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Abstract: From the point of view of perturbation theory, (perturbations of) near-resonant systems
are plagued by small denominators. These do not affect (perturbations of) fully resonant systems; so
it is in many ways convenient to approximate near resonant systems as fully resonant ones, which
correspond to considering the “detuning” as a perturbation itself. This approach has proven very
fruitful in Classical Mechanics, but it is also standard in (perturbations of) Quantum Mechanical
systems. Actually, its origin may be traced back (at least) to the Rayleigh-Ritz method for computing
eigenvalues and eigenvectors of perturbed matrix problems. We will discuss relations between these
approaches, and consider some case study models in the different contexts.
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Dedicated to Antonio Giorgilli on his 70th birthday.

Foreword

It is a great pleasure to take part in the celebration of Antonio Giorgilli on the occasion of his
retirement, albeit we are (egoistically) sorry he was leaving University life at this stage. So sorry we
were about that, that our contribution is ready far too late for the occasion, and we ended up celebrating
Antonio’s 72th birthday rather than the 70th.
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Antonio has always been ready to tackle any technically difficult problem, but also fond of finding
the simplest way to solve these, avoiding unnecessary complications – or, in his words, to resort to
the ‘office for complication of simple affairs’. We are aware that our contribution is not at the level of
clarity, deepness and at the same time simplicity that would be appropriate for the occasion; but we
trust that the choice of the subject we decided to deal with in this occasion – if not our treatment – is
indeed in this direction, as detuning allows to avoid a number of technical problems and yet provides
an accurate picture of perturbed dynamics.

Antonio is fond not only of Mathematica and Physics, but of a number of other human activities – at
the exception, as mentioned above, of bureaucratic complications. He is also passionate about poetry
and dialectal poetry, as known to anybody who has visited his homepage. We will thus conclude this
short foreword to our contribution – contribution in which we have tried to organise the classical and
quantum approaches to detuning in a somewhat unified way – by a citation of Carlo Porta, actually
from the same sonnet present in Antonio’s homepage:

Ergo donca l’è cossa che la va,
Soeulia, soeulia, polid e del so pass,
Se droeuven i orghen per organizzà.

1. Introduction

Despite the spectacular progresses of the theory of Nonlinear Integrable Systems, most nonlinear
systems are beyond reach of exact analysis, and can only be studied through a perturbation approach.

Modern perturbation theory was created by H. Poincaré and has the transformation to normal form
as one of its cornerstones [61]. As well known, this can be constructively characterized through
solution of the homological equation at each perturbation level. The main problem met in solving this
equation is the presence of small denominators, which are in turn related to near resonances in the
unperturbed system. In practice, small denominators reduce the domain of analyticity of the
normalizing transformation, and they can accumulate so to make this vanish. This is not surprising: as
remarked by Moser, the normal form (at least for problems of interest in Physics and in Celestial
Mechanics) has an additional symmetry and hence conserved quantity, so the transformation bringing
the original system into normal form can be analytical only if the original system already had (at least
in some neighborhood of the unperturbed solution) such an additional symmetry or conserved
quantity. Note also, in this respect, that the most basic criteria for the convergence of the normalizing
transformation (e.g., the condition that eigenvalues of the unperturbed linear operator lie in a Poincaré
domain) are not satisfied in the case of resonant Hamiltonian systems.

It may seem paradoxical that, from this point of view, exactly resonant systems are easier to analyze
that near-resonant ones. In fact, while for non-resonant system the normal form is linear, and thus
all non-linear systems should be eliminated by solving the homological equation, for resonant system
the normal form contains resonant terms, i.e., we (have to) accept that certain non-linear terms are not
eliminated. This makes of course that the normal form dynamics is non-linear and thus at the same
time richer and more difficult to analyze; but when we look at the reduction to normal form, the fact
we accept to keep certain nonlinear terms makes of course things easier.

This trivial observation is at the basis of the method of detuning (also going under the name of
frequency deviation in the Russian literature). In this, when we have a near-resonance, we treat an
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exactly resonant unperturbed system, and consider the detuning of the frequency as a perturbation, to
be included in the perturbation analysis rather than in the analysis of the unperturbed system.

One of the consequences of this approach is that we aim at a resonant normal form, which will
contain (nonlinear) resonant terms. These are exactly the terms which would call the small
denominators into action were we attempting to eliminate them, and it is this not surprising that the
method can give a much better outcome in terms of convergence of the normalizing transformation
(and thus conjugation of the normal form dynamics with that of the full original system).

The aim of this paper is twofold: on the one hand we want to briefly review the detuning method
in Classical Mechanics; on the other we want to stress a point which appears not to be usually made,
i.e., that the detuning approach has a close relative in the (standard) approach to perturbation of near
degenerate quantum systems.∗

We will thus first review the detuning approach in Classical Mechanics, then review
near-degenerate perturbation theory in Quantum Mechanics, and then consider some specific simple
examples (perturbation of near-resonant oscillators) in both the Classical and the Quantum
formulation. We will also give some (partial) parallel between the two formulations; hopefully we
will be able to further progress in clarifying the connection among the two in the near future, but we
trust that researchers in both Classical and Quantum Mechanics can profit from knowing that this kind
of problems can be treated by essentially the same set of ideas in the other discipline, and techniques
can be adapted from one to the other context.

2. Classical detuning

Our main characters are resonance and detuning.
Resonance is the ubiquitous phenomenon [12] producing spectacular features of non-integrable

Hamiltonian systems; see e.g., Figure 1.
Detuning is the simple device that, under certain hypotheses, allows us to explore the phase-space

of a generic system undergoing resonant behaviour [35, 71, 78].
We will first focus on the classical setting, with an eye to the semi-classical and quantum

applications. Bifurcations and stability/instability transitions are features common to all these
frameworks. For systems close to resonance with nonlinear coupling terms, crossing an exact
resonance is a general situation triggered by changes in some parameter, typically either the energy or
some control parameter.

∗We are not expert in the History of Mathematics, but it appears that these ideas have departed from perturbation of PDEs, made
their way as a full theory in Quantum Mechanics in the thirties (of XX century), and then come back into Classical Mechanics; it would
be interesting to have a discussion of the matter by historians of Science.
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(E = 0.1665)

Figure 1. Surfaces of section of the Hénon-Heiles problem [33] at different values of the
Energy E: E = 0.08 (upper), E = 0.125 (center), E = 0.1665 (lower).
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Let us consider a perturbed classical Hamiltonian model of the form

H(p, q; ε) =

∞∑
j=0

ε jH j(p, q) (2.1)

with p, q canonical coordinates in R2N and ε a book-keeping parameter – not necessarily small at this
stage – playing the role of ordering the perturbation terms. The usual setting is provided by a system
around an elliptic equilibrium for which

H0 =
1
2

N∑
a=1

ωa(p2
a + q2

a) (2.2)

with ωa ∈ RN , a = 1, . . . ,N.
For non-degenerate systems, situations of effective equilibrium can be obtained by exploiting a

symmetry through reduction or by expanding around some nominal (usually periodic) solutions.
We say that the frequency vector of the unperturbed system is resonant if

N∑
a=1

ωana = 0, (2.3)

with resonant module provided by the vectors

n( j)
a ∈ ZN , a = 1, . . . ,N; j = 1, . . . ,M . (2.4)

Here M is the interaction number and j the associated label.
Suppose now that a given pair of components of the frequency vector (without loss of generality

we can rearrange indices and take the first two components ω1, ω2) are “close” to a rational ratio k/`,
k, ` ∈ Z; then we can introduce the detuning parameter δ by defining

δ :=
ω1

ω2
−

k
`
. (2.5)

We can assume
δ = O (εr) , (2.6)

where the power r is chosen according to the order of the first resonant term in the normal form. In
principles, with N degrees of freedom, we can introduce N − 1 detuning parameters.

2.1. Normalization

The most effective way to explore the backbone dynamics of a perturbed Hamiltonian system is to
construct a suitable normal form [13,28,68]. Resonant normal forms are computed when a given exact
resonance prevents standard normalization algorithms to work. However, the power of the detuning is
just to exploit it even in strictly non-resonant cases, when, in principle, a standard Poincaré-Birkhoff

normalization would perform flawlessly.
The idea is to proceed as in the case where the unperturbed part is exactly at the interesting

resonance and hence leave in the normal form the associated resonant terms. The benefit is twofold:
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to eliminate several terms possessing small divisors and to get an effective tool to explore the
phenomena associated with the resonance.

Let us then consider a sequence of polynomial functions in the phase-space

{G} = G1,G2, ..., G j = O(ε j), (2.7)

To each term of the sequence (2.7) is naturally associated the linear differential operator

exp
[
LG j

]
=

∑
k

ε jk

k!
LGk

j
, (2.8)

whose action on a generic function F is given by the Poisson bracket:

LGF := {F,G} =
∂F
∂q
·
∂G
∂p
−
∂F
∂p
·
∂G
∂q

. (2.9)

Under the action of this operator, the original Hamiltonian system (2.1) undergoes a canonical
transformation to new variables (Q, P) such that

q = eLG Q , p = eLG P ; (2.10)

and the new Hamiltonian is

K(Q, P) =
(
eLGH

)
(Q, P) = H(eLG Q, eLG P) , (2.11)

where every function is assumed to be in the form of power series.
The process is recursive with first step given by G1 (we can start with the cubic term because a G0

would give only trivial linear transformations). The general relation (2.11) takes the form

K0 + εK1 + ε2K2 + ... =
(
1 + εLG1 + ...

) (
H0 + εH1 + ε2H2 + ...

)
(2.12)

By equating polynomials of the same degree in ε, we get the system:

K0 = H0,

K1 = H1 +LG1H0,

K2 = H2 +LG1H1 + 1
2L

2
G1
H0,

... =
...

and equations involving terms of higher degrees. The first equality simply states that the zero-order
new Hamiltonian coincides with the zero-order old (unperturbed) one. The second equation has to be
solved to find the first order term K1: to proceed we have to make some decision about the structure
the new Hamiltonian must have, that is we have to chose a normal form for it.

We therefore select the new Hamiltonian in such a way that it admits a new integral of motion; that
is we take a certain function, say F, and impose that {K , F} = 0. The usual choice (but not the only
possible one) is that of taking F = H0 = K0 so that (2.2) plays the double role of determining the
specific form of the transformation and assuming the status of the second integral of motion.
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With this choice, the fundamental equation of the chain, that we can also write in the form

K1 = H1 +LG1H0 = H1 − LH0G1 , (2.13)

is solved by requiring that the action of the operator LH0 on any polynomial function which commutes
with H0 (and therefore that has H0 as an integral of motion) is to “kill” it, whereas its action on any
other polynomial gives a uniquely defined non-vanishing polynomial.

We can therefore split the polynomialH1 appearing in (2.13) as

H1 = HK
1 +HR

1 (2.14)

whereHK
1 is the part belonging to the kernel of LH0 ,

LH0H
K
1 ≡ 0 , (2.15)

andHR
1 is the part belonging to the range of LH0 ,

LH0H
R
1 = R1 , (2.16)

where R1 is a non-vanishing cubic polynomial.
Since our new Hamiltonian, with the choice made, is in normal form if and only if it stays in the

kernel of LH0 , we can then solve (2.13) by applying the simple prescription:

K1 = HK
1 , G1 = L−1

H0
HR

1 . (2.17)

We observe that the operation implied in the second expression is well defined and easily solved [6,28]
to find the first Lie generating function G1: we can therefore use it in the subsequent equations of the
system to compute the terms H(1)

j with j > 1 (which are still not in normal form), and go one step
further by expanding Eq (2.11) at order two and applying the above recipe to compute G2 and the
normal form at order 2

K2 = H
(1)
2 +LG2H0 = H2 +LG1H1 + 1

2L
2
G1
H0 +LG2H0 . (2.18)

The procedure can then be iterated up to an arbitrary order. It is usually stopped before a threshold
order N0 at which the remainder ∣∣∣∣∣ ∞∑

j=N0+1

H
(N0)
j

∣∣∣∣∣ ,
ceases to decrease.

2.2. Quasi-resonant normalization

We have so far discussed the general normalization scheme; in this work, we are specially interested
in the quasi-resonant case, and in this case the normalization algorithm may present some technical
issue.

• The most natural way to construct a detuned resonant normal form is simply to exploit the
standard method of recursive solution of the homological equation in which the linear operator is
associated to the non-resonant linear part, but the choice of the resonant terms left in the normal
form is dictated by the quasi-resonance of interest (Method 1).
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• In alternative, terms proportional to the detuning (with a given book-keeping order) can be treated
as perturbation terms and treated, at each step, by the resonant algorithm with exactly resonant
homological operator (Method 2).

Each of these methods has pros and cons:

• Method 1 is straightforward since does not necessitate any adaptation but, in general, produces
many terms with progressively smaller denominators. Moreover, it is computationally more
demanding since the memory occupancy is larger than in the other approach. This can be a
serious problem when the order of normalization is quite high.
• Method 2 requires to be adapted to manage terms of different algebraic order corresponding to

the same perturbation order. By a proper adjustment of book-keeping orders in the algorithm, the
treatment of terms of different degree at each step can be managed efficiently and so this method
proves to be quite fast and accurate.

We remark that, in order to compare the results obtained in the two approaches, the simplest way
is to perform, in the outcome of method 1, a series expansion in the detuning and a rearrangement of
terms by means of powers of the book-keeping parameter.

2.3. Detuned resonant 2-DOF systems

The reference case, which can be considered with no loss of generality, is provided by a two degrees-
of-freedom system around an elliptic equilibrium like (2.2) with perturbation given by a series of
homogeneous polynomials

H =
1
2
ω1 (p2

1 + q2
1) +

1
2
ω2 (p2

2 + q2
2) +

∞∑
j=1

ε jH j(p, q) . (2.19)

It is convenient to pass to action-angle variables (J,φ); with these, the Hamiltonian can be written in
the form of the perturbed oscillator

H = ω1 J1 + ω2 J2 +

∞∑
j=1

ε jH j(J,φ) . (2.20)

Let us consider first the unperturbed system (ε = 0). In the case where

ω1

ω2
< Q ,

only the solutions J1 = 0 and J2 = 0 are periodic. If

ω1

ω2
∈ Q ,

then all orbits are periodic. Solutions for J1 = 0 and for J2 = 0 are axial oscillations: they are called
normal modes.

In phase-space the energy manifold is an ellipsoid diffeomorphic to the sphere S3:

ω1 J1 + ω2 J2 = E0 .
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When the oscillator is perturbed, the orbits will have different evolutions: let us still call normal
modes the solutions, if they exist, corresponding to J1 = 0 and J2 = 0 (these are nonlinear normal
modes in the sense of Moser & Weinstein [53, 79]; see also [51, 52]), and orbits in generic position
those for which both J1 and J2 are nonzero.

Consider the detuned k:` resonance defined by (2.5). It will be convenient to use complex
coordinates

xk = qk + i pk , yk = qk − i pk . (2.21)

As the operator LH0 is linear, and hence so are also the homological equations, we can discuss the
latter considering separately different monomials appearing inHN . Given a term

Cnxn1
1 yn2

1 xn3
2 yn4

2 ,

4∑
j=1

n j = N

of a polynomial HN of degree N, the solutions of equations (2.17) are provided the vanishing of the
scalar product

k (n1 − n2) + ` (n3 − n4) . (2.22)

If (2.22) vanishes, the term belongs to the normal form; if not, it produces a term in the generating
function GN−2. The resonant normal form therefore is [68]

K =
1
2

(ω1x1y1 + ω2x2y2)

+εk+`−2 2α4[x`1yk
2 + xk

2y`1]
+ε2 [α1 x2

1y2
1 + α2 x2

2y2
2 + α3 x1y1x2y2]

+ · · · (2.23)

with k, ` ∈ N, α j ∈ R, j = 1, . . . , 4. In action-angle variables

xa = −i
√

2Jaeiφa , ya =
√

2Jae−iφa , a = 1, 2, (2.24)

we have

K = ω1J1 + ω2J2 + ε2
(
α1J2

1 + α2J2
2 + α3J1J2

)
+ · · ·

+2(k+`+2)/2εk+`−2α4J`/21 Jk/2
2 cos(`φ1 − kφ2). (2.25)

2.4. Variables adapted to the k:` resonance

Let (k∗, `∗) such that (k, `) ·(k∗, `∗) = ν , 0, with ν ∈ Z. We will now construct the variables adapted
to the resonance k/`. Define the matrix

M̂ =

(
` −k
k∗ `∗

)
and put

E = kJ1 + `J2 .
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The coordinates adapted to the k/`-resonance are {r1, r2, ψ1, ψ2} and are defined by

ψ1 = `φ1 − kφ2 ,

ψ2 = k∗φ1 + `∗φ2 ,

J1 = 1
ν
(` r1 + k∗r2) = 1

ν
(`R + k∗E) ,

J2 = 1
ν
(−k r1 + `∗r2) = 1

ν
(−kR + `∗E) .

(2.26)

In these coordinates

K = (ω1k∗ + ω2`
∗)E + δ R

+εk+`−2 2(k+`+2)/2ν−(k+`)/2α4 (`R + k∗E)
`
2 (−kR + `∗E)

k
2 cosψ1

+ε2
[
(`∆1 − k∆2) R2 + 2 (k∗∆1 + `∗∆2) RE +

(
k∗∆∗1 + `∗∆∗2

)
E2

]
+ · · · (2.27)

with

∆1 =

∣∣∣∣∣∣ α1 k
α3/2 `

∣∣∣∣∣∣ ∆2 =

∣∣∣∣∣∣ α3/2 k
α2 `

∣∣∣∣∣∣
∆∗1 =

∣∣∣∣∣∣ α1 k∗

α3/2 −`∗

∣∣∣∣∣∣ ∆∗2 =

∣∣∣∣∣∣ α3/2 k∗

α2 −`∗

∣∣∣∣∣∣ .
The angle ψ2 is not present in (2.27), consistent with E being a conserved quantity for the resonant
normal form.

The general analysis of the global structure of phase-space of each resonant normal form proceeds
with the study of the bifurcations induced by changes in the internal “distinguished” parameter (E) and
in the external or “control” parameters (δ, α j).

It can be approached by following two methods: (a) the analytical approach based on singularity
theory considering (2.27) as a universal unfolding of a “catastrophe” germ [5,29,45]; (b) the geometric
approach using the Poisson algebra of invariants of the harmonic oscillator and the corresponding
reduced systems [15, 62].

Clear and accurate references for these methods are given by [20, 32].

3. Quantum mechanics perturbation theory

Quantum mechanical perturbation theory has its roots in a venerable piece of Mathematics, i.e., the
Rayleigh-Ritz method† for computing solutions to an eigenvalue–eigenvector problem

A x = λ x , (3.1)

where A : V → V is a linear operator in some vector space V = CN , and we look for eigenvalues λ
and the corresponding eigenvectors x. Needless to say, in a Quantum Mechanics context we will most
often deal with infinite dimensional Hilbert spaces.

†So called after Lord Rayleigh, i.e., John William Strutt, third Baron Rayleigh (1842–1919), and Walther Heinrich Wilhelm Ritz
(1878–1909). It should maybe be mentioned that both of these scientists were actually physicists.
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In this section we will very sketchily discuss quantum-mechanical perturbation theory for what
concerns determination of eigenstates, i.e., solutions to the stationary Schroedinger equation

H ψ = λ ψ , (3.2)

where H is the Hamiltonian operator, ψ ∈ H (with H some Hilbert space) is the wave function
describing the quantum state of the system, and λ are the eigenvalues of the Hamiltonian, i.e., the
energy levels of the system. This material is of course quite standard [17, 44, 49, 59], but is given here
for completeness and to introduce notation.

For ease of discussion – and for the relevance in applications – we will just discuss the case where
H is bounded from below (we will then assume, for ease of notation and with no loss of generality,
that the potential is always non-negative; this guarantees that the energy levels are all positive) and an
observable with pure point spectrum; this implies it is self-adjoint and admits, by definition, a set of
eigenstates providing a basis forH .

We will denote these eigenstates as ψ0, ψ1, ... and the corresponding energy levels as E0, E1, .... We
will always order states and levels so that Ei ≤ Ei+1.

We will also discuss the situation only at first order in perturbations; albeit classical higher-order
resonances will manifest their effect at higher order, discussing the first order case is sufficient to grasp
the conceptual structure of near-degenerate perturbation theory and its relations with the method of
detuning discussed in the previous Section.

We consider a Hamiltonian
H = H0 + H1 (3.3)

and assume to know the solution to (3.2) for H0. We write this as

H0 ψ
(0)
k = λ(0)

k ψ(0)
k . (3.4)

We will thus consider H0 as the “unperturbed” Hamiltonian and look at H1 as a perturbation.
The states ψ(0)

k can be chosen to be of unit norm. We recall that states corresponding to distinct
eigenvalues are always orthogonal to each other; in the case of one-dimensional systems all energy
levels are always non-degenerate. In the vase of systems in higher dimension, degeneration is possible
(and actually always present in case of symmetric systems, e.g., rotationally invariant ones); in this
case the eigenspace corresponding to a degenerate eigenvalue λ(0)

k has dimension nk but is orthogonal to
eigenspaces corresponding to different eigenvalues, and within each eigenspace we can always choose
nk mutually orthogonal unit vectors ψ(0). In other words, the vectors ψ(0)

k are always – under our
assumption that H0 is an observable – a complete orthonormal basis.

We will correspondingly look for the solutions to the Schroedinger problem (3.2) for H in the form

λk = λ(0)
k + λ(1)

k + ... ; ψk = ψ(0)
k + ψ(1)

k + ... . (3.5)

3.1. QM perturbations: the non-degenerate case

Let us first consider the case where H0 is non-degenerate, i.e., all the eigenspaces corresponding to
the different eigenvalues are one-dimensional.

Plugging (3.5) and (3.3) into (3.2) we get, at first order in perturbations,

(H0 + H1)(ψ(0)
k + ψ(1)

k ) = (λ(0)
k + λ(1)

k ) (ψ(0)
k + ψ(1)

k ) . (3.6)
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The terms of order zero give
H0 ψ

(0)
k = λ(0)

k ψ(0)
k , (3.7)

which is satisfied by assumption.
Terms of order one yield

H1 ψ
(0)
k + H0 ψ

(1)
k = λ(1)

k ψ(0)
k + λ(0)

k ψ(1)
k . (3.8)

Note that as the ψ(0)
k are a basis in H , we can express the ψ(1)

k in terms of these, i.e., we can always
write

ψ(1)
k = c(1)

k` ψ
(0)
` , (3.9)

where sum over the repeated index ` is understood, and c(1)
k` are complex constants to be determined.

It is trivial – but relevant in the following – to observe that as states are defined up to a nonzero
scalar factor, it would make no sense to consider corrections which are along the unperturbed state. In
other words, we can and will always assume

c(1)
kk = 0 . (3.10)

With the notation (3.9), Eq (3.8) reads

H1 ψ
(0)
k + H0 c(1)

k` ψ
(0)
` = λ(1)

k ψ(0)
k + λ(0)

k c(1)
k` ψ

(0)
` ; (3.11)

recalling that ψ(0)
k are eigenstates for (the linear operator) H0, this can also be rewritten as

H1 ψ
(0)
k + c(1)

k` λ
(0)
` ψ(0)

` = λ(1)
k ψ(0)

k + λ(0)
k c(1)

k` ψ
(0)
` . (3.12)

By taking the scalar product of (both members of) this equation with ψ(0)
k , and recalling (3.10), we

get (
ψ(0)

k , H1 ψ
(0)
k

)
= λ(1)

k . (3.13)

Thus the first order correction to the energy levels is just the mean value of the perturbation H1 on the
unperturbed states.

We have now to deal with perturbation of eigenstates, i.e., with determination of the coefficients
c(1)

k` . In order to do this, we consider the scalar product of (3.12) with ψ(0)
m , with m , k. We get(

ψ(0)
m , H1 ψ

(0)
k

)
+ c(1)

k` λ
(0)
`

(
ψ(0)

m , ψ(0)
`

)
= λ(1)

k

(
ψ(0)

m , ψ(0)
k

)
+ λ(0)

k c(1)
k`

(
ψ(0)

m , ψ(0)
`

)
. (3.14)

By orthonormality of the ψ(0)
k and m , k, this yields(

ψ(0)
m , H1 ψ

(0)
k

)
=

(
λ(0)

k − λ(0)
m

)
c(1)

km , (3.15)

and hence in conclusion we get

c(1)
km =

(
ψ(0)

m , H1 ψ
(0)
k

)
λ(0)

k − λ(0)
m

:=
Vmk

λ(0)
k − λ(0)

m

, (3.16)

where in the second equality we have defined the matrix element

Vmk :=
(
ψ(0)

m , H1 ψ
(0)
k

)
(3.17)
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of the perturbation H1 between the unperturbed states ψ(0)
m and ψ(0)

k .

Remark 1. Note that our assumption about H0 being non-degenerate guarantees that λ(0)
k , λ(0)

m for
m , k, so that the denominator in (3.16) is always non-vanishing (recall (3.10)); but of course these
denominators

ηkm := |λ(0)
k − λ(0)

m | (3.18)

could be arbitrarily small. �

Remark 2. Actually we have not discussed the conditions of validity for the formal expansion (3.5);
this can be considered a posteriori, and our approach is justified provided on the one hand the
correction λ(1)

k to the k-th energy level is small not only in comparison with the unperturbed value λ(0)
k ,

but also in comparison with the separations from nearby levels, i.e., provided

|λ(1)
k | � |λ

(0)
k | ; |λ

(1)
k | � |λ(0)

k − λ(0)
k±1| = ηkm . (3.19)

Again, an exceedingly small ηkm would cause the collapse of our approach. �

Remark 3. Our computations were performed at first order in perturbations only; going at higher
orders produces similar, albeit more complex, formulas. Thus, e.g., the second order correction to
energy levels turns out to be

λ(2)
k =

∑
m

c(1)
km

(
ψ(0)

k , H1 ψ
(0)
m

)
=

∑
m

|
(
ψ(0)

k , H1 ψ
(0)
m

)
|2

λ(0)
k − λ(0)

m

(3.20)

while the correction to eigenvectors is embodied in the coefficients

c(2)
nm =

∑
k

Vmk Vkn

(E(0)
n − E(0)

k ) (E(0)
n − E(0)

m )
−

Vnn Vmn

(E(0)
n − E(0)

m )2

−
1
2

Vmn Vnm

(E(0)
n − E(0)

m )2
(3.21)

See e.g., [17, 44, 49, 59] for details of computations. �

3.2. QM perturbations: the degenerate case

As remarked above, the non-degeneration condition (λm , λk for m , k) guarantees the
denominators in (3.16) do not vanish.

Albeit non-degeneration is guaranteed (by the non-degeneration theorem) for one-dimensional
systems, not only this theorem does not apply in higher dimension, but many interesting quantum
systems in two or three dimensions exhibit reflection or rotational invariance and are thus guaranteed
to have a degenerate spectrum precisely due to their symmetry properties.

Needless to say, this degeneration will persist if the symmetry is preserved under perturbations,
and in this sense (see also below) we have a trivial extension of the non-degenerate case, in that one
can always choose arbitrarily the basis eigenstates belonging to a given degenerate eigenspace to be
orthonormal.
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But in many physically relevant cases (the most famous being perhaps that of the Hydrogen atom in
a magnetic and/or electric field) one studies perturbations which break the symmetry of the unperturbed
system, and in this case some extra care must be taken. As the method developed in the early days
of QM [7, 8, 18] to deal with the degenerate case is also at the basis of the QM treatment of the near-
degenerate case, we will discuss this in some detail.

It is quite clear that the problem resides within the degenerate eigenspace Em corresponding to an
eigenvalue λ, of dimension d = nm; we will thus concentrate on this, so to get a simpler notation.
This means we will only consider the eigenvectors and eigenvalues of H resulting from perturbation of
states belonging to this degenerate eigenstates of H0; the formulas relating these to other unperturbed
states – that is, the components of the perturbed degenerate states in the direction of the Hilbert space
spanned by other unperturbed states – are obtained as before.

We choose arbitrarily an orthonormal basis

{φ1, ..., φd}

in Em = V; we have chosen a different symbol for these vectors to emphasize this is a “temporary”
basis. That is, we will later on choose a more suitable basis, using the fact that any choice of a unitary
matrix M and of vectors

ψi = Mi jφ j

will also yield an orthonormal basis in V; all of these are equivalent as far as H0 is concerned; but
in general they are not equivalent when we also consider H1. (Note that in this case the degenerate
eigenvalue λ will in general split into d distinct eigenvalues λi = λ + λ(1)

i .)
In fact, let us choose an arbitrary state ψ = ψ(0) + ψ(1) of this form, which we write through

ψ(i) = a(i)
k φk

with a(i)
k (i = 0, 1) constants to be determined. Let us now consider the Eq (3.14) at order one in

perturbations for such states; recalling that the φk are all eigenvectors of H0 with eigenvalue λ and
taking into account some trivial cancelations, this reads∑

k

[
a(0)

k H1φk − a(0)
k λ(1) φk

]
= 0 . (3.22)

We can now proceed as before, i.e., consider the scalar product of this with φm; recalling that the φ
were chosen arbitrarily but to be orthonormal, we get∑

k

[
(φm , H1φk) − λ(1) δmk

]
a(0)

k = 0 . (3.23)

We can rephrase the problem in a slightly different way. Recalling the definition of the matrix
elements Vmk of the perturbation H1 between states m and k, and letting V be the associated matrix, let
us define the matrix Q and the vector a as Q = V − λ(1)I, a =

(
a(1)

1 , ..., a(1)
d

)
. Then (3.23) reads

Q a = 0 , (3.24)

and this admits a solution if and only if Q has vanishing determinant.
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This means that λ(1) must be one of the eigenvalues of the matrix V , and a the corresponding
eigenvector. This a identifies in turn a state

ψ(0) =
∑

k

a(0)
k φk .

In this way we get d solutions (in general different) for λ(1), and hence for

λ̃i = λ + λ(1)
i ;

and correspondingly d eigenstates
ψ(0)

i =
∑

k

(
a(0)

k

)
i
φk

belonging to the degenerate eigenspace V . Note that these will automatically be orthonormal if the
eigenvalues are distinct, and can be chosen to be such (e.g., by the standard Gram-Schmidt method) if
some degeneration is still present.

Remark 4. The relevant point is that our initial choice of the basis {φ} was completely arbitrary. If
we change this choice, and choose exactly the basis of the {ψ(0)

i }, we already have eigenfunctions of
H = H0 + H1 (at least at order one in perturbation) and thus we surely avoid any problem related to
small denominators, simply because there is no correction to the states to be computed. This remark is
at the basis of the treatment of near-degenerate cases, to be discussed in the next subsection. �

3.3. QM perturbations: the near-degenerate case

We have seen above that near-resonances – associated to small denominators – can be dangerous,
but exact resonances are actually harmless: in this case by making use of the degeneration we can
actually arrange things (i.e., chose a suitable basis making use of the freedom left by the degeneration)
so that no denominators are actually called into play.

This is not the case when we have really small but non vanishing denominators, i.e., when the
energy levels are nearly degenerate. However, the experience built with fully degenerate systems
suggests that we may consider instead a fully degenerate system as the unperturbed one, so to make
use of the freedom of selecting the basis (as a basis of eigenvectors for the unperturbed operator)
inherent to the degeneration. This is indeed at the basis of the QM approach to (perturbations of) near-
degenerate systems, as we do now discuss following standard treatments [44, 49, 59], and in particular
Davydov [17].

Let us then consider the case where some of the H0 eigenvalues are very near to each other‡; let us
say these are {λ1, ..., λn} and to fix ideas let these be within ε; we will denote by λ0 the “center of mass”
of these,

λ0 =
1
n

n∑
i=1

λi , (3.25)

and let us write
λi = λ0 + µi . (3.26)

‡In the same way as we did for the degenerate case, we will focus on these and disregard contributions to other ones, which are
computed in the standard way.
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Thus the µi are of order ε.
We will assume, for the sake of simplicity, that there is no exact degeneration between these levels

λi, so that to each of the levels λi is associated a normalized eigenstate ψi.
Thus the ψi form a basis for the space W = V1 ⊕ ... ⊕ Vn which is the direct sum of eigenspaces

corresponding to the near degenerate levels. We are however free to use any other basis in W; in
particular we can consider linear combinations

φi =
∑

k

aik ψk . (3.27)

We stress that these states φi can be chosen to be orthonormal (if the ψi are orthonormal, the φi are
automatically so provided the matrix A with elements aik is unitary) but in general they are not
eigenstates for H0.

We will now look for eigenstates of H = H0 + H1 belonging to this space W, and the associated
eigenvalues. For a generic state of the form

φ =
∑

k

ak ψk , (3.28)

this means looking for solutions to
H φ = E φ . (3.29)

By plugging (3.28) into this, we get

(H0 + H1)
∑

k

akψk = E
∑

k

akψk ; (3.30)

recalling that H0ψk = λkψk, this reads∑
k

ak λk ψk +
∑

k

ak H1ψk = E
∑

k

akψk . (3.31)

We now write (here µk and η are of order ε)

λk = λ0 + µk ; E = λ0 + η . (3.32)

In this way the previous Eq (3.31) reads

λ0

∑
k

ak ψk +
∑

k

ak µk ψk +
∑

k

ak H1ψk = λ0

∑
k

akψk + η
∑

k

akψk . (3.33)

The terms of order zero cancel out, by construction; the equation simplifies then to∑
k

[
µk ψk + H1ψk − η ψk

]
ak = 0 . (3.34)

Let us consider, as by now customary, the scalar product of this with ψm; recalling that (ψm, ψk) =

δmk, we get ∑
k

[
(ψm , H1ψk) + (µk − η) δmk

]
ak = 0 . (3.35)
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We can write this as a matrix equation, defining matrices V and W with elements

Vmk = (ψm , H1ψk) , Wmk = Vmk + µk δmk ; (3.36)

we will also write

M = W − η I ; a = (a1, ..., an) . (3.37)

Now (3.35) reads simply

M a = 0 ; (3.38)

this admits solution if and only if M has vanishing determinant, i.e., if and only if η is one of the
eigenvalues {η1, ..., ηn} of W.

To each of these n eigenvalues ηi corresponds an eigenvector a(i) and hence a state

φi =
∑

k

a(i)
k ψk . (3.39)

The point is that these are, by construction, eigenstates at order one. We have thus completely bypassed
the computation described in Section 3.3 and the appearance of denominators.

Should be willing to consider the Hilbert space corresponding to the sum of the Hilbert spaces
generated by eigenstates of different multiplets, the discussion would go along the same path with
some more involved notation.

Remark 5. It is worth stressing the difference with the fully degenerate case considered in Section 3.2.
In that case, the relevant matrix is V , i.e., the matrix encoding the matrix elements of the perturbation
H1 between the (degenerate) states of the basis. In the present case, the relevant matrix is M; in this we
have not only the matrix elements of the perturbation H1 between the (near degenerate) states of the
basis, but also the differences µi of the eigenvalues λi with respect to the “center of mass” λ0. �

Remark 6. The presence of the term ηI in the M matrix (3.38) has a very simple physical interpretation:
the quadratic “detuning” term is now part of the perturbation w.r.t. the unperturbed degenerate case.
In other words, quasi-degenerate quantum perturbation theory is the quantum version of the detuning
approach according to Method 2 introduced in subsection 2.2; or conversely. �

4. Classical examples

We have so far described the general theory, both in the classical mechanics and in the quantum
mechanics frameworks. It is time to discuss some specific examples in some detail, also to better
understand the relationship between the classical and the quantum cases. We start by considering
classical examples; in the next section we will consider some quantum ones.

In this section, we relate the bifurcations of the k/`-resonances to their universal unfolding and
catastrophe maps. Rather than providing a general formal treatment, we find more convenient to
explicitly work out the most representative cases in 2 DOF.
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4.1. The symmetric 1:1 resonance

The expression (2.23) cannot be directly applied to the k = ` = 1 case because additional quadratic
terms with many other free parameters should be included.

However, when enforcing typical symmetries of physical models, the normal form is simplified and
belongs to the family (2.25). The standard case is that of the reflection symmetries with respect to one
or both normal modes [77]. In this case it is simpler to assume k = ` = 2 so that the normal form is

K = J1 + J2 + ε2
(
δJ1 + α1J2

1 + α2J2
2 + α3J1J2

)
+

+2ε2α4J1J2 cos(2φ1 − 2φ2) + · · · , (4.1)

where an obvious rescaling has been applied but, for simplicity, we have kept the same symbols for the
rescaled control parameters. In terms of variables adapted to the resonance we have, with the choice

M̂ =

(
2 −2
2 2

)
, (4.2)

and setting now ε = 1, the function

K = (1 + ∆)E + A+E
2 + (BE + ∆)R + A−R2 + C

√
E2 − R2 cos 2ψ , (4.3)

where
A± :=

α1 + α2 ± α3

4
, B :=

α1 − α2

2
, C :=

α4

2
, ∆ :=

δ

2
. (4.4)

Singularity theory is implemented by finding an unfolding of the central singularity with double
reflection symmetry in the plane. By introducing coordinates in the plane defined by{

x =
√
E + R cosψ ,

y =
√
E + R sinψ ,

(4.5)

so that
R = x2 + y2 − E , (4.6)

we get the function [10, 45]

F(x, y; ε±, µ, u±) = ε−x4 + µx2y2 + ε+y4 + u−x2 + u+y2 (4.7)

where
ε± := A ±C, u± := ∆ − (2A − B ± 2C)E, µ := 2A, A := A− . (4.8)

This is the standard form of the unfolding of the cusp catastrophe [5,29] giving pitchfork bifurcations.
The bifurcation set is determined by finding the critical points of F inside the “limit circle”

x2 + y2 = 2E .

We find four conditions corresponding to pairs of critical points colliding with either the origin or the
limit circle:

u+ = 0 ,
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u− = 0 ,
Au− − (A −C)u+ = 0 ,
(A + C)u− − Au+ = 0 .

Taking into account (4.8), we see that a non-vanishing detuning produces bifurcation thresholds for the
distinguished parameter E (the “energy”).

More precisely, at

EL
1,2 :=

∆

±2(A + C) − B
(4.9)

the “loop” families (ψ = ±π/2) bifurcate respectively from the J1, J2 normal modes; and at

EI
1,2 :=

∆

±2(A −C) − B
(4.10)

the “inclined” families (ψ = 0, π) bifurcate respectively from the J1, J2 normal modes.
A complementary view is offered by the geometric approach based on the invariants of the isotropic

oscillator. It can be proven [15] that the Hilbert basis of the functions in R4 invariant under the action
generated by the dynamics of the isotropic oscillator is given by

I0 = i(x1y1 + x2y2) = J1 + J2 = E ,

I1 = i(x1y2 + x2y1) = 2
√

J1J2 cosψ ,
I2 = x1y2 − x2y1 = 2

√
J1J2 sinψ ,

I3 = i(x1y1 − x2y2) = J1 − J2 .

There is a relation among the invariants: the “syzygy” [36]

I2
1 + I2

2 + I2
3 = I2

0 , (4.11)

which can be interpreted as defining the reduced phase space.
In terms of the invariants the Hamiltonian is [62]

h := K − (1 + ∆)E − A+E
2 = (BE + ∆)I3 + AI2

3 + C(I2
1 − I2

2). (4.12)

The reduced dynamics is now determined by the intersection of the two surfaces (4.11) and (4.12).
Critical points of the reduced dynamics (periodic orbits of the original system) are given by the
tangency conditions: they coincide with (4.9) and (4.10).

In the space of control parameter, the global bifurcation picture is obtained by introducing the
combinations (see [63, 76])

Σ := −
BE + ∆

2AE
, Γ :=

C
A
. (4.13)

In terms of these, the bifurcation thresholds (4.9) and (4.10) become

Σ(EL
1,2) = ±

(
1 +

C
A

)
, Σ(EI

1,2) = ±

(
1 −

C
A

)
. (4.14)

They are plotted in Figure 2 (taken from [62]), also known as “catastrophe map”.
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Figure 3 displays the energy-momentum-map [2, 4, 15, 72] obtained by drawing, in the (E, h)-plane,
the corresponding bifurcation curves in the case |Γ| > 1.

-2 -1 0 1 2

-2

-1

0

1

2

C

A

-

B�+Δ

2Aℰ

Figure 2. Global representation of the bifurcation sequences of the 1:1 resonance: vertical
straight lines are covered by varying E and cross the bifurcation lines associated with EL

1,2
(Eq (4.9), green and red lines) and EI

1,2 (Eq (4.10), blue and purple lines). Any point is
structurally stable except the degenerate four corners of the inner square [62].
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Figure 3. Image of the energy-momentum map, obtained by drawing, in the (E, h)-plane, the
corresponding bifurcation curves, of the symmetric 1:1 resonance in the case |Γ| = |C/A| > 1.
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4.2. The 2:1 resonance

Even more basic than the synchronous resonance seen above, the 2:1 resonance plays an ubiquitous
role in many areas spanning from galactic dynamics [14] to molecular physics [39,80], where is known
as “Fermi resonance”. In classical mechanics, the prototypical system is the spring-pendulum [10].

It can be described with a very simple first-order normal form, however its explicit treatment is
slightly more involved algebraically.

The normal form is

K = (2 + δ)J1 + J2 + 2 ε α
√

2J1 J2 cos(φ1 − 2φ2) + . . . . (4.15)

The first normal mode becomes unstable at an energy level which depends quadratically on the
detuning (see (4.20) below), when a “banana-shaped” resonant orbit appears in a period-doubling
bifurcation. The second normal mode is always stable at first order. By using Kummer stereographic
variables [43] {

x = −
√

2J1 cos(φ1 − 2φ2) ,
y = −

√
2J1 sin(φ1 − 2φ2) ,

(4.16)

so that, as before, the “critical circle”

x2 + y2 = 2E

delimits the dynamics, we get the function

F(x, y; δ,E, α) = δ (x2 + y2) − 2α
[
2E − (x2 + y2)

]
x . (4.17)

This is the standard form of the unfolding of the fold catastrophe [3, 5, 29]. The transcritical
bifurcation is now determined by finding the critical points of F inside the limit circle. We find four
solutions:

x1,2 =
1

6α

(
−δ ±

√
24α2E + δ2

)
, y1,2 = 0, (4.18)

x3,4 = −
δ

2α
, y3,4 = ±

1
2α

√
8α2E − δ2. (4.19)

The point (x1, y1) represents the second normal mode and (x2, y2) gives the newly bifurcated orbit. It
enters the limit circle when

E > Ec =
δ2

8α2 . (4.20)

At this critical energy, the two symmetric points (x3, y3) and (x4, y4) take real values and correspond
to the intersection of the limit circle with its stable/unstable manifold; this is the vertical segment of
Figure 4, which can also be interpreted as the Poincaré section in the (q1, p1)-phase plane.
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Figure 4. Poincaré section for the 2:1 resonance after the bifurcation of the first normal mode
(thick line): the new periodic orbit in generic position is the blue dot, the 2nd normal mode
is the red dot.

5. Quantum examples

We will now consider the quantum version of the examples considered above, in order to compare
the classical and the quantum theory.

It is worth mentioning that a discussion of different approaches within the quantum theory would
be quite instructive; but this would be too long in this context, and moreover it would risk to cause
some confusion. So we will just work with the “right” procedure, i.e., within the framework of quasi-
degenerate perturbation theory discussed in 3.3 above.

In particular we will consider – as in the Classical context of Section 4 – only two-dimensional
systems, and more specifically perturbations of near-resonant oscillators. We will focus on concrete
cases.

This choice, in view of the simplicity of the involved near-resonance, has some specific features
which would get modified in considering generic m : (1 +δ)n ones, but we prefer to keep to this simple
case (again, as already done in the classical context) in order to focus on the essential features with no
distraction from technical complexities.

Remark 7. One general remark is essential to our discussion: as we are in the quantum context, only
states up to some – possibly variable – energy E∗ will be accessible and thus appear in our discussion. In
other words, we should fix E∗ and consider only the finitely many states with energy E ≤ E∗. This leads
to a considerable simplification in our discussion; in particular, all operators (in particular, observables)
will be represented by (Hermitian) finite dimensional matrices. Moreover, as in our general discussion
of Section 3, we will focus only on the “interesting” finite dimensional subspace spanned by eigenstates
corresponding to the nearly degenerate eigenvalues. �
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5.1. Two dimensional quantum oscillators

The Hamiltonian for a generic two-dimensional quantum oscillator (with frequencies {ω1, ω2}) of
mass m is

H0 =

[
p2

1

2m
+

mω2
1

2
q2

1

]
+

[
p2

2

2m
+

mω2
2

2
q2

2

]
. (5.1)

This Hamiltonian is obviously separable and its spectrum – as well as the associated complete system
of eigenstates – can be fully described in terms of one-dimensional systems.

In particular, eigenstates are described by two quantum numbers n1, n2 (with ni = 0, 1, ...) and hence
denoted as |n1, n2〉 in Dirac bra-ket notation. The energy of the state |n1, n2〉 is

E0
n1,n2

= ~

[(
1
2

+ n1

)
ω1 +

(
1
2

+ n2

)
ω2

]
. (5.2)

Remark 8. It is immediate to see that we have exactly degenerate levels if and only if the frequencies
are in rational relation, ω1/ω2 ∈ Q. This is analogous to the situation met in classical mechanics,
where degeneration is replaced by exact resonance, and hence by the presence of closed orbits – also
known in that context as Lissajous figures; see Figure 5 in this respect. �
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Figure 5. Lissajous figures. We plot the numerical solution for a two-dimensional harmonic
oscillator with frequencies ω1 = 1 and ω2 as indicated, and initial conditions x(0) = 1,
ẋ(0) = 0, y(0) = 0, ẏ(0) = 1; numerical integration is pursued for t ∈ [0, 100]. The first four
Lissajous figures, corresponding to ω2 = 1, 2, 3, 4 are shown, together with the trajectories
obtained for irrational values of ω2 =

√
2,
√

3 for comparison; for these it is relevant that the
integration is stopped at t = 100,as for t → ∞ it would fill densely the whole allowed region
|x| ≤ 1 ∩ |y| ≤ 1.
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Remark 9. In the case of degenerate levels with ω1 : ω2 = k1 : k2 (where ki are integers having no
common factor), degenerate states are identified by the relation

n1 · k1 + n2 · k2 = N ; (5.3)

we speak then of a multiplet (and identify it by the number N appearing in this relation).
In the simplest case of 1 : 1 resonances, the degenerate levels are all those with n1 + n2 = N; in this

case the N multiplet has a degeneracy of order N + 1.
In the general case the degeneracies are less simple but can still be explicitly determined. Thus e.g.,

for ω1 : ω2 = 1 : 2 the N multiplet has degeneracy [N/2] + 1 (the square brackets denoting integer
part): the N = 0 and N = 1 multiplets are actually single states, the N = 2 and N = 3 are made of
two states each (respectively, {|2, 0〉, |0, 1〉} and {|3, 0〉, |1, 1〉}), the N = 4 and N = 5 by three states each
(respectively, {|4, 0〉, |2, 1〉, |0, 2〉} and {|5, 0〉, |3, 1〉, |1, 2〉}), and so on. �

In the case of near-resonant frequencies, we will have near-degenerate states. We will then still
speak of multiplets; note however that now states in a multiplet will not have the same energy, but very
similar ones – albeit some care should be paid when we go to high quantum numbers.

Remark 10. The previous statement may need an explanation. Consider, for the sake of simplicity,
a 1 : 1 (near) resonance; and write ω1 = ω, ω2 = (1 + δ)ω. We also write, for ease of notation,
E0 = (~/2)(ω1 + ω2). The states in the N multiplet will have energies ranging from E0 + Nω to
E0 + N(1 + δ)ω = E0 + Nω + Nδω. Thus, for N > 1/δ the lowest level of the N + 1 multiplet is
actually lower than the highest level of the N multiplet; in other words the multiplet structure is well
defined only for N � 1/δ. More generally, there will be some bound N∗ such that the multiplets are
well defined only for N � N∗. Our discussion will thus be valid only as long as we work at energies
well below the corresponding limit energy E∗. On the other hand, when we work on any multiplet –
or a finite union thereof – we are actually considering a finite dimensional Hilbert space, hence we are
actually dealing with (finite-dimensional) matrices. See also Remark 7 in this respect. �

Remark 11. It is interesting to consider such a system as the detuning δ is varied from δ = 0 to some
finite value δ = δ0. As seen in the previous remark for the simplest case of a 1 : 1 resonance (the
discussion is promptly extended to the general case, with some slightly more involved notation), the
arrangement of levels changes due to the presence of the detuning, and it is clear that when considering
δ as a varying parameter, the “mixing” of multiplets will affect lower and lower ones as |δ| is larger
and larger. This situation is also referred to as a quantum bifurcation (rearrangement of energy levels),
see [82] and references therein, in particular [57].

We stress, to avoid any misunderstanding, that here we are just referring to the changes of the
spectrum of the quadratic Hamiltonian as δ is changed. �

5.2. Computational tools

In order to compute the corrections to the energy levels due to a perturbation H1 (to be considered
in the following), we will have to compute the matrix elements Vab, see (3.17), of the perturbation H1

between the states a = |n1, n2〉 and b = |m1,m2〉. To this aim it is convenient to introduce, as usual in
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QM computations, the raising and lowering η+
k and ηk operators [17, 44, 49, 59], and recall that

qk = − i

√
~

2 mωk

(
η+

k − ηk
)

:= Ak
(
η+

k − ηk
)

; (5.4)

pk =

√
m ~ωk

2
(
η+ + ηk

)
:= Bk

(
η+ + ηk

)
. (5.5)

Note that these expressions imply that if we consider terms involving squares or fourth powers of
the qk and pk operators (i.e., perturbations which are symmetric under reflection across the axes, which
are also the normal modes; see Section 4 above), that we have the selection rules δnk = 0,±2,±4, the
last possibility occurring only when considering q4

k or p4
k terms.

Remark 12. It should be stressed that the Hamiltonian H0 involves physical constants with the
fundamental dimensions of mass, time, and length. We can choose the reference scale of mass and
time so that m = 1 and one of the frequencies, say ω1, or their average (ω1 + ω2)/2, is unity. We can
still use the length scale so that ~ = 1. Note that the perturbation to be considered later on, see in
particular (5.6), involves at least a dimensional constant. In the case of (5.6), we have
[α4] = 1/([M][L]2): having used the length scale to set ~ = 1, we cannot eliminate α; alternatively, we
can set α = 1 but in this case we must keep track of the ~k factors. �

5.3. Resonant perturbations of two dimensional quantum oscillators

We have so far discussed the spectrum of two-dimensional (resonant and quasi-resonant) quantum
oscillators. We want now to consider perturbations of such oscillators.

We will not consider general perturbations, but resonant perturbations. We have thus first of all to
discuss – and justify – such a choice.

It could appear that the physically most natural choice would be that of a perturbation depending
only on the q variables: we have an unperturbed Hamiltonian made of a kinetic part and a quadratic
potential, and with this choice the perturbations would concern only the potential.

On the other hand, this choice would appear odd to readers with some familiarity with the
Chemical Physics literature. In fact, chemists like to proceed by considering first the normalization of
the (classical) Hamiltonian, and then the quantum version of the normal form, usually truncated at
first nontrivial order. This procedure is quite successful, and actually successful beyond any
reasonable limit; this in the sense that in many cases such a perturbation approach manages to
correctly describe the energy levels not only near the minima of the potential (thus the lowest lying
quantum states), but essentially up to the dissociation threshold [9, 22, 39–41, 69, 70].
Remark 13. Needless to say, a fully quantum approach would require to work in the quantum setting
(thus dealing with operators in a Hilbert space, etc) from the beginning, i.e., also in the normalization
step. We have no time here to discuss the relations between these two approaches, i.e., the problem of
quantum normal forms, and we will just refer the reader to some classical papers in the field [1,11,19,
30, 31, 56]. �

Remark 14. Problems related to perturbations of near-resonant oscillators, like those we are
considering in this paper, have been discussed in the Chemical Physics literature in relation to the
spectra of certain simple molecules. For papers which are taking an approach related to our present
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one, we refer e.g., to [9, 22, 39–41, 69, 70]. The problem of quantum bifurcations was considered in
this context by several groups, and we would like to mention in particular the work by Sadovskii,
Zhilinskii and their collaborators [16, 21, 23, 37, 65, 67, 81, 83]; see also [64] and [42]. �

These considerations suggest to look at a perturbed near-resonant system for which the perturbation
corresponds to terms appearing in the (resonant) normal form of the classical system.

5.4. Near 1:1 resonance

Our discussion of the near 1 : 1 classical case, see Section 4, suggests to consider a “minimal”
perturbation H1 sufficient to generate (in the classical case) all the “interesting” dynamics. This is the
term with the α4 coefficient in Eq (4.1), i.e., (in the p, q coordinates)

H1 = (α4/2)
[
4 p1 p2q1q2 + (p2

1 − q2
1) (p2

2 − q2
2)
]
. (5.6)

Remark 15. This choice is simple enough to allow a complete discussion and at the same time
generates all the “interesting” dynamics (in the classical case) in the following sense: it contains the
only term in the resonant normal form not expressible only in terms of the actions.

It should be stressed, however, that with the choices α1 = α2 = α3 in (4.1), the Eq (4.4) yield of
course

A± = 0 , B = 0 ;

this in turn yields, see (4.8), A = 0. This means that Figure 2 does not exist in this setting.
In any case the example is not trivial and contains the main aspect of the bifurcating dynamics. The

energy-momentum map for the resonant part (5.6) is shown in Figure 6 with the choice α4 = 1/10, δ =

−2/5. �

0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

ℰ

h

Figure 6. Image of the energy-momentum map in the case of (5.6) which, comparing with
Figure 3, correspond to Γ→ ∞, so that the bifurcation thresholds (4.9) and (4.10) coincide.
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One should take some care in choosing the quantum version of this H1, as its first term involves
the product of non-commuting operators. We adopt the usual choice of the fully symmetrized version
of the classical term; this produces 24 different terms (so each of them should get a weight 1/24), but
using the fact that operators acting on different degrees of freedom commute we can reduce these to
four not equivalent terms (each of them with a multiplicity 6, which together with the 4 factor cancels
out the factor 1/24 introduced above):

H1 = (α4/2)
[
(p1 p2q1q2 + p1q1q2 p2 + p1q2q1 p1 + q1q2 p1 p2)

+ (p2
1 − q2

1) (p2
2 − q2

2)
]
. (5.7)

Recalling that
qk = Ak (η+

k − ηk) , pk = Bk (η+
k − ηk) , (5.8)

where it follows from (5.4) and (5.5) that

Ak = − i
√
~/(2mωk) , Bk =

√
~mωk/2 ,

it is clear that the perturbation is still satisfying the selection rules

δnk = 0 , ±2 . (5.9)

(Note this follows from the fact that each degree of freedom is entering in H1 though two terms,
independently of these being qi or pi.)

This implies that the states |1, 0〉 and |0, 1〉 – which in a way represent the quantum analogue of
the classical normal modes – are not coupled by H1; so not only nothing interesting happens in the
N = 1 multiplet, but at first sight the phenomenology described in the classical case, see in particular
Section 4.1, has no quantum analogue.

On the other hand, if we pass from the N = 1 to the N = 2 multiplet, we have that the states |2, 0〉 and
|0, 2〉 are coupled by H1 (they are both not coupled to |1, 1〉). Now, each of these states still embodies
excitation of only one degree of freedom; so they can in some sense be seen as the analogue of (larger
amplitude) normal modes. One should pay attention to the fact that now the natural frequencies of
these states are not ωk, but 2ωk, so that the correspondence with large amplitude classical normal
modes motion is not complete.

Remark 16. Note that if we look at multiplets with N ≥ 3, there is no analogue of this situation: now
the state |N, 0〉 is coupled to |N − 2, 2〉, and the state |0,N〉 to |2,N − 2〉 (and more generally |N − k, k〉 is
coupled to |N − k−2, k + 2〉 and to |N − k + 2, k−2〉, provided respectively k ≤ N −2 and k ≥ 2), but the
states involving excitation of a single degree of freedom are not coupled to each other. This is a further
reason, beside the desire to treat only simple cases, to limit our attention to the N = 2 multiplet. �

5.4.1. Action on the N multiplet

When restricting our attention to the action on a given N multiplet, only terms preserving N = n1+n2

are relevant§. In practice, this means that we should write pk and qk according to (5.8), but in the
§Note that as we will limit our attention to multiplets with N ≤ 2, even considering all involved multiplets at once we would have

only to add the coupling between the N = 0 and N = 2 ones.
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resulting expressions it suffices for our purposes to keep only terms in which there are as many raising
operator η+ as lowering operators η (irrespective of their k = 1, 2 index). We will denote this by the =̂

symbol.
With this convention, and writing for short

C = A1 A2 B1 B2 = ~2/4 , (5.10)

it results

p1 p2 q1 q2 =̂ C
[
η+

1η
+
2η1η2 − η+

1η2η
+
1η2 − η+

1η2η1η
+
2 − η1η

+
2η

+
1η2 − η1η

+
2η1η

+
2 + η1η2η

+
1η

+
2
]

p1 q1 q2 p2 =̂ C
[
η+

1η
+
1η2η2 − η+

1η1η
+
2η2 + η+

1η1η2η
+
2 + η1η

+
1η

+
2η2 − η1η

+
1η2η

+
2 + η1η1η

+
2η

+
2
]

p2 q2 q1 p1 =̂ C
[
η+

2η
+
2η1η1 − η+

2η2η
+
1η1 + η+

2η2η1η
+
1 + η2η

+
2η

+
1η1 − η2η

+
2η1η

+
1 + η2η2η

+
1η

+
1
]

p1 p2 q1 q2 =̂ C
[
η+

1η
+
2η1η2 − η+

1η2η
+
1η2 − η+

1η2η1η
+
2 − η1η

+
2η

+
1η2 − η1η

+
2η1η

+
2 + η1η2η

+
1η

+
2
]

We should still consider the last term in (5.7). Recalling again (5.8), writing for short

θ = (B2
1 − A2

1) (B2
2 − A2

2) =
~2

4 m2

(1 + m2ω2
1)(1 + m2ω2

2)
ω1 ω2

,

σ = (B2
1 + A2

1) (B2
2 + A2

2) =
~2

4 m2

(1 − m2ω2
1)(1 − m2ω2

2)
ω1 ω2

, (5.11)

and with some simple computation we get – using again the =̂ symbol and relation defined above – that

(p2
1 − q2

1) (p2
2 − q2

2) =̂ θ
(
η+

1η
+
1η2η2 + η1η1η

+
2η

+
2
)

+ σ
(
η+

1η1η
+
2η2 + η+

1η1η2η
+
2 + η1η

+
1η

+
2η2 + η1η

+
1η2η

+
2
)
.

We are now ready to compute the matrix elements of H1 between states in the N multiplet, and in
particular between states in the N = 2 multiplet.¶

We stress that here we are just considering H1, and not the detuning term. The latter, which causes
the unperturbed system to be not exactly degenerate, will be taken care of through the general procedure
for quasi-degenerate perturbation theory, see Section 3.3.

5.4.2. Action on the N = 0 and N = 1 multiplets

When acting on the N = 0 and on the N = 1 multiplets, as already remarked, H1 has only diagonal
elements. This means that albeit the energy of the states is changed, the eigenstates are not modified
nor mixed.

The new energy levels Es = E(0)
s + E(2)

s are easily computed via

E(2)
s = 〈s|H1|s〉 ,

where |s〉 is the state under consideration.
Simple direct computations yield the results summarized in Table 1, where results are given in terms

of two constants C and σ defined above, see Eqs (5.10) and (5.11). There and below we also write
α := α4/2.

¶These formulas confirm once again that the action on the N = 1 multiplet is trivial, in the sense that only diagonal matrix elements
are nonzero.
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Table 1. Contributions of the different parts of H1 to diagonal matrix elements for states s
in the N = 0 and N = 1 multiplets, and their sum. See (5.10) and (5.11) for the value of the
constants C and σ; we set α = α4/2. Note that the contributions from the first four terms do
always cancel out.

s |0, 0〉 |1, 0〉 |0, 1〉
〈s|p1 p2q1q2|s〉 C C C
〈s|p1q1q2 p2|s〉 −C −C −C
〈s|p2q2q1 p1|s〉 −C −C −C
〈s|q1q2 p1 p2|s〉 C C C
〈s|(p2

1 − q2
1)(p2

2 − q2
2)|s〉 σ 3σ 3σ

〈s|H1|s〉 ασ 3ασ 3ασ

We can thus easily compute the energy levels (at first order in perturbation theory) for the states
belonging to the N = 0 and N = 1 multiplets; these are as follows:

E(0,0) = ~
ω1 + ω2

2
+ ασ ;

E(1,0) = ~
ω1 + ω2

2
+ ~ω1 + 3ασ ; (5.12)

E(0,1) = ~
ω1 + ω2

2
+ ~ω2 + 3ασ .

These formulas hold for general ωi, albeit we have assumed ωi ≈ ω2 to have the multiplet structure.
We would like to express our results in terms of the detuning. In order to do this we set

ω1 = (1 − δ)ω0 , ω2 = (1 + δ)ω0 (5.13)

(note this is slightly different from the convention used in the classical examples of Section 4; this
choice will produce more symmetric formulas). Writing moreover κ := mω0 and working at first
nontrivial order in δ, we get

σ =
~2

2

[
− (1 + 2δ2) +

1
2κ2 (1 + δ2) +

1
2

(1 − δ2)
]
, (5.14)

and the energy levels computed above are (in the same approximation)

E(0,0) = ~ω0 − α
~2

4κ2 (1 − κ2)2 + α
~2

4κ2 (1 − 4κ2 − κ4) δ2 ;

E(1,0) = 2~ω0 − 3α
~2

4κ2 (1 − κ2)2 − δ ~ω0 + 3α
~2

4κ2 (1 − 4κ2 − κ4) δ2 ,

E(0,1) = 2~ω0 − 3α
~2

4κ2 (1 − κ2)2 + δ ~ω0 + 3α
~2

4κ2 (1 − 4κ2 − κ4) δ2 .

Note that the gap E(0,1) − E(1,0) = 2~ω0δ depends linearly on δ and on ω0, so no interesting phenomena
take place as these parameters are varied.
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5.4.3. Action on the N = 2 multiplet

When we deal with the N = 2 multiplet, the perturbation H1 has – beside diagonal terms – non
zero matrix elements between the states |2, 0〉 and |0, 2〉. These are easily computed from the formulas
given in Section 5.4.1 above (this also show that the state |1, 1〉 is not coupled to other states by H1).
Moreover, we have in full generality 〈2, 0|H1|0, 2〉 = (〈0, 2|H1|2, 0〉)∗, so it actually suffices to compute
one matrix element.

To compute the matrix element of H1 between these two states, it is again convenient to consider
separately the different terms making up H1. Now we have to compute both diagonal and off-diagonal
elements; as for the latter ones, we know that the only coupling is between the |0, 2〉 and the |2, 0〉
states, so we need to compute only one off-diagonal term.

We start from computing this off-diagonal term. With simple computations we get

〈2, 0|p1 p2q1q2|0, 2〉 = − 2 C ,

〈2, 0|p1q1q2 p2|0, 2〉 = + 2 C ,

〈2, 0|p2q2q1 p1|0, 2〉 = + 2 C ,

〈2, 0|q1q2 p1 p2|0, 2〉 = − 2 C ;

note that when we sum these, they cancel out. Moreover, with the notation introduced in Eq (5.11),

〈2, 0|[(p2
1 − q2

1)(p2
2 − q2

2)]|0, 2〉 = 2 (B2
1 − A2

1) (B2
2 − A2

2) = 2 θ .

Thus, in conclusion,

〈2, 0|H1|0, 2〉 = α θ = α
~2

4m2

(1 + m2ω2
1) (1 + m2ω2

2)
ω1 ω2

. (5.15)

Similar computations can be performed for the diagonal matrix elements; these are summarized in
Table 2, where results are again given in terms of the two constants C, σ defined in (5.10) and (5.11).

Table 2. Contributions of the different parts of H1 to diagonal matrix elements for states s in
the N = 2 multiplet, and their sum. See (5.10) and (5.11) for the value of the constants C and
σ. Note that the contributions from the first four terms do always cancel out.

s |2, 0〉 |1, 1〉 |0, 2〉
〈s|p1 p2q1q2|s〉 C C C
〈s|p1q1q2 p2|s〉 −C −C −C
〈s|p2q2q1 p1|s〉 −C −C −C
〈s|q1q2 p1 p2|s〉 C C C
〈s|(p2

1 − q2
1)(p2

2 − q2
2)|s〉 5σ 9σ 5σ

〈s|H1|s〉 5ασ 9ασ 5ασ

Remark 17. The reader has surely noted that in all the cases considered here the contributions of the
first four terms, i.e., of the term (p1 p2q1q2 + p1q1q2 p2 + p1q2q1 p1 + q1q2 p1 p2) in (5.7), cancel out. This
could have been obtained by using the canonical commutation rules, but as this is unessential here we
have preferred to go through direct computation. �
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Summarizing, the action of H1 on states belonging to the N = 2 multiplet (ordered as
{|2, 0〉, |1, 1〉, |0, 2〉}) is described by the matrix

V = α


5σ 0 θ

0 9σ 0
θ 0 5σ

 . (5.16)

In order to build the matrix W, see section 3.3, we need to consider the constants µk. To this aim, let
us recall that the energy of the (unperturbed) state |n1, n2〉 is given by Eq (5.2); setting ωi as in (5.13),
we get

E(0)
n1,n2

= ~ [ω0 + (n1 + n2)ω0 + (n1 − n2)ω0 δ]
= ~ω0 [(1 + N) + (n1 − n2) δ] . (5.17)

For the states in the N = 0, 1, 2 multiplets, we get simply

E(0)
0,0 = ~ω0 ;

E(0)
1,0 = (2 + δ) ~ω0 ,

E(0)
0,1 = (2 − δ) ~ω0 ;

E(0)
2,0 = (3 + 2δ) ~ω0 ,

E(0)
1,1 = 3 ~ω0 (2 + δ) ,

E(0)
0,2 = (3 − 2δ) ~ω0 .

In particular for the N = 2 multiplet we have, in the notation of Section 3.3, λ0 = 3~ω0 and the
parameters µk are given by

µ1 = 2 δ ~ω0 := α ξ , µ2 = 0 , µ3 = −2 δ ~ω0 := −α ξ . (5.18)

This allows to write the matrix W as

W = α


5σ + ξ 0 θ

0 9σ 0
θ 0 5σ − ξ

 . (5.19)

Note that the detuning is now encoded into the coefficient

ξ = 2 ~ω0
δ

α
. (5.20)

The eigenvalues of W/α are easily computed to be

η1 = 5σ +
√
ξ2 + θ2 , η2 = 9σ , η3 = 5σ −

√
ξ2 + θ2 ; (5.21)

setting ρ := ξ/θ, the corresponding normalized eigenvectors are given by

v1 =
1
√

2


(
ρ +

√
1 + ρ2

)
√

1 + ρ2 + ρ
√

1 + ρ2

, 0 ,
1√

1 + ρ2 + ρ
√

1 + ρ2

 ,
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v2 = (0 , 1 , 0) , (5.22)

v3 =
1
√

2

 ρ −
√

1 + ρ2√
1 + ρ2 + ρ

√
1 + ρ2

, 0 ,
1√

1 + ρ2 + ρ
√

1 + ρ2

 .
As discussed in Sect.3.3, the energy levels of the perturbed system are

Ek = λ0 + ηk ,

while the eigenvectors ai provide the eigenstates of the perturbed system through Eq (3.39). Note that
the states ψ1 = |2, 0〉 and ψ3 = |0, 2〉 get mixed to form the eigenstates of the perturbed system, while
the state ψ2 = |1, 1〉 is not affected:

φ1 = v(1)
1 ψ1 + v(3)

1 ψ3 ,

φ2 = ψ2 , (5.23)
φ3 = v(1)

3 ψ1 + v(3)
3 ψ3 .

As for possible degeneracies in the perturbed system, these occur if and when η1 = η2 or η1 = η3 or
η2 = η3. Our explicit formulas (5.21) above allow to directly study these conditions.

In particular, it is obvious from (5.21) that η1 = η3 if and only if ξ2 + θ2 = 0, i.e., only for ξ = 0 and
θ = 0; this is not relevant, as θ is always positive, see (5.11), and ξ = 0 only for δ = 0.

As for the other possible degenerations, we have that η1 = η2 if√
θ2 + ξ2 = 4σ ,

and η2 = η3 if √
θ2 + ξ2 = − 4σ ;

obviously here we are taking the positive determination of the square root, so that solutions may exist
depending on the sign of σ.

We would like to express these conditions in terms of the original physical constants appearing in
the Hamiltonian. To this aim, we set

ω1 = (1 − δ)ω, ω2 = (1 + δ)ω

and insert the expressions for θ, σ, ξ, see (5.11) and (5.20), in the ηi. With the shorthand notation

κ := mω ,

these now read

η1 = 5
~2

4κ2

(1 − (1 − δ)2κ2)2

(1 − δ2) κ2

+

√
4~2ω2

α2 +
~4

16(1 − δ2)2κ4 [1 + 2(1 + δ2)κ2 + (1 − δ2)2κ4] ,
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η2 = 9
~2

4κ2

(1 − (1 − δ)2κ2)2

(1 − δ2) κ2 , (5.24)

η3 = 5
~2

4κ2

(1 − (1 − δ)2κ2)2

(1 − δ2) κ2

−

√
4~2ω2

α2 +
~4

16(1 − δ2)2κ4 [1 + 2(1 + δ2)κ2 + (1 − δ2)2κ4] .

These expressions can be simplified by conveniently choosing the units for mass and time (see
Remark 12), so to have m = 1 and ω = 1, which also entails κ = 1. Moreover, we can choose the unit
of length so to have ~ = 1. In this way the expressions for the ηi are substantially simplified, and we
get

η1 = −
1
4

5(4 − δ2) δ2

(1 − δ2)
−

√
64(1 − δ2)2 + α2(4 + δ4)2

α2 (1 − δ2)2

 ,
η2 = −

9
4

(4 − δ2) δ2

(1 − δ2)
, (5.25)

η3 = −
1
4

5(4 − δ2) δ2

(1 − δ2)
+

√
64(1 − δ2)2 + α2(4 + δ4)2

α2 (1 − δ2)2

 .
These can be further simplified recalling that δ is a small parameter (and a pure number, so it is not
affected by our choices of units); we can then expand in a power of δ around δ = 0, which finally
produces

η1 = χ2 +

(
1
χ2 − 5

)
δ2 ,

η2 = − 9 δ2 , (5.26)

η3 = −χ2 −

(
1
χ2 + 5

)
δ2 ;

here we have further simplified the writing by setting

χ2 :=

√
1 +

4
α2 . (5.27)

Note that χ2 ≥ 1 is always a real parameter, finite for α , 0 (the case α = 0 corresponds to no
perturbation and is thus of no interest to us).

It is clear from (5.26) that η1 = η2 admits no solution for real δ, whatever the value of α , 0; as for
η2 = η3 this has the solutions

δ = ±
χ√

4 − 1/χ2
:= ± δ∗ . (5.28)

These are always real since χ2 ≥ 1; in terms of the α perturbation parameter we get

δ∗ =

√
1 + 4/α2√

4 −
√

1 + 4/α2

. (5.29)
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Summarizing, we have that for |δ| < δ∗ the eigenvalues (and hence the energy levels) are ordered as

η1 > η2 > η3 ,

while for |δ| > δ∗ the ordering is modified into

η1 > η3 > η2 .

Correspondingly, for |δ| < δ∗ the stable state in the N = 2 multiplet is φ3, while for |δ| = δ∗ we have
a quantum bifurcation and stable state for |δ| > δ∗ is φ2. The situation is illustrated in Figure 7. See
also Figure 8.
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Figure 7. Energy levels for the N = 2 multiplet in the near 1:1 resonant two dimensional
quantum oscillator. We show (in arbitrary units, and relative to the unperturbed N = 2 energy
level) the energy levels η1 for the ψ1 state (yellow), η2 for the ψ2 state (red), and η3 for the
ψ1 state (blue), here for α = 5. It appears that at δ = δ∗ ' 0.63 a quantum bifurcation takes
place, corresponding to the change in the ordering of energy levels.
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Figure 8. The same energy levels, and with the same color coding, as in Figure 7; but now
we plot the exact value of the ηi, without resorting to the δ series expansion. In this case the
quantum bifurcation takes place (for the same value of α) at δ∗ ' 0.534.

When looking back at the classical case, see Section 4, one should note that φ3 is a deformation of
the |0, 2〉 state, i.e., of one of the normal modes, while φ2 corresponds, loosely speaking, to the π/4
inclined mode.
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It should be remarked, however, that the (quantum) bifurcation value δ∗ is rather large.

Remark 18. A final remark, at the end of this discussion, is in order. Even taking into account
that we have preferred to give more details on the quantum computation than on the classical ones
(supposing most readers from Mathematics and interested in Perturbation Theory are more familiar
with classical than with quantum perturbation theory), it is rather clear that the quantum computations,
albeit conceptually simpler, are technically more involved – at least at this level – for this simple model.
It is thus not surprising that in many cases (see Section 6 below) one prefers to deal with a classical
Hamiltonian and its normalization, and then study the quantization of the classical normal form; see in
this respect Remark 13 and references mentioned there. This, however, introduces a number of issues:
e.g., the new coordinates are in general not orthogonal (in the sense of the original cartesian metric
in R2n), which makes the quantization problematic. These problem do not appear if one is working
directly in terms of canonical quantum perturbation theory. �

6. Applications to simple molecules

We have discussed on the one hand the detuning approach in perturbation theory for (Hamiltonian)
Classical Mechanics, and on the other Quantum Mechanics near-degenerate perturbation theory,
claiming that the two approaches actually feed on the same set of ideas.

The usual realms of applications of classical and quantum perturbation theory are quite different:
on the one hand, celestial mechanics and more generally macroscales; and on the other hand, atomic
Physics and more generally microscales. As well known, there is however a field in which the two
meet, and one uses depending on circumstances a classical or a quantum approach (or a semiclassical
one); this is Molecular Physics.

In fact, this is not only the proper field for the meeting of classical and quantum Mechanics in
general, and perturbation theory in particular; but this is also the field where the interrelation between
detuning and near-degenerate perturbation theory has been more apparent – possibly unknown to
scientists working in other fields.

Here we would like to focus in particular on a very simple system, which has also been the arena
for the development on the kind of ideas discussed in this paper; that is, the dynamics of acetylene
molecules. Acetylene is a simple molecule, made of two Carbon and two Hydrogen atoms, organized
as follows in terms of chemical bonds

H − C ≡ C − H

and in a one-dimensional array in geometrical terms, in its lowest energy state.
The molecule has several bending and rotational modes, which have been thoroughly studied not

only experimentally, but also theoretically – and this precisely by means of perturbation theory, both
classical, quantum, and semiclassical; see e.g., [38, 46, 48, 63, 76] and the review paper by Sibert and
McCoy [75], focusing on the bending modes. Applications to other simple molecules (in particular
HCN, SO2, H2CO, CO2, NO2) can be found e.g., in [23, 39, 40, 46–48, 57, 58, 60, 66, 67, 69, 70, 82].

It should be said that the language used by chemists is sometimes not easy for a mathematician or a
mathematical physicists, and possibly this hindered the communication between different communities.
For our present purposes, it will suffice to say that in the case of molecules one speaks of polyads rather
than multiplets; in both cases, however, one refers to a set of states (molecular or atomic) which are
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degenerate or nearly degenerate in Energy. Note that in the case of molecules, typically one has to
do with multiple resonances [34, 42] rather than with the single resonance we have been considering
here. The mathematically oriented reader should also be warned that the near-degenerate quantum
perturbation theory described here in Section 3 goes, in the Chemical literature, under the name of van
Vleck (canonical) perturbation theory [73, 74].

We will now briefly discuss the comparison between the classical and the quantum approach,
focusing in particular on the simple acetylene molecule, and more specifically on the treatment of it
provided in the foundational paper by Rose and Kellman [63].

First of all, we note that the normal form (4.3) is an integrable system, described in the R, ψ
variables; this is parametrized by the Energy E and by the control parameters A, B,C, δ.

From the quantum point of view, E is determined by the quantum numbers ni, see (5.2). We will
thus write

E = E0 (1 + n1 + n2) . (6.1)

Let us fix the parameters A, B,C, δ, assuming for the sake of concreteness δ > 0, and let us allow E to
vary.

Looking back at Figure 2, this amounts to selecting a vertical line and move on it, say upward if E
is increasing. Each crossing of a diagonal line corresponds to a bifurcation. See in this respect also
Figure 2 in Rose and Kellman [63] (and several figures in Svitak et al. [76]); Figure 3 in Rose and
Kellman [63] locates the quantum states, each point in there representing a polyad P, related in turn to
n1, n2. Our computations reproduce the same situation, see Figure 9.

-2 -1 0 1 2

-3

-2

-1

0

1

2

3
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A

-

B�+Δ

2Aℰ

Figure 9. Catastrophe map in the case of the system of Rose and Kellman; see text for
details.

Let us now turn our attention to the energy-momentum map and to Figure 3; recall that here the
coordinates correspond to the integrals of motion. This figure should be used by again fixing the value
of E, and taking correspondingly a slice (that is, the corresponding vertical line) in the allowed region.
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Recall also that the vertical axis corresponds to the variable

h := K −
[
(1 + ∆) E + A+ E

2
]
.

Then the allowed states – corresponding to different possible values for the other parameters, in
particular for K – will fall in regions of different colors, and their nature can be read from the color
itself; needless to say if we follow the evolution of these states as E is varied, bifurcations are pointed
out by the crossing of the boundaries between different regions.

One may try, in this context, to compare our results with those of Rose and Kellman [63]; note
in this respect that the parameters appearing in the perturbation are hidden, in our Tables, within the
constant C, defined in Eq (5.10).

The coefficients in the Rose and Kellman Hamiltonian (see Table I in their paper) become, when
mapped into the notation (4.3),

A =
χ44 + χ55 − χ45

4
≈ 0.788 ,

B =
χ44 − χ55

2
≈ 2.708 ,

C =
5
4
,

δ =
ω4 − ω5

ω5
.

We would then have E = n1 + n2, which in Rose and Kellman notation becomes (with the same
physical meaning) P = n4 + n5; from now on we will pass to use the notation by Rose and Kellman, to
ease the comparison with their results.

Using this, and the expression for the second integral of motion in terms of the quantum number,
we have

E =
2I
ω5

=
P + 2
ω5

=
n4 + n5 + 2

ω5
. (6.2)

We have then plotted, in Figure 9, the corresponding values – for 6 ≤ P ≤ 16 (only even values are
allowed for P [63]) – on the “catastrophe map”; note that in order to compare this with Figure 3 in
Rose and Kellman, one should take into account that their figure is vertically reflected with respect to
our one (their vertical scale corresponds to −h).

We obtain that the Energy level for the first bifurcation (corresponding to crossing of the green line)
is in between P = 6 and P = 8, while the Energy level for the second bifurcation (corresponding to
crossing of the blue line) is in between P = 14 and P = 16; this is in full agreement with the results of
Rose and Kellman.

It should be stressed that Rose and Kellman worked through a classical normalization and then
quantization of the classical normal form, while our computations refer to the purely quantum
computations given above.‖

‖Note that we are not providing an exact computation of their energy levels, in that we are not providing a computation of the
contribution of the resonant term. This would require to extend the Tables given above, which deal with 0 ≤ ni ≤ 2, to the range
0 ≤ ni ≤ 6.
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7. Discussion & Conclusions

Classical perturbation theory in its modern form has been created by Poincaré through the theory
of Normal Forms. Poincaré analyzed perturbations of non-degenerate linear systems, in which case
the normal form is linear, while his pupil Dulac analyzed – along the same steps – degenerate ones,
showing that one can proceed in essentially the same way but with a relevant difference in the outcome,
i.e., the presence of resonant terms in the normal form; in this case one also speaks of a resonant normal
form. The specific aspects of the theory for Hamiltonian systems – in which case one can deal directly
with the Hamiltonian (a scalar function) rather than with the Hamiltonian vector field (2n components,
i.e., 2n functions) – were studied by Birkhoff in the non-degenerate case and by Gustavsson in the
degenerate one.

In all cases, the computations needed to reach the normal form are hindered by the presence of small
denominators, which enter into play when we have to eliminate non-resonant (but nearly resonant)
terms; their effect is to reduce the radius of convergence of the normalizing transformation, hence the
region of phase space in which the normal form is properly approximating the full system.

In this sense, near-resonances are specially bad, leading to small denominators, while exact
resonances are not so bad, as the corresponding terms do not have to be eliminated and hence the
normalizing transformation does not have to face associated small denominators.

It is thus quite natural to approach systems with near-resonances by approximating them as fully
resonant systems; correspondingly, one would aim at a resonant normal form. Albeit this is more
complex than a linear normal form – in particular, it is nonlinear – it will be a valid approximation
to the full dynamics in a wider region of phase space. In many situations, this will be preferable
over a linear normal form which is simply analyzed but which describes the full dynamics only in an
exceedingly small neighborhood of a stable (standard or relative) equilibrium.

The method of detuning (also called frequency deviation in the Russian literature, see e.g., Appendix
7.D to [2]) implements this idea: a near resonant nonlinear system is seen as a perturbation of a fully
resonant one, which requires to see part of the linear terms as belonging themselves to the perturbation.

Here we have discussed the Hamiltonian framework, and actually considered for the sake of
simplicity only the case of a neighborhood of an equilibrium position; but these ideas also extend to
neighborhoods of periodic or quasi-periodic solutions and are also of use in the general Dynamical
Systems and ODEs context; see e.g., [50].

Among other features, this detuning approach captures a very relevant qualitative feature: that is,
while the dynamics of non-resonant systems (and hence their small enough perturbations) is described
by invariant tori of maximal dimension, in resonant system we will have invariant tori of lower
dimension, possibly closed orbits, and these may – suitably deformed – survive perturbations.

Another important feature of the detuning approach emerges when one has to deal with (slowly)
varying parameters, in particular varying frequencies for the unperturbed system: through the detuning
approach one can consider intervals of parameters, and in particular the case in which these go through
a resonance [54,55]. In other words, the detuning approach is specially suit to analyze bifurcations, in
particular those corresponding to crossing a resonance.

In this paper, we have reviewed the detuning approach to perturbations of near-resonant
Hamiltonian systems, and remarked that this approach – or more precisely a conceptually equivalent
one – is standard in Quantum Mechanics, were it goes under the name of nearly degenerate
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perturbation theory and as such is discussed in basic textbooks. It is remarkable that the same does
not always hold for the detuning approach in Classical Mechanics (albeit of course some texts, such
as the one by Arnold mentioned above [2], explain the need to consider a suspension of the system
embedding it into a one parameter family, the parameter being just the detuning), so that a newcomer
to the field could have the impression detuning was inspired by QM nearly degenerate perturbation
theory. Even more remarkable (or regrettable) is the fact that a student could meet both the detuning
approach in Classical Mechanics and near-degenerate perturbation theory in Quantum Mechanics
without being told about the relations between the two.

The history of these ideas, and how they migrated from Classical Mechanics (and Linear Algebra)
to Quantum Mechanics and back would deserve a study by scholars specialized in the History of
Mathematics and Physics; we are not in this class, and our modest contribution here has been to stress
this close relationship, also advocating a more ample diffusion of the detuning method among
practitioners in classical perturbation theory – and the possibility to resort to the well developed
quantum theory as a source of inspiration and of technical solutions.

The approach with varying parameters is rather common in Chemical Physics, see e.g., the
references quoted above [9, 23, 34, 38–42, 46–48, 57, 58, 60, 63, 66, 67, 69, 70, 75, 76, 82]; it has also
been pursued in dealing with the Landau theory of phase transitions [24–27] (this is dealt with in a
rather different mathematical context, dealing with gradient systems rather than Hamiltonian ones),
and one could say with a little exaggeration that it is maybe more familiar to applied physicists than to
mathematicians.

Here we have considered in full – and maybe excessive – detail the perturbation of a nearly resonant
harmonic oscillator, both in the Classical and in the Quantum context, in order to display the seemingly
different treatment of a simple case study in these two settings and how the same basic ideas which are
behind the detuning approach and the nearly-degenerate quantum perturbation theory are embodied
in different formalisms; and also how they, despite these formal differences and the obvious different
features of Classical and Quantum Mechanics, lead to the same type of results.

If we may conclude on a personal note, we feel that the detuning approach has the merit of avoiding
many technical intricacies of the standard approach leading to the same – or however comparable –
results. We trust that this taste for simplicity without renouncing to mathematical rigor and technical
exactness which is embodied in the detuning approach is also shared by Antonio Giorgilli and his many
contributions to Dynamical Systems, Celestial Mechanics, and Perturbation Theory – in the past and
we are sure also in the future.
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