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The non-Markovianity of an arbitrary open quantum system is analyzed in reference to the multi-
time statistics given by its monitoring at discrete times. On the one hand, we exploit the hierarchy
of inhomogeneous transfer tensors, which provides us with relevant information about the role of
correlations between the system and the environment in the dynamics. The connection between
the transfer-tensor hierarchy and the CP-divisibility property is then investigated, by showing to
what extent quantum Markovianity can be linked to a description of the open-system dynamics by
means of the composition of 1-step transfer tensors only. On the other hand, we introduce the set of
stochastic transfer tensor transformations associated with local measurements on the open system
at different times and conditioned on the measurement outcomes. The use of the transfer-tensor
formalism accounts for different kinds of memory effects in the multi-time statistics and allows us to
compare them on a similar footing with the memory effects present in non-monitored non-Markovian
dynamics, as we illustrate on a spin-boson case study.

I. INTRODUCTION

In a dynamical quantum system the interaction with the
external environment typically leads to non-Markovian
behaviours, which, broadly speaking, are associated with
the presence of memory effects in the system evolution
[1–22]. Although by now many distinct definitions of quan-
tum non-Markovianity have been introduced, two main
pathways can be identified [23].
In one case, the focus is on the evolution of the open-

system state at different times, as fixed, e.g., by the dy-
namical maps or the master equations that characterize
the open-system dynamics [24, 25], while in the other case
the focus is on the statistics associated with a sequence
of local measurements (or other active interventions) per-
formed on the open system at subsequent times. These
two approaches to non-Markovianity are indeed inherently
different, as the former addresses the predictions related
with observables at a single time, while the latter concerns
the multi-time statistics. In addition to such a difference,
which already appears at the classical level [26, 27], the
quantum nature of the system at hand implies a further,
fundamental distinction between the single-time and the
multi-time notions of non-Markovianity. Contrary to what
happens classically, in quantum systems it is generally
not possible, even in principle, to access the information
associated with sequential measurements without disturb-
ing the system that is being measured. Indeed, quantum
measurements alter the current state of the system, as
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well as its correlations with the environment, which will
later result in a modified evolution [7, 9, 28–35]. As a
consequence, the presence of intermediate measurements
can bring along specific forms of memory, which combine
in a non-trivial way with the memory strictly due to the
system-environment interaction.
In this paper, we investigate the relation between the

memory effects appearing in an open quantum system dy-
namics and those associated with the multi-time statistics
due to sequential measurements, by means of the transfer
tensor (TT) method [36–39]. We will show that the latter,
which was introduced to treat efficiently the long-time dy-
namics of open quantum systems, also allows one to treat
memory effects on the dynamics and the multi-time statis-
tics on a similar footing. First, we prove to what extent the
divisibility property of the dynamical maps, which is the
defining property of quantum non-Markovianity accord-
ing to [4, 7], is linked to the hierarchy of TTs also in the
inhomogeneous case, i.e., beyond the time-translational
invariant regime explored in the original paper [36]. Then,
we extend the definition of the TTs to the situation where
the open system is measured at subsequent times, via the
corresponding conditional stochastic dynamics, and we
take into account the multi-time probabilities that de-
fine the expectation values associated with measurements
performed at different times. This allows us to identify
different forms of memory in the multi-time statistics,
related with the interplay between the correlations and
environmental-state transformations induced by, respec-
tively, the interaction between the open system and the
environment and the sequential measurements. After in-
troducing proper quantifiers related with the L2-norm of
the multi-step (i.e., step greater than 1) TTs, we com-
pare in a case study the relevance of such memory effects
for different kinds of measurements, including the case
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without any intermediate measurement.
The rest of the paper is organized as follows. In Sec.II,

we recall the main features of the TTs formalism that are
relevant for our analysis, focusing in particular on the re-
cursive construction of the TTs. In Sec.III, we prove that
if only multi-step TTs are different from zero the open-
system dynamics is divisible, while the converse statement
does not hold, as we show by means of an explicit example.
In Sec.IV, we first generalize the TTs formalism to the
case of multi-time measurements, by introducing a family
of TTs conditioned on the sequence of measurement out-
comes, and then we exploit it to characterize the different
kinds of memory effects associated with the multi-time
statistics. Finally, the conclusions and outlooks of our
analysis are discussed in Sec.V.

II. INHOMOGENEOUS TRANSFER TENSORS
HIERARCHY

We begin by briefly recalling the TT formalism for the
dynamics of an open quantum system [36] and the micro-
scopic characterization of the TTs recently derived in [38],
which allows to build up the complete TTs hierarchy and
to connect it with the system-environment correlations.
Such a construction will be extended to an evolution con-
ditioned on the occurrence of sequential measurements in
the following of the paper.

A. General microscopic definition of TTs

Let us consider a quantum system S in interaction
with an environment E. The dynamics of the composite
system S + E is governed by a possibly time-dependent
Hamiltonian H(t) = H0(t) +Hint, where Hint takes into
account the interaction of the system with the environ-
ment, while H0(t) = HS(t) + HE concerns the uncou-
pled time evolution of S and E. The interaction Hamil-
tonian Hint is fixed but unknown, and HS(t) can be
time-dependent. Assuming an initial product-state be-
tween the open system and the environment and a fixed
initial state of E, i.e., ρt0 = ρS,t0 ⊗ ρE,t0 , the dynam-
ics of S can be described by means of the formalism of
quantum dynamical maps [8, 24, 25]. In fact, one can
define a one parameter family of completely positive,
trace-preserving (CPTP) dynamical maps {Φ(t, t0)}t≥t0 ,
with Φ(t, t0) : S(HS)→ S(HS), where S(HS) denotes the
sets of density operators (non-negative operators with
unit trace) acting on HS and Φ(t, t0) is CPTP at any
time t. Hereafter, the action of the dynamical maps of
the system will be taken into account at the discrete time
instants (not necessarily equally spaced) tk, k = 1, . . . ,m,
and we will use the notation Φ(tk, t0) ≡ Φk and

ρS,k = ρS(tk) = Φk[ρS,0]. (1)

This will make the comparison with the sequential-
measurement scenario more transparent and will further

allow us to directly apply the TT method [36]. The latter
relies in fact on a family of maps, the TTs Tk,j , which are
defined by the relation

Tk,0 = Φk −
k−1∑
j=1

Tk,jΦj , (2)

equivalently expressed by

Φk =
k−1∑
j=0

Tk,jΦj . (3)

In other terms, the state at the time instant tk is ob-
tained by propagating the states at tj according to the
equation ρS,k =

∑k−1
j=0 Tk,jρS,j . We stress that, at vari-

ance with the original formulation, we are not assum-
ing time-invariance; thus our analysis will also apply to
time-dependent Hamiltonians and non-stationary initial
environmental states [36].
A useful expression for generic, possibly inhomoge-

neous TTs was recently derived in [38]. Given the global
unitary dynamics of the composite system S + E from
ts to tk, i.e., Uts:tk [ρ] ≡ Uts:tkρU

†
ts:tk with Uts:tk ≡

T exp(−i
∫ tk
ts
H(τ)dτ) (T is the time ordering operator),

let us introduce the CPTP maps Γk|k−n : S(HS)→ S(HS)
defined as

Γk|k−n[σS] ≡ TrE
[
Utk−n:tk [σS ⊗ σE,k−n]

]
, (4)

where TrS/E[·] denotes the partial trace w.r.t. the Hilbert
space of S or E, σS denotes a density operator on HS and
σE,k−n is a time-dependent density operator on HE. Here,
we will focus on the case where σE,k−n is the state of
the environment at tk−n. It can then be proven that the
n−step TT Tk,k−n is given by the recursive relation [38]

Tk,k−n = Γk|k−n −
n−1∑
j=1

Tk,k−jΓk−j|k−n (5)

that allows one to reconstruct the whole hierarchy of TTs
from the CPTP maps Γk|k−n, as shown explicitly in [38].
In the next paragraph, we repeat the construction for
the lowest orders of the hierarchy, both for the sake of
illustration and since it will be useful in the following
when we will move to the stochastic case.

B. Reconstruction of the TTs hierarchy

First, let us combine together the definition of the
dynamical maps of the system at the discrete time instants
tk, k = 1, . . . , n, i.e., Eq. (1), and the recursive general
expression of the TT transformation given by Eq.(3).
In this way, the latter can be written via the following
recursive relation:

Φk = T kΞk−1[ρS,0], (6)
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where

T k ≡ (Tk,0, Tk,1, . . . , Tk,k−1)

and

Ξk−1[ρS,0] ≡


IdS[ρS,0]

Φ1 = T 1Ξ0[ρS,0]
...

Φk−1 = T k−1Ξk−2[ρS,0]

 ,

which are valid for n ≥ 1 (T 0 = Ξ−1 = IdS[ρS,0], where
IdS denotes the identity map on the set of operators on
S). For the sake of clarity, we show the first terms of the
recursive expansion of Eq. (6):

Φ0 = IdS[ρS,0]
Φ1 = T1,0Φ0 = T1,0[ρS,0]
Φ2 = T2,0Φ0 + T2,1Φ1 = (T2,0 + T2,1T1,0) [ρS,0]
Φ3 = T3,0Φ0 + T3,1Φ1 + T3,2Φ2

= (T3,0 + T3,1T1,0 + T3,2T2,0 + T3,2T2,1T1,0) [ρS,0].
(7)

By combining Eqs. (1) and (6), we immediately find that

T1,0[ρS,0] = Φ1[ρS,0], (8)

so that ρS,1 = T1,0[ρS,0]. Then, by continuing the recursion,
one has

ρS,2 = T2,0[ρS,0] + T2,1[T1,0[ρS,0]].

Here, it is worth observing that T2,1[T1,0[ρS,0]] returns the
component of ρS,2 conditioned on finding the system in
the states ρS,0 and T1,0[ρS,0] at the time instants t0 and t1
and no system-environment correlations were present. In
fact, given the maps Γk|k−n defined in Eq. (4), the 1-step
TTs Tk,k−1 satisfy

Tk,k−1 = Γk|k−1 (9)

as a direct consequence of Eq. (5) (for the trivial case
n = 1). In other terms, we have

T2,0[ρS,0] = ρS,2 − Γ2|1[ρS,1], (10)

i.e.,

T2,0 = Φ2 − Γ2|1Φ1. (11)

For the sake of brevity, from here on we will remove the
subscript S from the notation; it will used (together with
E) only if necessary.
Moving on to the level k = 3 of the hierarchy, by applying
Eq. (7) one has that the reduced density operator of S at
t3 is equal to

ρ3 = T3,0[ρ0] + T3,1[T1,0[ρ0]] + T3,2[T2,0[ρ0]]
+ T3,2[T2,1[T1,0[ρ0]]].

Using the identity in Eq. (9) for T3,2 and T2,1, as well as
Eq. (10), we have{

T3,2[T2,0[ρ0]] = Γ3|2[ρ2 − Γ2|1[ρ1]]
T3,2[T2,1[T1,0[ρ0]]] = Γ3|2Γ2|1[ρ1].

(12)

Moreover, T3,1 can be expressed by exploiting Eq. (5) (for
n = 2) that along with Eq. (9) gives

T3,1 ≡ Γ3|1 − Γ3|2Γ2|1. (13)

Thus, T3,1 can be written as a function of a term involving
only one-step Γs, i.e., Γ3|2Γ2|1, and of the 2−step Γ3|1. By
combining together all terms of Eqs. (12) and (13), one
has

ρ3 = T3,0[ρ0] + Γ3|1[ρ1] + Γ3|2[ρ2]− Γ3|2Γ2|1[ρ1],

i.e.,

T3,0 = Φ3 − Γ3|2Φ2 + (Γ3|2Γ2|1 − Γ3|1)Φ1. (14)

As mentioned, the procedure can be generalized to any
k via Eq. (5), so that the whole hierarchy of TTs can
be expressed in terms of the maps Γk|k−n [38] (indeed,
Φk = Γk|0). Importantly, this construction reveals the
influence of the correlations between the system and the
environment into the dynamics of the open quantum
system. In fact, the CPTP maps (4) generate a hierarchy
of 1−, 2−,...,n−step TTs conditioned to the fact that
the system passes through product-states at the different
steps taken into account. As we will show in the next
section, this is naturally linked to the presence of memory
effects in the open-system dynamics.

III. TRANSFER TENSORS AND
MARKOVIANITY OF THE DYNAMICS

Here, we derive a definite connection between a property
of the TTs – the possibility to build up the whole hierarchy
only in terms of 1−step TTs – and the non-Markovianity
of the dynamics. In particular, we rely on the definition
introduced in [4], which identifies Markovian dynamics
as those described by a family of CP-divisible dynamical
maps. Adapting the original definition in [4] to the case of
a discrete set of times, then the following definition can
be stated:
The (discrete) dynamics {Φk}k=1,...,m is Markovian when
for any k ≥ j ≥ 0 there is a CPTP map Ek,j such that
Φk = Ek,jΦj .

Hence, if we assume that Tk,k−n = 0 for n ≥ 2, then
by applying recursively Eq. (3) we have

Φk = Tk,k−1Tk−1,k−2 · · ·Tj+1,jΦj (15)

for any k ≥ j ≥ 0. But then Eq. (9) implies

Φk = Γk|k−1Γk−1|k−2...Γj+1|jΦj . (16)
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Any conditional map Γk|j is CPTP by construction, see
Eq.(4), so that we can conclude that any map Φk can be
decomposed as Φk = Ek,jΦj with Ek,j CPTP map:
If only one-step TTs are different from zero, the resulting
(discrete-time) evolution is CP-divisible.
We further note that if we restrict to the case of equally-
spaced time instants, tk = k∆, and translational invariant
TTs (i.e., Tk,k−n = Tn,0), then Tk,k−n = 0 for n ≥ 2
implies that the open-system dynamics is not only Marko-
vian, but also a semigroup, i.e., Φk = (Φ1)k, thus recover-
ing what shown in [36].
The previous result, besides linking a property of the

hierarchy of TTs to the Markovianity of the corresponding
dynamics, provides us with an explicit illustration of one
of the physical meanings of such property. In fact, from
Eq.(16) we see that when one-step TTs are the only non-
zero TTs, the dynamical maps can be obtained by using
the maps Γ only. System-environment correlations, despite
being present as a consequence of the interaction term
within the unitary operators, will not affect the reduced
dynamics of the open system, so that at any time tk−n
the actual global state can be effectively replaced by a
product-state ρS,k−n⊗σE,k−n, see Eq.(4). Experimentally,
Eq. (16) can be validated by independently reconstruct-
ing the maps {Φk} and the 1-step {Γk|k−1}, obtained by
breaking the system-environment correlations at the time
instants tk. In particular, the former can be reconstructed
by means of quantum tomography processes, while the
latter, ideally, by preparing a fresh copy of the system
in the state σS,k [13, 14], which is known by virtue of the
previously reconstructed map Φk. Alternatively, and more
realistically in general scenarios, the map Γk|k−1 can be
reconstructed by exploiting its linearity, a complete set
of projective measurements {Pi = |ui〉〈ui|}i=1,...,dS on S
(with dS the dimension of HS), where {|ui〉}i=1,...,dS is
an orthonormal basis on HS, and a set of local opera-
tions {Rij}j=1,...,d2

S
such that {Rij [|ui〉〈ui|]}j=1,...,d2

S
is a

linearly independent set of system S states. In fact, let
Γ(i)
k|k−1 be the map defined as

Γ(i)
k|k−1[σS] ≡ TrE

[
Utk−1:tk [σS ⊗ σ(i)

E,k−1]
]
, (17)

where σ(i)
E,k−1 = TrS [(Pi ⊗ IdE)[ρSE,k−1]] with IdE denot-

ing the identity map on the set of operators on E. Such
a map can be tomographically reconstructed by stan-
dard techniques: one has to perform the projective mea-
surement Pi at the (k − 1)-th time step, followed by
one of the local operations Rij that will not alter the
subnormalized density operator σ(i)

E,k−1. In this way, we
can reconstruct the quantum state Γ(i)

k|k−1 [Rij [|ui〉〈ui|]]
for each j = 1, . . . , d2

S, and then, the map Γk|k−1 is
obtained by repeating the procedure for each Pi, with
i = 1, . . . , dS. Indeed, by linearity σE,k−1 =

∑dS
i=1 σ

(i)
E,k−1

and then Γk|k−1 =
∑dS
i=1 Γ(i)

k|k−1. For all purposes, the
reconstruction procedure argued above can be achieved
experimentally by means of a quantum process tomogra-

phy, which however suffers of the drawback to require lots
of classical and quantum resources scaling quadratically
with the dimension of S (see e.g. Ref. [40], chapter 10).
Otherwise, even a randomized benchmarking protocol [41]
could be taken into account as possible solution, though
further investigations are needed.

The fact that only one-step TTs are non-zero is in gen-
eral a stronger requirement than the CP-divisibility of
the dynamics, as follows from the analysis of [23] (see also
[42]) and the explicit example provided below. Indeed,
having only one-step TTs different from zero is only a suf-
ficient criterion (and thus not necessary) for CP-divisible
discrete-time evolutions. In this regard, let us consider
the simplest case, namely m = 2, whereby we recall that
m is the last (and greater) value of the index k in the
sequence of time instants tk. Hence, the only non-trivial
requirement for CP-divisibility is the existence of a CPTP
map E2,1 obeying the relation

E2,0 = Φ2 = E2,1Φ1 = E2,1T1,0

since by definition T1,0 ≡ Φ1. Now, according to the
definition of the TT transformation, Φ2 is also equal to

Φ2 = T2,0 + T2,1T1,0.

Therefore, assuming that the inverse of T1,0 (i.e., (T1,0)−1)
does exist, one has

E2,1 = T2,0 (T1,0)−1 + T2,1. (18)

What we will show is that E2,1 can be CPTP also if
T2,0 6= 0 and even if (T1,0)−1 is not be generally CPTP.
In fact, consider the reduced dynamics of a two-level sys-
tem, fixed by the unitary dynamics given by the global
Hamiltonian H = σz +HE + σz ⊗ B, where the free en-
vironmental Hamiltonian HE and the interaction term
commute: [HE, B] = 0. Now, also assume that the global
state at the initial time t0 = 0 is ρ(0) = ρS(0) ⊗ ρE(0),
where the environmental state is stationary with respect
to the free dynamics such that [HE, ρE] = 0. As a conse-
quence, on the one hand, the reduced dynamics of the open
system is a pure dephasing, namely ρ11(t) = ρ11(0) and
ρ10(t) = k(t)ρ10(0), where ρij(t) = 〈i|ρS(t)|j〉 ({|1〉, |0〉}
are the eigenvectors of σz) and k(t) = eiωtTrE[e2iBtρE].
On the other hand, the state of the environment will not
evolve in time, also when interacting with the system, i.e.,
ρE(t) = ρE(0). For any two times t2 ≥ t1 ≥ 0, we will
then have

T2,1 = Γ2|1 = Φ1,

where we used Eq.(9) and Eq.(4), respectively. As a result
(see also Eq.(11)),

T2,0 = Φ2 − Φ2
1.

Specifically, using the matrix representation in the basis
{|1〉, |0〉}, for a generic state ρS we have

E2,1[ρS] =
(

ρ11
k(t2)
k(t1)ρ10

k∗(t2)
k∗(t1)ρ01 ρ00

)
,
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which is positive definite for any ρS if and only if |k(t2)| ≤
|k(t1)|. Note that this implies that E2,1 is also CPTP under
the same condition, since for pure dephasing positivity
and complete positivity coincide. On the other hand,

T2,0[ρS] =
(

0 (k(t2)− k(t1)2)ρ10
(k∗(t2)− k∗(t1)2)ρ01 0

)
that is equal to 0 for any ρS if and only if k(t2) = k(t1)2.
The latter condition implies but is not implied by the
former (indeed, |k(t)| ≤ 1), which proves our claim: E2,1
can be CPTP, and hence the dynamics CP-divisible, even
though the 2-step transfer tensor T2,0 is different from
zero.

IV. TRANSFER TENSORS AND MULTI-TIME
STATISTICS

In this paragraph, we move on to the second part of
our investigation, where we consider an open system that,
besides interacting with the environment, is measured at
some discrete instants of time. We will first introduce a
proper counterpart of the transfer tensors in such dynam-
ical regime, and will then show how it can be used to
account for the memory present in the multi-time statis-
tics. Before that, let us specify the framework we refer
to.

Assume that the open quantum system S is monitored
at the same m instants of time where the discrete dy-
namics has been evaluated so far. In particular, we take
a sequence of quantum measurements locally performed
on S according to the observables Ok ≡ Fθk

⊗ 1E, where
1E is the identity operator on HE, {θk} is the set of the
possible measurement outcomes, and {Fθk

} denotes the
set of positive semi-definite operators on HS satisfying the
relation

∑
θk
Fθk

= 1S ∀k. The probability that the out-
come θk associated with the measurement operator Fθk

occurs is equal to Tr[ρS,kFθk
], while the post-measurement

state of S equals to ρ̂S,k ≡ Mθk
[ρS,k]/Tr[Mθk

[ρS,k]]. It
is worth observing that Mθk

is a CP and trace non-
increasing map, while

∑
θk
Mθk

is a CPTP map; indeed,
this corresponds to a quantum instrument, i.e., the most
general description of a measurement-induced transfor-
mation according to the rules of quantum mechanics [43].
Specifically, due to CP, any mapMθk

can be written as
Mθk

[ρS,k] ≡
∑
ik
Mθk,ikρS,kM

†
θk,ik

where the operators
Mθk,ik fulfill the identity Fθk

=
∑
ik
M†θk,ik

Mθk,ik . More-
over, also note that ρS,k (ρ̂S,k) denotes the state of the
system before (after) the measurement at the time step
k.

Importantly, a measurement of the open system affects
not only its current state, but also its future evolution as
a consequence of the change in the correlations between
the system and the environment due to the measurement
itself [44]. The very notion of dynamics of the open system
becomes more subtle, since it cannot be clearly separated
from the results of the sequential measurements. It is

thus useful to introduce the notion of conditional dynam-
ics, whereby the system admits a different dynamics for
each sequence of measurement outcomes. Explicitly, the
conditional dynamics of the system (for a given global
evolution Uts:tk and initial environmental state ρE,0) is
fixed by the CP map

Φ̃θ,tk [ρS,0] ≡ TrE
[
Utk−1:tk (Mθk−1 ⊗ IdE) · · ·

· · · (Mθ1 ⊗ IdE)Ut0:t1 [ρS,0 ⊗ ρE,0]] , (19)

depending on the time instants t ≡ (t1, . . . , tk) as well as
on the measurement outcomes θ ≡ (θ1, . . . , θk−1). In other
terms, Φ̃θ,tk has to be understood as a stochastic map, so
that we could effectively define different trajectories in the
set of CP maps, each of them associated with a different
sequence of measurement outcomes. In general Φ̃θ,tk is not
trace preserving.
The joint probability distributions to get the mea-

surement outcomes θ1, θ2, . . . , θk at the time instants
t1, t2, . . . , tk is directly linked to the stochastic map Φ̃θ,tk
by the following relation:

qk ≡ Prob(θk, tk; . . . ; θ1, t1) = Tr[Mθk
Φ̃θ,tk [ρS,0]]. (20)

These quantities define the multi-time statistics associ-
ated to sequential measurements at different times and,
as recalled in the introduction, suitable notions of Marko-
vianity can be attributed to them [13–15, 23, 28–31, 34].
Importantly, from the multi-time probabilities defined
in Eq. (20), one can reconstruct the expectation value of
any sequence of observables at different times, which are
of direct interest in experimental applications. In fact,
let O1, . . .Ok be the observables with possible outcomes
{θ1} , . . . {θk}; hence,

〈O1(t1) . . .Ok(tk)〉 =
∑

θ1,...,θk

θ1 . . . θkProb(θk, tk; . . . ; θ1, t1)

=
∑

θ1,...,θk

qk θ1 . . . θk (21)

provides us with the mentioned expectation value.

A. Conditional transfer tensors

As anticipated, in order to characterize the conditional
dynamics originated by different sequences of outcomes,
we can introduce a stochastic version of the TTs. Let us
denote them as T̃ θ,tk,j , with k, j = 1, . . . ,m, explicitly point-
ing out their dependence on the instants and outcomes of
the repeated measurements.

The basic idea is to express the definition of the condi-
tional dynamical map in a recursive fashion. As first step,
note that the global state after the first measurement is
proportional (via the normalization factor) to

ρ̂1 ∼ (Mθ1 ⊗ IdE)Ut0:t1 [ρ0] ≡ Vt0:t1 [ρ0] (22)

that also provides us the formal definition of the map V [ρ].
Accordingly, the stochastic quantum map of S at time t1,
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i.e., Φ̃1, can be implicitly linked to Vt0:t1 [ρ0] through the
relation

Mθ1Φ̃1[ρS,0] ≡ TrE [Vt0:t1 [ρ0]] . (23)

Analogously, the k−th dynamical map of S after a se-
quence of quantum measurements is defined by

ρ̂k ∼ (Mθk
⊗ IdE)Utk−1:tk [ρ̂k−1] ≡ Vtk−1:tk [ρ̂k−1] (24)

with

Mθk
Φ̃k[ρS,0] = TrE

[
Vtk−1:tk [ρ̂k−1]

]
(25)

and ρ̂0 ≡ ρ0. For the sake of clarity, we recall that, by
definition, the CP maps Φ̃k are obtained by tracing the
state of the composite system S+E (w.r.t. the environment
E) just after applying the evolution map Utk−1:tk . As done
with the definition of transfer tensors linking together
the quantum maps Φk of the system at time instants
tk, k = 1, . . . ,m, we can thus introduce the stochastic
transformations T̃ θ,tk,j that relate the conditional dynamics
of S after each measurement of the sequence. In particular,
Eq. (25) has the same structure as the not monitored
dynamics, with Φk replaced byMθk

Φ̃k. Hence, we define
the stochastic TTs via

Φ̃θ,tk =
k−1∑
j=0

T̃
θ,t
k,jMθj Φ̃θ,tj . (26)

Note that if there are no measurements,Mθk
= Id and

Φ̃θ,tk = Φk (see Eq. (19)) with the result that the TTs T̃ θ,tk,j
are no longer conditional objects and can be identified
with the Tk,j since Eq. (26) reduces to Eq. (3). From now
on, we will drop the label (·)θ,t, which is implied in all
the expressions with a tilde.
As before, by expanding Eq. (26) we can write the

expression for the k−th dynamical map of S as a function
of ρS,0, i.e.,

Φ̃k = T̃ kMθk−1
Υk−1[ρS,0], (27)

where

T̃ k ≡
(
T̃k,0, T̃k,1, . . . , T̃k,k−1

)
Mθk−1

≡ diag
(
Mθ0 ,Mθ1 , . . . ,Mθk−1

)
(28)

and

Υk−1[ρS,0] ≡


IdS[ρS,0]

Φ̃1 = T̃ 1Υ0[ρS,0]
Φ̃2 = T̃ 2Mθ1

Υ1[ρS,0]
...

Φ̃k−1 = T̃ k−1Mθk−2
Υk−2[ρS,0]

 (29)

with Υ−1 andMθ0 equal to the identity map IdS (the first
measurement of the sequence, indeed, is not performed
at time t0, but at t1) and Υ0 = Ξ0 = Φ0.

For the sake of clarity, we show also in this case the
first terms of the recursive expansion of Eq. (27):



Φ̃0 = Φ0 = IdS[ρS,0]
Φ̃1 = T̃1,0Φ̃0 = T̃1,0[ρS,0]
Φ̃2 = T̃2,0Φ̃0 + T̃2,1Mθ1 Φ̃1 =

(
T̃2,0 + T̃2,1Mθ1 T̃1,0

)
[ρS,0]

Φ̃3 = T̃3,0Φ̃0 + T̃3,1Mθ1 Φ̃1 + T̃3,2Mθ2 Φ̃2

=
(
T̃3,0 + T̃3,1Mθ1 T̃1,0 + T̃3,2Mθ2 T̃2,0

+ T̃3,2Mθ2 T̃2,1Mθ1 T̃1,0

)
[ρS,0].

In addition, let us observe that also the multi-time
statistics for S, given by the joint probability distribution
in Eq.(20), can be expressed by means of these recursive
relations. Indeed, by using again Eq. (27), one has that

qk = Tr
[
Mθk

T̃ kMθk−1
Υk−1[ρS,0]

]
, (30)

∀k = 1, . . . ,m, where the first terms of the recursion for
qk are given by

q0 = Tr [ρS,0] = 1
q1 = Tr

[
Mθ1 T̃1,0[ρS,0]

]
q2 = Tr

[
Mθ2 T̃2,0[ρS,0]

]
+ Tr

[
Mθ2 T̃2,1Mθ1 T̃1,0[ρS,0]

]
q3 = Tr

[
Mθ3 T̃3,0[ρS,0]

]
+ Tr

[
Mθ3 T̃3,1Mθ1 T̃1,0[ρS,0]

]
+ Tr

[
Mθ3 T̃3,2Mθ2 T̃2,0[ρS,0]

]
+ Tr

[
Mθ3 T̃3,2Mθ2 T̃2,1Mθ1 T̃1,0[ρS,0]

]
.

Finally, also the set {T̃} of stochastic TTs admits a
hierarchic structure, very similar to that of Eq. (5), based
on a generalization of the CPTP maps Γs. The main
difference is that now we need a map acting on the re-
duced dynamics of S at each tk after that a quantum
measurement has been performed on the system. Thus,
such map will depend on the resulting post-measurement
environmental state. In particular, following the same
construction as in [38], we get

T̃k,k−n = Γ̃k|k−n −
n−1∑
j=1

T̃k,k−jMθk−j
Γ̃k−j|k−n, (31)

where the CPTP maps

Γ̃k|k−n[σS] = TrE[Utk−n:tk [σS ⊗ σ̃E,k−n]] (32)

also include a dependence on the whole sequence of out-
comes, fixing the environmental state σ̃E,k−n (which mo-
tivates the use of the tilde).

B. Conditional transfer tensors and memory effects

The relation in Eq. (31) allows us to bring forward
the connection between TTs and CP-divisibility to the
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stochastic level that describes the effects sequential mea-
surements.
In particular, let us consider the situation where, for

any sequence of outcomes, all the stochastic TTs T̃k,k−n
are equal to 0 for n ≥ 2. The stochastic TTs hierarchy of
Eq. (31) implies that each 1-step transfer tensor T̃k,k−1 is
equal to the corresponding 1-step Γ̃, i.e., T̃k,k−1 = Γ̃k|k−1,
which by definition is completely positive. In addition,
recursively applying Φ̃k =

∑k−1
j=0 T̃k,jMθj

Φ̃j , we get

Φ̃k = T̃k|k−1Mθk−1 T̃k−1|k−2Mθk−2 · · · T̃j+1|jMθj Φ̃j
(33)

for any k ≥ j ≥ 0. Therefore, we have

Φ̃k = Γ̃k|k−1Mθk−1 Γ̃k−1|k−2Mθk−2 · · · Γ̃j+1|jMθj
Φ̃j ,
(34)

which implies that for any k ≥ j ≥ 0 there is a (condi-
tional) CP map Ẽk,j such that

Φ̃k = Ẽk,jΦ̃j

i.e., the family of maps Φ̃k is CP-divisibile [45]. We con-
clude that, if all the stochastic TTs T̃k,k−n are equal
to 0 for n ≥ 2, the corresponding conditional dynamics
{Φ̃k}k=1,...,m is CP-divisible for any fixed sequence of
outcomes.

As one can directly check from the definition in Eq. (19),
the condition in Eq. (34) is satisfied whenever the global
state after the measurements is a product-state, e.g., if
the set {Mθk

} describes projective measurements of a
non-degenerate system’s observables. This means that
in these situations the conditional dynamics Φ̃k will be
automatically CP-divisible, simply due to the kind of em-
ployed measurement. As we will see in the next paragraph
by means of an explicit example, CP-divisibility of the
conditional dynamics, and in particular the validity of
Eq. (34), does not imply that only one-step conditional
TTs are different from zero.

The stochastic TTs T̃k,k−n with n ≥ 2 enclose the influ-
ence of the possible correlations resulting both from the
system-environment interaction and the measurement on
the open system up to a time step j on the conditional
dynamics at the later time step k. In general, such cor-
relations depend on the whole sequence of measurement
outcomes performed up to the j−th time instant, so that
their influence on the subsequent conditional dynamics
can be read as a signature of memory in the multi-time
statistics defined by Eq. (20). However, even in the case
where Eq. (34) holds, some memory can be present in
the conditional dynamics, and hence in the multi-time
statistics. In fact, the post-measurement environmental
state σ̃E, which defines the conditional maps Γ̃ in Eq. (32),
might (and in general will) depend on the sequence of out-
comes. As we will see in the next paragraph, the proper
description of such memory effects can require non-zero
TTs T̃k,k−n with n ≥ 2.

Finally, it is worth observing that, if in addition to the
validity of Eq. (34) the dependence of σ̃E on the previ-

ous outcomes can be neglected (i.e., no memory of the
sequence of measurements is left), Eq. (34) automatically
implies the quantum regression theorem [46–50]. Essen-
tially, the latter means that the whole multi-time statistics
can be reconstructed only from the initial open-system
state and open-system dynamical maps that are not condi-
tioned on the sequence of outcomes. Similar considerations
have been recently discussed also in [15].

C. Spin-boson case study

In this paragraph, we show an application of the pre-
viously introduced stochastic transfer tensors, with the
aim to illustrate the capability of the method in giving
a quantitative account of the memory effects both in
the conditional dynamics and in the multi-time statistics.
In addition, the use of TTs also allows to compare on
a similar footing the memory effects in the presence of
different kinds of measurements, or even no intermediate
measurements at all.

We consider a single spin in interaction with 5 quantum
harmonic oscillators and monitored by a sequence ofM =
5 quantum measurements at regular intervals ∆ with
tk = k∆ and k = 1, . . . ,M . The Hamiltonian H of the
composite system is given by

H = 1
2σ

z
S +

5∑
k=1

ωE,kb
†
E,kbE,k +

5∑
k=1

gk(σ−S b
†
E,k + σ+

S bE,k)

(35)
where σz is the Pauli matrix in the z direction, and b†E, bE
and σ+

S , σ
−
S denote the raising and lowering operators

associated respectively to each harmonic oscillator of E
and the spin S. Moreover, regarding the frequencies ωE,k
of the oscillators and the interaction couplings gk, for
the numerical simulations here performed we have chosen
the values {ωE,k}5

k=1 ≈ (1.99, 0.73, 0.89, 2.04, 1.58) and
{gk}5

k=1 ≈ (1.67, 1.32, 2.15, 2.70, 1.07). All these values
are expressed in units ensuring that ~ = 1. The former
have been uniformly sampled from the interval [0, 5], while
the latter are sampled from the probability distribution
αg exp(−g/β), with α = 1 and β = 2. The parameters α
and β tune the intensity, respectively, of the interaction
between S and E and of the value of g corresponding to the
peak of the distribution. Note that this model accounts for
both decoherence and dissipation in the dynamics of S due
to the interaction with the external environment, yet with
the form of the interaction preserving the total number
of excitations. On the other hand, the excitations are
generally not preserved by the action of the measurements.
In our simulations, each measurement at t = tk is provided
by the POVM operators [51]

F± ≡ (1− λ)|±〉〈±|+ λ

21S , (36)

satisfying the normalization condition
∑
θk∈{+,−} Fθk

=
1S for any k, where |±〉 ≡ (|0〉 ± |1〉)/

√
2 denote the
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eigenstates of the Pauli matrix σx. The measurement-
induced state transformations are ruled by the corre-
sponding Lüders instrument, with maps

M±[ρk] = TrE
[
(
√
F± ⊗ 1E)ρk(

√
F± ⊗ 1E)

]
(37)

so that the post-measurement spin state ρ̂S,k collapses in
one of the quantum states ρ̂(±)

S,k ≡M±[ρk]/TrS[M±[ρk]].
Such a choice for the measured observable is motivated by
the fact that, by changing the parameter λ, it is possible
to analyze the case without measurements (λ = 1), the
one with projective measurements (λ = 0) and all the
intermediate cases (0 < λ < 1) corresponding to a partial
collapse of the spin wave-function.
The time interval ∆ between measurements are taken

equal to 1, 2, 3 (in natural units allowing for ~ = 1), and
the evolution of the composite system is evaluated by
starting from an initial product-state of the ground state
of S and a pure state of E (not its ground). Specifically, the
ground state of S is obtained by diagonalizing HS = σzS/2,
while the initial reduced state of E by diagonalizing a
random perturbation of HE =

∑
k ωE,kb

†
E,kbE,k where the

perturbation is taken to preserve the Hermitianity of the
resulting operator. Lastly, to get the reduced states of S
and E, the corresponding lowest energy eigenvectors are
selected. Conversely, the hierarchy of transfer tensors is
derived by numerically implementing Eq. (31). The latter
is based on the computation of the maps Γ̃k|k−n, which
are all obtained by propagating an initial product-state
composed by the reduced states of S and E after each
possible quantum measurement at the time instants tk.
In Fig. 1 we plot both the population and coherence

terms of the single spin S as a function of time and λ values
(λ ∈ {0, 0.25, 0.5, 1}) for ∆ = 1 (all in natural units).
As one can observe from the figure, the spin quantum
coherence is maintained oscillating over time in case of
no applied quantum measurements (λ = 1), and such
behaviour of repeated “coherence revivals” is originated by
the interaction of S with the only environment E composed
of 5 quantum harmonic oscillators. Conversely, in case
also the external measurement apparatus plays a role (i.e.,
the open quantum system is also measured at consecutive
time instants) the quantum coherence of the spin S may
be increasing or decreasing depending on the value of λ
that corresponds to different intermediate measurement
operators (at ∆ fixed). Overall, concerning the effect
of applying the single quantum operation, a quantum
measurement tend to recreate coherence terms, unlike
the interaction of the spin with the environment that
on average is responsible to erase them. From Fig. 1 one
can clearly appreciate that monitoring the open quantum
system S through a sequence of quantum measurements
radically changes its reduced dynamics, as well as the
corresponding non-Markovian behaviors. In particular, if
the quantum coherence of S is damping over time, then
also high-order step memory effects can be considered
negligible. Otherwise, each state of S also depends on
past contributions, even up to the initial instant in the

0 1 2 3 4 5
t / 

0

0.5

1

S
(k,j)

 = 0

0 1 2 3 4 5
t / 

0

0.5
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 = 0.25
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t / 

0

0.5

1

S
(k,j)

 = 0.5
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S
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Figure 1. Spin-boson dynamics: Ground state population ρ(1,1)
S

(blues solid lines) and coherence terms |ρ(1,2)
S | (red dash-dotted

lines) of the single spin S as a function of time and 4 distinct
λ values for ∆ = 1 in natural units. Depending on the value
of λ that fixes the intermediate measurement operator, the
coherence and population of the spin has a different behaviour.
In particular, revivals occur for λ = 1, while a more and more
pronounced damping is observed for decreasing values of λ.
Indeed, sudden changes in the population and coherence terms
denote the action of the measurements, and they are more
evident in the case of projective measurements (λ = 0).

extreme case.
Let us now analyze more quantitatively these con-

siderations by introducing proper quantifiers of non-
Markovianity. In this regard, in Fig. 2 we plot two quanti-
fiers of the impact of the stochastic n-step TTs (n ≥ 2)
on the system’s conditional dynamics. In each panel,
we consider different POVMs, defined as in Eq. (36) for
λ = 0, 0.25, 0.5, 1 and identified respectively by the colours
black, red, blue and magenta, as a function of the discrete
time instants tk with k = 1, . . . , 5. The three panels corre-
spond to three different values of the time interval ∆. The
two quantifiers are the L2-norm ‖ · ‖2 of the stochastic
transfer tensors T̃k,0 (coloured dots in the figure) and the
figure of merit (circles, squares, diamonds and x-marks)

Dk ≡
1

k − 2

k−2∑
`=0
‖T̃k,`Mθ`

Φ̃`‖2 . (38)

The choice of the L2-norm is motivated by practical con-
venience (especially in view of the application to higher
dimensional systems) and we leave for future studies the
investigation about the use of different norms. Starting
from the decomposition of the conditional map Φ̃k in
correspondence of t = tk as given in Eq. (26), one can
observe that the former quantifier focuses on the role of
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Figure 2. Comparison between the L2-norm of the stochastic TTs T̃k,0 (coloured dots) and the figure of merit Dk (circles, squares,
diamonds and x-marks) for k = 2, . . . , 5 (corresponding to the discrete time instants t2, . . . , t5) and λ = 0, 0.25, 0.5, 1 (identified,
respectively, by the colour black, red, blue and magenta). The former quantifier takes into account the influence of the k-step
TTs all referring to t = t0, while the latter sums up the impact of all the involved k− ` steps TTs with ` = 0, . . . , k− 2 and they
both account for the non-Markovianity of the implemented quantum dynamics. If all the stochastic TTs T̃k,k−n are equal to 0
for n ≥ 2, then both quantifiers are equal to zero (the opposite does not generally hold).

the k-step TT for k ≥ 2 (note, indeed, that Φ̃0 = Id, i.e.,
no measurement is performed at the initial time instant),
while the latter sums up the influence of all the involved
k − ` steps TTs with k ≥ 2 and ` = 0, . . . , k − 2 (thus,
the 1-step TT is not considered). If all the stochastic TTs
T̃k,k−n are equal to 0 for n ≥ 2, then both quantifiers are
equal to zero; the opposite does not generally hold.

Overall, from Fig. 2 we can observe that the quantities
‖T̃k,0‖2 and Dk are comparable; namely, in the consid-
ered parametric regime the k-th step TT provides with
similar information on the memory effects influencing Φ̃k,
compared to the sum of all the contributions from the
TTs with step larger than 1. They both indicate that non-
Markovian behaviours, originated from the interaction of
the spin both with the environment and the observer, be-
come relevant for t/∆ ≥ 3 with all the considered values of
∆. Moreover, both the non-Markovianity quantifiers reach
their maximum values in the case where no intermediate
measurement is performed (magenta dots and x-marks),
corresponding in Fig. 1 to a nearly periodic evolution of
the coherence term |ρ(1,2)

S | over time. Thus, comparing
Figs. 1 and 2, we can deduce that such periodic behaviours
are originated by high-order step memory effects, presum-
ably even from t0. While without applying any measure-
ment both quantifiers typically increase with time, a more
pronounced non-monotonic behavior is observed in the
presence of intermediate measurements, which reduce the
memory effects caused by the interaction between S and
E. Although a decreased impact of multi-step TTs in the
presence of intermediate measurements (corresponding to
a decreased impact of system-environment correlations
on the conditional dynamics) might have been expected,
the quantifiers do not necessarily reach their minimum

values in the case of projective measurements (λ = 0).
Rather, the minimum values are reached more often for
λ = 0.25 or λ = 0.5 (the behavior for these two POVMs
is quite similar). However, as anticipated, n-step TTs
for n ≥ 2 can be non-zero also in the case of projective
measurements, i.e., when Eq. (34) holds. Such TTs ac-
count for memory effects due to the dependence of the
post-measurement environmental state on the previous
outcomes. Even more, the latter can exceed the memory
effects – due to both system-environment correlations
and changes in the environmental states – occurring in
the case of non-projective measurements, as quantified by
‖T̃k,0‖2 and Dk.
In order to point out the memory effects orig-

inated by system-environment correlations, we con-
sider the L2-norm of the difference between the left-
and the right-hand-side of Eq. (34), namely between
the actual stochastic map Φ̃k (in correspondence of
the k-th time instant tk) and the CP-divisible map
Γ̃k|k−1Mθk−1 Γ̃k−1|k−2Mθk−2 · · · Γ̃j+1|jMθj

Φ̃j associated
with the product-states after each measurement. The re-
sults are plotted in Fig. 3. It is worth noting that Eq. (34)
is satisfied only when projective measurements are per-
formed, so that the composite system is actually in a
product-state after each measurement and the conditional
dynamics of S can be fully described by means of the com-
position of 1-step maps Γ̃. In this case, the computation
of the operators Γ̃k|k−1 is enough by itself. However, as
said, some n-step stochastic TTs with n ≥ 2 can be still
different from zero, despite overall their combination is
canceled to ensure the validity of Eq. (34).
As final remark, from Fig. 3 we can also observe that

for k = 2, 3, 4 the violation of Eq. (34) increases with the



10

2 3 4 5

t /

0

0.1

0.2

0.3

0.4

0.5

0.6
 = 2

 = 1
 = 0.5
 = 0.25
 = 0

Figure 3. L2-norm of the difference between the left-
and the right-hand-side of equation (34), namely ‖Φ̃k −
Γ̃k|k−1Mθk−1 Γ̃k−1|k−2Mθk−2 · · · Γ̃j+1|jMθj Φ̃j‖2, computed
for ∆ = 2 and λ = 0, 0.25, 0.5, 1 (magenta dots, blue x-marks,
red diamonds, black squares, respectively) in correspondence
of the discrete time-instants tk = k∆ with k ∈ {2, 3, 4, 5}. This
represents the L2-norm of the difference between the actual
stochastic map Φ̃k and the CP-divisible map provided by the
product-states of the dynamical evolution of the spin after
each measurement. During the transient of the spin dynamics,
Eq. (34) is violated as the value of λ increases (thus, for less
invasive intermediate measurements); however, such tendency
can be reversed in case the spin approaches an equilibrium
asymptotic state or a stable periodicity phase.

value of λ, i.e., when moving toward less invasive measure-
ments; indeed, the largest violation is reached for the case
without intermediate measurements. Moreover, quite in-
terestingly, the situation is reversed in the correspondence
of the last observed value of time, tk/∆ = 5, for which
λ = 0.25 induces the largest violation, while the uncondi-
tional dynamics the smallest (apart, of course, from the
case of projective measurements). The latter behaviour
of the unconditional dynamics is usually originated by a
tendency towards an equilibrium asymptotic state or to a
stable periodicity phase. In our case study, being the envi-
ronment composed by a finite number (five) of quantum
harmonic oscillators, the simulated unconditional dynam-
ics is practically periodic, with period approximately of
t = 10 (in natural units).

V. CONCLUSION AND OUTLOOK

In this paper, we have studied the non-Markovian dy-
namics of open quantum systems and their multi-time
statistics by means of the transfer-tensor approach, which

allowed us to treat the memory effects in the two dif-
ferent scenarios on a similar footing. After showing the
connection between the hierarchy of the TTs and the
divisibility of the dynamics, we have extended the def-
inition of TTs to the case where the open system of
interest undergoes quantum measurements at subsequent
instants of time. We have thus introduced a stochastic
family of TTs, depending on the sequence of measure-
ment outcomes, and a related hierarchy that captures
how the multi-time statistics is influenced by both the
system-environment correlations and the dependence of
the current environmental state on the previous outcomes.
Finally, we have defined two quantifiers of multi-time
memory effects, which rely directly on the various contri-
butions to the hierarchy of TTs, and we have investigated
their behavior in a paradigmatic case study, comparing
different kinds of intermediate measurements, as well as
the case with no monitoring at all.

The precise relation between the memory effects present,
respectively, in non-Markovian quantum dynamics and in
their multi-time statistics remains still to be addressed.
In particular, more quantitative and general results char-
acterizing different kinds of multi-time statistics, such as
those obeying the quantum-regression theorem, seem to
be needed in order to distinguish the different sources of
memory and to compare them with those leading to non-
Markovian quantum dynamics. Hopefully, our results will
provide useful insights to look for such rigorous connec-
tions. More in general, our analysis suggests the usefulness
of the TT approach also to deal with multi-time statistics;
an example in this direction might be to use the hierar-
chy of stochastic TTs to evaluate the non-Markovianity
along the so-called most probable trajectory of the system,
namely the trajectory originated with higher probability
by a sequence of quantum measurements [52, 53]. In ad-
dition, the TT formalism addressed in this paper is also
expected to provide a powerful tool to evaluate experimen-
tally the degree of non-Markovianity [54] in monitored
quantum dynamics [55, 56], as well as to test the validity
of the quantum regression theorem or possible generaliza-
tions [11, 57, 58]. One further advantage of the presented
approach would be to track memory effects also in the
reduced state evolution of the environment E. This fea-
ture might be useful in those quantum technology devices
(e.g., even the commercial ones now available online as
IBM or Rigetti [59–61]) in which the number of the en-
vironmental degrees of freedom is not much larger than
the ones of the system S under analysis. Accordingly, in
such a case, also the state of E is subjected to frequent
and relevant changes due to the presence of S, and the
bi-directional exchange of information between the sys-
tem and the environment likely leads to departures from
Markovian dynamics and the quantum regression theorem.
Finally, it is worth also mentioning how stochastic transfer
tensors may find application in modeling the interaction
between a quantum system S and one or more external
thermal baths, giving rise to thermalization processes in
the large-time limit. During the transient of the dynam-
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ics, indeed, S may exhibit non-Markovian behaviours and
non-trivial memory effects. In this regard, if for example
we resort to quantum collision models [62–66], a thermal
bath is assumed of being composed by a large number of
small subsystems, such that, at discrete time instants, the
dynamics between the quantum system and the bath take
place through successive “collisions” provided by pairwise
short interactions. Similar thermalization effects are also
obtained by monitoring S through a sequence of projec-
tive measurements, in the limit of many measurements
[67]. Accordingly, in such a contexts, the TT formalism
is expected to shed light in quantitative terms on the
effective influence of transient non-Markovian dynamics,
due to the interaction with thermal baths, within the
quantum system under analysis in allowing for specific

thermalization quantum processes.
Note added: During the completion of this work, the

related paper [68] appeared, in which a generalization of
the transfer-tensor formalism to multi-time measurements
is introduced by means of the process-tensor description
of the open-system evolution.
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