn)|φ′(tαn)
.

Since,

|E(x)| (sin(απ) cos(φ(x))− cos(απ) sin(φ(x)))

=
|E(x)|

2i

(
eiαπ cos(φ(x))− e−iαπ cos(φ(x))− i sin(φ(x))eiαπ − i sin(φ(x))e−iαπ

)
=

1

2i

(
eiαπE(x)− e−iαπE#(x)

)
,

we obtain that

T̃−1
α (b)(x) =

e−iαπ

2i

(
eiαπE(x)− e−iαπE#(x)

)∑
n∈Z

b(tαn)

(
1

tαn − x
− tαn
tα2
n + 1

)
1

φ′(tαn)
(8.50)

=
e−iαπ

2i
Sα(x)

∑
n∈Z

b(tαn)

(
1

tαn − x
− tαn
tα2
n + 1

)
1

φ′(tαn)
,

where Sα

Sα(z) := eiαπE(z)− e−iαπE#(z) .

From now on, we consider the case α = 0 and we do not write α unless two indexes would be
used at the same time. We assume that {ktn}n∈Z is a basis of H2(E).
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We note that when α = 0, (8.49) becomes

(8.51) T̃−1(b)(z) := −B(z)
∑
n∈Z

b(tn)

(
1

tn − z
− tn
t2n + 1

)
1

φ′(tn)
.

The function T̃−1(b)(z) is entire, since it is the uniform limit of entire functions on every
compact subset of C. Indeed, due to Proposition 8.21, the series converges uniformly on the
compact subset of C. Furthermore, if z = tn, then

T̃−1(b)(tn)(8.52)

= b(tn)
B′(tn)

φ′(tn)
+B(tn)

tnb(tn)

φ′(tn)(t2n + 1)
−B(tn)

∑
n6=k∈Z

b(tk)

φ′(tk)

(
1

tn − tk
− tk
t2k + 1

)
= b(tn) |E(tn)| (−1)n ,

where we used the fact that B(x) = sin(φ(x)) |E(x)|. Consequently,

(8.53) T̃−1(b)(tn) := b(tn) |E(tn)| cos(φ(tn)) = b(tn)A(tn) = b(tn)E(tn) .

We note that the operator T̃−1 is injective. Indeed, if T̃−1(b)(z) is the zero function, then
T̃−1(b)(tn) = 0 for every n ∈ Z. Consequently b(x) = 0 ,∀x ∈ supp(σ0).

We define

(8.54)
∥∥∥T̃−1(b)

∥∥∥
BMO(σα),R

:=

∥∥∥∥∥ T̃−1(b)(x)

E(x)

∥∥∥∥∥
BMO(σα)

,

and therefore ‖·‖BMO(σα),R is a seminorm in T̃−1( ˜BMO(σα)).

For every F (z) ∈ H1(E), the duality product is defined as

〈
F, T̃−1(b)

〉
:= lim

M→∞
lim
N→∞

∫
R
F

−B(x)
∑
|n|≤N

bM(tn)

(
1

tn − x
− tn
t2n + 1

)
1

φ′(tn)

 dx

|E(x)|2
,(8.55)

where bM(x) has been defined in (8.19). In particular, if A(z) is a H1(E)-atom, then

A(z) :=
∑
n∈A

A(tn)
ktn(z)

ktn(tn)
and σα(supp(A)) <∞ ,

and, since ktn(z) = B(z)A(tn)/(π(z − tn)),〈
A, T̃−1(b)

〉
= lim

M→∞
lim
N→∞

∑
n∈supp(A)

∑
|m|≤N

A(tn)

(
bM(tm)

A(tm)

)
π

φ′(tm)
δm,n+

+ lim
M→∞

lim
N→∞

∫
R

∑
n∈supp(A)

∑
|m|≤N

A(tn)

ktn(tn)

bM(tm)

φ′(tm)

tm
t2m + 1

ktn(x)B(x)
dx

|E(x)|2

= lim
M→∞

lim
N→∞

∑
n∈supp(A)

∑
|n|≤N

A(tn)

E(tn)
bM(tn)

π

φ′(tn)
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=

∫
R

A(x)

E(x)
b(x)dσ0(x) = 〈V0(A), b〉[H1

at,BMO(σ0)] .

Indeed

lim
M→∞

lim
N→∞

∫
R

∑
n∈supp(A)

∑
|m|<N

A(tn)

ktn(tn)

bM(tm)

φ′(tm)

tm
t2m + 1

ktn(x)B(x)
dx

|E(x)|2

= lim
M→∞

lim
N→∞

∑
|m|<N

bM(tm)

φ′(tm)

tm
t2m + 1

∫
R

∑
n∈supp(A)

A(tn)

ktn(tn)
ktn(x)B(x)

dx

|E(x)|2

and ∫
R

∑
n∈supp(A)

A(tn)

ktn(tn)
ktn(x)B(x)

dx

|E(x)|2
=

1

π

∫
R

∑
n∈supp(A)

a(tn)

x− tn
B2(x)

1

φ′(tn)

dx

|E(x)|2

=
1

π

∫
R

∑
n∈supp(A)

sin2 (φ(x))
a(tn)

x− tn
1

φ′(tn)
dx ,

where a(x) := A(x)/E(x). If #supp(A) = V , we call

G(z) :=
B(z)

x− t1
∈ H2(E) , C(z) :=

B(z)
∑V

j=2 x
j−2cj∏

n∈supp(A),n 6=1(x− tn)
∈ H2(E) ,

where cj will be specified later. Then∫
R

∑
n∈supp(A)

sin2 (φ(x))
a(tn)

x− tn
1

φ′(tn)
dx =

∫
R

sin2 (φ(x))

∑V
j=2 x

j−2cj∏
n∈supp(A)(x− tn)

dx

=

∫
R
G(x)C(x)

dx

|E(x)|2
= 〈G,C〉H2(E) .

However, since G(z) = π

A(t1)
kt1(z), then

(8.56)
∫
R

∑
n∈supp(A)

sin2 (φ(x))
a(tn)

x− tn
1

φ′(tn)
dx =

π

A(t1)

B(t1)
∑V

j=2 t
j−2
1 cj∏

n∈supp(A),n 6=1(t1 − tn)
= 0 .

We summarize what we have just proved by saying that

(8.57) 〈A, B〉 = 0 ∀ H1(E)-atoms and therefore for any elements in H1(E) .

In general, if
∑

k λka
k = F ∈ H1(E) ⊂ H2(E) and ‖F‖H1(E) = 2

∑
k |λk|. Then〈

F, T̃−1(b)
〉

:= lim
M→∞

lim
N→∞

∫
R
F (x)

∑
|m|≤N

bM(tm)

A(tm)

π

φ′(tm)
ktm(x)

dx

|E(x)|2

= lim
M→∞

lim
N→∞

∫
R

∑
k

λka
k(x)

∑
|m|≤N

bM(tm)

A(tm)

π

φ′(tm)
ktm(x)

dx

|E(x)|2
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= lim
M→∞

lim
N→∞

∑
|m|≤N

bM(tm)

A(tm)

π

φ′(tm)
〈F, ktm〉H2(E)

= lim
M→∞

lim
N→∞

∑
|m|≤N

F (tm)
bM(tm)

A(tm)

π

φ′(tm)
= 〈V0(F ), b〉[H1

at,BMO(σ0)] .

The duality product between H1(E) and the space T̃−1(B̃MO(σ0)) is therefore equivalent to
the duality product between H1(σ0) and BMO(σ0);
We want to extend the operator T̃−1 from B̃MO(σ0) to BMO(σ0), checking that it is well
defined on the equivalence classes. First of all we need the following well known identity, [28],
[69], [71].

Lemma 8.24 Let E(z) = A(z)− iB(z) be a Hermite Biehler function, as defined in (1.4). The

entire function A(z) can be also represented as

(8.58) A(z) = −B(z)
∑
n∈Z

(
1

tn − x
− tn
t2n + 1

)
π

φ′(tn)
z ∈ C ,

where {tn} are the zeros of B(z).

First of all, let us observe that the operator T̃−1 is well defined in BMO(σα). Let b ∈ B̃MO(σα)
and

T̃−1(b)(z) := −B(z)
∑
n∈Z

b(tn)

(
1

tn − z
− tn
t2n + 1

)
1

φ′(tn)
.

We consider c(x) ∈ B̃MO(σα) defined as

c(x) := b(x) + γ , ∀x ∈ supp(σα), where γ ∈ C ;

It is clear that c(x) and b(x) represent the same element in BMO(σα). Furthermore,

T̃−1(c)(z) : = T̃−1(b)(z)− γB(z)
∑
n∈Z

(
1

tn − z
− tn
t2n + 1

)
1

φ′(tn)
(8.59)

= T̃−1(b)(z) + γA(z) .

We are now ready to introduce the analytic description of H1(E).

Definition 8.25 We define the space

(8.60) X(E) := T̃−1(B̃MO(σ0))/ 〈A(z)〉 ,

where if X(E) 3 g := T̃−1(b)(z) with b ∈ B̃MO(σ0), then

‖g‖X(E) := ‖b‖BMO(σ0) .

The ‖·‖X(E) is well defined. Indeed, let f, g ∈ [g]X(E) and f(z) = T̃−1(b)(z), g = T̃−1(c)(z). Since
f(z)− g(z) = kA(z), then b(x)− c(x) = k where x ∈ supp(σ0) and consequently b(x) = c(x) in
BMO(σ0).
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We note also that ‖·‖X(E) is a norm. We already know that it is a seminorm. Furthermore,
it is a norm since ‖f‖X(E) = 0 if and only if f = T̃−1(k), that is f = kA(z) and consequently
f ∈ [0]X(E).

Let us now prove Theorem 8.2, that is, that BMO(σ0) is isomorphic to X(E).

Proof Theorem 8.2. In order to prove this theorem it is enough checking that BMO(σ0)

is isomorphic to X(E).

Let us introduce the map V from BMO(σ0) to X(E):

(8.61) V (b)(z) := −B(z)
∑

06=n∈Z

b(tn)

(
1

tn − z
− tn
t2n + 1

)
1

φ(tn)
.

Thanks to (8.59) the operator V is well defined in BMO(σ0). Indeed if b, c ∈ [b]BMO(σ0), then

V (b) − V (c) = kA(z), that is V (b), V (c) ∈ [V (b)]X(E). Due to the definition of X(E), V is

surjective. Finally, we check that V is injective. Indeed,

V −1(γA)(x) = T̃ (γA)(x) = γ ∀x ∈ supp(σ0) ,

which corresponds to the zero element of BMO(σ0). It is clear that the operator V is an

isomorphism since

‖g‖X(E) = ‖b‖BMO(σ0) when g = T̃−1(b) ,

which proves the theorem. �

The dualitiy product between H1(E) and X(E) is defined as in (8.55) so that

〈A, g〉[H1(E),X(E)] =
∑
n

A(tn)

E(tn)
b(tn)

1

φ′(tn)

where b = V −1(g) and A is a H1(E)-atom. Again this definition does not depend on the choice
of the representative g, since∫

R
f(x)A(x)

dx

|E(x)|2
= 0

for every f ∈ H1(E)-atom and consequently for every element of H1(E). Indeed∫
R
f(x)A(x)

dx

|E(x)|2
=

∫
R

∑
n∈supp(f)

f(tn)

ktn(tn)
ktn(x)A(x)

dx

|E(x)|2

=

∫
R

∑
n∈supp(f)

F (tn)

x− tn
A(x)B(x)

1

φ′(tn)

dx

|E(x)|2
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=

∫
R

∑
n∈supp(f)

cos(φ(x)) sin (φ(x))
F (tn)

x− tn
1

φ′(tn)
dx

where F := f/E. If #supp(f) = N , we call

G(z) :=
A(z)

x− s1/2
∈ H2(E) , C(z) :=

(x− s1/2)B(z)
∑N

i=2 x
i−2wi∏

n∈supp(f)(x− tn)
∈ H2(E) ,

where A(s1/2) = 0 and wi will be specified later. Then∫
R

∑
n∈supp(f)

cos(φ(x)) sin (φ(x))
F (tn)

x− tn
1

φ′(tn)
dx

=

∫
R

cos(φ(x)) sin (φ(x))

∑N
i=2 x

i−2wi∏
n∈supp(f)(x− tn)

dx

=

∫
R
G(x)C(x)

dx

|E(x)|2
= 〈G,C〉H2(E) .

However, since G(z) = − π

B(s1/2)
ks1/2(z), then∫

R

∑
n∈supp(f)

cos(φ(x)) sin (φ(x))
F (tn)

tn − x
1

φ′(tn)
dx = 0 .

Summarizing, we say that

(8.62) 〈f, A〉 = 0 ∀ H1(E)-atoms and therefore for every elements in H1(E) .

We note that all the computations that we have made in these last two sections are similar to
those needed to characterize the dual of B1

π. Nevertheless, we have included them since there
are some huge differences: for example we cannot use the Fourier transform in order to simplify
the estimates.

We note also that an analytic characterization of H1(E)∗ is still unknown. Indeed we did
not manage to prove that the space X(E) is isomorphic to some space Y(E) similar to (7.31).
We will face this last problem in the future.
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Operator Theory. Springer, Basel (2015), 549-580.

[75] Stegenga, D.A. Bounded Toeplitz operators on H1 and applications of the duality between H1 and the

functions of bounded mean oscillation Amer. J. Math. 98 (1976), no. 3, 573–589.

[76] Stein, E.M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, With the

assistance of T.S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III.

Princeton University Press, Princeton, NJ, 1993. pp. 695.

[77] Sundberg, C. Truncations of BMO functions, Indiana Univ. Math. J. 33 (1984), no. 5, 749–771.

[78] Vol’berg, A.L; Treil’, S.R. Embedding theorems for invariant subspaces of backward shift operator, J. Soviet

Math. 42 (1988), no. 2, 1562–1572.

[79] Yosida, K. Functional analysis, Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-

Verlag, Berlin, 1995. pp. 501.



Acknowledgments-Ringraziamenti

First of all, I want to thank my supervisor, Prof. Marco Peloso, for the patience and the advices
he has provided over these years. I am grateful to him for the time he has spent listening to
me, stimulating my interest in this difficult, yet wonderful topic. He has been always present,
finding time for listening to my problems. I express my deepest gratitude to him.

Next, I thank all the mathematicians who helped me, solving my doubts. I thank Prof. A.
Baranov, Prof. J. Toloza, F. Gonçalves, B. Hatinoğlu, Prof. S. Norvidas, Prof. K. Dyakonov,
Prof. R. Bessonov and many others more. Even if most of them do not know me, they always
gave helpful advices during these years of pandemic, when I wrote them asking for suggestions
and references.

Ringrazio tutti i miei colleghi di dottorato: per merito loro è sempre stato un piacere studiare
in dipartimento. Ringrazio in particolar modo i miei compagni di studio: Andrea A., Davide
D., Francesco B., Marco A., Alessandro D., Junior C., Alessio M., Lorenzo D., Emanuele P.,
Francesca G., Andrea C., Matteo D., Luigi P., Leonardo F. ed Eugenio D.

Ringrazio, inoltre, gli amici dell’ “università” Andrea, Cristina, Elisa, Marco, Matteo, Michael
con cui ho passato tante serate e che nonostante le scelte e i percorsi diversi, sono sempre stati
presenti.

Ringrazio la mia famiglia: mia sorella Alice per avermi spinto ad affrontare le difficoltà con
maggiore sicurezza e mia madre, che continua a prendersi cura di me.

Ringrazio inoltre la mia compagna Francesca, che tutti i giorni dimostra di volermi bene stan-
domi accanto.

Infine ringrazio mio padre per il supporto che mi ha dato nei problemi quotidiani e per il
sostegno nella mia ricerca. A lui devo tanto di questo percorso e a lui dedico questo elaborato
finale.

131


	Introduction
	I Preliminaries
	Chapter 1. Hermite Biehler functions and de Branges spaces
	Hermite Biehler functions
	Hilbert de Branges spaces
	Some examples
	The phase function E
	p-de Branges spaces

	Chapter 2. Orthonormal basis of reproducing kernels in Hilbert de Branges spaces
	Herglotz functions
	Orthogonal bases of reproducing kernels and Clark measures
	p different from zero
	Plancherel-Pólya inequality for Hp(E)


	II Boundedness of operators
	Chapter 3. Necessary conditions for the boundedness of translation operators
	Vertical translation, Carleson measures and Hilbert transform
	Boundedness of Ti and the matrix 
	Horizontal translation and Carleson measures

	Chapter 4. Necessary and sufficient condition for boundedness of translation operator  in de Branges spaces
	Sufficient conditions for vertical translation
	Necessary condition for vertical translation
	The case of no zeros in the horizontal strip
	Sufficient condition and necessary condition for horizontal translation
	Necessary and sufficient condition with no zeros in the horizontal strip
	Boundedness of T1 from the boundedness of T

	Chapter 5. Continuous embedding between p-de Branges space
	Proof in the case p>1
	Proof in the case p=1
	More observations and further results


	III Duality results
	Chapter 6. Duality and Toeplitz operator
	The dual of Hp(E) when p>1
	Toeplitz operator in H1(C+)
	Domain of multiplication operator in BMO(R)

	Chapter 7. Dual of 1-Bernstein space
	The 1-Bernstein space
	BMO(Z): the dual of H1(Z)
	The dual of B1: the space X
	The analytic dual of B1: the space Y

	Chapter 8. Dual of 1-de Branges space 
	Preliminaries
	Properties of Clark measures
	Atomic decomposition: H1at()H1(E)
	Atomic decomposition: H1(E)H1at()
	The dual of H1at()
	The dual of H1(E): the space X(E) 

	Bibliography
	Acknowledgments-Ringraziamenti


