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ABSTRACT 

Introduction: Lesion Index (LSI) has been developed to predict lesion efficacy during 

radiofrequency (RF) catheter ablation. However, its value in predicting lesions size has still to be 

established. The aim of our study was to assess the lesions size reproducibility for pre-specified 

values of LSI reached during RF delivery in an in vivo beating heart.  

Methods: Ablation lesions were created with different values of LSI in 7 domestic pigs by means 

of a contact force sensing catheter (TactiCath
TM

, Abbott). Lesions were identified during RF 

delivery by means of a 3D mapping system (EnSite
TM

 Precision, Abbott) and measured after heart 

explantation. Histology was carried out after gross examination on the first 3 lesions to confirm 

the accuracy of the macroscopic evaluation.  

Results: A total of 64 myocardial lesions were created. Thirty-nine lesions were excluded from 

the analysis for the following reasons: histological confirmation of macroscopic lesion 

measurement (n=3), transmurality (n=24), unfavorable anatomic position (n=10), not 

macroscopically identifiable (n=2). 

In a final set of 25 non-transmural lesions, injury width and depth were respectively 4.6±0.6 mm 

and 2.6±0.8 mm for LSI=4, 7.3±0.8 mm and 4.7±0.6 mm for LSI=5, and 8.6±1.2 mm and 7.2±1.1 

mm for LSI=6. A strong linear correlation was observed between LSI and lesion width (r=0.87, 

p<0.00001) and depth (r=0.89, p<0.00001). Multiple linear regression analysis identified LSI as 
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 the only ablation parameter that significantly predicted lesion width (p<0.001) and depth 

(p<0.001). 

Conclusion: In our in vivo study, LSI proved highly predictive of lesion size and depth.  

Keywords: arrhythmias, radiofrequency energy, myocardial lesions, Lesion Index, 

contact force, in vivo model 

Introduction:  

Radiofrequency energy (RF) is commonly used for catheter ablation to treat several 

cardiac arrhythmias. The efficacy and safety of ablation are strictly related to proper RF 

delivery, and conventional parameters such as RF power, catheter tip temperature and 

impedance are regularly monitored during RF application. However, extensive 

assessment of these parameters in the past has revealed that their accuracy is limited.
1-3

 

Recently, real-time monitoring of catheter-tissue contact force (CF) has been introduced, 

and parameters including Force-Time Integral (FTI) and Lesion Index (LSI) have been 

developed in the attempt to predict safe and effective lesion formation.
4-8

 LSI is a novel 

multi-parametric index which incorporates time, CF and electrical current recorded 

during RF ablation, and has been introduced to predict the extent of myocardial tissue 

lesions more precisely. Although LSI has been tested in previous clinical studies,
9,10

 the 

correlation between LSI value and lesion size has never been systematically studied. In a 

recent in vitro study, LSI was found to be highly predictive of RF lesion size and, at 

similar LSI values, lesions obtained by using lower power settings were similar in 

magnitude, but showed a superior safety profile.
11

 The aim of our study was to evaluate 

the predictive value of LSI in terms of lesion width and depth in an in vivo setting.  

Methods:  

Study protocol 



 

This article is protected by copyright. All rights reserved. 

A
c

c
e

p
te

d
 A

r
ti

c
le

 Seven female domestic pigs (Landrace X Large White) weighing 80±5 Kg were placed in 

the supine position after general anesthesia induced by an association of ketamine (10 

mg/Kg) and midazolam (1 mg/Kg). Pigs were intubated with an endotracheal tube (size 

9) and mechanically ventilated with a tidal volume of 15 ml/Kg by inhalation of oxygen 

and isoflurane. All the animals were treated with amiodarone (50 mg) and lidocaine (2 

mg/Kg) and curarized with atracurium (2 mg/Kg initially + 0.12 mg/Kg/min). Two 

vascular accesses were created via a modified Seldinger technique or surgical cut-down. 

A 10-pole diagnostic catheter (Response™ CSL, Abbott) was positioned in the coronary 

sinus via the jugular vein under fluoroscopy and was used as a reference; a CF-sensing 

irrigated ablation catheter (TactiCath
TM

, Abbott) was inserted into a femoral vein and 

advanced under fluoroscopy through the inferior vena cava toward the right atrium (RA). 

A 3D cardiac mapping system (EnSite
TM

 Precision, Abbott) was used to map the chamber 

geometry and identify sites of lesions for matching after heart explantation. The left 

chambers were mapped via a trans-septal approach. RF power was fixed to 30 W and RF 

delivery was set in the temperature-control mode (42°C upper limit) with saline irrigation 

of 17 ml/min, according to the manufacturer's instructions for use (IFUs).  

To better recognize the lesions in the ex vivo analysis, we performed them at a minimal 

distance of about 2cm. A few number of RF delivery in the ventricles per animal was 

imposed to avoid the ventricular fibrillation (VF). 

Ablation lesions were created in all cardiac chambers focusing on non-transmural lesions 

to obtain a complete measurement of lesion depth. Transmural lesions were excluded 

from the analysis because transmurality prohibited measurement of lesion depth. During 

RF delivery, an average CF ranging from 10 g to 30 g was targeted, with the aim of one 
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 of the following LSI values: less than 4, 4, 5 and 6. RF was delivered only when 3 

stability criteria were simultaneously met, according to the IFUs of the mapping system: 

Average Contact Force, Constant Contact and Stable Contact Force. The number of 

lesions created was planned in such a way that the distance from one lesion to the next 

would be sufficient to allow accurate lesion identification after heart explantation. The 

pigs were sacrificed soon after the procedures.  

This study was an investigator-driven study and Abbott provided only financial support. 

An executive steering committee composed by S. Themistoclakis, C. Tondo and V. 

Calzolari was responsible for the design and oversight of the study. All the authors had 

the access to analyzed and interpreted the data and reviewed and approved the report. The 

study was approved (authorization number 333/2017-PR) by the competent Italian 

authorities (Ministry of Health and National Institute of Health) and all the animal 

procedures (including housing, health monitoring, restrain, dosing, etc.) were performed 

in accordance with European and national rules on the protection of animals used for 

experimental purposes.
12, 13

  

Lesion size measurement 

Once the heart had been explanted and the blood evacuated, the positions of the ablation 

lesions were matched with the geometry created by the 3D mapping system (fig. 1) for 

lesion identification and labeling. Each lesion was labeled with the following information 

in the data-collection form: Animal ID, Lesion ID/number, cardiac chamber, ablation 

parameters (Power, RF duration, Impedance, Temperature, Energy, CF, FTI, LSI). 

Each ablation lesion was cut through at its center, perpendicularly to the surface. 

Measurements of width and depth were taken at the border of necrotic cell tissue by 
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 means of a caliper with a 0.1 mm resolution; a photograph was taken (fig. 2) of each 

lesion. At least 3 investigators independently measured the lesions, and, after agreement 

among themselves, entered the values into the dataset. Three ablated tissue samples were 

stored in 4% phosphate buffered formaldehyde and submitted for gross and histological 

examination to verify the accuracy of the above method of lesion measurement. 

Histological examination 

Myocardium samples with lesions, after fixation in 4% formaldehyde in phosphate buffer 

0.1M at pH 7.2 and dehydration in ethanol crescent series were embedded in paraffin; 4-5 

μm thick sections were stained with hematoxylin-eosin to detect cells and Azan Mallory, 

Heidenhein modified stain to detect both cells and extracellular matrix. Lesion 

dimensions were measured both on gross sections and micro-sections (modified Azan 

Mallory-Heidenhein stained sections) by means of a calibration bar. Measurements were 

assessed by an image-analysis system consisting of a Zeiss Axioplan 2 optical 

microscope (Carl Zeiss, Oberkochen, Germany) equipped with an AxioVision digital 

camera (Carl Zeiss, Oberkochen, Germany) and Image PRO-Plus 5.1 morphometrical 

image-analyzing software (Media Cybernetics, Silver Spring, MA, USA).  

Statistical Analysis 

One-way analysis of variance (ANOVA) used width or depth measurements of lesions as 

the dependent variable and the nominal LSI value as a factor. The differences between 

nominal LSI groups of measurements were tested by means of Bonferroni’s post-hoc test. 

Pearson’s linear regression analysis was used to estimate the quantitative relationship 

between LSI as predictor variable and width or depth as dependent variable. 
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 Multiple linear regression analysis by means of the forward stepwise approach, with 

width or depth as the dependent variable, was used to select the best predictors from 

among the ablation parameters: LSI, FTI, RF duration, Impedance Drop, Average 

Temperature, Energy, Average Contact Force and Average Power. 

Multiple interactions among the various ablation parameters were tested; if an interaction 

was significant, to limit the covariate number only the most significant one was entered. 

All analyzes were made by means of IBM-SPSS Statistics v23 (Chicago, IL, USA) and 

STATISTICA v12 (StatSoft Inc. Tulsa, OK, USA). 

Results: 

A total of 64 lesions were created. Twenty-six lesions were excluded from the final 

analysis because either transmural (n=24) or not macroscopically identifiable (n=2). The 

transmural lesions were mainly detected in the atria (n=22, 92%) with LSI ≥ 4 and only 2 

were obtained in the RV with higher LSI value (LSI 5 and 6, respectively). None of the 

lesions performed in the atria were non-transmural and then excluded from the analysis. 

Of the 38 non-transmural lesions (24 performed in the RV and 14 in the LV), the first 3 

were used for the histology analysis and were therefore excluded from the analysis. Other 

10 non-transmural lesions were excluded because it was impossible to measure their 

width and/or depth accurately owing to their unfavorable anatomical position (lesions 

performed close to papillary muscles, inside the trabeculations or under the valvular 

leaflet). Finally, a set of 25 non-transmural lesions were considered for the analysis.  

No steam-pops occurred during the procedures and no char formation was observed 

afterward. In 3 pigs, VF occurred during RF delivery in the RV or LV; in one case, sinus 

rhythm was restored by external cardioversion (CVE), while in the other 2 cases VF was 
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 not reversible; in these 2 cases, the procedure was prematurely interrupted and only the 

lesions created up to the cardiac arrest were considered.  

Lesion size and relationship with LSI 

In the final set of 25 non-transmural lesions, lesion width observed for nominal LSI=4 

was 4.6±0.6 mm; for LSI=5 it was 7.3±0.8 mm and for LSI=6 it was 8.6±1.2 mm (fig. 3). 

On ANOVA, the effect of LSI on the resulting width was statistically significant (F 

(2.22) = 43.09, p<0.00001). Lesion depth was 2.6±0.8 mm for nominal LSI=4, 4.7±0.6 

mm for LSI=5 and 7.2±1.1 mm for LSI=6 (fig. 3). On ANOVA, the effect of LSI on 

depth was statistically significant (F (2.22) = 59.79, p<0.00001). The post-hoc Bonferroni 

tests comparing increasing LSI values from 4 to 6 showed significant increments in 

lesion width and depth (fig. 3).  

A strong, linear regression was observed between LSI and lesion width (fig. 4; r=0.87; 

p<0.00001) and depth (fig. 4; r=0.89; p<0.00001); the width (W) and depth (D) of the 

resulting lesions appear to be well predicted by the formulas W (mm) = - 4.21 + 2.17 * 

LSI, and D (mm) = - 7.54 + 2.54 * LSI. Figure 5 summarizes the relationships between 

the width and depth of lesions obtained by means of the 3 different LSI levels.  

Each of the other experimental measurements recorded (FTI, RF duration, Impedance 

Drop, Average Temperature, Energy, Average Contact Force, Average Power) appeared 

to affect lesion width and depth. However, their contributions were overshadowed by 

LSI. Indeed, multiple linear regression models with a forward stepwise approach selected 

only LSI as a significant predictor of lesion width (R Square=0.75; F=68.7; B coefficient 

2.17 (95% C.I. 1.63-2.71); p<0.001) and depth (R Square=0.80; F=94.9; B coefficient 
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 2.43 (95% C.I. 1.92-2.95); p<0.001), even after checking for multiple interactions. The 

results of univariate and multivariate linear regression analysis were reported in the table. 

About transmural lesions, to which the analysis of depth is not applicable, a significant, 

linear regression between lesion width and LSI was observed (r=0.43, p<0.05). Lesion 

width was 6.0±1.7 mm for LSI=4, 7.4±1.7 mm for LSI=5 and 8.1±2.8 mm for LSI=6; 

these values were not significantly different from those of non-transmural lesions 

(p=0.12). 

Histological examination 

In one of the 3 samples that were sent for histological examination, the lesion could not 

be assessed, as it was located within a trabecular space. The other two ablation samples 

showed an acute injury of the myocardium, consisting of coagulative necrosis in the inner 

zone surrounded by a border zone in the middle (fig. 6 and 7) with wavy fibers and 

contraction bands of the myocytes and an outer zone with hyperemic vital myocardium. 

The endocardium showed no signs of alteration or mural thrombosis, except for the 

denudation of endothelium. Comparison between the gross and the micro measurements 

of necrotic areas revealed an average difference of 0.23 mm (range 0.16-0.3 mm), 

confirming the accuracy of the methods used for gross measurements.  

Discussion:  

Main Findings 

In this in vivo study, LSI demonstrated a high value in predicting the size of ablation 

lesions. Indeed, among the ablation parameters considered, LSI was the only significant 

predictor of lesion width and depth. LSI-guided ablation proved safe and effective, given 

the linear correlation between LSI and lesion width and depth and the absence of charring 
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 or thrombus formation on the ablation lesions or on the catheter tip. Moreover, the 

absence of tissue overheating - i.e. steam pops - confirmed the safety profile of LSI-

guided ablation. 

Comparison with other indexes 

Traditionally, in addition to RF power and ablation duration, electrophysiologists used 

conventional parameters, including impedance, signal amplitude, catheter tip temperature 

and tactile feedback, in order to control RF ablation lesions. Previous studies have 

already shown their low reliability in predicting lesion width and/or depth.
21

 The contact 

force (CF) between the catheter tip and the myocardium has been identified as an 

important determinant of lesion size,
22-28

 and several studies have shown the safety and 

efficacy of ablation procedures in which this index is taken into account.
6,7,29

 Lesion 

formation depends not only on CF, but also on several other parameters,
3
 which can 

combine in a complex way, including RF power and RF delivery time. Consequently, 

other indices have been developed in the attempt to assess the quality of the lesion. The 

Force-Time-Integral (FTI), defined as the total CF integrated over the time of RF 

delivery,
25

 has proved to be inversely associated with gap formation, and has shown a 

positive correlation with better outcome at 12 months after the ablation procedure in 

patients with paroxysmal atrial fibrillation.
4, 5, 30, 31

 However, FTI does not take into 

account the important role played by RF power. The Lesion Index (LSI) was therefore 

developed
32

 as a function of 3 independent variables: force (F), time (t) and electrical 

current (I), as described by the formula:  
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 where f0, f1, and f2 are force parameter coefficients, i1 and i2 are electrical current 

coefficients, k0 is a diffusive heating coefficient, and τ is a characteristic time value, the 

coefficients being derived from the best curve fit with experimental data acquired during 

preclinical studies and the power proportional to the square of the electrical current. The 

Ablation Index (AI) also takes into account CF, RF time and RF power, though with a 

different formula.
17

 AI and LSI are not directly comparable, owing to the different 

technologies used for the contact force sensors in the ablation catheters. However, animal 

studies
 
of AI have reported a good match between the predicted and the actual lesion 

depth, although these studies provide no information on lesion width.
17,18

 Likewise, no 

information on lesion size is reported in recent clinical studies involving AI.
7, 19, 20

  

LSI was clinically tested by invasively reassessing patients from the EFFICAS I study at 

3 months post-ablation in search of reconnection gaps;
9 

this study found a strong 

correlation between LSI and PV isolation. Similar results were replicated in an in vivo 

animal model.
10

 LSI has recently been tested also in vitro and has shown a higher 

correlation with lesion width and depth than FTI.
11

 

To the best of our knowledge, our study is the first to systematically investigate the 

relationship between lesion size and LSI value in an in vivo setting. Our experience 

confirmed the in vitro findings: lesion size (both width and depth) appeared to be 

predicted by LSI. This was also the case when high FTI values were reached for several 

reasons, including automatic raising of RF power due to temperature control and 

subsequent increase in RF delivery times. Even in the case of low CF, LSI seemed to be a 

reliable index of lesion size. This finding could be of relevance to clinical practice, as the 

need to ablate in positions in which a good CF cannot be achieved is not infrequent. 
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 Further confirmation of the safety of RF therapy and, in particular, of LSI is provided by 

the fact that we detected no damage to the tissues close to the cardiac walls in which 

transmural lesions were created. The acute pathologic substrates following endocavitary 

ablation consisted of a wavy front injury, from the endocardium to the epicardium, with 

an inner zone of coagulation necrosis, a mid-wall border zone of contraction bands 

necrosis and an outer sub-epicardial zone with surviving cardiomyocytes and intense 

hyperemia, with intact mesothelial cells; no complications occurred, like cardiac rupture 

or mural thrombosis. Moreover, the use of LSI enabled lesions - including ventricular 

lesions - to be reliably reproduced, even in the presence of cardiac wall thickness ≥ 5mm, 

without any pop and/or charring. 

According to our results, lesion width and depth can be reliably predicted at different 

values of LSI. Although our results provide no information on the “drag” ablation 

technique, they indicate that LSI could play an important role in predicting lesion width 

during ablation by means of the point-by-point technique, and suggest the maximum 

distance that the catheter tip can be shifted to ensure a continue ablation line with no 

gaps. In that sense, a recent work in an in vivo model showed indeed that LSI guided 

ablation can facilitate continuous lesions.
33

  

Moreover, in the POWER-FAST PILOT study, lower average LSI was correlated with 

higher reconnections lesions.
34 

Similarly, the use of LSI to predict lesion depth could play 

an important role in obtaining transmurality in the tissue portion to be treated, thereby 

avoiding the risks related to unnecessary, excessive RF delivery. A direct comparison 

with humans cannot be made; however, the weight (~80Kg) of the pigs used was chosen 

to be as close as possible to that of patients in clinical practice, and the impedances 
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 detected during RF ablation in these animals (max 140±14 Ω; min 93±8 Ω) were 

extremely close to those reported in human beings.
14 

The transmural lesions were 

excluded from the analysis in order to obtain a valuable information about the depth. All 

lesions performed in the atria were excluded for the analysis because transmural in 

chambers apparently thinner than human
15

 (average depth of 1.9±1.1 mm in the RA and 

2.1±0.9 mm in the LA) and a complete measurement of lesion depth was prohibited. 

Therefore, our findings are related specifically to ventricular chambers and should not be 

directly translated to LA and RA chambers due to differences as chamber contractility, 

anatomy, catheter orientation and blood flow. According to the data collected in our 

study and the reported measurements of human heart wall thickness,
15

 it may be only 

hypothesized that a minimum value of LSI enables transmural lesions to be created in 

typical anatomical sites of interest in humans; for example, the posterior wall of the left 

atrium (average thickness = 4.1 mm, for which an LSI ≥ 4.8 should be reached), the 

circumferential muscle between left pulmonary veins and left atrial appendage (average 

thickness = 5.0 mm, for which an LSI ≥ 5.2 should be reached) or the interatrial septum 

(average thickness = 5.5 mm, for which an LSI ≥ 5.4 should be reached). Although lesser 

atrial wall thicknesses have recently been reported in MRI studies
16 

and our results need 

to be confirmed in chronic assessments and in human trials, these LSI values appear to be 

in line with those suggested to obtain longstanding lesions during PV isolation in 

previous clinical studies.
9, 10

  

Study limitations: 

Although we tried to maximize the number of RF applications, the total number of 

lesions was rather low, and the final number of analyzable lesions was further limited by 
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 several factors. Moreover, none of the atrial lesions were considered for the final analysis 

because transmural in this animal model, therefore the hypothesis of minimum LSI value 

for transmural lesion in the human atria need to be verified in further studies. Although 

the greatest attention was paid during lesion measurement, the mechanical caliper used 

for the macroscopic evaluation of the lesions has limited accuracy, and involuntary tissue 

stretch or compression could have occurred. Only one RF power setting was investigated; 

this choice was prompted by the previous in vitro experience,
11

 which did not show a 

significant impact of RF power on the size of the lesions obtained with the same LSI. 

However, given the small sample size and that important variables such as RF power and 

CF were either fixed or varied over a narrow range, the lack of statistical significance 

could then not necessarily correspond to the lack of an important effect that each ablation 

parameter other than the LSI could have on the lesion size. Finally, as catheter orientation 

in the beating heart could not be controlled, it was not considered in the analysis, 

although LSI appeared to include the effects of this real-life phenomenon.  

Conclusions: 

In this study, LSI proved to be highly predictive of lesion size in an in vivo model. This 

tool could be very useful to guide catheter ablation in term of efficacy and safety. Further 

clinical studies are necessary to confirm the potential benefits of LSI-guided ablation 

procedures in humans. 
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Figures legends: 

 

Figure 1 – 3D anatomy, lesions map and ablation parameters while creating a lesion 
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Figure 2 - Lesion measurement 

 

Figure 3 – Relationship between lesion width and depth and LSI 

 

Figure 4 – Linear regression between LSI and lesion width (p<0.00001) and lesion depth (p<0.00001) 
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Figure 5 - Schematic representation of the “spread” of lesion size obtained by targeting LSI values of 4 (blue 

dots), 5 (green dots) and 6 (red dots) from average size. Central illustration 

 

Figure 6 – Histological assessment, endocardial ablation on RV. A) Epicardial view with brown spot; transmural 

section is indicated (red line); B) transmural gross section with yellow injury surrounded by brown area (red 

square); C) histology section of B (Azan Mallory Heidenhein modified staining) 
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Figure 7 - Close-up of Fig. 6. A) Inner (1), Middle (2) and Outer injury zones (3). B) Coagulative necrosis (inner 

region); C) contraction bands necrosis (arrows) in the middle region; D) hyperemic vital myocardium of the 

outer region. A, C) Azan Mallory Heidenhein modified staining; B, D) haematoxylin-eosin staining. A) 5x 
original magnification, B-D) 200x original magnification. 

Table: Results of univariate and multivariate linear regression analysis 

 

Dependent: Width 

 

Dependent: Depth 

 

Univariate Multivariate 

 

Univariate Multivariate 

Covariates r p= p= 

 

r p= p= 

FTI 0.248 0.223 X 

 

0.392 0.048 0.838 

LSI 0.869 <0.001 0.001 

 

0.889 <0.001 0.001 

Impedence_Drop 0.369 0.063 0.825 

 

0.270 0.182 X 

Avg_Temperature 0.513 0.007 0.142 

 

0.529 0.005 * 

Energy 0.495 0.010 * 

 

0.620 0.001 0.218 

Avg_Power 0.015 0.941 X 

 

0.099 0.632 X 

Avg_Contact Force 0.379 0.056 0.948 

 

0.370 0.063 X 

* Because of the high interaction between Average Temperature and Energy, we entered 

the most significant one.  

Avg: Average; FTI: Force-Time Integral; LSI: Lesion Index.  
 

 




