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Abstract. Unsupervised learning (UL) is a class of machine learning
(ML) that learns data, reduces dimensionality, and visualizes decisions
without labels. Among UL models, a variational autoencoder (VAE)
is considered a UL model that is regulated by variational inference to
approximate the posterior distribution of large datasets. In this paper, we
propose a novel explainable artificial intelligence (XAI) method to visu-
ally explain the VAE behavior based on the second-order derivative of the
latent space concerning the encoding layers, which reflects the amount
of acceleration required from encoding to decoding space. Our model is
termed as GradeVAE and it is able to capture the local curvatures of
the representations to build online attention that visually explains the
model’s behavior. Besides the VAE explanation, we employ our method
for anomaly detection, where our model outperforms the recent UL deep
models when generalizing it for large-scale anomaly data.
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1 Introduction

Explainable artificial intelligence (XAI) is an emerging field in artificial intelli-
gence (AI) and machine learning (ML), and deals with explaining the decisions
and behaviors of learned models. XAI models are also associated with unsuper-
vised learning (UL) to learn and visualize the hidden structure of data with lim-
ited levels of prior assumptions. Autoencoder models (AEs) are a class of genera-
tive UL (UGL) methods, which can reduce dimensionality, visualize and generate
data, and perform other ML tasks such as object recognition [1,2]. Many different
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types of AEs have been introduced recently and they are characterized by a regu-
larization term; such term enforces the AEs to learn with an additional penalty to
capture different representations for a better generalization [3,7].

Deep AEs encompass many different encoding and decoding stages, where
at each stage diverse layers with associated parameters (6 = {W, B}, W and B
are weights and biases, respectively) are employed to perform a specific map-
ping (convolution, deconvolution, dense multiplication, etc.), by utilizing several
sets of representations to capture the neurons’ responses [6]. Moreover, for each
setting among parameters (after each learning iteration or epoch), the gradient
is approximated between the input and output by using the first-order partial
derivative to optimally fit the model to the data [4]. AEs comprise classic, de-
noising [27], contractive [23], sparse [20], variational-AE (VAE) [14], and they
can also be integrated with other UL models, for example, when combining the
generative adversarial networks (GANs) with VAE [17].

Among all AEs, the VAE is regularized by variational inference (VI) [31] to
optimize the posterior distribution for large datasets, and it outperforms the
others in terms of large-scale generalization (when testing data are larger than
the training set). The VAE is utilized in many different fields including image
reconstruction and recognition, compression sensing, and other deep learning
tasks [14]. However, explaining VAEs did not receive an appropriate interest in
the literature, where explaining such a UGL model is considered essential to
understanding the behaviors of neurons when new data (normal or anomaly) is
generated. [9,24,25]. Thus, different works have been proposed for explaining
models through supplementary inputs to carry out specific tasks. However, such
works did not explain the behaviors of the models themselves [18,26,32].

The first explainable VAE has been introduced in [16], where it generates
offline attention (after learning) by reduplicating the last layer of the encoder,
then scaling it up by the global average pooling of the gradient of the latent space
concerning that layer. Such attention is seen similar to explaining discriminating
models [30]; however, the proposed attention is scaled up by the gradient. The
drawback of such an attention lies in unfair scaling, i.e., related and unrelated
features in the channels of the filters are scaled with the same factor.

To help to explain VAEs, we propose GradsVAE, a novel XAI model uti-
lizing online mapping, i.e., after each epoch, visual attention can be produced.
Moreover, the Grady VAE utilizes the second-order (2°¢) derivative between the
latent and 1% encoder’s layers to obtain the 15° derivative of the gradient, which
captures the curvatures of neurons responses that are aggregated to show how
the VAE learns data without additional scaling. Therefore, our contribution is
twofold: (i) introducing a novel method to explain the VAEs employing the
gradient derivation, and (i) expanding our method to accelerate VAE learn-
ing (reduced epochs) and one-class anomaly detection. The rest of this paper is
organized as follows. Section 2 highlights the VAE and the 2" derivative inter-
pretation. Section 3 describes the Grads VAE. The experimental results are given
in Sect. 4. The conclusion and future works are reported in Sect. 5.
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2 VAE and 2"¢ Derivative Interpretation

2.1 VAE Model

Similarly to any AE model, the VAE contains two main modules: (i) the encoding
module (inference side) that is employed to map data X = {z;|z; € R, i =
1,..., N}, D is the original dimensionality, to a latent space Z = f(X) =
{zl = f(z;) €RY |i=1,..., M}; such a module reduces dimensionality where
0 <d< D,and it is used to mfer the model likelihood P(X0); (ii) the decoding
module (generatwn side) that is utilized to generate or reconstruct the original
data X from the latent space Z [11,12]. For a given data X € R”, the encoding
module creates a mapping f : R? — R?, while the decoding module creates a
mapping g : R? — RP, which generates an approximation of the original data:
X = g(Z;6q) [2]. The AEs are regulated to find the parameters (6., 6,) that
achieve a better generalization [7], and to obtain the minimum loss Lrgc:

= min||X — (f o 9) X[, (1)

L I
RECy5. 4.3

where the reconstruction error E, can be measured by different metrics including
mean square error (MSE), Frobenius norm, reconstruction cross-entropy, or (-
divergence [1,3].

Among all AE models, VAE is regulated by the VI, and it is optimized based
on two different losses that are minimized simultaneously [14]. VI method is
one of the Bayesian techniques, which can be utilized to estimate an intractable
posterior over a big dataset using a simpler variational distribution to obtain the
solution to an optimization problem [31], i.e., the VI approximates probability
densities through optimization. By considering the encoder module output, the
approximate posterior distribution Q(Z|X) is estimated, which parameterizes
the shape of the latent distribution according to the original input data X.
Moreover, optimizing Q(Z|X) characterizes the VAE, where it enforces the latent
space distribution to follow a unit Gaussian distribution with a certain mean u
(which reflects the center of the Gaussian), and a standard deviation o (which
reflects the Gaussian shape).

Initially, the prior distribution of latent space P(Z) is drawn (simply by
copying the unit Gaussian distribution of the data manifold P(X)). There-
after, the approximated distribution Q(Z|X) and the prior P(Z) are compared
using the KL divergence [22]. The KL divergence is defined as KL(P||Q) =
Y. P(z)log QE g, which is always positive and tends to zero if and only if P and
@ are almost equal. Moreover, appending noise to Q(Z|X) throughout varying
o by a small value €, and then enforcing the AE to reconstruct the data fol-
lowing the true (not varied one) Gaussian P(Z) is called the reparameterization
trick; such a trick generates several different distributions (similarly to dupli-
cate the training data with fusion) that are optimized and compared with prior
distribution by the KL divergence, thus the model can be better generalized for
a large-scale testing stage [14]. Finally, the VAE is optimized to minimize the
Lrrc according to Eq. (1), and it is also optimized to minimize the latent loss



Grad2VAE: An Explainable Variational Autoencoder Model 673

4 fx)

Epochs
>

Fig. 1. The neuron activation and gradient over epochs. (Color figure online)

between Q(Z|X) and P(Z) using KL(P||Q), which measures to which extent
the reparameterized latent distribution can follow a unit Gaussian:
= min[Lrec + KL(P||Q)] - (2)

L -
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2.2 The Second-Order (2"9) Derivative Interpretation

The first-order (15%) partial derivative between input and output neurons reflects
the 1%¢ gradient, which measures the instantaneous rate of change (velocity or
speed) O [21] among model parameters 6 that are employed to optimally fit
ML model [13]. Moreover, if the gradient sign is negative, then it is decreasing
(velocity is reduced), while if the gradient sign is positive then it is increasing
(velocity is accelerated).

For a VAE with an encoding layer L.; and a latent layer Z, the 15¢ gradient
of Z with respect to L1 is computed by carrying out the partial derivative of

each neuron z; as 6dLZi1 ; considering that if an additional layer L.o acts between

L.1 and Z, then the chain rule is introduced as 88[/2:1 = BBLZ:Z gf—i [5]. The final
result of derivations gives all possible rates of changes, which are required to
update 6 laying between L., and Z. Because the rate of change (9) of a neuron’s
response (activation) is changing during a period of time (over several epochs),
thus capturing the variation in the rate of change is essential to obtain the

acceleration required for a neuron from the velocity [29], and it is achieved by

considering the derivative of the gradient, i.e., 2°¢ derivative g‘Zg 8]
Graphically, a neuron response that is modeled by a non—linearﬁlReLU function
[19] is given according to Fig.1: the 15¢ gradient is the slope at a point in the
graph (blue curve), whereas the 15¢ derivative of gradient explains how the slope
is changing over time (the red and green points). As it is noticed from Fig. 1,
the gradient of a neuron response can be steady at a period of the learning time,
i.e., the 2" derivative around the green points is ~ 0; however, it can change at
a different period, i.e., the 2" derivative around the red points is > or < 0.
Accordingly, utilizing the 2°¢ derivative that measures how the 1% gradient
of neurons responses is changing (as in deriving the acceleration from speed),
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Fig. 2. The Grad2VAE block diagram.

the curvatures of representations and the temporal behavior of neurons when
learning data can be captured. Moreover, such a strategy can be represented by
a learnable attention map, which aggregates all 2" partial derivative to explain
how the latent neurons of Z are activated to the local curves and edges.

Our GradsVAE employs the 2" gradient to visually explain the learned
representations of the VAE in an online fashion by reconstructing attention
maps, and it exploits such explanations in the application of one-class anomaly
detection [24]. Moreover, we will show how such a strategy is able to accelerate
the convergence among the learning parameters 6.

3 Grad,VAE

Figure2 shows our proposed GradsVAE, where it comprises an encoder, a
decoder, and an attention module. Both encoder and decoder contain one stage of
down-sampling (convolution with a stride of 2) and up-sampling (de-convolution
with a stride of 2), respectively. Moreover, the size of the first two layers of the
encoder and the last two layers of the decoder are fixed to uniform the dimen-
sionality. Thus, the obtained attention of the 2"4 derivative can be fused with
the Ly, , layer (d,, is the total number of the decoder’s layers); such a fusion is
seen as a form of residual learning [10], which enforces the Grads VAE to learn
the residual of mapping between the encoder and decoder by utilizing the gradi-
ent attention. Accordingly, besides the explainability of the Grads VAE, it also
boosts the reconstruction of data by utilizing the curvatures of representations
that are combined with the decoder. Therefore, the Grads VAE optimizes two
losses by using Adam [13] as:

LGradgVAE = min[LVAE + ||X - ggrad(Zv Lel)||]2-3r]7 (3)

where the first loss is taken from the vanilla VAE [14] that is depicted at Eq. (2),
and the second loss is the reconstruction loss between the data and the aggre-
gated attention that is obtained from the attention module (see Fig.2). More-
over, 0graq represents the 2 derivative between each latent neuron z; with
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Fig. 3. The unfolding of the tensor that holds all second-order partial derivatives
(Gradez) of z3 (green tensor) and z16 (gray tensor) concerning L1, respectively. (Color
figure online)
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of Grad2VAE. [16].

Fig. 4. Grad2VAE learnable attention vs. the offline attention proposed in [16] that
depends on scaling of the penultimate encoding layer by the gradient of Z respecting
that layer when learning the 10*® class from MNIST digits.

respect to L.i, i.e., for each z; there is a corresponding tensor of size of the
L¢y to allocate all partial derivatives. Additionally, the derivative of gradient
of Z can be implemented with respect to all other encoder’s layers (as in con-
sidering L.3); however, considering more depth layers requires re-scaling the
dimensionality which needs more computational time and leads to the loss of
global representations.

4 Experimental Results

To show the performance of our Grads VAE, we employ both MNIST and fashion
MNIST datasets [15,28]. Each comprises 60k images for training and 10k for
testing, divided in 10 classes with image size of 28 x 28. Moreover, all quantitative
analysis experiments are implemented with a batch size of 128, 100 epochs with
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a starting learning rate () of 0.001, where the 7 is reduced after 50 epochs by
a factor of 1072 to search and fine-tune the parameters 6.

4.1 Grad;VAE Explainability

The Grad;VAE explainability lies in the attention module, which aggregates
the derivatives of gradients and it reflects the curvatures among representations
that are obtained at the neurons response level. For each z;, the corresponding
tensor of 2" partial derivative is produced and it represents the neuron atten-
tions, where the number of tensors is a function of the latent space dimensions.
Thereafter, all tensors are aggregated by different matrix methods including the
addition, mean, convolution, etc. [16]. Figure 3 shows the 27d partial derivative
attentions of the second and last neurons of Z as a function of the depth of the
convolutional filters, where the Grad, VAE has been trained to show the explain-
ability for the 9*" class of the MNIST, by considering 16 neurons for Z and a
depth of 16 filters. Moreover, Fig. 4 shows a comparison between the aggregated
attention of the Grads VAE (based on convolutional aggregation), and the atten-
tion proposed in [16] (based on the mean aggregation). As it can be noticed from
the figure, considering the 2°¢ partial derivative (a derivative of gradient) offers
a better explainable visual attention that retains all possible curvatures of the
representations.

4.2 GradsVAE in One-Class Anomaly Detection

Anomaly detection (AD) is a branch of ML that characterizes data samples
that are misrepresented from what is normal or predicted [25]. One-class AD is
referred to as a learning approach in which only normal data is considered at the
training stage, where the ML model learns to classify or reconstruct the normal
data only [24]. However, at the testing stage, all data samples that are falling
out of the normal class distribution of the trained data are considered, and the
ML model must be able to distinguish between normal and anomalies samples.
The decoder of the Grad;VAE is guided by the curvature of representations
from the encoder, thus the reconstruction process is accelerated and optimized.
Accordingly, the Grads VAE is directly applied to the AD due to its reconstruc-
tion ability. In the following, we employ the Grads VAE in the one-class AD,
where we benchmark our model on the MNIST and fashion datasets. Moreover,
the average area under the receiver operator characteristic curve (AUC-ROC) is
considered as a metric to show the performance, where we report the qualitative
and quantitative comparisons to the recent works.

Qualitative Analysis Comparison. In this section, we visually compare our
work with [16] based on the MNIST dataset. For this analysis, we consider 600
epochs for qualitative comparison. Moreover, we have followed [16] to train our
model considering one class from the training set as a normal class, thereafter
testing with all classes from the testing set. Hence, our model must be able to
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Fig. 5. The qualitative analysis comparison between our Grad2VAE model that pro-
duces learnable attention maps (online attention) and the offline attention introduced
in [16], where GT represents the ground truth samples. Moreover, the images that
appear in the first two rows of the figure have been tested when only the second class
of the MNIST digits has been trained, also in the bottom two rows of the figure, the
model has been trained considering only the fourth class and tested with all other
images from all classes.

produce visual attentions for all testing classes avoiding bias to the previously
learned normal class. Figure5 shows the attention maps comparison between
our model and [16] when both are trained with the 2°¢ and 4" classes from the
dataset separately, then considering data from other classes (out of the trained
data distribution) as testing samples.

As it can be noticed from Fig. 5, our model produces visual attentions maps
that completely retain the curvatures among representations of the input data
regardless that they are normal (seen) or anomalies (unseen from other classes).
Specifically, our model is able to visually explain the differences between normal
and anomalies samples, avoiding further preprocessing such as scaling attentions
maps by the gradient as in [16] to partially detect and explain the anomalies.

Quantitative Analysis Comparison. In this section, we compare our model
with the recent deep UL models, where we consider the CAE OCSVM, Deep
SVDD, and Inception-CAENN [24,25]. Moreover, we followed [25] to train 10
models for each normal class, thus reporting the average AUC-ROC over 10
Grady VAEs. Additionally, we used 16 and 32 neurons as the bottleneck size
for the MNIST and fashion, respectively. Our results are reported in Table1
considering only 100 epochs, due to the acceleration in learning ability that the
Grad VAE possesses.
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Table 1. The AUC-ROC metric comparison with recent deep learning models, where
the first column shows the utilized datasets, the second column gives the data classes
related to each dataset, and all other columns contain the results of the employed
models to evaluate the performance. Moreover, each row in the table contains the
results when training the model with the class of data that is labeled by the value of
the normal class column and lies in that row, subsequently testing the model with the
testing data from all classes.

Dataset Normal-class CAE OCSVM Deep SVDD | Inception CAENN | Grad; VAE
0 95.40 99.10 98.70 97.62
1 97.40 99.70 99.70 96.81
2 77.60 95.40 96.70 98.84
3 88.60 95.10 95.20 98.53
4 83.60 95.90 95.00 97.98

MNIST 5 71.30 92.10 95.20 98.70
6 90.10 98.50 98.30 98.54
7 87.20 96.20 97.00 98.59
8 86.50 95.70 96.20 98.09
9 87.30 97.70 97.00 98.62
Average 86.50 96.60 96.90 98.23
T-shirt 88.00 98.80 92.40 96.54
Trouser 97.30 99.77 98.80 95.88
Pullover 85.50 93.50 90.00 96.59
Dress 90.00 94.90 95.00 96.29
Coat 88.50 95.10 92.00 96.49

FASHION | Sandal 87.20 90.40 93.40 96.39
Shirt 78.80 98.00 85.50 96.65
Sneaker 97.70 96.00 98.60 96.05
Bag 85.80 95.40 95.10 96.58
Boot 98.00 97.60 97.70 96.42
Average 89.70 95.90 93.90 96.37

As it can be noticed from Table 1, the Grads VAE outperforms the other mod-
els under reduced epochs, where all other models have been trained considering
150 epochs [25]. Moreover, the Grads VAE does not show any bias to a class
against all other classes, e.g., the Deep SVDD and Inception-CAENN learn the
274 class from the fashion dataset perfectly; however, they show minimum accu-
racies for the 6" and 7" classes, respectively. Finally, the Grads VAE shows a
better mean standard deviation (mstd) among the averaged results (of 10 mod-
els), where our maximum mstd for both datasets did not exceed 0.117, whereas
it reached 3.8, 3.9 for the Deep SVDD, and Inception-CAENN; respectively [25].

Furthermore, to show the learning complexity and performance convergence
(acceleration) of our proposed Grads VAE model, we compare the accuracy con-
vergence with the baseline convolution AE (Baseline CAE), vanilla VAE, and
Inception CAENN models [3,25]. Moreover, under the same experimental setup
reported in Sect. 4, the Baseline CAE learns 0.266 M, vanilla VAE learns 3.25 M,
and Inception CAENN learns 0.335 M parameters to complete one training
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Fig. 6. AUC metric over the first 50 epochs for both MNIST datasets.

epoch. Additionally, our proposed GradaVAE learns 3.38 M parameters as a
consequence of the online attention module and the 2" order partial derivative
parameters.

Figure 6 depicts the learning acceleration ability over the learning epochs of
our proposed Grads VAE model considering the related models in the literature.
As it is noticed from the figure, our proposed Grads VAE shows the highest learn-
ing convergence ability at an early stage of the learning period, i.e., our proposed
model is able to search and find the suitable learning parameters, (6 = {W, B}),
at an initial interval of the learning epochs, which accelerate the model learning
and prevent the model from overfitting. That is by considering the XAI atten-
tion maps, which are fused with the penultimate layer to compensate for the
loss caused by encoding and decoding operations. Finally, our model learns a
number of parameters that are equal to 12.7x, 1.03%x, 10.10x of the Baseline
CAE, vanilla VAE, and Inception CAENN models, respectively. However, it con-
verges to an accuracy of greater than 95% for both datasets considering the half
number of the learning epochs required to learn the vanilla VAE, and the other
remaining models did not reach such accuracy in the first 50 epochs. Accord-
ingly, our proposed model converges to the optimal set of learning parameters
under a limited number of learning epochs, and it also outperforms all related
models in the literature considering both datasets.

5 Conclusions

We proposed an explainable VAE model termed (GradaVAE) to be utilized for
XAI, image reconstruction, generation, object detection, and anomaly detection
applications. We used the 2"d partial derivative of the neuron activation (or
responses) between the latent space, Z, and the 1°% encoding layer to capture
the curvatures of the representations at an early stage by reconstructing visual
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attention maps. Our proposed model can be expanded for different data types
and scales, it also accelerates the learning process by boosting the whole recon-
struction process through the residual fusion. Moreover, we employed our pro-
posed model to explain the learned representations through a learnable (online)
visual attention mapping, where it shows a better visual explainability than the
related works based on offline attention mapping. Furthermore, we generalized
our proposed model in the application of one-class anomaly detection. Our model
outperforms all related deep models in both qualitative and quantitative analy-
sis. In future works, we plan to investigate our proposed method for other UGL
models such as GANs and other ML applications.
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