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Preface

My Ph.D. course has been focused on the theoretical study of curved π-conjugated car-
bon nanostructures, with the purpose of providing a mathematically rigorous description
of curvature and its effect on the chemical and physical properties. For a long time, π-
conjugation and aromaticity were considered a unique feature of planar carbon structures.
During the last decades, however, the progress of synthesis and material characterization
has provided us with a large number of curved π-conjugated structures (annulenes, circu-
lenes, coroannulenes, fullerenes, rippled graphene, etc), thus proving that π-conjugation
- and its effect on chemical and physical properties - can exist also in a curved environ-
ment. This work was suggested by my supervisor Prof. R. Martinazzo, who recognized
during my graduate work my great interest in Mathematics and invited me to join him
in the discovery of the curved world. The topic was thus approached from two points of
view: we selected some curved π-systems - that are interesting from both a fundamental
and technological perspective - and we investigated their structures and reactivity through
computational methods; meanwhile, we got our hands on maths, and in particular on a
field called differential geometry, to track down those tools that allow to rigorously describe
the curvature of carbon structures - something that, to the best of our knowledge, had not
yet done in the literature.

This work is organized into three Parts. Part I and Part II contain the results of
our computational investigation. The main attention was given to the study of the H
adsorption energetics, a simple reaction that is however relevant in disparate fields, from
astrochemistry to hydrogen storage and graphene technology. In Part I, this reaction is
considered in a "flat context", which allows us to introduce basic concepts - related to
π-conjugation - that are important also for the understanding of the curved world. This
Part is a natural development of my graduate Thesis work - which was focused on planar
graphene - and is a report of my first year of Ph.D. activity.

In particular, Chapter 1 and 2 are two introductory chapters that present known results
on flat graphene and polycyclic aromatic hydrocarbons (PAHs) and the H sticking, together
with their relevant applications. Chapter 4 contains the results of our Density Functional
Theory (DFT) investigation of the stepwise H addition to the coronene molecule, a small
flat PAH. The choice of the exchange-correlation (XC) functional represented an important
part of the work on coronene and is thus extensively discussed in Chapter 3. Chapter 5 is
dedicated instead to large PAH clusters.

Part II is entirely devoted to curved systems. Chapter 6 sets the beginning of our
journey through the curved world and is dedicated to the description of the main curved
carbon nanostructure. Emphasis is given here to introduce the systems we investigated:
curved PAH such as coroannulene, and the C/Si interface. Thus, Chapter 7 presents
the study of the stepwise H addition to coroannulene. This Chapter is closely related to
Chapter 4 since coroannulene can be considered as the curved analog of coronene. Chapter
8 describes the H sticking on a periodic system, namely graphene epitaxially grown on
SiC, a.k.a. the C/Si interface. Here, the curvature is due to the interaction of graphene
with the substrate. The subsequent Chapter describes a quantum dynamical investigation
of the Eley-Rideal reaction - leading to the formation of molecular hydrogen - on the C/Si
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interface. This work was done during my stay in Toulouse, as a visiting student in the
group of Prof. D. Lemoine.

In Part III, the problem of curvature is approached from a conceptual perspective. In
particular, Chapter 11 introduces a new model we set up to describe the local curvature at
carbon atoms and its relationship with the hybridization - a first step in the development of
a new theoretical framework for curved π-systems. The mathematics needed to understand
our model is presented in Chapter 10. The latter grew larger than expected but the
author used the time of writing as the right moment to re-organized what he learned with
enthusiasm during the years of his Ph.D. (in this regard, a good thing (the only one!) of
the lockdown during the first COVID-19 outbreak was to give me a lot of time to spend
on differential geometry). Finally, in Chapter 12, we draw our conclusions on the work.
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Chapter 1

Graphene and the H sticking

"Table, table on the wall, who is the fairest of them all?". This question, which may sound
familiar but odd to a child, has an obvious answer for a chemist: carbon (C). Thanks to
its unique properties, carbon is able to form any sort of structure, from simple to complex
molecules such as proteins, from 0D to 3D materials. Not by chance, nature has thus
chosen carbon as the building block of Life. Among the huge family of carbon nanos-
tructures, graphene is undoubtedly the one that has most attracted the interest of the
scientific community in recent years. Graphene is the fewest layer limit of graphite, i.e. a
two-dimensional sheet of sp2-hybridized carbon atoms with an extended honeycomb lat-
tice. Its history began in the long 1947 when Wallace[1] wrote a pioneering paper about the
electronic structure of a (still theorized) single-layer graphene. For a long time, graphene
remained however just a dream of material scientists, and any hope for its experimental
observation was lost by strong theoretical arguments (the Mermin’s theorem[2], see Box 1.1
on pag. 4) suggesting the inexistence of strictly 2D material - due to intrinsic thermody-
namical instability. Surprisingly, in 2004 Novoselov and Geim[3] reported for the first time
the development of a simple method to produce and observe few-layer graphene crystals on
silicon wafers, thus ushering in the graphene era. The enthusiasm of this finding led to the
winning of the Nobel Prize in Physics in 2010 for "groundbreaking experiments regarding
the two-dimensional material graphene".

Over the last seventeen years, the extraordinary electrical, thermal, and mechanical
properties of graphene have generated huge interest for the large variety of possible appli-
cations, e.g. future generation of high-speed devices[4], thermally and electrically conduc-
tive reinforced composites[5], transparent electrodes for display[6], etc. From the chemical
point of view, the functionalization of graphene through reactions with species such as H,
F, or OH have been widely investigated as a mean to tune its electronic and magnetic
properties[7, 8, 9, 10]. In particular, the reactivity of graphene towards H, one of the
simplest reactions we can imagine, is of great interest because of its relevance in disparate
fields such as astrophysics[11, 12], hydrogen storage[13], nuclear fusion[14], or, not least,
graphene technology itself. Despite the numerous amount of both experimental and theo-
retical works, there are yet some issues in this field that require further investigation. In
light of its importance, the sticking of an atomic H to carbon nanostructures was a major
focus of this work and guided our understanding of the differences between flat and curved
π-sistems, as stated in the Preface. In this Chapter, we review some of the key aspects
of such reaction that are well understood, to establish the theoretical background for the
comprehension of the next Chapters.

This Chapter is organized as follows: in Section 1, we describe the structure and main
physical properties of graphene; in Section 2, we discuss its electronic structure; in Section
3 we extensively discuss the H sticking.
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Chapter 1. Graphene and the H sticking

Box 1.1: The Mermin’s theorem and the existence of graphene

In a paper of 1968 entitled "Crystalline Order in Two dimensions"[2], Mermin was
able to prove a general result of statistical thermodynamics which excludes the ex-
istence of two-dimensional crystals. The theorem establishes that, if N particles
interacting through a pair potential Φ(r), are in equilibrium in a parallelogram box,
then every k 6= 0 Fourier component of the one-particle density ρ(r) must vanish
in the thermodynamic limit. With this result, Mermin gave firmer ground to what
was earlier theorized by Peierls[15] (1934), who gave both qualitative and quantita-
tive arguments about the absence of long-range crystalline order in one-dimension
based on the harmonic approximation. Similar conclusions were also reached by
Landau[16] (1937), using his general theory of second-order phase transitions.
Apparently, the Mermin’s theorem forbids the existence of graphene, which can be
characterized experimentally by non-zero Fourier components of the density (e.g.
with a STM experiment). However, even before the discovering of graphene, the
relevance of the asymptotic behavior of the Fourier components of ρ was questioned
by both computations and experiments (e.g. the Wigner crystallization of electrons
on the surface of liquid He[17]). In case of graphene, there two more points to
consider that accounts for its stability: (i) graphene is actually "extracted" from
stable 3D phase, i.e. graphite; (ii) as we shall see in Part II, graphene is actually
not flat, but it displays corrugations in most of the experimental setups.

1.1 Structure and properties

1.1.1 The honeycomb lattice

Graphene consists of a network of sp2 carbon atoms forming a honeycomb structure.
Strictly speaking, the latter is not a Bravais lattice, which requires by definition that,
for any choice of direction, the lattice has to appear the same from each of the discrete
lattice points when looking in that chosen direction. On graphene, we can instead identify
two sets of non-equivalent sites (a.k.a. sublattices). Naming A and B such sites, we note
from Figure 1.1 (b) that each A has nns in the north-east, north-west, and sud directions,
while B has nns in the north, sud-east, and sud-west directions. Nevertheless, both A and
B sublattices are hexagonal (otherwise known as triangular) Bravais lattice, and there-
fore the crystal structure of graphene can be regarded as a hexagonal Bravais lattice with
two-atom basis.

The three vectors (δi) connecting an A site with its nns on the opposite sublattice can
be written in terms of a local orthogonal basis (ex, ey) as

δ1 =
a

2
(ex +

√
3ey) δ2 =

a

2
(ex −

√
3ey) δ3 = −aex

The basis vectors spanning the bipartite hexagonal lattice (i.e. those defining the unit cell)
(ai) are

a1 =
a

2
(3ex +

√
3ey) a2 =

a

2
(3ex −

√
3ey)

where a is the C-C bond lenght, which is 1.42Å in graphene, that is in between a single
(≈ 1.54Å) and double covalent bond (≈ 1.31Å), due to the extendend π-conjugation.

The reciprocal lattice, shown in Figure 1.1 (a), is spanned by the following dual basis

a?1 =
2π

3a
(ex + ey) a?2 =

2π

3a
(ex −

√
3ey)
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Figure 1.1. (a) Reciprocal lattice and irreducible Brillouin zone (grey) of graphene, with high-
symmetry points; (b) Honeycomb lattice: δi are vectors connecting each site with its nns on the
opposite sublattice, ai are basis vectors of the hexagonal lattice.

On the irreducible Brillouin zone, also depicted in Figure 1.1 (a), we can identify the
high-symmetry points K, K ′ and M , which, in terms of (ex, ey) are given by

K =
2π

3a

(
ex +

1√
3
ey

)
K ′ =

2π

3a

(
ex −

1√
3
ey

)
M =

2π

3a
ex

In the following, we will show that the peculiar band structure of graphene around such
high-symmetry points determines many of the unique properties of this material.

1.1.2 Physical and chemical properties

Here, we briefly summarize the main physical and chemical properties of graphene. For a
more comprehensive discussion, the reader is referred to the excellent reviews by Neto et.
al. (2009)[18] and Allen et. al. (2009)[19].
Many of the extraordinary properties of graphene arise from the combination of its di-
mensionality and its peculiar electronic band structure (that is discussed in detail in the
next Section). The band structure, shown in Figure 1.4, around the K symmetry point
is indeed responsible for a very curious behavior of the electrons, namely that they mimic
relativistic particles, moving like they have lost their rest mass. Due to such a unique fea-
ture, graphene has first become a physics toy to study the relativistic effects in condensed
matter.

The valence and conduction bands touch each other at the K point, making graphene
a so-called gapless semiconductor. A single-point contact in the band structure determines
a high sensitivity of graphene towards external perturbations, such as electric fields, me-
chanical deformations, or dopants. In addition, this confers an ambipolar character to
graphene, that is charge carriers can be either holes or electrons. Interestingly, the charge
carrier sign can be changed by simply acting with local electric fields. These particular
electrical properties combined allow the realization of p-n juctions with high mobilities[18].

As for the optical properties, the absence of a bandgap makes graphene able to ab-
sorb light in a very large range of the electromagnetic spectrum, from infrared (λ ≈
780 nm−1 mm) to the ultraviolet (λ ≈ 10 nm−400 nm). Furthermore, its 2.3% absorbance
in the white light spectrum, combined with good conductivity, makes graphene an ideal
candidate as a transparent electrode in solar cells or liquid crystal devices[20].
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The outstanding mechanical properties of graphene are instead determined by the
strength of the covalent C-C bonds combined with the 2D structure. Graphene is one
of the strongest materials known, with a breaking strength 200 times higher than steel,
while retaining at the same time great flexibility and a high Young’s modulus[21].

From the chemical point of view, the reactivity of graphene is closely related to that
of graphite. However, due to its dimensionality and the absence of bulk, the chemical
functionalization of graphene can yield remarkable variations in the physical properties,
contrary to graphite. For instance, it has been shown that hydrogen or oxygen adsorbates
can induce metal-insulator transition in graphene[22]. Moreover, the possibility of chemical
species to approach the graphene from both sides of its surface allows some chemical bond
that would be unstable in graphite.

1.1.3 Fabrication techniques

The prerequisite for any widespread application of graphene is the possibility of large-
scale production of high-quality samples in a controlled manner. While many fabricating
techniques have been designed so far, the mass production of graphene is still a current issue
in material chemistry. Here, we briefly describe the most common preparative methods,
focusing on their pros and cons.
The most popular method for single or few-layers graphene production is the mechanical
exfoliation, a.k.a. "scotch tape method"[3]. The procedure consists of the cleaving of
a graphite sample, usually highly-oriented pyrolitic graphite (HOPG), with a cellophane-
based adhesive tape. Before transferring the flakes to appropriate supports, the peeling
can be repeated several times to progressively reduce the number of layers. The main
advantage of this method is its simplicity and low cost, but the poor reproducibility and
the low-yield compromise the application at large scales.

Another common fabrication method involves the use of graphitic oxide-based solu-
tions1. The method, designed by Ruoff and coworkers (2006)[23] relies on the fact that
stirring or sonication of graphitic oxide allows the separations of the single layers. In-
deed, the oxygen-containing functionalities make the layers hydrophilic, determining the
dispersion in water solutions. In the end, the resulting graphene oxide can be thermally,
chemically, or electrochemically reduced to graphene. This procedure is industrially scal-
able, low cost, and rapid. On the other hand, the reduction of graphene is often only
partial and impurities and defects can strongly affect the quality of the final sample.

Concerning substrate-based methods, the two most common techniques are the Chemical
Vapor Deposition (CVD) and the epitaxial growth. In a CVD, a transition metal surface
is exposed to a carbon source, such as hydrocarbons, at high temperatures (T ). The un-
derlying principle is that hydrocarbons decompose at high T providing a source of carbon
atoms that can rearrange over a catalytic surface to form the honeycomb lattice. The
most successful catalysts employed so far are nickel (Ni) and copper (Cu), because of their
low affinity towards C. The main advantage of the CVD technique is the possibility, in
theory, to produce a single sheet of graphene over the entire wafer, thus representing the
simplest way to integrate graphene into semiconductor devices[24]. In practice, however,
CVD does not allow fine control over the film thickness and the prevention of secondary
crystal formation is difficult.

With the epitaxial method, graphene results instead from the graphitization of SiC
substrate at high temperatures. This technique allows the production of high-quality
samples with precise control of the number of layers grown. The main disadvantage is
that the epitaxial growth graphene remains strongly bound to the substrate, thus losing
most of its unique properties, and therefore, it needs to be decoupled in some way from

1These are produced through the Hummer’s method, that consists in soaking graphite in a solution of
sulphuric acid (H2SO4) and potassium permanganate (K2MnO4).
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Figure 1.2. (a) Irreducible Brillouin Zone (BZ) of graphene: Γ is the center, while K and K ′ are
the two non-equivalent crystallographic points at the corner of BZ; M ,M ′,M ′′ constitute three
pairs of distinct crystallographic points which lie at the middle point of the BZ’s boundary; (b)
Direct honeycomb lattice: δi are vectors connecting a site A (grey dot) with its three nns B (black
dots). tnn (tnnn) is the nn (nnn) hopping term.

the substrate[25]. Among the fabrication techniques, the graphitization of SiC is anyway
one of the most appealing and it has attracted the interest of both the experimental and
theoretical graphene community in recent years. A more detailed discussion of such a
procedure is given in Section 6.4.

In closing this Section, we also mention the so-called total organic synthesis approach,
where graphene is obtained as the synthesis of large PAHs. PAHs are very attractive
because they can be functionalized with a wide range of aliphatic chains to modify their
solubility, which is one of the key parameters to control in solution-based methods. How-
ever, a notable drawback is the limited size range of the samples produced2

1.2 Electronic band structure

In this Section, we describe the band structure of graphene in the tight-binding (TB) frame-
work3. The atomic basis we are interested in is the one constituted by the single-occupied
pz orbitals centered on the carbon atoms. We show that, by solving the Schrödinger’s
equation with the TB Hamiltonian, two bands, namely the π and the π? bands, linearly
crossing at the Fermi level, naturally emerge.

In Section 1.1, we outlined the structure of the reciprocal lattice and of the irreducible
Brillouin zone (BZ), which is replicated in Figure 1.2 (a).

The center of the BZ is the so-called Γ point, while the six corners consist in the
inequivalent high-symmetry points

K =
2π

3a

(
ex −

1√
3
ey

)
K ′ =

2π

3a

(
ex +

1√
3
ey

)
We show in the following that these two crystallographic points play a crucial role in
defining the electronic properties of graphene since the low-energy excitations are centered
around those points. Furthermore, we prove that by expanding the Hamiltonian aroundK
orK ′ and solving the relative eigenvalue-eigenvectors problem, we get solutions describing

2One of the most successful results in this field was reached by Müllen et. al. (2008)[26], who reported
the synthesis of a nanoribbon-like PAH of 12 nm in length.

3The reader who is interested into a more complete and rigorous treatment of the physics of graphene
is referred to the excellent book by Katsnelson (2012)[27].
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electrons propagating at quasi-relativistic velocities, the so-called massless Dirac fermions.
In order to avoid confusion, it is important to stress at the outset that the non-

equivalence of the K and K ′ points has nothing to do with the presence of two sublattices
in graphene. On the contrary, the existence of these two high-symmetry crystallographic
points together with the presence of two sublattices involves the introduction of two dis-
tinct additional degrees of freedom to indexing the electrons, the so-called isospin and
pseudospin.
Let us consider the graphene structure displayed in Figure 1.2 (b). We call tnn < 0, the
nn hopping, that is the probability amplitude of an electron to hop from a carbon atom of
sublattice A to a nn of sublattice B, and viceversa. We call tnnn(< 0) the nnn hopping,
that is the probability amplitude of an electron to hop from a carbon atom on sublattice
A to the nnn on the same sublattice. Let δi, with i = 1, 2, 3 denote vectors connecting a
C atom with its three nn, and δ′i with i = 1, . . . , 6 those vectors connecting a C atom with
its six nnn. In the tight-binding approximation with both nns and nnns hopping terms,
the Hamiltonian matrix of graphene reads as

H(k) =

(
tnnn

∑6
i=1 e

ikδ′i tnn
∑3

i=1 e
ikδi

tnn
∑3

i=1 e
−ikδi tnnn

∑6
i=1 e

ikδ′i

)
For the sake of notation, we define the following functions

f(k) =

6∑
i=1

eikδ
′
i (1.1)

g(k) =
3∑
i=1

eikδi (1.2)

so that, the Hamiltonian matrix4 can be compactly written as

H(k) =

(
tnnnf(k) tnng(k)
tnng

?(k) tnnnf(k)

)
(1.3)

Note that δi + (−δj) = δ′i (see Figure 1.3), hence

|g(k)|2 = 3 +
∑
i 6=j

eik(δi−δj) = 3 + f(k) (1.4)

4One can equivalently work in the second-quantization formalism and write down a TB Hamiltonian
operator as

H = t
∑
〈i,j〉

a†i bj + t
∑
〈i,j〉

b†jai + t′
∑
〈〈i,j〉〉

a†iaj + t
∑
〈〈i,j〉〉

b†i bj

where a†i (b†j) creates an electron respectively at site i (j) on sublattice A (B), while ai (bj) annihilates
an electron at site i (j) on sublattice A (B) (〈i, j〉 indicates a sum over the nearest-neighbors sites, while
〈〈i, j〉〉 over the next nearest-neighbors). One can always diagonalize the Hamiltonian by means of a unitary
transformation. In the case of a TB Hamiltonian with no particles interaction, the basis which realizes the
diagonalization is the |k〉 basis of wave vectors. Thus, introducing the Fourier-transformed a†k, b

†
k (ak, bk)

creation (annihilation) operators collected in the two-components (spinor) representation

c†k =

(
a†k
b†k

)
one gets

H =
∑
k

c†kH(k)ck

where the matrix H(k) in the case of graphene is exactly the Hamiltonian matrix given in Equation
(1.3). The approach of second quantization is particularly useful when dealing with point defects, such as
adsorbates or impurities, in both graphene and graphene-like nanostructures.
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The overlap matrix, S(k), in the approximation of vanishing overlap between the nnn,
reads as

S(k) =

(
0 sg(k)

sg?(k) 0

)
where

s =

∫
d2rφ?A(r)φB(r + δi)

The corresponding eigenvalue-eigenvector problem to solve is

H(k)Ψ = ε(k)S(k)Ψ

with the matrices defined above. The eigenvalues are easily obtained by diagonalizing the
corresponding (H− εS(k)) matrix, that is by solving the following secular equation

det

(
tnnnf(k)− ε(k) (tnn − sε(k))g(k)

(tnn − sε(k))g?(k) tnnnf(k)− ε(k)

)
= 0

After some boring but straightforward algebra, one arrives at the following two solutions

ε±(k) =
tnnnf(k)± tnn|g(k)|

1± s|g(k)|
(1.5)

Equation (1.5) represents the analytical form of π (−) and π? (+) bands of graphene, in
the full tight-binding approximation. Such expression can be further simplified under some
reasonable assumptions. Setting η = ±, let first re-write Equation (1.5) as follows

εη(k) =
tnnnf(k)

1 + ηs|gk)|
+

ηtnn|g(k)|
1 + ηs|gk)|

If tnnn � tnn and s� 1, the first term can be approximated to tnnnf(k), while the second
term can expanded in power serie, giving at the first order

εη(k) = tnnnf(k) + ηtnn|g(k)| − stnn|g(k)|2

Since f(k) = −3 + |g(k)|2 (Equation (1.4)), we get

εη(k) = −3tnnn + (tnnn − stnn)|g(k)|2 + ηtnn|g(k)| (1.6)

therefore the effect of the overlap corrections is a renormalization of the nnn hopping
parameter. Equation (1.6) suggests the introduction of an effective nnn hopping amplitude
defined as

t′ := tnnn − stnn
The expansion of Equation (1.5) is justified if one considers that a fitting of the energy
dispersion of Equation (1.6) with more sophisticated bands-structure calculations (e.g.
DFT), gives tnn = −2.97 eV and tnnn = −0.073 eV, that is tnnn/tnn � 1. Note that the
fitting procedure does not allow to distinguish between the "true" nns hopping amplitude
and the contribution arising from the overlap corrections. Hereafter, we use the effective
parameter t′ to refer to the nnn hopping, omitting any distinction with tnnn. In addition,
we set tnn = t.

Let now consider the f(k) function in Equation (1.1). From Figure 1.3, one can easily
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Figure 1.3. An extended representation of the direct honeycomb lattice of graphene: δi are
vectors connecting a site A (grey dot) with its three nn B (black dots); δ′i are vectors connecting
a site A with its six nnn A.

check that each δ′i is coupled to an opposite vector δ′k = −δ′i. Then, we can write

f(k) = 2

3∑
i=1

cos(k · δ′i)

With this identification, the energy dispersion of Equation (1.6) becomes

ε±(k) = −3t′ + t′

(
3 + 2

3∑
i=1

cos(k · δ′i)

)
± t

√√√√3 + 2

3∑
i=1

cos(k · δ′i)

= 2t′
3∑
i=1

cos(k · δ′i)± t

√√√√3 + 2
3∑
i=1

cos(k · δ′i)

This energy dispersion is plotted in Figure 1.4. The lower band is the negative solution and
it represents the bonding π band, while the upper band is the positive solution, representing
the antibonding π? band. Since each C contributes with one π electron and each k-point
can host at most two electrons with opposite spins, according to the well-known Pauli
exclusion principle, it follows that the lower π band is filled, while the upper π? is empty.
Consequently, the Fermi level is situated at the k points where the π and π? bands touch
each other. We prove now, by a direct calculation, that these points are exactly the six
corners of the irreducible Brillouin zone, namely the K and K ′ crystallographic points.
Let consider

g(K) = eiKδ1 + eiKδ2 + eiKδ3 (1.7)

where

K =

(
2π

3a
,− 2π

3
√

3

)
δ1 =

(
a

2
,
a

2
√

3

)
δ2 =

(
a

2
,− a

2
√

3

)
δ3 = (−a, 0)

A straightforward calculation of the dot products in Equation (1.7) gives

g(K) = 1 + ei2π/3 + e−i2π/3 = 1 + 2 cos

(
2π

3

)
= 0
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Figure 1.4. Energy dispersion (3D on the left and 2D on the right) of pristine graphene. We can
distinguish from: (i) a lower band, which at half-filling condition, is completely filled and described
the π system; (ii) an upper band (empty) which is the relative antibonding π? band. The conical
intersections (Dirac points) occur at the points where the π and π? bands touch each other. For
pristine graphene, they occur at the crystallographic points K and K ′.

Since |g(k)|2 = 3 +f(k), then f(K) = −3. Therefore, the Hamiltonian matrix at K reads
as

H(K) =

(
−3t′ 0

0 −3t′

)
The diagonalization is trivial and gives

ε±(K) = 3t′

i.e. the two solutions are degenerate at K and the π band touches the π? band. The
same can be verified also for the K ′ points. The points in graphene where bands touch
each other are known as Dirac points. Therefore, in pristine graphene, Dirac points occur
exactly at the positions of the K and K ′ points. Since there are situations in which Dirac
points no longer occur at these locations, one has to explicitly distinguish them from K
and K ′, which have to be regarded as just two non-equivalent crystallographic points of
the irreducible Brillouin zone. Note that, in case of only nn interactions, namely t′ = 0,
Dirac points are located exactly where the energy dispersion is zero, ε±(K) = 0.

When t′ = 0, the energy dispersion reduces to

ε±(k) = ±t
√

3 + f(k)

therefore, we have that ε+(k) = −ε−(k), which is known as the electron-hole symmetry
(e-h). In this respect, it is worth anticipating some notions that we will further develop
later in this Chapter. The electron-hole symmetry is a feature of the so-called bipartite
lattices. A bipartite lattice is a system made of two sublattices which form two disjoint
sets of sites, A and B. In the nn approxiamtion, graphene consistutes exactly a bipartite
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Chapter 1. Graphene and the H sticking

lattice. The e-h symmetry5, which characterizes the Hamiltonian of any bipartite system,
establishes that for any non-vanishing energy level ε(k) with associated eigenstate

|Ψk〉 = cA|A〉+ cB|B〉

|A〉, |B〉 6= 0 respectively on sites A and B, it exists a conjugate energy level −ε(k) with
eigenstate6

|Ψk′〉 = cA|A〉 − cB|B〉

From our previous discussion, we see that the nnn hopping and the overlap corrections
break the electron-hole symmetry and shift the Dirac points from ε = 0 to ε = 3t′.

The e-h symmetry is just one of the symmetry properties of graphene. Indeed, since
f(k) = f(−k), we immediately see that ε(k) = ε(−k). In nn approximation, this means
that if k̃ is a solution of εk = 0, so it is −k̃. A direct consequence of this additional
symmetry is that Dirac points always occur in pairs. Here, k̃ = K and −k̃ is K ′, as
mentioned above. Therefore, the zero-energy states of graphene in nns approximation are
doubly degenerate. In the field of semiconductors, such a doubly degeneracy is referred to
as twofold valley degeneracy: K and K ′ such that K = −K ′ are said to constitute two
different valleys. Accordingly, the six corners of the BZ of graphene can be regarded as
three pairs of K and K ′ points.

As shown in Figure 1.4, at the Γ point,π and π? bands are separated by a ∆ε � 0.
To determine this energy separation, let consider again the energy dispersion in the nnn
approximation

ε±(k) = t′f(k)± t
√

3 + f(k)

At Γ, k = 0, f(k) = 2
∑3

1 cos(0) = 6, then

ε±(Γ) = 6t′ ± 3t =⇒ ∆ε(Γ) = 6t

i.e., the bandgap at Γ is ≈ 16 eV in both the nn and nnn approximations.
So far, we focused on the energy spectrum obtained through the direct diagonalization

of the graphene Hamiltonian matrix. However, by means of the energy eigenvalue repre-
sentation , we can write down the analytical expression for the corresponding eigenstates.
In this respect, let re-write the tight-binding Hamiltonian as follows

H(k) =

(
t′|g(k)|2 tg(k)
tg?(k) t′|g(k)|2

)
= t′|g(k)|21 + t

(
0 g(k)

g?(k) 0

)
where 1 is the one-matrix

1 =

(
1 0
0 1

)
(note that we have omitted the unimportant factor −3t′). In the nn approximation the
eigenvalues read as εη(k) = ηtg(k) (where η = ±), then the eigenstates are found by

5The term "electron-hole" is here justified considering that, in the case of graphene, due to the half-
filling condition and with the Fermi level located at the zero-energy, this symmetry regards exactly the
electrons and the holes.

6The proof is straightforward: let P being the eigenprojector onto the sublattice A and Q the eigen-
projector onto the sublattice B. The operator C = P − Q is adjoint and nihilpotent, hence it satisfy
CHC = −H. Therefore,

CHC|Ψk〉 = −H|Ψk〉 = ε(k)C|Ψk〉C
multiplying both sides by C on the right

HC|Ψk〉 = −ε(k)C|Ψk〉

then |Ψk′〉 = C|Ψk〉 is the eigenstate associated to the −ε(k) eigenvalue.
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1.2. Electronic band structure

solving the following eigeinvalue equation

H(k)(t′ = 0)|Ψη
k〉 = ηtg(k)|Ψη

k〉 (1.8)

Since the Hamiltonian is a 2× 2 matrix, the eigenstates are spinors in the form

|Ψη
k〉 =

(
aηk
bηk

)
From Equation (1.8) and using the exponential form of complex numbers, we get

bηk = η
t|g(k)|
tg(k)

aηk = ηe−iφkaηk

where
φk = arctan

(
Im g(k)

Re g(k)

)
From the normalization condition, one can easily check that a = 1/

√
2. Therefore, the

normalized eigenstates are

|Ψη
k〉 =

1√
2

(
1

ηe−iφk

)
These eigenstates are also those for the full Hamiltonian in the nnn approximation since the
term accounting for the latter is proportional to the one-matrix, 1. The two components
of the spinors can be interpreted as probability amplitudes of Bloch states on the two
different sublattices A and B. As expected, they represent equal probability to find an
electron on sublattice A or B, since the latter define C atoms with the same on-site energy.

1.2.1 Massless Dirac fermions

In pristine graphene, we have seen that Dirac points occur exactly at the corners of the
irreducible Brillouin zone, namely the K and K ′ crystallographic points. When the elec-
tron excitations are of concern, one generally looks at first at the low-energy excitations
near the Fermi level, that is the ones characterized by energy much smaller than the band-
width (here ≈ |t|). For graphene, this translates to restricting the attention to those states
around the Dirac points. In doing so, we need to expand the Hamiltonian around K and
K ′. Let then consider the wave vector k = K + q (the same applies to K ′ = −K), where
|q| � |K|, or equivalently |q|−1 � a, where a is the C-C bond length. The g(k) function
in K + q is

g(K + q) = ei(K+q)δ1 + ei(K+q)δ2 + ei(K+q)δ3

Since q ' 0, we can Taylor-expand the exponentials eiqδi . At the first order, we get

eiqδi ' 1 + i(q · δi)

Then

g(K + q) = i
(
δ1 + ei2π/3δ2 + e−2π/3δ3

)
q

= i

[
δ1 + cos

(
2π

3

)
(δ2 + δ3) + i sin

(
2π

3

)
(δ2 − δ3)

]
q

A direct calculation gives

g(K + q) =
3a

2
tγ(qx − iqy)

13



Chapter 1. Graphene and the H sticking

where qx, qy are the components of q and γ is a phase factor

γ = −
√

3

2
+ i

1

2
= ei5π/6

which appears due to our specific choice of the unit cell, but that can be neglected by
carrying out a unitary transformation on the basis functions. Since |g(K + q)|2 ' 0,
f(K + q) ' −3 and then the Hamiltonian matrix around K reads as

H(K + q) ' −3t′1 +
3

2
at

(
0 qx − iqy

qx + iqy 0

)
For K ′ = −K, the calculation is the same and it involves only a change of sign. We arrive
then at the following expression for the nn approximated (t′ = 0) Hamiltonian around
±K + q

H(±K + q) ' 3

2
at

(
0 qx ∓ iqy

qx ± iqy 0

)
(1.9)

The diagonalization of this matrix gives

3

2
atdet

(
−ε qx ∓ iqy

qx ± iqy −ε

)
= 0 =⇒ ε±(q) = ±3

2
at|q| (1.10)

where the ± sign at the subscript of the energy dispersion here stands for the two different
solutions of the secular equation and not for the valley degeneracy. The relation on the
right-hand side of Equation (1.10) represents the energy dispersion of the electrons around
the Dirac points. From

1

~
∂ε−(q)

∂q
= v

we get the velocity v of the electrons at these points. Reminding that t < 0, we have

vF =
3

2~
a|t|

vF is the so-called Fermi velocity: since t ≈ 2.97 eV and a ≈ 1.42Å, we get vF ≈ 0.96 · 106

m/s, that is vF ≈ 10−2c where c is the speed of light. In other words, electrons in the vicin-
ity of the Dirac points behave as massless7 particles, propagating with quasi-relativistic
velocities, also known as massless Dirac fermions. Figure 1.5 shows the variation of the
hopping term t and the Fermi velocity vF at different uniform strain δ = (a − a0)/a0

applied to a graphene sheet, as obtained by DFT-PBE periodic calculations with Atomic
Orbitals (AO) basis set.

In terms of vF , the Hamiltonian given in Equation (1.9) is compactly re-written as

Hκ
q = κ~vF (qxσ

x + κqyσ
y)

where κ is referred to as the valley isospin, that is κ = ±, with + for the K valley and −
for the K ′ valley, and (σx,σy) are the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)

7We clearly refer to the rest mass. The intrinsic mass of electrons cannot be "lost" since electrons are
elementary particles.
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Figure 1.5. Variation of the Fermi velocity (vF , 106 m/s) (left) and of the hopping parameter (t,
eV), induced by a uniform strain (δ, Å). DFT calculations are performed with PBE functional as
implemented in the SIESTA code[28], with a fine k-mesh to properly describe the reciprocal space
and tight-convergence criteria on the optimization.

By the same token, the energy dispersion becomes

εη,κq = η~vF |q| (1.11)

Equation (1.11) allows making three important observations:

(i) The energy dispersion in the vicinity of the Dirac points is independent of the valley
isospin, that is the twofold degeneracy we mentioned above survives the first-order
expansion;

(ii) The energy dispersion is isotropic since it depends only on the modulus of q and not
on its direction;

(iii) In the nn approximation, the energy dispersion preserves the e-h symmetry.

To conclude the present discussion, we mention that the Hamiltonian matrix can be re-
written in a still more compact form. In particular, by introducing the following four-spinor
representation for the eigenstates

|Ψk〉 =


ψAk,+
ψBk,+
ψBk,−
ψAk,−


the Hamiltonian can be expressed in the following form

Hκ
q = ~vFτ0 ⊗ σ · q (1.12)
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Chapter 1. Graphene and the H sticking

Here, τ0 denotes the z-component of the Pauli matrices, i.e.

τ0 =

(
1 0
0 −1

)
and τ0 ⊗ σ stands for the 4× 4 matrices

τ0 ⊗ σ =

(
σ 0
0 −σ

)
In this four-spinor representation, the first and the last two components of the eigenstates
represent respectively the lattice components relative to the valleysK andK ′. Such degree
of freedom is the beforementioned valley isospin, and it appears in the Hamiltonian through
the Pauli matrix τ0. In addition, one further distinguishes between the two sublattices, that
behave as an additional degree of freedom known as pseudospin. The latter is represented
in the Hamiltonian by the Pauli matrices (σi)8. Equation (1.12), apart from the valley
isospin index, is formally analog to a 2D Dirac equation describing relativistic particles,
where the pseudospin plays the same role of the traditional spin for true Dirac fermions.
Therefore, by analogy, one speaks of pseudospin "up" or pseudospin "down", to indicate
respectively the sublattice A and B. Finally, the reader can check that the eigenstates of
the Hamiltonian (1.12) are

|Ψη,+
k 〉 =

1√
2


1

ηe−iφq

0
0

 |Ψη,−
k 〉 =

1√
2


0
0
1

−ηe−iφq


where φq = arctan(qy/qx).

1.2.2 Density of states

In closing this section, we briefly comment on the density of states (DOS) of graphene, still
within the TB approach and the nn approximation. We remind that the density of states
is given by

ρ(ε) = 2
∑
n

∫
BZ

d3k

(2π)3
δ(ε− ε(k)) (1.13)

where the sum runs over all the band indices and the integration is performed on the
irreducible Brillouin zone, with the factor 2 accounting for spin degeneracy. For the π
electron system of graphene, due to the dimensionality and twofold valley degeneracy,
Equation (1.13) reads as

ρ(ε) = 4

∫
BZ

d2k

(2π)2
δ(ε− ε(k))

In the vicinity of the Dirac points, one can substitute the low-energy dispersion relation

ρ(ε) = 4

∫ +∞

0

1

2π
|q|δ(ε− ε(|q|))d|q|

and exploit its isotropy to easily carry out the integration, arriving at

ρ(ε) =
2

π

|q|∣∣∣ ∂ε∂|q| ∣∣∣ (1.14)

8This is the reason why we use two different symbols, τ and σ for the Pauli matrices.
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Figure 1.6. Total density of states (black) and projections on the π (blue) and σ (orange) systems.
Calculations are performed with DFT-PBE as implemented in the SIESTA code[28], with a fine
k-mesh and large mesh cut-off for the real-space integration.

as long as ε� |t|. By inverting the low energy dispersion, we then get

ρ(ε) =
2

π

ε

~2v2
F

(1.15)

We note that the density of states linearly vanishes for ε→ 0, i.e. close to the Dirac points.
Noteworthy, graphene differs from standard 2D electron gases, for which the density of
states is found to be constant. Yet, one can show that it is sufficient to consider two layers
of graphene to get back a constant density of states.

For the sake of completeness, we report the analytical expression of the full density of
states calculated by Hobson and Nierenberg (1953)[29]

ρ(ε) =
4

π2

|ε|
t2

1√
Z0
F

(
π

2
,

√
Z1

Z0

)
where

Z0 =


(

1 +
∣∣∣ε
t

∣∣∣)2
− [(ε/t)2 − 1]2

4
− t ≤ ε ≤ t

4
∣∣∣ε
t

∣∣∣ − 3t ≤ ε ≤ −t ∨ t ≤ ε ≤ 3t

Z1 =


4
∣∣∣ε
t

∣∣∣ − t ≤ ε ≤ t(
1 +

∣∣∣ε
t

∣∣∣)2
− [(ε/t)2 − 1]2

4
− 3t ≤ ε ≤ −t ∨ t ≤ ε ≤ 3t

where F (π/2, x) is the complete elliptical integral of the first kind. Figure 1.6 displays
the density of states as obtained by an AO-DFT calculation is shown: the electron-hole
nature of the spectrum is approximately reproduced due to the rather small values of
t′. The divergencies at ±t are known as van-Hove singularities and they are due to to
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Chapter 1. Graphene and the H sticking

the saddle points of the energy dispersion at the M points at the borders of the first BZ.
Such divergencies can be qualitatevely understood looking at Equation (1.14): they appear
whenever the derivative of the energy dispersion vanishes, such as at the extrema or saddle
points of the energy dispersion.

1.3 Hydrogen Sticking

In this Section, we describe the key aspects of the H sticking on graphene. The attention
will be given here to the energetics of this process and of competing reactions that may
occur at the gas-phase interface, such as the abstraction reactions, that are more relevant
for this work. We will not go into the details of the sticking dynamics, for which the reader is
referred to excellent review by Bonfanti et. al. (2008)[30] and related works[31, 32, 33, 34].

1.3.1 Diluted limit: physisorption and chemisorption

We start by considering the so-called diluted limit where H atoms can be considered quasi-
isolated on the surface. In practice, only a few experiments are able to address this regime,
since in most cases higher coverage conditions are employed9. In addition, as we shall
describe in the following, dimerization and clustering of H adatoms occurs on graphene
due to the electronic and structural modification induced by the single H adsorption itself.
We first address the physisorption regime and then move to the relevant chemisorption
regime.

The interaction potential relevant for the physisorption regime was characterized long
ago by Ghio et. al. (1980)[35] who used low energy H atom beams (50 − 65 meV) and
first observed diffraction in the flux of scattered atoms off a graphite sample. From the
position of the resonances, they estimated the well depth to be 43.3±0.5 meV for graphite
and extrapolated this value to a single graphene layer to obtain 39.2 ± 0.5 meV. From
the theoretical point of view, most simulations to compute the physisorption well depth
have relied on model molecules, such as coronene, because of the difficulty in properly
handling the long-range VdW interactions in periodic calculations. Accordingly, most
studies found that the position of the H physisorbed species is a hollow position, i.e. at
the center of the benzene ring. Standard quantum calculations such as Möller-Plesset
perturbation theory on coronene using large basis-set and correcting for the Basis-Set
Superposition Error (BSSE) ( see Box "BSSE and the CP-correction on page 19 ) found a
physisorption minimum at 2.93Å with a depth of 39.7 meV (Bonfanti et. al. (2007)[36]),
in good agreement with the experimental result. Because of the very small well depth,
which is expected also on clean graphene surfaces, the H physisorption cannot be exploited
for any hydrogen storage application. The problem remains, however, of some interest for
the chemistry of the ISM, i.e. the mixture of gas and dust that fills the space between
stars. The formation of H2, which is still a puzzling question in astrochemistry, on dust
grains may occur at temperatures that allow physisorbed species to be stable (T ≈ 10−20
K in the so-called diffuse clouds) (see Chapter 2). At higher temperatures (T > 50 K),
the desorption rate is instead so high that the refreshment of the surface is completed in a
time-scale that is too short for astronomical standards.

9In this respect, it is worthy to add that most of the experiments in this field rely on graphite, rather
than on graphene. On the other hand, theoretical modeling is most often performed on graphene, either
because of the computational advantage or for real interest in the substrate. However, the experimental
results on graphite can be translated with minor changes to graphene, since "graphene on graphite" can
be considered effectively decoupled from the substrate[30].
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1.3. Hydrogen Sticking

Box 1.2: The BSSE and the CP-correction

The Basis-Set Superposition Error is one of the main truncation errors affecting any
AO calculations. This error arises from the enlargement of the basis set experienced
by two fragments, A and B, when they approach each other. In particular, fragment
A can "borrow" basis functions from the other, thus its basis set is increased and
its description improved. When computing, for instance, the H binding energy
on graphene, the energy of the asymptote (the isolated graphene sheet and the H
atom ) results from unmixed basis sets while, in the binding geometry optimization
(H+graphene), basis sets are mixed. Such mismatch is the source of the error and
has to be removed when anytime AOs are employed. In this respect, PW are more
convenient, being not affected by the BSSE. However, their main shortcoming is the
much larger computational cost, which makes them out of reach for large systems.
The most popular method to get rid of the BSSE is the so-called CP-correction.
The latter has the main advantage of being an a posteriori method, i.e. it only
requires additional single-point calculations using the mixed basis sets - that can be
realized by introducing "ghost orbitals" on the relevant atoms. For a reaction of the
kind A+B→ AB , the CP-correction to the binding energy can be readily obtained
through

ECP = (Ẽ?A + Ẽ?B)− (EA + EB)

where˜refers to the "final geometry" (i.e. that of the optimized AB structure), while
? denotes the use of the whole basis set. Thus, Ẽ?A is the energy of the fragment A
in the optimized geometry of AB and with the whole basis set (i.e. with ghost basis
functions on B).
A less popular method is the so-called chemical Hamiltonian approach (CHA)[37,
38]. This is an a priori method in which basis set mixing is prevented by replacing
the conventional Hamiltonian with one in which all the projector-containing terms
that would allow mixing have been removed.

On the other hand, the chemisorption of H on graphene is a quite recent topic (15
years or so), since for some time H atoms were not believed to be able to bind to the
substrate and early attempt to model the adsorption without relaxing the surface failed
in finding the chemisorption minimum. The first to show that H binds to the surface if
substantially surface reconstruction is allowed was Jeloaica and Sidis (1999)[31]. The value
of the binding energy shows a sizable variability in the literature that can be ascribed to
differences in the adopted DFT functionals and, more importantly, to the computational
setup and the optimization strategy employed in the calculations[30]. Thanks to recent
PW-DFT calculations the value of the chemisorption well converged to 0.85 eV[39, 40].
Atomic-orbital DFT results suggest a larger value (close to 0.97 eV, see Figure 1.7) likely
because of BSSE and optimization strategy.

The chemisorption well on graphene is much smaller than that found on typical transi-
tion metal (2−2.5 eV) or the CH bond energy in hydrocarbons (≈ 4 eV). The main reason
is that in the formation of the CH bond on graphene, a considerable fraction of the energy
goes into the lattice, where it is stored indefinitely as deformation energy of the puckered
surface. Such puckering consists in the out-of-plane displacement of the binding C and it
is a consequence of the sp2-sp3 rehybridization of the valence C orbitals. The extent of
such an out-of-plane movement is about 0.3-0.4Å and extends several angstroms (≈ 10Å)
from the adsorption site[30].

The H chemisorption is an activated process that requires the overcome of barrier to
occur, a.k.a. sticking barrier, to occur. From the experimental point of view, the presence
of a barrier is undeniable. Indeed, as first recognized by Neumann et. al. (1992)[32],
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Chapter 1. Graphene and the H sticking

hyperthermal beams (T ≈ 2300K) are needed in order to deposit H atom on carbons
surface. Without a barrier, cold atomic beams would be effective in depositing H atoms
at room temperature and hydrogen deposition would be a random process, with estimated
abundances of dimers and clusters much smaller than that observed. Nevertheless, the
height of the barrier is yet unknown but current DFT results suggest a value close to
0.2 eV. In Chapter 5, we will return to this topic and present new DFT results about the
H sticking barrier on graphene.

Concerning the sticking dynamics, most of the available theoretical investigations agree
qualitatively on the classical, over-barrier regime where the energy transfer to the substrate
is the only limiting factor[41, 42]. Few studies address the problem in the regime where
tunneling plays a dominant role and, until recently, none of them considered tunneling in
the presence of a true dissipative quantum bath, mimicking the surface. This has been long
rather unpleasant since it was recognized long ago that the tunneling probabilities depend
on strength of dissipative effects (Caldeira-Legget,1981[43]). The main problem hindering
such studies is the so-called dimensionality curse, i.e. the exponential scaling affecting
exact quantum approaches. Tremendous progress in this field has recently come from
the so-called Multi-Configuration Time-Dependent Hartree (MCTDH) method[44] and its
multilayer variant[45] (see Box 1.3 on pag. 20).

Box 1.3: The MCTDH approach

The MCTDH approach is an extension to the time-dependent Hartree-Fock method
in which the wavefunction is written as a combination of products of single-particles
functions |φjk〉

|Ψ〉 =
∑
j1

...
∑
jN

Aj1,j2,...,jN |φ
(1)
j1
〉|φ(2)

j2
〉...|φ(N)

jN
〉

Exploiting the Dirac-Frenkel variational principle, the original N particle problem
is reduced to N problems for each degree of freedom (DOF). With this method,
one can treat up to tens of DOFs, but with a smart choice of each single-particle
function, the number can be increased up to 100-150. Indeed, each |φ〉 is not forced
to represent just one DOF, but it can describe 2-4 DOFs, |φ(i)

ji
(Qi)〉 with Qi =

(q1, ...qn). In the multilayer variant, the dimension of each |φ(i)
ji

(Qi)〉 is further
enlarged and each function is itself written as a multiconfigurational product

|φ(i)
ji

(Qi)〉 =
∑
k1

...
∑
kN

Bk1,k2,...,kNφ
(1)(Q̄1)φ(2)(Q̄2)...φ(n)(Q̄N )

In this way, one can arrive to treat up to 5000-10000 DOFs.

A key step in the investigation of the H sticking in the quantum regime was the formu-
lation of a reliable model for chemisorption, due to Bonfanti et. al. (2015)[46]. The latter
consists of a system-bath strategy that is based on the reliability of a generalized Langevin
description of the C atom dynamics. With this assumption, the substrate is mapped into a
surrogate bath of independent harmonic oscillators and the high-dimensionality problem is
tackled with the MCTDH method in a numerically exact way. An accurate description of
this method and the sticking dynamics is far beyond the scope of this work. The interested
reader is referred to specific papers on the subject[30, 46].

1.3.2 Midgap states

From the electronic point of view, the chemisorption of H on graphene acts as a pZ removal
from the π-system of graphene, since the latter gets engaged in the strong covalent bond
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Figure 1.7. (Left) Energy path for the H chemisorption simulated on a 5× 5 graphene superlat-
tice, by keeping frozen at each step the C-H bond distance along the z-coordinate; (Right) Band
structure for H on a 5 × 5 graphene superlattice. Spin-up and spin-down bands are respectively
colored in black and red. Both simulations are performed with PBE density functional and DZP
basis-set, as implemented in the SIESTA code[28].

with the incoming H. Such a removal creates an imbalance between the number of sites
in the two sublattices and gives rise to the appearance of a single-occupied molecular
orbital at the Fermi level dubbed midgap state. This zero-mode energy level is not strictly
localized but it is found to decay from the adsorption site with a 1/r power law. At
first glance, midgap states can be accounted for by considering that, if e-h symmetry (nn
approximation) holds, the odd-numbered system has necessarily a zero-energy level. Due
to the low value of the nnn hopping, while relaxing the nn approximation, the midgap
state moves away from the Fermi level but remains very close to it.

From the chemical point of view, the appearance of semi-localized midgap states can be
well understood in the resonance picture, familiar to chemists. Upon the formation of the
C-H bond, the π-bond is broken and an unpaired electron is left on the neighboring C. This
unpaired electron does not remain localized around the adsorption site but it delocalizes
over the majority sublattice through well-known Pauli’s resonance (in a sort of extended
ortho-para mesomeric effect).

When bipartite lattices are concerned, interesting theorems can be formulated about
zero-mode states, that allow understanding many properties of defective systems. Let
consider the Hamiltonian of a bipartite system

H = −|t|
∑
〈i,j〉

a†ibj − |t|
∑
〈i,j〉

b†jai (1.16)

where a†i , b
†
j (aj , bi) create (annihilate an electron respectively on site i of the A sublattice

and j of the B sublattice10. We can formulate the following zero-mode theorem:

Theorem 1.3.1. Whenever there is an imbalance in the number of atoms in the two

10Here, we are using the terms "site" and "state" as synonyms, since A and B can be identified exactly
with the subspaces spanned by the pZ orbitals of the two sublattices

21



Chapter 1. Graphene and the H sticking

sublattices of a bipartite lattice, η = NB − NA > 0, there are η number of degenerate
eigenfunctions of the Hamiltonian (1.16) at zero energy, all with null amplitudes on the
minority sublattice.

The proof is straightforward[30]: let NA > NB and

|Ψ〉 =
∑
i

αi|αi〉 (1.17)

a trial solution at zero-energy, with |αi〉 a complete set in A. Since, by definition, H|Ψ〉 = 0,
multiplying both sides of Equation (1.17) by 〈βj |H we get∑

i

〈βj |H|αi〉αi = 0 (1.18)

for j = 1, 2, , ..NB. Equation (1.18) allows finding the αi coefficients that define the trial
solution. However, we have NB equations to determine NA > NB coefficients, meaning
that the solution cannot be completely determined and we remain with η = NA − NB

linearly independent solutions. In addition, the above result also shows that the zero-
energy states localize on the A sublattice, which is here the majority one. This theorem
provide us with a counting rule, generally known as imbalance rule, which allows predicting
the minimum number of midgap states in graphenic systems.

As we mentioned above, the midgap state describes an unpaired electron left by the
breaking of the π-bond, hence the pZ removal leads to a spin 1/2 magnetic moment. When
many-body phenomena such as magnetism are of interest, one needs to go beyond the TB
description since the onset of magnetism originates from electron-electron interactions. The
simplest way to improve the TB description and set up a correlated model is by including
the following term in the Hamiltonian

H ′ = U
∑
i

ni↑ni↓

describing a repulsive on-site Coulomb interaction, where niσ = c†iσciσ is the spin-resolved
electron density operator at site i and U the magnitude of the on-site repulsion (here c†i
(ci) creates (annihilates) an electron at site i indistinctly from the sublattice).The resulting
total Hamiltonian, HTB+H ′, constitutes the so-called Hubbard model. Despite its apparent
simplicity, the Hubbard model is not analytically solvable for N > 2 electrons. In first
approximation, one can assume that ni↑ and ni↓ slightly differ from their mean values. We
introduce the two following operators

di↑ = ni↑ − 〈ni↑〉
di↓ = ni↑ − 〈ni↓〉

and re-write the interaction term as

H ′ = U
∑
i

(di↑ + 〈ni↑〉)(di↓ + 〈ni↓〉)

Since diσ ≈ 0 by hyphothesis, we can neglect the term di↑di↓ and we arrive at

H ′mf = U
∑
i

(ni↑〈ni↓〉+ 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉)

This is the infamous mean-field approximation, which allows overcoming the main difficul-
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1.3. Hydrogen Sticking

ties of the full model11. Within the mean-field approximation, the Hubbard model can be
self-consistently solved, starting from initial randomly chosen values of 〈niσ〉. Once the
converged solutions are obtained, the total spin of the system S can be computed according
to

S =
∑
i

Mi =
∑
i

1

2
(〈ni↑ − ni↓)

whereMi is the average magnetization on site i. In 1989, Lieb[47], working on the Hubbard
model, established a fundamental theorem that allows characterizing the ground-state of
bipartite systems:

Theorem 1.3.2 (Lieb). A bipartite system at half-filling described by a Hubbard model
with repulsive electron-electron interactions (U > 0) has the ground state characterized by
the total spin

S =
1

2
|NA −NB| (1.19)

where NA and NB are respectively the numbers of sites in sublattice A and B

This result holds in any dimension, regardless of the presence of a periodic structure.
The application to the chemisorption of H on graphene is immediate: the adsorption of
one H atom (say on the sublattice B) leads to the imbalance NA − NB = 1, resulting in
a S = 1/2 ground-state. According to our previous discussion, this magnetic moment is
due to an unpaired electron residing in the midgap state and localizing on the majority
sublattice. These findings are confirmed by DFT calculations, as made evident from Figure
1.8 where the local and total density of states are displayed.

It is worth stressing that Lieb’s theorem provides information on the total spin but it
does not give the number of unpaired electrons. For instance, a S = |NA − NB|/2 = 0
ground state can be realized also with an open-shell configuration where two unpaired
electrons have opposite spin. Correct counting of unpaired electrons can be realized by
introducing the concept of non-adjacent sites. We say that two sites are non-adjacent if
they are not connected by any transfer integral. In the nn approximation, two sites on
different sublattice are then naturally non-adjacent. It always exists a maximal set of non-
adjacent sites and we call α those sites belonging to such set and β the remaining ones. If
N is the total number of sites of the bipartite lattice, then N = Nα +Nβ . Since each site
α binds at least one site β and since we can arrange one electron per site, we can form, at
most, Nβ bonds. Then, we are left with Nα −Nβ unpaired electrons or equivalently

η = 2Nα −N

11Such approximation is at the heart of any mean-field theory : one neglects the detailed dynamics of
the system and include the correlations between particles only "on the average". The method applies also
to composite systems, with both fermions and bosons. If only the interactions between different particles
are relevant, the Hamiltonian reads as

H =
∑
i

εfi f
†
i fi +

∑
j

εbjb
†
jbj +

∑
ii′

∑
jj′

Vii′jj′f
†
i b
†
jbj′fi′

where f†, b† (f, b) are respectively the creation (annihilation) fermionic and bosonic operators. Introducing
dii′ = f†i fi′ − 〈f

†
i fi′〉 (and the same for bosons), one gets the following mean-filed potential operator

VMF =
∑
ii′

∑
jj′

Vii′jj′(f
†
i fi′〈b

†
jbj′〉+ b†jbj′〈f

†
i fi′〉)+∑

ii′

∑
jj′

Vii′jj′〈f†i fi′〉〈b
†
jbj′〉

23



Chapter 1. Graphene and the H sticking

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

E-E
F
 (eV)

a
.u

.

Figure 1.8. (Top) Spin-resolved density of states of H on 5× 5 graphene superlattice. The spin-
up and spin-down doss are respectively colored in blue and red. (Bottom) Difference between the
spin-up and spin-down local density of states, showing the semi-localization of the midgap state.
Both simulations are performed with PBE/DZP, as implemented in the SIESTA code[28].
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1.3. Hydrogen Sticking

Figure 1.9. Structural formula of the 2,3-bis-methylene-1,4-butadiene, with its principal reso-
nance structure.

Earlier, we have defined η = |NA −NB| as the minimum number of midgap states. Here,
we can redefine it as the total number of unpaired electrons in the Lewis structure with
the maximum number of bonds, i.e. the total number of midgap states12 localized on the
maximal set of non-adjacent sites. Figure 1.9 shows an application of these concepts to a
simple molecule: the maximal set of non-adjacent sites is given by the 4 sites at the edges
of the molecule, hence one can realize at most Nβ = 6− 4 = 2 π-bonds and remains with
η = 4− 2 = 2 unpaired electrons. Note that S = 0 in this case.

1.3.3 Reactions at the gas-surface interface

Before moving to the high-coverage regime, it is worthy to discuss the reactions that may
occur between an H already adsorbed (either physisorbed or chemisorbed) on the surface
and one coming from the gas phase, since this is a typical situation characterizing the
long-term exposure of a (pre-covered or not) surface to H flux.

The most important reaction is that leading to the formation of H2, also known as
recombination, which is characterized by large exothermicity and absence of any bar-
rier. The huge amount of energy that is freed during the reaction goes into the product
molecule though sometimes a considerable fraction can be left on the lattice, especially
when chemisorbed H atoms are involved. The H2 recombination on graphene can oc-
cur through three different mechanisms, that are operative at different thermodynamical
conditions: the Langmuir-Hinshelwood (LH), the Hot-atom (HA) and the ER mechanism.

In the LH mechanism, both reactants are physisorbed on the substrate and they diffuse
until they meet each other and react. By definition, this mechanism is relevant only to the
physisorption regime however it is not a standard since the thermalization of physisorbed
H in stable adsorption sites is hampered by the zero-point fluctuations. In this process,
the nascent product molecule either desorb immediately from the surface with a strong
rotational excitation or stays trapped on the surface in a hot vibrational and rotational
excited metastable state[48, 49].

In the HA mechanism, one of the reactants is trapped on the surface but not equili-
brated. Typically, it diffuses hyper-thermally until it encounters a reaction partner to form
H2. The relevance of the HA recombination for hydrogen on graphene is yet unclear. It
is probably operative when H atoms trap in the physisorbed well of a well-cleaned surface
but it is expected to be rather sensitive to the surface temperature because of the great
effect that the latter has on the hot-atom lifetime.

In the ER mechanism, one of the reactants is accommodated in stable chemisorption
well. The second comes from the gas phase and the product molecule is formed through
a direct collision with the adsorbed atom. The ER is recognized as the most important
recombination mechanism since it is operative in a wide range of temperatures at which

12This result strictly holds for benzenoid systems. For a generic bipartite lattice, it gives only a lower
bound to the total number of midgap states, namely η ≥ 2Nα + 1. There may exist further zero-energy
states, known as supernumerary modes.
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Chapter 1. Graphene and the H sticking

physisorbed species are known to be absent (50-300K at low coverage and up to 500 K at
higher coverage)[30]. When the surface is exposed to hot H beams, the ER recombination
generally competes with the H sticking (i.e. the formation of the dimer in this case). On
the contrary, when cold atomic beams are used on a pre-covered surface, the incoming H
is not able to overcome the sticking barrier and the abstraction dominates over the dimer
formation[50]. A more detailed description of the ER reaction is left to Chapter 9, where
we present new quantum dynamical simulations of this reaction on a very special surface,
namely graphene on SiC.

1.3.4 High coverage

Chemisorption of hydrogen atoms is an activated process and thus any change in the height
of the energy barrier to sticking reflects exponentially on the kinetics of the adsorption
process. Without the presence of such a barrier, the sticking of atomic hydrogens would be
a random process, in contrast to the experimental observations that find the formation of
dimers and clusters. Since H are immobile on the surface when chemisorbed, the formation
of dimers can be only due to a preferentially sticking that favors the adsorption of a second
H atom on specific lattice positions around the defect[39]. Such preferential sticking can
be understood by reminding the earlier discussion on midgap states. The first adsorption
leaves an unpaired electron residing in a midgap state that semi-localizes around the defect,
thus driving the second H addition on a neighboring site. The formation of ortho and para
dimers is then an easy process since such an unpaired electron can be easily coupled to the
electron of the incoming H with a small or even vanishing activation barrier. In this respect,
theoretical results showed an expected preferential formation of "balanced" dimers, with
para dimers being the most abundant ones13.

After the formation of an AB dimer, there are no unpaired electrons to bias the ad-
sorption of a third H in specific lattice positions. Nevertheless, there are still two effects
to consider. First, some adsorption sites are more favored than others because the relax-
ation energy is lowered around sites that have already sp3 character, i.e. that are already
rehybridized and pyramidalized to some extent. This is a kind of substrate softening that
occurs upon the adsorption of the first hydrogen atoms. Second, a dimer or a cluster on
the surface introduces "edges" in the π-cloud and these are known to be more reactive than
bulk lattice sites. We will have the occasion to discuss in more detail the rehybridization
and pyramidalization effect in Part II when dealing with curved systems, and the second
effect later in this Part I.

13Early thermal desorption experiments on hydrogenated graphene were puzzling because of a double
peak structure for H2 desorption (one at 445K and the other at 560K) that was incompatible with a
monomer desorption barrier of 1 eV (the sum of adsorption energy 0.8 eV and adsorption barrier 0.2 eV),
which was expected to give a single peak at 300K. It took some time before the formation of dimers was
fully appreciated and thermal desorption spectra were correctly interpreted as the activated formation of
H2 from ortho and para dimers on the surface (Hornakaer et. al. 2006[51]). The temperature of the first
peak is in agreement with the formation of H2 out of the para dimer. Instead, at the temperature of the
second peak, ortho dimers, which are more stable against thermal annealing, convert into para dimers and
recombine.
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Chapter 2

The role of PAHs in the Interstellar
Chemistry

"Over the last 20 years, we have discovered that we live in a molecular universe:
a universe where molecules are abundant and widespread; a universe with a rich
organic inventory particularly in regions of star and planet formation; a universe
where the formation of stars and the evolution of galaxies is driven in many ways
by the presence of molecules; a universe where prebiotic interstellar molecules
may represent the first steps toward life; a universe where molecules can be used
as "dye" to trace important processes in the interstellar medium; a universe where
molecules provide unique information on the physical conditions of a wide variety
of regions; and a universe where molecules can work together to form such complex
species species as you and me."

– A.G.G.M. Tielens, The Molecular Universe

In this Chapter, we introduce polycyclic aromatic hydrocarbon, a class of molecules that
is strictly related to graphene, being graphene fragments with the edges saturated by H
atoms. PAHs have sparked great interest in the last few years because of the role they
might play in the interstellar chemistry. In particular, they have been demonstrated to
act as catalysts for molecular hydrogen formation under interstellar conditions. Thus, they
could provide a possible explanation for the relative abundancies of H2 in those regions
of the ISM where this molecule should be dissociated by ultraviolet (UV) photons and
heat. In addition, being directly related to graphene, PAHs have been often adopted as a
molecular model to investigate graphene properties and chemical reactivity.

This Chapter is organized as follows: in Section 1, we discuss the chemical reactivity of
PAHs; in Section 2 we discuss their presence in the ISM and the recently proposed route
to H2 formation.

2.1 Structure and reactivity

PAHs are organic molecules formed by multiple benzenic rings fused. Their size can range
from small unities (e.g. napthalene, which has just two benzenic rings) to very large islands,
becoming graphene in the infinite limit. Even though they are characterized by aromatic
motifs, not all PAHs satisfy the Hückel’s rule. For instance, coronene (C24H12), one of the
most studied molecules of this family, has 24 π-electrons, a number that does not satisfy
the 4n+ 2 rule.

From a topological point of view, the π-system of PAHs constitutes a bipartite lattice,
and therefore the theorems we introduced earlier (see Subsection 1.3.2) in discussing the
appearance of midgap states in graphene apply also to these molecules. Considering again
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Figure 2.1. Pictorial representation of creation/annihilation process described by the operator
a†i b
†
jbj′ai′ .

coronene, its lattice is balanced, withNA = NB = 12. The maximal set of non-adjacent sites
is realized by selecting all sites belonging to either one of the two sublattices. Therefore,
Nα = 12 and

η = 2Nα −N = 0

S =
1

2
|NA −NB| = 0

The bare coronene molecule has then a closed-shell ground state with S = 0 and no midgap
states.

From the chemical point of view, the reactivity of PAHs is closely related to that
of graphene. However, in isolated systems, the presence of edges introduces additional
electronic and geometrical effects. The latter can strongly affect the chemical reactivity,
making some sites more likely than others to react with foreign species. Concerning the
reactivity towards H atoms, several studies revealed a preference for addition at the edges
of PAHs. One can argue that the sticking occurs at the edges because central C atoms
of PAHs behave as "graphitic" sites so that the process requires there more energy due
to the before-mentioned surface puckering. However, DFT calculations show that the
reorganization energy, i.e. the difference between the energy of the bare molecule in the
configuration in which it binds the H and the energy of the bare molecule in its equilibrium
geometry, is higher for an edge site than for a central site. Therefore, electronic rather than
geometrical effects are expected to play a major role in the preferential sticking at edges
of PAHs. The origin of such electronic effect can be found in the edge localization of the
(low-energy) frontier orbitals of the π-system, which enhances the reactivity of those sp2

sites that have the smallest number of sp2 neighbors. Sites at the edges of a PAH molecule,
being undercoordinated in the π-system, are thus more reactive as if they present a sort
of dangling bonds to be saturated.

2.1.1 π-coordination and π-hyperconjugation

The edge localization can be given a firmer ground already in a tight-binding model,
by exploiting the bipartite structure of the Hamiltonian[52]. Let consider the following
bipartite Hamiltonian in the nn approximation

HTB = −t
∑
〈i,j〉

a†ibj + h.c. = HAB +HBA (2.1)

28



2.1. Structure and reactivity

where h.c. stands for "hermitean conjugate". By squaring Equation (2.1), we get the
following renormalized Hamiltonian

H̃ = t2
∑
〈i,j〉

∑
〈i′,j′〉

a†ibjb
†
j′ai′ (2.2)

The eigenspectrum of this renormalized lattice, {ε̃i}, is related to the original through

ε̃i
± = ±

√
εi (2.3)

In this way, the quadratic structure of H (in terms of annihilation/creation operators) is
preserved: that is, one squares the matrix defining the form rather than the form itself.
The ground-state of the renormalized lattice corresponds to the highest-occupied/lowest-
unoccupied (HOMO/LUMO) molecular orbital pair of the original lattice. Through heuris-
tical arguments, we can understand the meaning of the (non-trivial) four creation/anni-
hilation product operator given in Equation (2.2). The first product, b†j′ai′ describes a
process in which an electron is annihilated at site i′ on sublattice A and created at the
neighboring site j′ on sublattice B (see Figure 2.1). The following bj operator annihilates
an electron at site j on sublattice B but this site must necessarily be occupied (otherwise
bj |0〉 = 0), then it follows j = j′. The operator a†i can now create an electron at site i on
sublattice A, which be either a nnn to i′ or be i′ itself, i.e. i = i′. Therefore, if Zi is the
π-coordination number1 of site i in the A sublattice of the original lattice, the renormalized
Hamiltonian looks like

H̃ ≈ t2
∑
i

Zia
†
iai + t2

∑
〈i,j〉

Zia
†
iaj (2.4)

where 〈i, j〉 means now nns on the renormalized lattice. It follows that the renormalized
lattice is a triangular lattice with hopping parameters t′ ≡ t2 and on-site energies equal to
t2Zi. Sites on the edges are undercoordinated in the π-systems, i.e. Z = 2 vs. Z = 3 of
graphitic sites, therefore they present the lowest on-site energies. The HOMO/LUMO pair
of the renormalized lattice is then naturally localized on the edge sites. From Equation
(2.3), it follows that the same holds for the HOMO/LUMO pair of the original lattice.
Notice that such localization does not involve all the edge sites in the same way. Indeed, in
the renormalized lattice, we can expect that the low-energy orbitals mostly localize on those
edge sites that have the largest number of nns with the same coordination to hybridize
with. In the original lattice, such number corresponds to the number of nnns. This is a
sort of an extended π-conjugation (of edge sites) involving nnns. For this reason, Bonfanti
et. al. (2011)[52] coined the term π-hyperconjugation2 and referred to the number of nnns
with the same coordination as to the hypercoordinaton number (ξ). Hydrogen affinity is
found to increase with this number, as exemplified, for instance by the cases of armchair
edges (with ξ = 0) and zig-zag edges (with ξ = 2) (see Figure 2.2), which show markedly
different H binding energies - 1.7 eV and 2.8 eV respectively[52].

In Chapter 4 we will have the occasion to see the π-coordination and the π-hyperconjugation
in action in discussing the energetics of the step-wise hydrogenation reaction of the coronene
molecule.

1Remind that we are working on the π-lattice, so the coordination number here refers to the number
of C sp2 neighbors, not to the "total" coordination number.

2This must not be confused with the hyperconjugation commonly introduced in organic chemistry
courses. The latter is an interaction between electrons in a σ bond with an empty or partially filled
adjacent non-bonding p orbital (or a σ/ π antibonding orbital or even a filled π orbital). On the contrary,
π-hyperconjugation regards π-electrons only.

29



Chapter 2. The role of PAHs in the Interstellar Chemistry

𝑡
𝑎!!

"#

𝑍 = 2
𝜉 = 0

𝑍 = 2
𝜉 = 0

𝑍 = 2
𝜉 = 2

𝑍 = 3
𝜉 = 2

Figure 2.2. Armchair (top) and zigzag (bottom) edges with π-coordination (Z) and π-
hypercoordination number (ξ) for different sites. White circles are used to denote the nnns.

2.2 Interstellar Medium: too much H2 ?

In the opening of this Chapter, we mentioned that PAHs have been the interest of the
astronomy community because of the role they are supposed to play in the chemistry
of the ISM. Since the work on coronene and coroannulene that we are going to discuss
respectively in Chapter 4 and 7 was in part motivated by these arguments, we use this
Section to provide the reader with a background on the interstellar chemistry concerning
graphitic surfaces and PAHs. Of course, a complete treatment of this fascinating matter is
far beyond the scope (and the knowledge) of the author. The interested reader is referred
to the numerous groundbreaking works (e.g. those of Tielens and coworkers[53, 54, 55]) or
the many excellent books written in this field3.

According to the most recent astronomical observations, about the 95% of the total
mass of the Universe is composed of dark matter and dark energy, and the contribution of
the baryonic matter (i.e. the most familiar atoms and molecules) is only 5%[58]. Surpris-
ingly, it is the existence of this tiny fraction of baryonic mass that generates the variety and
complexity of our Universe, with the formation of planets, stars, and galaxies. Most inter-
estingly, 98% of the baryonic mass is composed of H and He, while the total contribution
of heavier elements such as C, N, or O, is only about 2%. The rich chemical world around
us is then entirely based on such a small fraction of heavy elements. In astronomy, the ex-
ploration of the chemical evolution of matter in the Universe is of fundamental interest[56].
Understanding the molecular evolution will lead us to answer some fundamental questions
such as "How are molecules formed in the ISM?", "How are molecules incorporated into
planets or stars?" and eventually "What is the origin of our Solar System?".

Before addressing specifically the problem of H2 formation in the ISM, it is worthy to
briefly describe the composition of the interstellar matter and its circulation.

3For instance, the book of Yamamoto (2014)[56], "Introduction to Astrochemistry", that treats the
chemical evolution from the interstellar clouds to planet formation, or the old but gold Duley (1984),
"Interstellar Chemistry"[57].
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2.2.1 Circulation of matter in the ISM

In the Milky Way, about 90% of the baryonic mass resides in stars, while the remaining
10% is found in the ISM4. The latter consists of gas and dust particles composed of
silicate and various carbonaceous compounds, with sizes that are typically around 0.1 µm
in diameter. The gas component is dominated by molecular hydrogen, which is the most
abundant molecule in the ISM. The dust-to-gas ratio largely depends on the abundance
of the heavier elements and varies among galaxies and even within our Galaxy, where its
average value is around 0.01.

The interstellar matter is not uniformly distributed over the galaxy but is rather con-
centrated in clouds. Figure 2.3 shows the density (ρ) and the temperature (T ) for some
representative classes of clouds. Diffuse clouds, intercloud gas,coronal gas and some molec-
ular clouds are extended clouds in pressure equilibrium (they lie along a straight line in
Figure 2.3). Denser molecular clouds are instead gravitationally contracting and deviate
from the line of constant pressure. H II regions are regions around high-mass stars, where
the hydrogen exists mostly in the cationic form (H+). The coronal and intercloud com-
ponents of the ISM are both diffuse and ionized and they are generally classified into hot
ionized medium (HIM) and warm ionized medium (WIM). They evolve in diffuse clouds
once their protons recombine with electrons. In diffuse clouds, hydrogen exists both in
atomic and molecular forms. As the T decreases and ρ increases, diffuse clouds become
gradually opaque to the interstellar UV radiation, and H2 becomes the dominant form of
hydrogen. The resulting clouds are the before-mentioned molecular clouds, which represent
the formation site of new stars. Molecular clouds, due to their high density, are subjected
to a gravitational contraction5 which ultimately leads to the formation of protostars. These
are the first stage of the so-called main-sequence stars. Stars remain in this phase of their
evolution cycle for a relatively long time, which depends on their mass and chemical com-
position. For a 1M� main-sequence star, the lifetime is around 1010 years, during which
it continues to burn hydrogen. Once the hydrogen-burning is completed, main-sequence
stars evolve into late-type stars. Some late-type stars lose a considerable fraction of their
mass, thus supplying dust and gas to the interstellar environment. Massive stars (> 8M�),
instead, generally gives rise to supernova explosions, which are the most energetic events in
the Universe. It is during these events that the heavy elements formed during nucleosyn-
thesis in stars are spilled into the ISM. Thus, interstellar matter can circulate throughout
the galaxy over and over the entire lifecycle of stars[56].

2.2.2 H2 in diffuse and molecular clouds

Diffuse clouds are regions of relatively low density n ≈ 50 cm−3 and temperature T ≈ 80K,
corresponding to a thermal pressure of 4000 cm−3K. Typical sizes and masses are ≈ 10 pc6

and ≈ 500M�, but actually diffuse clouds show a broad mass and size distribution, which
joins smoothly into those of molecular clouds[53].

In diffuse clouds, the typical H2 (or H) density ranges from 10 cm−3 to 100 cm−3.
Early observations of molecular hydrogen in this environment were puzzling because diffuse
clouds are transparent to some extent to the interstellar UV radiation. The latter is able to
penetrate deeply into diffuse clouds and determine the photodissociation of H2 into atomic
hydrogen. It has been estimated that 10% of all adsorption events of the interstellar
UV radiation leads to the dissociation of H2. As consequence, in a diffuse clouds, the

4The total mass of our galaxy is of the order of 1011 solar masses (M�), while the interstellar matter
is about 1010M�.

5They are stable over time scales of 3× 107 yrs, presumably due to a balance of magnetic or turbulent
pressure and gravity[53]

6The parsec (pc) is a unit of length used to measure the large distances to astronomical objects outside
the Solar System: 1 pc ≈ 3.26 light years ≈ 3.0857× 1016 m.
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Figure 2.3. Temperature-density diagram of interstellar clouds taken from Yamamoto (2014)[56].
The dashed line indicate the constant-pressure line.

Figure 2.4. (Left) Orion nebula, a diffuse nebula situated in the Milky Way, south to the Orion’s
Belt in the Constellation of Orion; (Middle) Eagle nebula, a young open cluster of stars (a H II
region) in the constellation Serpens; (Right) "Pillars of Creation", a famous photograph taken by
the Hubble Space Telescope of elephant trunks of interstellar gas and dust in the Eagle Nebula.
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typical lifetime of a H2 molecule is around 1000 years, which is an incredibly short time
for astronomical standards[59]. Regions where photo processes are strongly active are
for this reason called photodissociation regions (PDRs), and they are generally found in
the nearby of main-sequence stars[60, 61]. In PDRs, temperatures are generally higher
since the UV radiation determines considerable heating of the environment. The debate
about the presence of H2 in the ISM arose from the consideration that, in both colder and
hotter regions of diffuse clouds, H2 could not form through gas-phase reactions since the
radiative association (Equation (2.5)) would be rather inefficient at the density typical of
such interstellar environment[53, 57].

H + H −→ H2 + hν (2.5)

Direct radiative association works in atmospheric conditions but at the pressures typical
of the ISM, the contact time between H atoms is dramatically reduced. Consequently,
there is not enough time for the forming H2 molecule to radiate away the binding energy
of 4.5 eV, which thus dissociates before reaching the equilibrium condition. Accordingly,
it has been estimated that just one in 105 collisions would result in the formation of H2

through this mechanism7[57].
On the other hand, in opaque molecular clouds, where the H2 density is as high as

102-106 cm−3, photo processes can still occur due to the so-called cosmic ray induced-UV
radiation[62]. Cosmic rays can penetrate through the cloud, ionize the surrounding H2 gas
and produce energetic electrons. These electrons can excite the H2 molecules, resulting in
UV emission. Much of the molecular gas in the Milky Way is localized in giant molecular
clouds8, with sizes up to 40 pc , masses of 4 × 105M� and temperatures around 10 K.
However, as diffuse clouds, also molecular clouds show a large range of these properties,
which at the low end join smoothly with diffuse clouds[53].

Box 2.1: H2 in the Early Universe

The first neutral H and He atoms formed from protons and electrons in a period of
time of our Universe called the Recombination Area, started around 105 years after
the Big Bang. The world "recombination" is somewhat misleading, since protons
and electrons had not been combined before. This term is anyway still used for
historical reasons, since it was introduced before the Big Bang hypothesis became
the leading theory about the creation of our Universe. Our knowledge of both
recombination and subsequent post-recombination era relies mainly on our current
knowledge about non-equilibrium chemistry or cosmology, since, at present, we are
not able to observe "objects" of this epoch of the Universe. At that time, the
early Universe was still extremely hot, with temperatures much above 1000 K, but
H atoms provided an important cooling mechanism, which was essential for the
following formation of the first generation of stars (Population III or sometimes
called PopIII)[57]. Indeed, once ionized, H atoms were able to radiate away part of
the heat and allow gravitational collapse of gas to occur. H+

2 and HD first formed
from radiative reactions involving atomic hydrogen; then, neutral H2 formed via
ion-molecule exchange reactions involving protons and electrons:

H + H+ −→ H+
2 + hν

H+
2 + H −→ H2 + H+

7A much more efficient mechanism is that involving a three-body collision, since the third body can
remove the excess energy from the vibrationally excited H2 molecule. A three-body collision, however,
cannot be invoked in diffuse clouds, since the very low densities makes its probability negligible.

8In the galaxy, they are commonly traced through the typical CO J = 1−0 transition at 2.6 mm.
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or

H + e− −→ H− + hν

H− + H −→ H2 + e−

Because of the high temperatures of the Early Universe, vibrational levels of H2 were
easily populated. The corresponding excited molecules could then emit radiation
through vibrational relaxations and allow the gas to cool down. Excitation of H2,
followed by emission, could also occur through direct collision with H atoms. Such
H2 cooling mechanisms still occur today in the ISM and are of great importance for
the interstellar chemistry.

In 1963, Gould and Salpeter were the first to propose that the formation of H2 could be
catalyzed on the surface of interstellar dust grains, thus providing a possible explanation
for its relative high abundancies[63]. The H2 formation rate on a grain surface can be
estimated as

Rd(H2) =
1

2
S(T, Td)ηndσdn(H)vH (2.6)

where S(T, Td) is the sticking probability of a H atom with temperature T colliding with
a grain of temperature Td, η is the probability that an adsorbed H migrate over the grain
surface, find another H atom and form an H2 molecule, before evaporating from the grain
surface, ndσd is the total grain-surface area per unit volume, nH is the H-atom density,
and vH = 1.5 × 104T 1/2 is the thermal speed of the H atoms. For typical grain surfaces,
ndσd ≈ 10−21n cm−1, and

Rd(H2) ≈ 5× 10−17

√(
T

1000K

)
S(T, Td)η(Td)× nnH cm−3s−1 (2.7)

Hollenbach and Salpeter (1971)[64] found that at low temperatures, S and η are close to
unity, and hence the above model for H2 formation on grain surface can quantitatively
explain the observed abundancies. Since then, a huge number of both theoretical and
experimental works have been done on this topic, thus validating the earlier hypothesis of
Gould and Salpeter[65, 66, 67]. Despite the consensus of the astronomy community, the
detailed mechanisms behind the H2 formation on the interstellar dust grains have however
yet to be fully understood.

At temperatures typical of cold molecular clouds (T < 40K), mechanisms involving ph-
ysisorbed H atoms can be invoked since the surface temperature is low enough to prevent
desorption from the physisorption well. In this case, the H2 may form either from a ER-HA
or a LH pathway, since H atoms are very mobile at low temperatures[11]. Laboratory ex-
periments have indeed shown that H2 formation from weakly bound physisorbed hydrogen
atoms is rather efficient at temperatures below 20 K[65]. At higher temperatures, typical
of diffuse clouds, physisorbed species become unstable and the LH mechanism is ruled out.
In such conditions, pathways involving strongly adsorbed species such as the ER have to
be invoked. In this respect, recent experiments have shown that H2formation on graphitic
surfaces could be an efficient formation route[51], especially in the before-mentioned PDRs.
However, at intermediate temperatures and low UV flux regions, a convincing route to H2

formation is still missing and this is where PAHs come in[68].
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Figure 2.5. The ρ Ophiuchi cloud complex: the main dark area on the left is the Lynds 1688
nebula, at the center of the blue, yellow and red areas there are respectively the ρ Ophiuchi star,
Antares e Sigma Scorpii.

2.2.3 The role of PAHs

PAHs are believed to look up 5-10% of the all carbon available in the ISM[53]9. They are
widely accepted to be the prime carriers of the infrared emissions at 3.3, 6.2, 7.7, 8.6, 11.3,
and 12.7 µm in protoplanerary nebulae, reflection nebulae, H II regions, and the general
interstellar medium, the so-called Unidentified Infrared Emission (UIE)[69, 70, 71]. In
addition, they are suggested to be the cause of the Diffuse Interstellar Band (DIB)[72],
absorption features seen in the spectra of astronomical objects in the Milky Way and other
galaxies, which have not been assigned to transitions of any known molecules or solid
particles.

Several studies have shown that the physical, chemical, and charge state of interstellar
PAHs highly depends on the interstellar environment[55]. In diffuse clouds, PAHs are
found mainly in the gas phase, while in dense molecular clouds they are expected to be
in the condensed phase. Spectroscopical and photophysics studies have demonstrated that
there is rich interstellar chemistry involving PAHs[73, 74, 75, 76]. Indeed, when they are
included in the gas phase chemical reaction network of molecular clouds they are found to
strongly affect the abundances of many molecular species[77].

In PDRs, PAHs are believed to play an important role in the photoelectric heating of
the gas, through absorption of the stellar far-ultraviolet radiations[54]. The connection
between PAHs and H2 formation was proposed right during the investigation of PDRs. In
particular, observations of the ρ-Oph PDR10, show a correlation between PAHs emission
and H2 abundance leading to the proposal that PAHs might catalyze H2 formation in these
regions through addition and abstraction reactions on PAHs and very small grains[78].

The interaction between PAHs and hydrogen was investigated both theoretically[79]
9Their abundance can be estimated by comparing the intensity of their IR features to that of the

dust and adopting the dust-to-gas abundance ratio measured for the ISM. Specifically, the fraction of the
elemental carbon fC locked up in a specific component is given by[53],

fC = 0.23

(
7× 10−18 cm−2

σUV

)
fIR

1− fIR

where σUV is the UV absorption cross section per C atom and fIR is the fraction of the IR energy emitted
in the vibrational bands of this component.

10The ρ-Ophiuchi is a multiple star system, displayed in Figure 2.5 in the constellation Ophiuchus,
located about 360 light-years (110 pc) away.
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Figure 2.6. The Small and Large Magellanic Clouds: two galaxies visible in the Southern Celestial
Hemisphere, members of the Local Group and orbiting the Milky Way galaxy.

and experimentally[80, 81] first on PAH cations, which are supposed to represent the main
charge state in intermediate UV flux regions. These studies showed that it is possible to
super-hydrogenate PAH cations, with a clear preference for the addition of an odd number
of H atoms, suggesting that PAH cations could act as a catalyst for H2 formation. In
addition, hydrogenation of PAH cations has been suggested to protect them from photo-
induced fragmentation[82]11. At low UV flux, PAHs are instead expected to be mainly
neutral and possibly super-hydrogenated[55]. Theoretical investigations of PAH hydro-
genation have shown that H2 formation through abstraction reactions is possible. These
results have been confirmed by experiments[85, 86, 87], which have shown that it is pos-
sible to add excess deuterium atoms (at 2300 K) to all sites on the coronene molecule,
thus forming the fully super-hydrogenated species perhydrocoronene (C24H36). To date,
spectral features attributed to the aliphatic content of PAHs have been identified at 3.4,
6.9, and 7.25 µm[88, 89], and some of these have been detected in a range of galactic and
Magellanic cloud (shown in Figure 2.6) sources from young stellar objects over PDRs to
the circumstellar environments of old stars[78, 90, 91]. These observations strongly suggest
the presence of super-hydrogenated PAHs in the ISM, although conclusive evidence is still
lacking.

In light of the present discussion, it is clear that PAHs are a hot-topic in current astro-
chemistry. The investigation of super-hydrogenated PAH species is the first fundamental
step for their identification and the understanding of their role in interstellar chemistry.
These reasons have motivated our work on the coronene molecule[92], which we are going
to discuss in the next Chapters.

11This is still controversial since other studies suggested that the weakening of the carbon skeleton as
a result of H atom addition might lead to hydrogenated PAHs being more prone to fragmentation[83, 84]
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Chapter 3

Benchmarking DFT on PAH
Chemistry

Published papers: P. A. Jensen, M. Leccese, F. D. S. Simonsen, A. W. Skov, M. Bonfanti,
J. D. Thrower, R. Martinazzo and L. Hornekaer, Identification of Stable Configurations in
the Superhydrogenation Sequence of Polycyclic Aromatic Hydrocarbon Molecules, MNRAS,
1-7, 2019

In the previous Chapter, we have delved into the properties of PAHs and the role they
might play in the chemical composition of the ISM. As explained, there are convincing
arguments for the catalytic H2 formation on PAHs, which are expected to be neutral and
possibly superhydrogenated especially in low UV flux areas of the ISM. To move a step
forward in the understanding of the interstellar chemistry, the investigation of superhy-
drogenated PAHs is of preliminary importance. Motivated by these arguments and by
a direct collaboration with the experimental group of Prof. L. Hornakaer from Aarhus
University1 (Denmark), we have focused on a small PAH, the coronene molecule(C24H12),
and studied with DFT the energetics of the stepwise hydrogenation, that ultimately leads
to perhydrocoronene (C24H36).

Despite the continuous theoretical progress, the choice of the functional most appropri-
ate for an application remains a key step to obtain accurate results from DFTelectronic-
structure calculations. For the problem considered here, hydrogenation of a PAH, we have
decided to use the so-called M06-2X[93] functional because of the indications we gained
from a preparatory investigation of the system energetics, that is described in some detail
in this Chapter. In particular, we have considered the adsorption of the first H atom on
coronene, testing several XC functionals against the few data available for this process,
in particular the results of accurate coupled-cluster (CCSD(T)) calculations extrapolated
to the complete basis-set (CBS) limit[94]. However, since the system lacks of extensive
data, further analysis was necessary to assess the quality of the functionals and make our
choice robust. To this end, we have considered the thermochemistry of selected litera-
ture databases that seemed most appropriate to describe relevant aspects of the PAHs
chemistry, and used them to compare the performance of the functionals.

This Chapter is organized as follows: in Section 1, we briefly describe the functional
form of the XC functionals considered; in Section 2, we list the chemical processes consid-
ered within each of the selected databases and in Section 3, we discuss our results. The
discussion of the stepwise hydrogenation of coronene is left to Chapter 4.

1Department of Physics and Astronomy and Interdisciplinary Nanoscience Center
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Table 3.1. Functional form (M=meta, HM = hybrid-meta , MHF = meta (full) Hartree-Fock,
RSHM = range-separated hybrid, CT=charge-transfer,TDDFT=time-dependent DFT), Hartree-
Fock exchange percentage (X%) and application area of the main Minnesota functionals (in paran-
thesis the year of development). [97, 96]

Functional Type X% Suggested use

HM 31
Covalent and non-covalent thermochemistry,

MPW1B95 hydrogen bonding,
(2004) weak interactions, CT

HM 44
Thermochemical kinetics,

MPWB1K hydrogen bonding,
(2004) weak interactions, CT

M 0
Main-group thermochemistry,

M06-L kinetics,
(2006) non-covalent interactions

HM 26
Main-group thermochemistry,

M06 kinetics,
(2008) metallochemical interactions

non-covalent interactions

HM 52
Main-group thermochemistry,

M06-2X kinetics,
(2008) non-covalent interactions

MHF 100
Long-range CT via TDDFT

M06-HF spectroscopic properties
(2006) non-covalent interactions

RSHM 42.8-100
Replaces M06-2X, M06-HF, M06

M11 best performance for CT
(2012) via TDDFT

3.1 Exchange-Correlation functionals

The XC functional we have employed are listed in Table 3.1, along with B3LYP that
represents a rather popular but often unsatisfactory choice. The functionals of Table 3.1
are considered to be among the best available nowadays and show outstanding perfomances
for the application fields suggested by the developers (Thrular and coworkers)[95, 96] and
given in the same Table 3.1. They are all of the meta-hybrid type and thus include the spin-
labeled kinetic energy density in the set of fundamental variables, and a variable fraction
of exact Hartree-Fock exchange (X%), in some cases dependent on the interelectronic
separation (range-separated functionals). We describe with more details in the following.

B3LYP[98] is a standard, well-benchmarked, "hybrid" functional proposed by Becke. It
relies on the correlation functional designed by Lee-Yang-Parr (LYP) while the exchange
part is a three-parameter weighted average of the exact Hartree-Fock (HF) exchange, a
local-density-approximation (LDA) exchange and a gradient correction (∆EBX),

EB3LYP
XC = (1− a)ELDA

X + aEHF
X + b∆EBX + (1− c)ELDA

C + cELYP
C

In practice, B3LYP depends on both the spin-labeled density and its reduced gradient
(generalized gradient approximation, GGA).

MPW1B95, MPWB1K, M06, M06-2X and M06-HF are hybrid functionals of the gen-
eral form

Ehyb
XC =

X

100
EHF
X +

(
1− X

100

)
EDFT
X + EDFT

C
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similarly to B3LYP but, differently from GGA functionals, they include a functional de-
pendence on the spin-labeled kinetic energy density. For this reason, they are commonly
known as meta-hybrid functionals.

In MPW1B95 and MPWB1K[99], Adamo and Barone’s mPW exchange functional is
used for the gradient correction and Becke95 for the total correlation functional, both local
and gradient-corrected. For MPW1B95, the percentage of Hartree-Fock exchange (31%)
was optimized in order to minimize the root-mean-square error for a set of representative
atomization energy (AE6), while for MPWB1K (44%) it was adjusted to minimize the
RMSE in the Kinetic9 database[99]

In M06 the percentage of exact Hartree-Fock exchange is set to 26%, which increase to
twice this value in M06-2X, while M06-HF is a full Hartree-Fock functional (in this sense,
it cannot be considered a real hybrid). The DFT exchange functional for M06 reads as

EM06
X =

∑
σ

∫
dr[FPBE

Xσ (nσ,∇nσ) + εLSDAXσ hX(xσ, zσ)]

where FXσ is the exchange energy density of the PBE model, εXσ the local spin-density
approximation for exchange,

εLSDAXσ = −3

2

(
3

4π

)1/3

n4/3
σ

and hX is a working function depending on the reduced spin gradient (xσ = |∇nσ|/n4/3
σ )

and a working variable zσ. The exchange energy in M06-2X has the same functional
form but it corresponds to the special case in which hX = 0. For all the functionals of
the M06-suite[97], the opposite and parallel spin correlations are treated differently. The
opposite-spin M06 correlation energy is expressed as

EαβC =

∫
dr[eUEGαβ (gαβ(xα, xβ) + hαβ(xαβ, zαβ)]

where eUEGαβ is the uniform electron gas correlation energy density for the anti-parallel case,
gαβ is a new working function depending on the reduced spin density gradient and on a
certain number of parameters (c, γ) and hαβ is the previously mentioned working function
depending on xαβ = (x2

α + x2
β)1/2 and zαβ = zα + zβ . Similarly, the parallel-spin M06

correlation energy is defined as

EσσC =

∫
dr[eUEGσσ (gσσ(xσ) + hσσ(xσ, zσ)]Dσ

whereDσ is a self-interaction correction factor depending on zσ and the spin-labeled kinetic
energy density τσ (clearly, this factor is defined such as it vanishes for any one-electron
system)[97]. In these equations, the free parameters are determined upon fitting to the
data in the training set.

In contrast, M11[96] is a "range-separated" meta-hybrid xc-functional, in which the
admixture of HF exchange varies with the inter-electronic separation. Analytically, it is
expressed as

EM11
XC =

X

100
EHF
X +

(
1− X

100

)
(ELR, HF

X + ESR,M11
X ) + EM11

C

where EHF
X is the full-range non-local Hartree-Fock exchange, ESR,M11

X is a local exchange
with the GGA enhancement factor given by PBE and RRPBE, and EM11

C is a local cor-
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functional, with the 6-311+G(2df,2p) basis set,13 yields 
+2.1 kcal/mol (+1.4 kcal/mol with the cQZV3P14 basis set 
and MP2/TZV(d,p) geometries) for the quantity in Table 
1, which is quantitatively correct. 

 
Table 1: Energy Difference (kcal/mol) between n-octane and 
2,2,3,3-tetramethylbutane 

method UE (kcal/mol) 
experiment  +1.9 a 
PBE b – 5.5 c 
TPSSh d – 6.3 c 
B3LYP e – 8.4 c 
BLYP f – 9.9 c 
B3PW91 g -7.0 h 

M05-2X i +2.1h 

M05-2X i +1.4 j 

MP2 k +4.6 c 
a Refs. 2, 10. b Ref. 5. c Calculations were performed with the 

cQZV3P basis set and MP2/TZV(d,p) geometries, and results were 
taken from Ref. 2.  d Ref. 6. e Ref. 7-9.  f Ref. 7. g Ref. 8. h present 
work with the 6-311+G(2df,2p) basis set; the geometry was optimized at 
the same level of theory and with the same basis set as was used for the 
calculation of the energy.  i Ref. 12.  jPresent work with the cQZV3P 
basis set and MP2/TZV(d,p) geometries  k Ref. 15 
 

Wodrich et al.3 showed that the systematic errors in 
DFT as the alkane size is increased are related to the 
stabilizing interaction of geminal methyl or methylene 
groups, an effect they call “protobranching,” which is 
sensitive to medium-range correlation energy.  A good 
measure of this effect is provided by the energies of 
reaction for reactions such as 

n-C6H14 + 4 CH4 → 5 C2H6   (1) 
or 

n-C8H18 + 6 CH4 → 7 C2H6   (2) 

 
Table 2: ∆E (kcal/mol) of reaction for isodesmic reactions (1) 
and (2) 

method n-hexane n-octane 
Experiment 13.1 a 19.8 a 
B3LYP b 7.8 a 11.8 a 
PBE c 8.9 a 13.9 a 
OLYP d 5.9 a 8.8 a 
MPWB1K e 9.5 a 14.4 a 
TPSS1KCIS f 7.5 a 11.3 a 
B3PW91g 8.0 h 12.0 h 
M05-2X i 11.5 h 17.2 h 
M05-2X i 11.2 j 16.8 j 
MP2 k 14.1 a  

a Ref. 3.  All DFT and MP2 calculation in Ref. 3 employed the aug-
cc-pVTZ basis set. b Ref. 7-9. c Ref .5. d Ref. 16. e Ref. 17.  f Ref. 18.   
g Ref. 8. h Present work with the 6-311+G(2df,2p) basis set; for all 
calculations in this table the geometry was optimized at the same level 

of theory and with the same basis set as was used for the calculation of 
the energy. iRef. 12.   jPresent work with the aug-cc-pVTZ basis set. k 
Ref. 15. 
 

Table 2 compares these energies of reaction to 
experiment for several common density functionals and 
also M05-2X.  Clearly, M05-2X is more accurate than 
previous functionals. 

A related example, in particular a case of DFT failing 
to account for stereoelectronic effects, was provided by 
Schreiner et al.,4 who compared the energies of three 
isomers of (CH)12; see Figure 1. Table 3 compares their 
most accurate calculation and their DFT calculations to 
our M05-2X calculations. Again, the M05-2X functional 
does quite well. 

 

 
 
Figure 1 Structures of (CH)12 isomers, where  1, 2, and 3 
correpond to the stuctures of 1, 22, and 31 in Ref. 4. 
 

 
Table 3. Energies (kcal/mol) of (CH)

12
 isomers relative to 

structure 1 

method 2 3 
CCSD(T) a  14.3 b 25.0 b 
BLYP c –10.0 b –11.5 b 
G96LYP d – 6.4 b – 6.8 b 
KMLYP e 28.4 b 41.7 b 
B3LYP  f – 0.2 b  1.9 b 
BHandHLYP g 7.4 b 14.0 b 
B3PW91 h 14.4 b 19.8 b 
B3PW91 h 15.9 i 22.1 i 
M05-2X j 14.0 i 21.4 i 
M05-2X j 16.9 k 25.4 k 
MP2 l 23.2 b 31.2 b 

a Ref. 13, 19, and 20. b from Ref. 4.  For  each  functional and MP2, 
we give the result with the 6-311+G(d,p) basis set. c Ref. 7. d Ref. 21. 
eRef. 22. f Ref. 7-9.   g Ref. 23.  h Ref. 8.  i Present work with the 
6-311+G(2df,2p) basis set; the geometry was optimized at the same 
level of theory and with the same basis set as was used for the 
calculation of the energy.  j Ref. 12. k  Present work with the 
6-311+G(d,p) basis set; the geometry was optimized at the same level of 
theory and with the same basis set as was used for the calculation of the 
energy.  l Ref. 15. 
 

Figure 3.1. Some hydrocarbons considered in HC7.

relation energy. Thus, one sees that M11 contains a portion of short-range Hartree-Fock
exchange equal to

X

100
(EHFX − ELR,HFX )

but at large electronic separation the portion is 100%.

3.2 Databases

Benchmarking of the functionals is usually performed w.r.t. several thermochemical and
kinetic databases that gather key chemical-physical parameters of selected chemical pro-
cesses (obtained either from experiments or high-quality electronic structure calculations).
However, the results are typically application dependent and thus a careful choice of the
databases that fit best to one‚Äôs problem seems to be the best strategy for choosing the
appropriate functional. For our problem we have considered the following databases:

πTC13 is a π-system database [100], comprising various reference values

i) proton affinities of conjugated polyenes

ii) proton affinities of conjugated Schiff bases

iii) energy separations between cumulenes and polyines

iv) torsional potentials of butadiene and styrene

v) bond length alternation in butadiene and octatetraene

PAH5 is a database of PAH isomerization energies [101], using CCSD(T) results with
a CBS extrapolation as a reference. The isomerization reactions taken into account
are the following:

i) phenanthrene → anthracene

ii) triphenylene → chrysene

iii) triphenylene → benzo[a]anthracene

iv) triphenylene → benzo[c]phenanthrene

v) triphenylene →naphthacene

HC7 is a database of hydrocarbon data that are sensitive to medium-range correlations
energies [97], namely

i) isomerization of (CH)12 into the three isomers of Fig. 3.1

ii) (CH3)3CC(CH3)3 → n-C8H18

iii) n-C6H14 + 4 CH4 → 5C2H6

iv) n-C8H18 + 6 CH4 → 7C2H6

v) adamantane + 3C2H4 → 2C2H2

vi) bicyclo[2.2.2]octane → 3C2H4 + C2H2
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Outer Edge Inner Edge

Center

Figure 3.2. The three non-equivalent sites of coronene.

S22A is a database representing non-covalent interactions for some small to relatively
large (30 atoms) complexes of common molecules with C,N,O and H, and single,
double and triple bonds [102]. Here, the reference values are CCSD(T)/CBS results.
The database is divided into three subsets

i) hydrogen bonded complexes: (NH3)2; (H2O)2; Formic acid dimer; Formamide
dimer; Uracil dimer (C2h); 2-pyridoxine·2-aminopyridine; Adenine·Tymine

ii) complexes with predominant dispersion stabilization: (CH4)2; (C2H4)2; Benzene·CH4;
Benzene dimer; Pyrazine dimer; Uracil dimer (C2); Indole·Benzene; Adenine·Tymine
stack

iii) mixed complexes in which electrostatic and dispersion contributions are simi-
lar in magnitude: Ethene·ethine; Benzene·H2O; Benzene-NH3; Benzene·HCN;
Benzene dimer; Indole·Benzene T-shape; Phenol dimer

3.3 Discussion

The performance of the functionals of Table 3.1 on the above datasets are given in Table
3.2 and Figures 3.3 and 3.4 as MUE (kcal/mol)[95, 101, 97, 102], along side the results of
our benchmark calculations.

For the latter we have considered adsorption at the three physically distinct sites of the
coronene molecule, namely the outer edge (o), the inner edge (e) and the central carbon
(c) indicated schematically in Figure 3.2. We have computed the corresponding binding
and barrier energies, employing the cheap but reasonably accurate Pople’s 6-31+G(d,p)
and using quasi second-order optimization algorithms (without constraints) and frequency
calculation checks, as provided by the Gaussian16 suite[103].

We first discuss the hydrogenation of the central site, and in particular the performance
of the functionals on sticking barriers (Eb). It is seen from Table 3.2 that exact exchange
does affect the height of the barrier (cfr. the PW91 barrier with any of the hybrid results),
but its exact value is not a simple increasing function of the HF percentage. The reason, we
believe, is that HF exchange, in conjunction with different correlation functionals, modifies
also the ability of the functional to describe weak non-covalent interactions, and these seem
to play some role in determining the barrier height. Strictly speaking, M? functionals
are expected to correctly reproduce non-covalent interactions at geometrical separations
close to the binding ones, because of their high flexibility (related to the high degree
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Figure 3.3. Binding energies (DH , eV) and energy barriers (Eb, meV) for the outer edge (o,
light blue) and center (c, light red) sites, with the XC functionals listed in Table 3.1. The red line
indicates the CCSD(T)& CBS extrapolation[94].

Figure 3.4. Perfomance (as MUE (kcal/mol−1) of the XC functionals of Table 3.1 against the
datasets described in the text
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Table 3.2. Binding energies, D (eV) and sticking barriers, Es (meV), for the hydrogen addi-
tion to three different sites of coronene, MUE (kcal/mol) for three different database, πTC13
(π-system thermochemistry), SS2A (Non covalent binding energies), HC7/11 (Medium-large cor-
relation energies for hydrocarbons). All the values reported (this work and literature data) are
not CP-corrected. "I" and "II" stands refer to two different basis set, respectively cc-pVDZ and
cc-pVTZ. Ref. [a] Rauls. et. al.[68], Ref. [b] Kayanuma et. al. [104], Ref. [c] Wang et. al. [94].

MUE

X% D Eb πTC13 SS2A HC7/11 PAH5

Outer Edge

B3LYP 20 1.46 73 6.06 3.77 16.8 6.2
MPW1B95 31 1.44 137
MPWB1K 44 1.49 154

M06 26 1.53 168 4.08 1.06 2.78 2.2
M06-2X 52 1.35 187 1.51 0.40 2.15 2.1
M06-HF 100 1.24 209 2.29 0.62 2.29 5.4
M06-L 0 1.43 219 6.52 0.80 3.35 3.1
M11 42.8-100 1.54 135 2.12 0.44 3.74 8.3

PW91[a] 1.45 60

Center

B3LYP 20 0.66 262 6.06 3.77 16.8 6.2
MPW1B95 31 0.63 302
MPWB1K 44 0.65 321

M06 26 0.74 321 4.08 1.06 2.78 2.2
M06-2X 52 0.57 328 1.51 0.40 2.15 2.1
M06-HF 100 0.51 305 2.29 0.62 2.29 5.4
M06-L 0 0.62 407 6.52 0.80 3.35 3.1
M11 42.8-100 0.73 281 2.12 0.44 3.74 8.3

PW91[a] ∼ 0.725 ∼ 180
B3LYP[b] 20 0.66 250

ROMP2/II [c] 0.29 400
ROCCSD(T)/I [c] 0.58 370

Edge
B3LYP 20 0.71 279 6.06 3.77 16.8 6.2

MPW1B95 31 0.67 342
MPWB1K 44 0.70 363
PW91[a] ∼ 0.725 ∼ 180
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Figure 3.5. Binding energies (D, eV) and sticking barriers (Eb, meV) at different percentages of
Hartree-Fock exchange (HF%) for both center (top row) and outer edge (bottom row) hydrogena-
tion. The dash dot line is used to indicate the range of percentage of the M11 functional.

of parametrization) and to their dependence on the spin-labeled kinetic energy density.
However, they do not properly reproduce the Vydrov and Van Voorhis (VV) interactions
since they do not describe the characteristic 1/r6 asymptotic behavior of gas-phase pairs.
On this basis, we consider the MUE relative to the SS2A database which is a measures of
the performance of the functionals in reproducing non-covalent binding energies. Among
the considered functionals, those of the Minnesota family effectively perform better than
B3LYP, which thus gives rise to the lowest barrier. M06-2X, M06-HF and M11 seem to be
much more accurate functionals in this respect, providing as small MUEs as 0.40, 0.63 and
0.44 kcal/mol, respectively. According to this, M11 should perform similarly to M06-2X,
but it is found to give a much smaller sticking barrier. In this case, thus, other effects, likely
connected to the range-separated form of M11, must play a role in lowering the barrier.
Overall, we deem M06-2X to be the most accurate functional for our purposes since, in
addition to the lowest MUE in SSA2, it gives a barrier height in good agreement with the
Coupled-Cluster calculations of Y. Wang et. al.[94] (see Figure 3.3).

Moving to the outer edge hydrogenation, the trend is substantially reproduced, with
the exception of M06-HF, which gives now the highest barrier to sticking (22 meV higher
than M06-2X). However, for this site there exists a higher variability between values. For
instance, M06 gives a sticking barrier of 19 meV lower than M06-2X, to be compared with
7 meV for hydrogenation on the central site.

For MPW1B95 and MPWB1K we do not have MUE to compare with. According to
Truhlar and coworkers, MPWB1K was optimized for the kinetics, however the reference
database (the above mentioned Kinetic9) do not really fit our problem, since it consists
of three forward barrier heights, three reverse barrier heights and three energies of the
reactions of quite different reactions, i.e. OH+CH4 → CH3 + H2O, H + OH → O + H2

and H + H2S → H2 + HS.
As for the binding energies (D), the reference datasets are πTC13, PAH5 and HC7.
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Figure 3.6. Binding energies plotted against sticking barriers for center (top row) and outer edge
(bottom row) hydrogenation.

According to the MUEs for πTC13 and HC7, M06-2X and M06-HF are again the best
performing functionals. They respectively give 0.57 and 0.51 eV for center hydrogenation,
quite lower than the M06 and M11 values. This can be accounted for by the high non-
locality of these functionals and the different effect that exact Hartree-Fock exchange has
on pristine and hydrogenated coronene: the closed-shell pristine coronene is more stabi-
lized by exchange effects than the open-shell hydrogenated one, thereby resulting in lower
D. Here, it is worth noticing that the M06-2X value is, again, in perfect agreement with
the above cited Coupled-Cluster calculations of Y.Wang[94]. For the outer edge hydro-
genation, the trend is essentially the same. The PAH5 database is the only one concerning
polycyclic aromatic hydrocarbons and M06-2X still has the lowest MUE. Overall, our
results clearly indicate that M06-2X is the most appropriate functional for investigating
coronene hydrogenation.

In Figure 3.5, the binding energies and the sticking barriers, for center and outer edge
hydrogenation, are tentatively plotted against the percentage of Hartree-Fock exchange in-
cluded in the functional. Clearly, this is not a real dependence of these energetic parameters
on the HF exchange, since different percentages correspond also to different functionals.
However, MPW1B95, MPWB1K, M06, M06-2X, M06-HF are all meta-hybrid GGA from
the same family and should be comparable with each other to some extent. For com-
parative purposes, B3LYP and M11 are also included. Concerning the binding energies,
we can see that, approaching the full Hartree-Fock limit, they get smaller and smaller,
likely because of the above mentioned over-stabilization of the closed-shell bare molecule.
However, there is not a monotonic decrease of D with respect to HF percentage, because
other factors (e.g. the different parametrization in the transition between M06 (26%) and
MPW1B95(31%) ) can contribute.

The behavior of barrier energies is similar to that ofD, because of the known correlation
between the two quantities, which is made evident in Figure 3.6, for both the center (top
row) and outer edge (bottom row) hydrogenation.
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Table 3.3. CPU Time/Opt step (hour) and number of optimization step (#) for the optimization
of pristine coronene with the computational setup described in the text.

Functional CPU Time/Step #

B3LYP 3.07 4
MPWB195 8.23 5
M06 26.17 3
M06-2X 26.06 3
M11 37.40 3

3.3.1 Computational cost

Because of their different parametrization, the functionals of Table 3.1 imply different com-
putational cost. For a reasonable comparison, one can use the CPU time per optimization
step by considering calculations carried out on the same system with the same setup. In
this respect, we have considered the bare coronene molecule and its full internal geometry
optimization, where the matrix of exact second derivative is computed at each step. The
corresponding CPU time for some of the functionals employed are listed in Table 3.3. In
Figure 3.7, the CPU time per optimization step is instead plotted against the MUE on the
aformentioned datasets. Noteworthy, excluding B3LYP (3.07 h), we note that M06-2X has
both the lowest MUEs and the smallest computational cost. Notice that the most "ad-
vanced" M11 functional has large MUEs in combination with great computational cost,
likely because of the range-separation.
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Figure 3.7. MUE (kcal/mol) for the selected databases at different CPU time/step (h): 3.07
(B3LYP), 26.06 (M06-2X), 26.17 (M06) and 37.40 (M11).
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Chapter 4

The road to Superhydrogenated
Coronene

Published papers: P. A. Jensen, M. Leccese, F. D. S. Simonsen, A. W. Skov, M. Bonfanti,
J. D. Thrower, R. Martinazzo and L. Hornekaer, Identification of Stable Configurations in
the Superhydrogenation Sequence of Polycyclic Aromatic Hydrocarbon Molecules, MNRAS,
1-7, 2019

In this Chapter we present a DFT investigation of the stepwise hydrogenation reaction
of coronene (C24H12). The work was motivated by the arguments exposed in Chapter 2 and
by a direct collaboration with the experimental surface science group of Prof. Liv Hornekær
from Aarhus University. This Chapter is organized as follows: in Section 1, we briefly
discuss the main experimental results1, in Section 2, we summarize the computational
details of our calculations, in Section 3 and 4 we present our results on two investigated
pathways from bare to super-hydrogenated coronene (C24H12).

4.1 Experimental results

The results shown in this Section are provided by the experiments performed by Aarhus
group of Prof. Liv Hornekær.

In the experiment, coronene films grown on a HOPG substrate were exposed to a beam
of atomic hydrogen. The atoms were produced via thermal dissociation using a hot cap-
illary source, operated at a temperature of 2300 K, at which H2 dissociates. H atoms
were then cooled down at 1000 K with a twisted quartz nozzle2. To identify the super-
hydrogenated structures, a temperature-programmed desorption experiment was carried
out. Hence, the sample was heated in a controlled manner by 1 Ks−1, using a PID con-
troller. Then, the desorption products were measured by an Extrel CMS LLC quadrupole
mass spectrometer. Singly ionized pristine coronene has mass-to-charge ratios (m/z) equal
to 300 amu and singly ionized perhydrocoronene (fully super-hydrogenated coronene) has
m/z = 324 amu. m/z in the range 280-330 amu were monitored. The lower limit was
chosen to detect fragmentation products where applicable, and the upper limit was chosen
to establish a baseline, as no products with such masses should be present.

Figure 4.1 shows mass distributions for hydrogen fluences ranging from zero to ΦH =
2.8× 1019cm−2. For the case of no hydrogen exposure (panel a) a large peak at 300 amu
corresponding to pristine coronene is observed, with smaller peaks at slightly lower masses

1The reader is referred to the published paper[92] if he/she wishes more details about the experiment.
2The H atom flux at the sample position was determined to be 6(±3)× 1014atoms cm−2 s−1
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Chapter 4. The road to Superhydrogenated Coronene

Figure 4.1. The blue lines show the mass distributions for coronene exposed to increasing atomic
hydrogen fluences ranging from zero to ΦH = 2.8 × 1019cm−2. The red shaded areas show how
the peak structure would be in the abscence of the 13C isotope, which has a natural abundance of
1.109%
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Figure 4.2. The relative yield of specific masses as a function of hydrogen fluence.

due to hydrogen loss during the ionization step in the mass spectrometer. A small peak at
301 amu is ascribed to the natural abundance of the heavier 13C isotope in the coronene
sample. At higher dose time, the peak at 300 amu becomes smaller and peaks at higher
masses ascribed to super-hydrogenated coronene begin to appear. Especially prominent
peaks are observed at 304, 308, 310, 314, 318, 322, and 324 amu suggesting increased
stability for particular hydrogenation configurations. These correspond to the coronene
molecule plus n = 4, 8, 10, 14, 18, 22 and 24 extra H atoms.

The red shaded areas in the mass spectra show how the peak structure would be if
all 13C isotopes (assuming an abundance equal to the natural abundance of 1.109%) are
converted to 12C. The main effect is apparent at small masses where the peak at 301 is
drastically reduced. As a result, the mass 302 peak now also stands out as a prominent
peak. We also note that a drop in total signal is observed with H fluence - i.e. compare
graph a) and graph g) in Figure 4.1. This drop may be the result of fragmentation or
chemical desorption, where the energy released in the hydrogen addition reaction leads to
desorption of the super-hydrogenated molecule and/or potentially also neighbor molecules.

In Figure 4.2 the yield as a function of hydrogen exposure for the most prominent
masses in Figure 4.1 is displayed. As the fluence is increased the yield of mass 300 amu
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decreases exponentially, while masses 304, 308, 310, and 314 amu are observed to increase
and then to subsequently decrease again at fluences above ΦH = 1× 1018cm−2, when even
more highly super-hydrogenated species begin to appear. The yield in 318 amu slowly
starts to decrease at fluences above ΦH = 2 × 1018cm−2 and disappears completely at
very high hydrogen exposures. The yields of mass 322 and 324 amu slowly increase and
dominate the spectrum at fluences above ΦH = 1 × 1018cm−2. For the longest hydrogen
exposures only mass 322 and 324 amu show significant yields indicating almost complete
super-hydrogenation. Furthermore, the evolution in the yields of masses 322 and 324 amu,
follow the same trend and display similar thermal desorption behavior This indicates that
the 322 amu peak may, at least in part, appear as a result of fragmentation of the fully
super-hydrogenated molecule (perhydrocoronene) in the mass spectrometer, through loss
of H2.

4.2 Computational details

The appearance of peaks at specific masses indicates that certain superhydrogenation
configurations are more stable than others and that when such stable configurations are
reached, sizeable barriers for further additions exist. Therefore, to identify these stable hy-
drogenated structures, we have carried out an extensive DFT investigation of the step-wise
hydrogenation of coronene.

The calculations described in the following were performed with the M06-2X hybrid-
meta GGA[93], which was selected after the careful benchmark study on PAH chemistry
discussed in Chapter 3. We employed the spin-unrestricted set-up, with the help of the
Gaussian16 code[103] and the 6-311G(d,p) atom-centered basis set, with tight convergence
criteria set on both the electronic and the structural optimizations. Optimized structures
were checked with harmonic frequency calculations.

Binding energies for the addition of H atoms were computed for a number of sites i
according to

Dn+1
i = En? + EH − En+1

i (4.1)

where En? is the DFT energy of the most stable isomer with n extra hydrogens, EH is
the energy of a hydrogen atom and En+1

i is the energy of the structure with an addi-
tional H at site i (in the following, a star will be used to denote the most stable site, i.e.
Dn
? ≡ maxi{Dn

i }). The plausible adsorption sites (typically 3-4 per step) were selected
with the help of chemical intuition[52] and Fukui’s analysis, and considered for adsorption
at either side of the molecule, when meaningful. The sequence was continued by selecting
at each step the structure with the largest binding energy3, for a total of about 150 geom-
etry optimizations4. Energy barriers were computed for the most relevant cases only, by
performing a transition-state search and subsequent frequency analysis.

Before discussing the lowest energy pathway, we report a determination of the ener-
getics of the first H addition to the outer edge site with a more accurate (but expensive)

3This does not guarantee that the structure is the lowest energy one for the given hydrogenation level.
The reason is that it may well be possible (but hard to check or predict) that an "energetic" structural
optimization changes the energetic order between isomers because of, e.g., a conformational rearrangement,
especially when they differ by few tenths of eV only. In a sense, the adopted procedure accounts for some
possible kinetic impediments to the hydrogenation process

4A brute-force approach that considers all possible adsorption sites is yet out of reach nowadays even
for a small-sized molecule like coronene with its only 24 hydrogenation sites (disregarding the possible
difference between adsorption on one face or the other). The total number of sites N is several million,
as a simple calculation shows. For, if the sites were distinguishable (i.e. in the absence of symmetry) this
number would be given by

N =

24∑
n=0

(
24

n

)
≡ 224
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Figure 4.3. IRC for the H addition to the outer-edge sites with CP (Red) and CP+ZPE correc-
tions (Blue).

computational setup (unpublished result). Figure 4.3 shows an IRC as obtained by a high-
level DFT calculation, employing the before-mentioned M06-2X XC in combination with
the DFT-optimized basis-set PCSEG-1. Both the IRC with the CP-correction (account-
ing for the BSSE) and with CP-correction plus the ZPE correction are reported. With
this more accurate setup, the binding energy and energy barrier on the outer edge site
of corenene are found to be 1.34 eV and 212 meV, respectively (i.e. they are resaonably
close to the original values reported in Chapter 3, D = 1.35 eV and Eb = 187 meV for the
original setup).

4.3 Main hydrogenation pathway

Figure 4.4 shows the lowest energy addition pathway, while the energetics along this path
is shown in Figure 4.5. We note at first that the main hydrogenation sequence begins at
an edge site before proceeding to center sites after a few H atom additions. From Figure,
an even/odd alternation is also evident. The latter arises from the larger exothermicity of
radical-radical reactions, i.e. those forming even-numbered C24H12+n species. We remind,
indeed, from Subsection 1.3.2, that coronene is a balanced bipartite lattice with a singlet
ground state (S = |NA −NB|/2 = 0, 2S + 1 = 1). Therefore, an odd number of extra H
breaks this balance and leads to a doublet ground-state (S = 1/2, 2S + 1 = 2). Provided

a number that should be divided by a symmetry factor of the order ≈ 6−8 to account for the hexagonal
symmetry of the substrate. More precisely, one should count the number of equivalent classes of configu-
rations, i.e. only those configurations that cannot be superimposed by applying a symmetry operation of
the pristine substrate. Thus, for instance, the symmetry number would be 8 for monomers, since out of
the 24 possible configurations only 3 are distinct.
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Figure 4.4. (Left) Main hydrogenation sequence of the coronene molecule. The numbers j =
1, 2, ...n indicate schematically the lowest energy isomer with n extra hydrogen, C24H12+n. (Right)
Alternative possible hydrogenation sequence of the coronene molecule. It uses the second most
stable site at the 3rd step and the most stable sites onward.

that the molecules are in their ground state, the amplitude of the even-odd oscillation of
the adsorption energy of 2.5 eV can be considered a rough measure of the π bond strength,
since the breaking of a π bond is a necessary step only when forming odd-numbered species

Since the adsorption barrier correlates well with Dn
i - i.e., the larger the binding en-

ergy the smaller the barrier - smaller binding energy is also indicative of a higher kinetic
impediment to the addition reaction. The largest binding energies are found for coronene
molecules with a specific number of extra hydrogens, Dn

? = 3.88, 4.10, 3.85, 3.72, 4.03, 3.71
and 4.38 eV, for n = 2, 10, 14, 16, 18, 22 and 24 respectively.

To relate these findings to the experimentally observed abundances one may argue
as follows. Since Dn

? is a measure of the stability of the species C24H12+n against the
desorption (or abstraction) of an H atom, and

∆Dn = Dn
? −Dn+1

? (4.2)

is a measure of the stability against further hydrogenation ( it is in fact the energy of the
reaction 2C24H12+n → C24H12+n−1 + C24H12+n+1), the combined index

α = uDn
? + v∆Dn (4.3)

should reflect the relative abundance of the species. Setting u = v = 1/2, we find that
the structures with n = 18, 10, 14 and 2 extra H atoms (in decreasing order) are the
most stable ones, with α = 3.44, 3.42, 3.16 and 3.08 eV, respectively. Adding to these
the case n = 24 - which has the largest Dn

? along the entire pathway and, being last
in the sequence and indefinitely stable against further hydrogenation - we find a striking
agreement with the thermal desorption spectra reported in Figure 4.1. These conclusions
are further corroborated by the heights of the hydrogen adsorption barriers (the energy
barrier of the reactions C24H12+n + H → C24H12+n+1) that are found to be large for
n = 0, 2, 10, 14 and 18, with a smaller, but still significant barrier for n = 8 and small (or
even vanishing) barriers otherwise (see Figure 4.5 and 4.1 for exact values).
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Table 4.1. Energy barriers (meV) for forming the n-times coronene superhydrogenated species
(C24H12+n), along the two pathways depicted in Figures 4.5 and 4.9 (N.D. = not determined).

n Main sequence Secondary sequence

1 187 187
3 149 165
4 0.0 N.D.
5 3.8 159
7 47 0.0
9 90 74
10 0.0 0.0
11 170 178
12 0.0 N.D.
13 19 140
15 126 0.0
17 0.0 0.0
19 153 155
23 0.0 N.D.
24 0.0 0.0
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Figure 4.5. Hydrogen adsorption energy along the main sequence shown in Figure 4.4 (light blue
bars). The energy for alternative, slightly less stable hydrogenation configurations with the same
number of excess H atoms are shown as dots. A red triangle between n and n + 1 represents the
height of the barrier for sticking a H atom to the n-times hydrogenated coronene (multiplied by
a factor of 2 to make it visible on the scale of the graph). Green bars denote situations where a
barrierless adsorption path was found. A green bar is also used for the step n = 4 → 5 which
presents a too little barrier (Eb = 3.8 meV) to be visible in the graph

.
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4.3.1 Rationalizing the hydrogenation sequence

The hydrogen atom attachment to coronene can be rationalized with the help of some
rules of thumb that should apply equally well to other PAHs. These rules follow from the
discussion of Subsection 2.1.1. We can enunciate these rules as follow

Rule 1 (closed-shell molecules, n even). The factors driving the are the π-coordination and
π-hyperconjugation. The former determines the localization of frontier orbitals at the edges
of the electronic system, enhancing the reactivity of those sp2 sites that have the smallest
number of sp2 neighbors. The latter, on the other hand, discriminates between sites with
the same π-coordination but a different number of nnns in the π-lattice (ξ).

Rule 2 (open-shell molecules, n odd). The addition is driven by the unpaired electron
density and thus occurs at the so-called ortho and para positions where it mainly localizes
through Pauli’s resonance (again with a preference for sites with a small π-coordination)

To elucidate the application of these rules and their usefulness in predicting the most
reactive sites, let consider the first hydrogenation steps. To help us, Figure 4.6 displays the
complete set of hydrogenation sites that have been considered during the investigation of
the main hydrogenation pathway. Each hydrogenation level (nH) is pictorially represented
as a molecular graph where black circles denote carbons that have already been hydro-
genated in previous steps, and blue circles mark those positions that have been inspected
at that specific step.

The first H addition occurs at an outer edge site, which has Z = 2 and ξ = 1. As
seen for graphene, this hydrogenation leaves an unpaired electron (a midgap state) on the
majority sublattice. The second H thus sticks on this sublattice, and, in particular, at
an ortho position. In the resulting two-fold hydrogenated structure, site 1 has now the
highest π-hypercoordination number (ξ = 2, among two π-coordinated sites) and it is
then the third hydrogenation site. As the hydrogenation proceeds, edge sites are gradually
removed from the π-systems, while inner sites (both graphitic (G) with three neighbors
with Z = 3, and inner-edge with two (F2) or one (F1) three-coordinated neighbors) become
progressively edge sites - i.e. their π-coordination is reduced and π-hypercoordination is
increased. Correspondingly, their H affinity is increased and then the hydrogenation, once
started at the edges, proceeds readily to these sites.

The good correlation between binding energies and π coordination/hyperconjugation
numbers is shown in Figure 4.7, where the main results have been re-organized according to
these numbers. The figure clearly shows the increase of the binding energy when decreasing
Z and, for Z = 2, when increasing ξ (the correlation is even better if one limits the
comparison to the energies for binding H to the different sites of the same structure, which
is precisely the situation one addresses during the hydrogenation process).

Against this background, the exceptional stability of the hydrogenated species C24H12+n

with n = 2, 10, 14 and 18 extra hydrogen can be traced back to additional electronic ef-
fects, namely to a "residual aromaticity" that is left during the hydrogenation process.
Indeed, as shown in Figure 4.8, when n = 2, 10, 14 and 18 the remaining sp2 hybridized
carbon atoms in the molecule still form a subsystem of three, two, or one aromatic rings,
respectively, i.e. stable structural motifs that require extra energy for further hydrogen
attachment to occur. The high stability of the structure with 24 extra H, on the other
hand, is owed to the complete saturation of the π-system.

4.4 An alternative pathway

Figure 4.5 shows, for each degree of superhydrogenation, the binding energy of a number of
less stable hydrogenation configurations. Some of these values are very close to Dn

? , by less
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Figure 4.6. Black circles mark hydrogenated sp3 carbons while blue circles mark sites whose
binding energy has been computed at each hydrogenation level (nH).
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Figure 4.7. Correlation between hydrogen binding energy and coordination numbers. Left: H
sticking on even numbered species (i.e., singlets), for different sites, Z = 1, 2 and 3 for D, E and
F/G sites. Also indicated the hyperconjugation numbers. See text for details. Right: same as in
the left panel for odd-numbered species (i.e., doublets).

(a) (b)

(c) (d)

Figure 4.8. Superhydrogenated coronene molecule with 10,14,18 and 24 extra hydrogen atoms
along the main sequence (panels a-d, respectively).
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Figure 4.9. Hydrogen adsorption energy along the sequence shown in Figure 4.4 (right) (light
blue bars). For each hydrogenation level, the energy for binding to alternative sites are shown as
dots. Red triangles and green bars as in Figure 4.5.

.

than 20 meV - e.g. the ones relative to the 3rd, 6th, or 11th steps - thereby suggesting that
these values of n may be branching points in the hydrogenation sequence. Therefore, an
alternative hydrogenation pathway was investigated considering the second stable structure
at the first branching point (3rd step), and keeping the lowest energy adsorption site
onward. The resulting hydrogenation sequence is shown in Figure 4.4 (right), while the
corresponding binding and barrier energies along the path are given in Figure 4.9. The
results parallel those found for the main sequence and again identify n = 10, 18 and 24 as
magic numbers. In addition, the structure with n = 4 is found to be more stable than in the
previous path, in better agreement with the results of Figure 4.1. However, a remarkably
smaller binding energy (and a non-detectable barrier for further hydrogenation) results
for the structure with 14 extra hydrogens, at odds with the thermal desorption spectra
which show C24H26 accumulating during exposure (see Figures 4.1 and 4.2). With the
same token, Figure 4.9 also shows that the n = 12 structure should accumulate during the
exposure, but this is not observed in the mass traces. In closing this section, we underline
that the rules established in Subsection 4.3.1 can be equivalently applied to rationalize the
alternative hydrogenation pathway.
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Chapter 5

H adsorption on large clusters

The height of the H sticking barrier (Eb) on graphene is yet unknown with precision. In the
literature, there is zoo of data, that witness the great sensitivity of Eb to the computational
setup employed. Some authors, employing vdW-inclusive DFT calculations, have even
claimed that such barrier should be vanishing1[106, 107, 108], in direct contrast with the
experimental results (see Section 1.3). At present, standard GGA-DFT calculations cluster
around a value ≈ 0.2 eV[51, 40, 109]. However, more accurate calculations are needed to
identify with better precision the H sticking barrier. In this respect, PAHs have been often
employed as a molecular model of graphene to study the H adsorption energetics, because
they allow a more refined computational setup, especially when small molecules such as
coronene are considered. On the other hand, as discussed in Section 2.1, finite-size can
introduce additional electronic effects that evidently influence the H adsorption energetics,
undermining the extension to the infinite size limit.

In this Chapter, we present new DFT calculations on two large clusters, namely cir-
cumcoronene (C54H18) and doublecircumcoronene (C96H24 ( see Figure 5.1), in order to
minimize the finite-size effect while still employing a high-level of theory. This Chapter is
organized as follows: in Section 1, we summarize the main computational details of our
calculations; in Section 2 , we comment our results.

5.1 Methods

The calculations described in the following were performed with the set of XC functionals
described in Chapter 3, again with the help of the Gaussian16 code[103]. We employed the
6-311G(d,p) atom-centered basis and tight convergence criteria on both the electronic and
structural optimizations. For both the binding energy D and the energy barrier Eb, the
BSSE was removed applying the standard CP correction (see Box on pag.19). Optimized
structures were checked with harmonic frequency calculations.

5.2 Circumcoronene and Doublecircumcoronene

Figures 5.2 and 5.3 compare respectively the binding energies and energy barriers between
coronene, circumcoronene and doublecircumcoronene. First, we note that the trend among
different functionals observed for coronene is substantially reproduced also for larger clus-
ters. Increasing the cluster size decreases the barrier height and, correspondingly, increases

1As highlighted by Bonfanti and Martinazzo (2018), some care is needed when a vdW-inclusive func-
tional is combined with atomic-orbital basis-set. Indeed, the combination of an overbinding functional with
the BSSE may lead to errors comparable to the estimated barrier height (i.e. 0.2-0.3 eV), thus making the
latter vanishing[105]. We will return on this issue regarding the BSSE in Chapter 8, when discussing the
bilayer binding energy in the C/Si interface.
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C24H12 C54H18 C96H24

Figure 5.1. Geometrical structure of coronene (C24H12), circumcoronene (C54H18) and double-
circumcoronene (C96H24).
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Figure 5.2. Binding energy (D, eV) for the H sticking on the center site of coronene (C24H12, light
blue), circumcoronene (C54H18, light orange) and doublecircumcoronene (C96H24, light purple) for
different XC functional. The dashed and dotted red lines denote respectively the CCSD(T)&CBS
extrapolation on coronene[94] and a typical value of D given by periodic DFT calculations on
graphene[39].
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Figure 5.3. Barrier height (Eb, eV) for the H sticking on the center site of coronene (C24H12, light
blue), circumcoronene (C54H18, light orange) and doublecircumcoronene (C96H24, light purple) for
different XC functional. The dashed and dotted red lines denote respectively the CCSD(T)&CBS
extrapolation on coronene[94] and a typical value of D given by periodic DFT calculations on
graphene[39].

Table 5.1. Binding energy (D, eV) and barrier height (Eb, meV) as obtained by M06-2X/6-
311++G(d,p) calculations on coronene (C24H12), circumcoronene (C54H18) and doublecircum-
coronene (C96H24).

D Eb

C24H12 0.55 337
C54H18 0.67 319
C96H24 0.66 335

the binding energies (with few exceptions, such as M06 or MPW1B95). For the barrier
height, this reduction is tough limited and it seems unlikely that its value attains ≈ 0.2 eV
when extrapolated to the infinite size limit[30], as suggested by some authors. We can note
that the M06-2X results on any cluster are quite larger than the "old" but still popular
hybrid functional B3LYP. Interestingly, the meta-semilocal functional M06L, which has
been finding increasing interest in the condensed matter community, provides even larger
estimates for the barrier (e.g. 407 meV for coronene and 390 meV for circumcoronene).
Nevertheless, as discussed in Chapter 3, this functional shows poor performances against
those datasets that best fit our problem[92]. On the contrary, our M06-2X results com-
pare reasonably well with coupled-cluster calculations on coronene[94, 92] (that found a
barrier of about 370 meV), therefore suggesting a much larger barrier height for graphene
than previously estimated2 (335 meV for doublecircumcoronene). The M06-2X results are
summarized in Table 5.1.

2In this regard, we should remind that GGA functionals underestimate (overestimate) the barrier
(binding) energy especially when directional covalent bonds are formed. This is a known shortcoming of
standard semilocal functionals.

61



Chapter 5. H adsorption on large clusters

62



Part II

Carbons in a curved world
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Chapter 6

The rise of curvature in carbon
nanostructures

In Part I, we had the occasion to see the concepts of π-conjugation and aromaticity in action
in the context in which they were originally defined, that is for planar¸ sp2 systems. Every
chemist knows, indeed, from the very first course in organic chemistry that π-conjugation
arises from the mutual axial overlap of pure p orbitals orthogonal to a molecular plane
that leads to the formation of π molecular orbitals that extend over the entire molecule (or
π-bands for solid-state systems). Such long-range conjugation is responsible for the over-
delocalized character of π-electrons, which yields many of the peculiar properties of the
sp2 carbon nanostructures. Likewise, since its formulation in 1930, the celebrated Hückel’s
rule [110] that attributes additional stability to "planar systems with 4n+ 2 π-electrons",
has been a guiding principle in organic chemistry for decades.

During the past decades, the development of new synthetic routes has, however, allowed
experimentalists to design and produce structures that seriously question the restriction
of Hückel’s theory and π-conjugation to planar systems. In this regard, we could men-
tion different classes of aromatic compounds and low-dimensional nanostructures which
are found to be characterized by an extended π-conjugation, even though their structure
differs from the ideal planar. Without attempting to be exhaustive, we cite here carbon
nanostructures such as nanotubes[111, 112, 113] or curved polycyclic aromatic hydrocar-
bons such as circulenes[114], coroannulenes[115, 116], and helicenes[117] or spheroidal aro-
matics as fullerenes[118, 119, 120]. Graphene sheets themselves are not strictly flat over
long-range, instead, they are naturally characterized by corrugations in the form of frozen
ripples and flexural phonons[121, 122]. In the past few years, attempts have been made
to understand the effect of curvature on the physical and chemical properties of carbon
nanostructures[123, 124, 125]. However, at present, a rationalization and quantitive de-
scription of curvature effects is still lacking, especially in the field of chemical reactivity.
Indeed, this requires a deep theoretical investigation of how the overall curvature of the
system affects both the π-conjugation and aromaticity, in terms of geometry and orbital
characters. The very first issue to deal with lies at the basis of the topic: "how can we
define the curvature of a carbon nanostructure?". Several authors have tried to answer
this question[125, 126, 127] but a rigorous approach to the subject is still missing.

This Chapter sets then the beginning of our journey through the exotic world of curved
carbon structures, that will be described in both Part II and Part III. Part II is organized
into 4 Chapters. In this first Chapter, we populate the world of curved structures, that is
we provide the reader with an overview of the major curved carbon systems (along with
their properties) that have been designed and produced so far. In Chapter 2, we discuss
the case of the step-wise hydrogenation of coroannulene, a molecule that can be considered
as the curved analog of coronene. This Chapter is thus parallel to Chapter 3, but with
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Figure 6.1. Reference system for the construction π-orbital axis vector. ni are unit vectors
directed along the σ-bonds, while nπ is the unit vector directed along the π-like orbital.

an additional element, namely the curvature. Chapter 3 and 4 are entirely dedicated to
the investigation of graphene epitaxially grown on SiC (a.k.a. the C/Si interface). In
this case, the curvature is of a different nature, since it is induced by the interaction
with the substrate. We will see that, besides being an admitted "citizen" of the curved
world, the C/Si interface may allow solving some current issues in the context of graphene
technology[25].

While Part II approaches the topic from an applied perspective, in Part III we go back
to the heart of the theory of curved systems and we try to answer the aforementioned
question with a mathematically rigorous approach.

6.1 Pyramidalization and Rehybridization

Before discussing the most common curved structures, we need to introduce some consoli-
dated concepts that date back to the early attempts to describe curved π-systems. In this
field, Haddon[126, 127, 128] was one of the pioneers in providing a mathematical descrip-
tion of the effect of curvature on the atomic scale. In particular, he introduces the so-called
π-orbital vector analysis (POAV) and the pyramidalization angle to quantify the degree of
non-planarity at a conjugated carbon. To illustrate these concepts, let consider a C atom
in the sp2 orbital configuration and call n̂i (i = 1, 3) the unit vectors defining the direction
of the sp2 orbitals. If the latter are directed towards the σ bonds (i.e. in case of non-bent
bonds),

(n̂1|n̂2) = cos θ12 (6.1)

defines the bond angle θ12 between the σ-bond 1 and 2 ( (·|·) denotes the standard scalar
product in R3). For a true sp2 carbon, θ12 = 120° and the fourth orbital, namely the pure
p, makes an angle of 90° with each of n̂i (i = 1, 3), being orthogonal to the molecular plane.
Let consider now a carbon that lies on a generic curved surface, where something like a
"molecular plane" no longer exists. Following Haddon (2001)[128], let define a coordinate
system such that the relevant C atom is located at the origin, the first neighboring C lies
along the −x direction, the second in the xy plane, and the third lies out of the xy plane
but with projection on this plane (see Figure 6.1). In this coordinate system,

n̂i = xiex + yiey + ziez
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6.1. Pyramidalization and Rehybridization

From Equation 6.1 and simple geometrical arguments, it follows

x1 = −1 y1 = 0 z1 = 0
x2 = − cos(θ12) y2 = sin(θ12) z2 = 0

(6.2)

and

x3 = − cos(θ31) (6.3)

y3 =
cos(θ23 − cos(θ31) cos(θ12)

sin(θ12)
(6.4)

z3 =
√

1− x2
3 − y2

3 =

√
1− cos2(θ31)−

(
cos(θ23 − cos(θ31) cos(θ12)

sin(θ12)

)
(6.5)

Assuming that the π-orbital makes an equal angle to the three σ-bonds also in non-planar
structures, one can define a unique n̂π orbital vector (the before-mentioned π-orbital axis
vector) making equal angles with n̂i1 taking the normalized cross-product of the two vectors
n̂2 − n̂1 and n̂3 − n̂1, that is

n̂π =
(n̂2 − n̂1)× (n̂3 − n̂1)

||(n̂2 − n̂1)× (n̂3 − n̂1)||

With some algebra, one arrives at the following expression

n̂π = xπex + yπey + zπez

=
1

N
[(y2z3)ex − z3(x2 − x1)ey + [y3(x2 − x1)− y2(x3 − x1)]ez]

where N is a normalization constant, namely

N =
√
x2
π + y2

π + z2
π

The angle θσπ is then given by2

cos(θσπ) = (n̂1|n̂π) =
1

N
(x1y2z3) (6.6)

From θσπ, one usually defines the angle θP := θσπ−90◦, called pyramidalization angle3, so
that θP ≡ 0 for sp2 C atoms. For an sp3 C, σ bonds make an angle of about 109.5◦ with
each other, hence θP ≈ 19.5◦. Pyramidalization angle in the range 0 < θP < 19.5◦ thus
indicate mixed sp2-sp3 orbital configuration. The latter manifests itself through a change in
the balance between the σ (sp2) and π (p) hybridization. In particular, π-orbitals acquire a
fractional s component while sp2 orbitals deviate from such "purely" integer hybridization.

The extent of such rehybridization can be determined in the hypothesis of non-bent
bonds by resorting to the so-called Coulson’s directionality theorem. Let consider a C
atom using some kind of spτ hybrids to form σ bonds with the neighboring substituents.

1 In other words, nπ is the pyramid axis of the pyramid whose basis is delimited by the three C atoms
bonded to the central C at the origin.

2This is a general formula for a C1 symmetry. For a C2h symmetry, i.e. θ12 = θ23 = θ and θ13 = θ′,
the formula reduces to

cos(θσπ) = −

√
1− 4 sin4(θ/2)

4 sin2(θ/2)− sin2(θ′/2)

3This is at times called pyramid angle, see footnote 1 on pag. 67.
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The (unnormalized) hybrids can be represented in the form

|ψi〉 = |s〉+
√
τi|p〉

where |s〉 describes a (total-symmetric) s orbital and |p〉 a directional p-orbital4, while
τi is the fraction of p character of the hybrid, a.k.a. the hybridization index. Assuming
orthogonality w.r.t. to the scalar product defined in the Hilbert space H spanned by the
hybrids5, we have

〈ψi|ψj〉 = δij = 1 +
√
τiτj〈p|p′〉

= 1 +
√
τiτj cos(θij)

where θij is the corresponding bond angle. Therefore, the hybridization indexes are given
by the geometry around the C atom through

cos(θij) = − 1
√
τiτj

(6.7)

Equation 6.7 defines a system of three equations in three unknowns (namely, τi with
i = 1, 3), which can be easily solved to give

τi = −
cos(θjk)

cos(θij) cos(θik)
(6.8)

Note that for the π-like orbital, we may write

|ψπ〉 = |s〉+
√
τπ|p〉

and thus defining three additional Equations of type 6.7 involving the angles (θ1π, θ2π, θ3π).
The problem is only apparently overdetermined because the orientation of the fourth or-
bital actually follows from orthogonality once the orientation of the first three is given (a
consequence of having a 4-dimensional function space in 3-dimensional Euclidean space).
The hybridization index λ for the π-like orbital can thus be obtained by the conservation
of p (or s) weights upon hybridization. The latter simply follows from the condition

3∑
i=1

||ψi||2 + ||ψπ||2 = 1

that leads to

λ =
1

1−
∑

i(1 + τi)−1
− 1 (6.9)

which is singular (λ→∞) for co-planar σ-bonds, i.e. when τi = 2, for i = 1, 3. In case of a
C2h symmetry, i.e. when the C atom, say X, has two equal substituents, say Y , the above
Equations simplify, since one has just two different bond angles, namely θ12 = θ23 = θ
and θ13 = θ′ (see Figure 6.2). In this case, a convenient measure of the "distortion" of the

4|s〉, |p〉 represent a basis in which the hybrid orbital is expanded. |p〉, being a directional orbital, can
be further expanded in the local basis |px〉, |py〉, |pz〉.

5Such condition ensures separability and non-zero overlap.
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Figure 6.2. Pictorial representation of a C2v molecule. θ and θ′ are respectively the YXX and
YXY bond angles. β is the angle between the π-like orbital and the XX bond direction and it
represents a good measure of "distortion" for a C2v molecule.

π-axis is provided by the angle that the fourth hybrid makes with the XX bond[129]

β = arccos

(
cos θ

√
− 1

λ cos θ′

)
(6.10)

Pyramidalization and rehybridization are thus two powerful concepts that apply to a
rather generic curved molecule to describe the effect of curvature at the atomic scale.

6.2 Curved aromatics

The first big class of curved structures that we discuss is that of curved aromatic (or
π-conjugated) molecules. In the current literature, it is custom to categorize curved sp2

systems according to their Gaussian curvature, K. In Part III, we give a rigorous definition
of Gaussian curvature in its original mathematical context. For the present discussion, it
suffices to know that the Gaussian curvature is an intrinsic measure of curvature at a point
P of a surface: at dome-like points, such as on ellipsoids or spheres, K > 0 and the point P
is said to be an elliptic point ; at saddles, K < 0 and the point P is referred to as hyperbolic
point ; if one can find a curve through P that is not "curved"6, like the generatrix of a
cylindrical surface (see Figure 6.3), then K = 0 and the point P is said to be a parabolic
point.

When dealing with a molecule or material surface, from the geometrical point of view
we have discrete object, that roughly speaking are made of balls and sticks, that is they
are bi- or tridimensional polyhedra, where C atoms are the vertexes and σ-bonds are the
edges. The above definition of Gaussian curvature still applies to discrete surfaces, and, in
its discrete formulation, K can be computed as

K = 2π −
3∑
i=1

θi (6.11)

where θi are the bond angles (or the angles at the vertexes). The discrete Gaussian
curvature represents then an angular defect : it is the missing angle when comparing a

6Rigorously, we are referring to the normal curvature of a curve defined on the surface, see Part III,
Subsection 10.4.1 at pag. 157.
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𝐾 < 0
𝐾 = 0

𝐾 > 0

Figure 6.3. Prototypical surfaces of negative, zero and positive Gaussian curvature, K. For
the K = 0 case, the direction of vanishing (normal) curvature is indicated by a red arrow. On a
cylinder, this direction is any direction parallel to the cylinder axis.

Table 6.1. Symmetry, Pyramidalization angle (θP ), Gaussian curvature (K) and hybridization of
the π-like orbital for C20, C50, C50, C60 and C70. Fullerenes are here identified as aromatic or not
on the basis of the electron number (Hirsch’s rule). It is worth noticing that C50 has not equivalent
carbons, despite being aromatic.

Symmetry Aromaticity θP K |ψπ〉

C20 Ih No 19.0◦-22.0◦ 33.7◦-43.8◦ sp2.1-sp3.2

C50 D5h Yes 10.7◦-15.6◦ 11.4◦-23.4◦ sp5.7-sp13.7

C60 Ih No 11.6◦ 12.0◦ sp11.4

C70 D5h No 8.6◦-11.9◦ 7.4◦-14.0◦ sp10.7-sp20.6

circumference of a circle 2π (with unitary radius) on a plane to that on a surface7.
A well-known example of positive Gaussian curvature at any points are fullerenes,

spheroidal molecules with formula Cn[119, 120, 130]. Table 6.1 reports the hybridization
and local curvature information of four known fullerenes (C20 the smallest fullerene, C50,
C60 and C70, whose geometrical structure is shown in Figure 6.4). Buckminsterfullerene8

(C60) is by far the most famous member of the family, because of its shape that resembles
that of a soccer ball9. C60 was originally conjectured independently by Osawa[131] in 1970,
and Stankevich[132], Bochvar, and Galpern[133] in 1973, and then discovered accidentally
by mass spectrometry in 1985 by Kroto et al.[118] through laser evaporation of graphite.
Later in 1990, it was first synthesized in larger amounts by Krätschmer et al.[134].

Fullerenes occur in nature and they have been detected in the interstellar medium like
PAHs, albeit in minute amounts (10−4 of the interstellar carbon in various environments[135]).
C60 was first identified in young planetary nebulae in 2010[136], and it is the only fullerene
that is widely detected from its weak mid-IR features[135, 137]. At present, how fullerenes
and in particular C60 can form in the ISM is still a debated question[138]. The most con-
vincing route is through bending and subsequent closure of graphene sheets with a number

7In polyhedra, such angular defect is zero along the edges and for any point on the faces. Therefore,
the Gaussian curvature is all "concentrated" at the vertex. On the other hand, we are interested in K at
vertexes, since they represent the conjugated carbon in the present context.

8It was named after Richard Buckminster Fuller (1895-1983), a celebrated architect who designed the
geodesic dome, a hemispherical thin-shell structure that topologically resembles a fullerene.

9Indeed, they are informally called buckyballs.
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C20 C70C60C50

Figure 6.4. Optimized geometrical structures for some of the most common fullerenes: C20, C50,
C60 and C70.

of C atoms slightly larger than 60 heated under UVphotons[135, 139] or from the surface
decomposition of SiC grains in hydrogen-dominated gas[140].

From a more applied perspective, one of the most studied applications of fullerenes in
the past few years regards their use as an encapsulating agent, in drug delivery or cancer
treatment[141, 142].

In the context of aromaticity, some members of the family behave similarly to aromatic
molecules in terms of structural properties (uniform bond length), magnetic properties (the
existence of ring currents) or resonance stabilization energy, and this has thus motivated
the introduction of the term spherical aromaticity or superaromaticity. In 2000, Hirsch
et. al.[143] suggested an extended version of the Hückel’s rule to account for aromaticity
in fullerenes. In particular, they observed that fullerenes are aromatic when they have
2(N + 1)2 π-electrons so that the π-density is totally symmetric, in full analogy with
planar aromatic molecules10. According to this definition, C60 should not be aromatic
since it does not satisfy the Hirsch’s rule. However, its aromatic character has been the
source of some controversy in the literature, since in some experiments it has shown to
displays a certain of degree of aromaticity[144].

Fullerenes have been widely investigated also from the topological point of view and,
truthfully, they represent one of the most successful applications of mathematical chem-
istry11. A comprehensive introduction to this fascinating matter can be found in the work
of Schwerdtfeger et. al.[130].

Another class of curved molecules is represented by polycyclic aromatic hydrocarbons
(PAHs). In Part I, we largely discuss this class of molecules restricting our attention to
planar structures. However, PAHs can display a curvature, that can be intrinsic, because of
their size or their skeleton itself, or induced by partial hydrogenation12. Intrinsic curvatures
are induced by a topological modification of the PAH. For instance, if one replaces the
inner 6-membered ring of coronene with a 5-membered ring, the resulting structure, called
coroannulene, is curved (see Figure 6.5 (a))[116]. The reason for such bending can be
understood from topological arguments if one recognizes that coroannulene is a "section"
of C60 fullerene, that cannot be realized with just hexagons. This result is the consequence

10This implies that every set of orbitals than span an irreducible representation of the point group of
the molecule is either filled or empty. We should remind, however, that this argument is valid for non-
interacting electrons only. In more general situations, the symmetry of the global wavefunction seems to
dictate the aromaticity.

11Graph theory and topology are two fields of maths that have found important applications in
chemistry-related problems.

12As seen for coronene, when few atomic positions are hydrogenated, partly disturbing the aromaticity,
PAHs undergo a structural distortion which often appears as a surface bending.
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of the so-called Euler’s formula, which establishes that the quantity

χ = V − E + F = 2 (6.12)

is a topological invariant13 in convex polyhedra14, called Euler’s characteristic. V are the
vertexes of the polyhedron, E the edges and F the faces. Since each edge is shared by two
faces and each vertex V is shared by a certain number of faces, that we call the degree of
V (deg(V )), it follows that

V∑
i=1

(deg)(V ) = 2E (6.13)

In fullerenes, (deg)(V ) = 3, and therefore the following relatioships hold

E =
3

2
V (6.14)

F = 2− V + E =
1

2
V + 1 (6.15)

V = 2F − 4 (6.16)

From Equations 6.12 and 6.16, we have E = 3F−6 = 3F5+3F6−6, since F = F5+F6 where
F5 (F6) is the number of pentagonal (hexagonal) faces. Since each pentagonal (hexagonal)
face has 5 (6) edges and each edge is shared by two faces, for the total number of edge we
also have E = (5/2)F5 + (6/2)F6. This result combined with E = 3F5 + 3F6 − 6, gives

3F5 + 3F6 − 6 =
5

2
F5 + 3F6 =⇒ F5 = 12 (6.17)

which is usually known as the 12 Pentagon theorem for fullerenes. As a main corollary
to this theorem, it follows that F6 = (V − 20)/2 with V = n ≥ 20 and n the number of
C atoms, and the general formula for fullerenes C20+2F6 . Roughly speaking, this theorem
suggests that pentagons are the source of a positive Gaussian curvature, which characterize
polyhedra (or closed surfaces) with χ = 2, i.e. topologically equivalent to a sphere (no
holes).

On the other hand, theoretical investigations have shown that also coronenes (C6N2H6N )
bend as N ≤ 9− 12 (according to the method used), that is flatness is removed at increas-
ing size of the PAH15 Such bending signals that the curvature has a fundamental role
in determining the structure of large PAHs and, at the same time, contrasts with the
usual chemical intuition, which instead recognizes additional stability in extended (planar)
π-conjugated systems[145].

Like their flat relatives, curved PAHs are under investigation for the role they might play
in the ISM. For instance, it has been recently suggested that the inclusion of non-planar
components in aromatic structures induces spectral patterns similar to the UIE[146, 147].
In addition, super-hydrogenated forms of curved PAHs may too act catalysts of the H2

formation in photodissociation regions. In this respect, coroannulene is again one of the
most interesting members of the family. Although it has not been uniquely identified so far,

13The result can be extended to any topological space. Generally speaking, χ is a number that uniquely
defines the shape of a topological space, regardless of the way it is bent. For example, for a sphere χ = 2
while for a disk χ = 0. Therefore, one cannot find a "continuous" deformation that converts a disk into
a sphere. In differential geometry, χ is defined in the context of the Gauss-Bonnet theorem, which is a
fundamental result that relates the geometry of a surface (through the Gaussian curvature and the so-called
geodesic curvature) with its topology (see Part III, Theorem 10.6.2 in Section 10.6, at pag,. 171).

14χ is 1 or 2 for any convex polyhedron in two or three dimensions, respectively. However, it can take
different values in more complicated objects, e.g. 0 in octahemioctahedron or −6 in the small stellated
dodecahedron.

15This implies that also graphene is not strictly flat, see below.
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(a)

(b) (c)

Figure 6.5. Geometrical structures of (a) coroannulne, (b) a [n]-annulene and (c) an helicene.

both terrestrial laboratory experiments[148] and astronomical observations of the diffuse
interstellar bands suggest its presence in the ISM[149]. Furthermore, it is the simplest
molecule on which one can study the influence of curvature on the structural and chemical
properties, with the possibility of a direct comparison with the flat analog (coronene).
These characteristics of coroannulene have thus motivated part of this work. In particular,
in parallel to what was done on coronene in Chapter 7, we present a DFT investigation of
the step-wise hydrogenation reaction of coroannulene.

Another class of curved π-conjugated molecules that is worth citing here is that of
helicenes, which are polycyclic aromatic molecules with a helical shape[117] (see Figure 6.5
(c)). The topology and chiral properties of these molecules have sparked a great interest in
the field of magnetism, magnetotransport, and spintronics. In particular, helicenes repre-
sent a suitable molecular model to study a recently observed phenomenology, namely the
so-called chiral-induced spin selectivity [150]. With this term, one refers to the capability
of chiral molecules to act as electron spin filters at room temperature, a property that is
typical of inorganic ferromagnetic materials. The field of spin-selectivity effect in chiral
aromatic molecules is still unexplored. Its comprehension, in relation to chemical proper-
ties such as π-conjugation, may open the possibility of designing and using this class of
molecules for modern spintronics applications.

Last but not least, we cite one-dimensional systems like ring-closed polyacetylene
chains, a.k.a. [n]-annulenes (se Figure 6.5 (b)). In the past, they served as a basic model to
study the charge conduction and the optical properties in organic polymers. Even though
there are no relevant technological applications of these systems, they represent a suitable
model to study the local and global effects on electronic states. Moreover, since in these
systems the curvature is restricted in one dimension, a connection between curvature, re-
hybridization, and eventually, their physical and chemical properties[151, 152, 153], can
be established with less effort from the mathematical point of view. [n]-annulenes will be
discussed in detail in Chapter 11 (Part III).

6.3 Graphene: flat or curved?

In the opening of Chapter 1, we mentioned the so-called Mermin’s theorem[2] (see box 1.1
on pag. 4), which extended what was originally theorized by Landau[16] and Pierels[15],
namely that strictly bi-dimensional crystals should be thermodynamically unstable and
not exist. As discussed earlier, at first the discovery of graphene[3] in 2004 questioned the
foundation of such fundamental result of Statistical Mechanics. Later, the experimental
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observation of graphene, together with the discovery of other bi-dimensional materials, was
reconciled with the theory, by recognizing that such crystals, being extracted from a 3D
material, are quenched in a metastable state, where the strong interatomic forces assure
that thermal fluctuations do not lead to disruptive atom displacements. Also, graphene
samples are rarely "free-standing", rather they are at most suspended.

A complementary fact that explains the existence of graphene is that graphene is not flat
at all! As a matter of fact, in many experimental setups, graphene displays a curvature in
the form of ripples[25, 121, 154, 155, 156], which can be static or dynamical according to the
experimental conditions. The extent of rippling is generally characterized through the h/l
ratio, where h is the height of the ripple and l its lateral extension. According to the entity
of rippling, graphene can display electronic structure or physical and chemical properties
that strongly differs from planar graphene. From the chemical point of view, the first
modification induced by the presence of rippling is the aforementioned pyramidalization
and rehybridization. In Chapter 1, we saw that part of the chemisorption energy involved
in the H adsorption process is due to the sp2-sp3 rehybridization of the binding C atom.
Such rehybridization is associated with a change of the local geometry, from planar to
tetrahedral, leading to surface puckering. On a curved system (like rippled graphene but
also curved PAHs), part of the puckering energy is converted into chemisorption energy
because of the curvature itself (the surface is already "prepared" to accommodate the
incoming hydrogen). In addition, the overlap between neighboring p-orbitals is reduced and
the π-bonds weaken so that breaking the π-bond is less expensive. Consequently, surface
curvature leads to an enhancement of chemical reactivity. Boukhalov and Katnelson[157]
were among the first to investigate theoretically this issue on rippled graphene. They
introduced an artificial ripple on a graphene sheet by a smooth out-of-plane distortion
of a group of carbon atoms, following the geometric shape of an isotropic semi-sphere.
By means of DFT, they investigated the energetics of the H2 adsorption as a function of
the h/R ratio, where h is the height of the ripple and R the radius of the semi-sphere.
Interestingly, they found that the regions of stable hydrogenated ripples are characterized
approximately by integer numbers of the ratio h/R = 0.04, which is the right value of the
ratio between the height of out-of-plane atomic distortion and radius of the distorted region
for a pair of hydrogen atoms on flat graphene. In addition, it turns out that the H2 will
spontaneously decompose and bind at ripples with a large enough stabilizing curvature.

Such spontaneous decomposition of H2 at ripples has been recently taken into account
to explain the rather singular (and experimentally detected) permeability of graphene to
molecular hydrogen[158]. Graphene is, indeed, recognized to be one of the most imper-
meable materials to gas. For instance, for helium, which is the most permeating of all
gases, the permeability of graphene is estimated to be of no more than a few atoms over
one month of exposure. To put this into perspective, defect-free graphene is less perme-
able than 1km-thick quartz glass[158]. The transparency of graphene to H2 is therefore
striking since it should be completely forbidden. Because of the estimated energy barrier
(≈ 10 eV), it would take longer than the lifetime of the Universe for a single H atom to
pierce a defect-free membrane of graphene. To account for such unexpected behavior, P.Z.
Sun et. al.[158] proposed a scenario where molecular hydrogen decomposes and binds at
ripples16. The resulting adatoms then flip to the other side of graphene in a transport
process similar to that previously reported for proton transport.

Similar investigations were conducted for the single H addition on rippled graphene,
revealing that H preferentially chemisorbs on convex areas of the ripple. By exploiting the
tunability of the H binding energy at different local curvatures, Tozzini and Pellegrini[159]

16It is still not clear whether the decomposition of H2 is determined by static or dynamical ripples.
A possible factor limiting the contribution of dynamical ripples is their relatively short lifetime, which,
according to simulations, should be of the same order as the timescale of hydrogen permeation (few
femtoseconds).
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Figure 6.6. Geometrical structure of a rippled graphene sheet.

interestingly proposed a mechanism where hydrogen is stored on rippled graphene and then
released by a curvature inversion, thus suggesting a new kind of hydrogen storage device
based on curved graphene.

The curvature-induced enhancement of chemical reactivity has been also proven ex-
perimentally, on both suspended and epitaxially grown graphene. In suspended graphene,
which is generally obtained transferring graphene sheets on TEM grids, the curvature is
usually due to intrinsic rippling of the surface[154]. Instead, when graphene grows on a
substrate such as SiC (Balog and coworkers[160], Riedl and coworkers[161]), a stable cur-
vature can be obtained, because of the Moiré pattern modulation that the so-called buffer
layer forms on graphene itself. The case of graphene grown on SiC deserves a special
mention and we will discuss it in detail in Section 6.4.

The introduction of ripples on graphene affects also the electronic structure as well as its
physical properties. In particular, ripples come with a modulation of the hopping parameter
(∆t) and therefore of the Fermi velocity (vF ). These fluctuations of the hopping parameter
give rise to an effective magnetic flux through the hexagon of the order ∆Φ ≈ ∆t/t (in
units of eh/c)[162]. If the hopping varies smoothly over a distance l, then ∆t ≈ δt(a/l),
where a = 1.41Å is the C-C bond length and δt the overall modulation of t. Hence, the
total flux through a region of area l2 is Φ ≈ (δt/t)(l/a). When the modulation δt comes
solely from the presence of a ripple of height h and length l, then

δt ≈ ∂ log(t)

∂ log(a)

h2

al

Considering that in graphene, t ≈ 2.7 eV, the parameter β = ∂ log(t)/∂ log(a) is approxi-
mately equal to 2-3. The resulting flux per ripples in quantum units is

Φ ≈ βh
2

la

For realistic ripples, h ≈ 1−2 nm and l ≈ 50 nm, then δt/t ≈ δvF /vF ≈ 10−2−10−1 and
Φ ' 1. Guinea et. al.[162] demonstrated that Φ, which is to all effects the flux of a
pseudomagnetic field threading an area of the size of the ripple, lead to the formation of
midgap states, which are known to affect the chemical property of graphene (see Subsection
1.3.2). These midgap states are comparable to Landau levels at the Dirac energy induced
by an external magnetic field.
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zig-zag armchair chiral
(6,0) (4,4) (6,2)

Figure 6.7. Geometrical structure of a zig-zag, armchair and chiral nanotube. In red, the zigzag
and armchair path along the circumference that form when cutting and rolling a graphene sheet
along the direction (n, 0) and (n, n), respectively.

6.3.1 Rolling graphene: carbon nanotubes

Another important class of curved structures that originates directly from graphene is that
of carbon nanotubes (CNTs). Carbon nanotubes are cylindrical structures that form by
rolling a graphene sheet in a given direction. They were firstly discovered by Ijima in
1991[111]. They can be single-walled or multi-walled according to the number of layers
rolled. One further distinguishes from zig-zag (n, 0)17, armchair (n, n) or chiral (n,m)
(with n 6= m) nanotubes, according to the type of path along the circumference of the
tube that results from the rolling (see Figure 6.7).

Box 6.1: The (n,m) notation

The (n,m) notation is used to distinguish from the zigzag, armchair (also known
as achiral nanotubes), and generic chiral nanotubes. To understand the mean-
ing of this notation, let imagine cutting the nanotubes along a direction par-
allel to its cylindrical axis starting from some atom X, and then unrolling the
nanotube flat on the plane. Once unrolled, let suppose that atoms of the orig-
inal nanotube coincide with those of an imaginary graphene sheet. The re-
sulting two halves of the atom X will end up over two atoms X1 and X2.

17This is the so-called (n,m)-notation for the classification of different nanotubes (see the box 6.1, on
page 76).
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Let e1 and e2 be two linearly independent vectors connecting X1 to two of its nnn,
i.e. two C atoms belonging to the same sublattice. Since X2 must be on the same
sublattice of X1, the vector connecting X1 to X2 must be a linear combination
of e1 and e2, that is ne1 + me2. Therefore, the integers (n,m) define uniquely a
possible position of X2. The argument can be reversed, that is one can define a
vector C = ne1 + me2 that connects two C atoms (X1 and X2) on a graphene
sheet. Then, cutting a strip along lines perpendicular to C through X1 and X2 and
rolling the strip into a cylinder, one obtains the corresponding (n,m) nanotube. If
such a procedure is applied to the pair (n, 0), the result is a zigzag nanotube, with
a closed zigzag path of 2n atoms. For a (n, n) pair, one obtains instead an armchair
nanotube, with a closed path of 4n atoms. From the above argument, it follows that
|C| represents the circumference of the nanotube, hence

|C| = |e1|
√
n2 + nm+m2 = d

√
3(n2 + nm+m2)

where d is the CC bond lenght. The diamater D of the nanotube is then given by
|C|/π, i.e.

D =
d

π

√
3(n2 + nm+m2) (6.18)

The angle θ formed between C and e1 is called chiral angle, and it is an important
quantity strictly related to the electronic properties of the nanotube. Such angle is
defined through

cos(θ) =
(C|e1)

|C||e1|
=

2n+m

2
√
n2 + nm+m2

(6.19)

In any case, the Gaussian curvature is strictly zero on each point of the nanotube since
any point on a cylinder is a parabolic point18.

In the present context, Park and coworkers[123] developed a simple model tested on
CNTs that relates the chemisorption energy of an atom X to the optimized value of the
pyramidalization angle (θmin

P ). They broke the formation of the CX bond into three steps
- preparation (strain), binding, and relaxation - and expressed their energies in terms of
θmin
P

Etotal = Estrain(θmin
P ) + EC−X(θmin

P ) + Erelax

18By rolling a flat paper sheet into a cylinder, the Euler’s characteristic must be conserved!
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The strain energy was defined as the excess energy left on the system when the binding C is
pulled out of the surface and the remaining atoms are kept fixed. Estrain is thus represented
as elastic Hook’s terms describing the pulling of the C and the bond-stretching energy of
the three nns, i.e.

Estrain =
1

2
kb

3∑
i=0

(θiP − θ1
0)2 +

1

2
ks

3∑
i=0

(aiP − ai0)2

where ai is the bond lenght with the nearest-neighbor i and the subscript 0 refers to initial
equilibrium values. kb and ks are force constants obtained through a fitting of DFT data.
The CX binding energy comprises two terms: the breaking of the π-bond into a free π
orbital and the binding of the latter with the atom X. In this model, it reads as

ECX = (Egraphite − αθ2
0) + (

√
2 tan(θP )Esx +

√
1− 2 tan2(θP )Epx)

where Egraphite is the π-bond breaking energy of graphite taken as a reference. αθ2
0 is an

energy shift due to the inherent curvature of nanotubes, where the constanst α is obtained
through a fitting of the formation energy difference between CNTs and graphene. The
second term in bracket represents the bond energy between the state |ψπ〉19 (describing
the free π- orbital) and a state |x〉 of X, with Esx = 〈s|H|x〉 and Epx = 〈p|H|x〉. Note that
Esx and Epx depend only on the atom X and therefore they can be treated as constants.
According to DFT calculations, Park et. al.[123] found that Erelax ≈ −0.2 eV regardless
of the initial structure. By validating and applying this model on CNT, they observed
that curvature affects the first and the second steps, respectively by reducing the strain
and the π-energy. Moreover, the model revealed that the local chemical reactivity can be
controlled by a proper mechanical deformation, as mentioned earlier for graphene.

6.3.2 Exotic curved nanostructures

In closing this Section, we mention two other interesting examples of curved nanostruc-
tures. The first is a carbon nanostructure devised by Yakobson and coworkers[163] and
displayed in Figure 6.8 (a), where the curvature is induced by a screw dislocation. Es-
sentially, this nanostructure consists of a graphene layer spiraling continuously around the
line perpendicular to the basal plane, thus mimicking the topology of a log(z) Riemann
surface20. Interestingly, Yakobson et. al. have shown that, if the voltage is applied to such

19In terms of θP only, this state reads as

|ψπ〉 =
√

2 tan(θP )|s〉+
√

1− 2 tan2(θP )|p〉

20Riemann surfaces are complex topological manifold introduced to represent multi-valued function.
Consider for instance the function w =

√
z, which in polar coordinates reads as w =

√
reiθ/2. For r = 1

and θ = 0, w(z) = 1, but walking around the origin and going back to the original point with r = 1 and
θ = 2π, w(z) = −1. To get back to w(z) = 1 in the w-plane we need to make another closed path of 2π
in the z-plane. The idea is thus to represent the second path on a different z-plane, thus building up a
surface called the Riemann surface. If the function has a singular point z0 and, starting from a point z1

in the z-plane we need to take an angle greater than 2π to get back to the original value, then z0 is called
branch point and the "cut" originating from such point called branch cut. Similar considerations apply to
log(z), which is a complex-valued function, defined on some subset U of C?, the set of nonzero complex
numbers, satisfying

log : U → C? elog z = z ∀z ∈ U
In polar coordinates, z = reiθ, and log(z) = ln(r) + iθ, where θ is again defined module 2π. z = 0 is a
singular point for log z, which then has a jump discontinuity of 2πi when crossing the corresponding branch
cut. The logarithm can be made continuous by gluing together countably many copies, called sheets, of
the complex plane along with the branch cut.
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(a) (b)

Figure 6.8. (a) Geometrical structure of the carbon nanostructure with helicoidal shape devised
by Yakobson and coworkers; (b) log z Riemann surface.

Figure 6.9. Geometrical structure of schwarzite.

a dislocation, a significant electrical current arises, thanks to the full covalent continuity,
accompanied by a large magnetic field that originates from the helical current trajectory.
For large diameters, the behavior approaches that of a classical ohmic helicoid, with a
magnetic field B in the cavity proportional to log(R/R′) ( where R and R′ are respectively
the exterior and core radii) and an inductance increasing with the core cavity size. Due to
their high winding density, the magnetic fields and the inductance generated are several
orders larger than any achievable in recent microelectronics.

Other curious curved carbon structures are the recently discovered schwarzites. These
have sparked great interest in recent years because of their singular topology and geomet-
rical shape, which is expected to translate into unique physical properties[164]. First, as
shown in Figure 6.9, schwarzites have the peculiar feature to display a negative Gaussian
curvature[165]. The latter has been recently related to a suppression of thermal conduc-
tivity with a monotonic dependence on curvature[166]. From the electronic point of view,
first-principles calculations predict that these structures can exhibit semimetal Dirac-like
points, like the ones present in graphene[167]. In addition, schwarzites have also been
predicted to present a net magnetic moment in their electronic ground state[168]. Yet,
their synthesis remains elusive21, and further theoretical and experimental investigations
are needed to understand their applicability in modern technology.

21At present, the most convincing synthetic route is through zeolite templating[169].
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6.4 The C/Si interface

In previous Section, we have thoroughly discussed the rich plethora of curved structures
originating from graphene and the appearance of rippling, which makes it deviating from
the idealized bi-dimensional arrangement. An additional example with uncountable experi-
mental evidence comes from the field of supported and epitaxially grown graphene. Indeed,
when graphene is supported or is grown on a substrate, interactions of different strengths
at the interface may give rise to a curvature across the carbon lattice. The case of epitaxial
graphene on silicon-carbide (SiC) deserves a rather special mention, not only in the context
of curved carbon-based structures but also from a technological perspective[25, 170, 171].

SiC has sparked a great interest in the last few years because of the possibility of growing
single ( or few-layers ) graphene by simple thermal annealing. The first investigation of
the graphitization of SiC dates back to 1975, by Van Bommel et. al.[172], but, at that
time, in a "pre-graphene era", it was not possible to recognize the capability of this system
to give access to pure two-dimensional crystals, with the excellent physical properties of
graphene. When SiC is annealed at high temperatures (around 1100◦C), Si atoms desorbs
from the Si-terminated (0001) surface, leaving a carbon-rich layer that undergoes surface
reconstruction (the (6

√
3 × 6

√
3)R30◦[25, 170, 161, 173], see the box "Wood’s Notation"

6.2 on pag. 80).

Box 6.2: Wood’s Notation

The Wood’s Notation is the most frequently used for defining the surface lattice
vectors when the bulk and the surface unit cell have the same or closely-related
symmetries. It involves specifying the surface lattice vectors s1 and s2, in terms of
the bulk vectors b1 and b2, and the rotation angle of the surface unit cell w.r.t. the
bulk unit cell. For instance, in the following structure

we can identify a non-primitive unit cell (red) where the surface lattice vectors are
two times larger than the bulk ones, leading to a 2×2 structure in Wood’s notation.
Otherwise, we can specify a primitive unit cell (blue) (

√
2 ×
√

2)R45◦, with the
surface lattice vectors a factor of

√
2 larger than the bulk ones and the unit cell

rotated by 45◦ w.r.t. the bulk unit cell.

The latter consists of a graphene layer - usually called the buffer layer graphene (BLG)
- which is still bonded to the SiC substrate through strong C-Si covalent bonds. Further
annealing at temperatures above 1350◦C determines additional Si-atoms desorption at
the C/Si interface that results in the decoupling of the BLG, which then becomes quasi-
freestanding monolayer graphene (QFMLG) - the before-mentioned epitaxial monolayer
graphene (EMLG) or simply calledmonolayer graphene - and the formation of another BLG
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Figure 6.10. A pictorial representation of the C/Si interface: (a) Buffer layer graphene on top of
SiC, where red segments are used to indicate the C-Si covalent bonds; (b) the full interface with
both the buffer and the monolayer graphene.

reconstructed surface underneath [25, 174](see Figure 6.10). The outlined experimental
procedure allows producing graphene samples of extremely high quality and could soon
enable mass production of graphene, contrary to standard techniques such as mechanical
exfoliation from HOPG or chemical derivation[25, 161]. As outlined in Chapter 1, large-
scale production of graphene is already feasible on various metallic substrates by CVD
but the metallic contact at the interface, in most cases, strongly influences the electronic
structure of graphene, preventing the integration in electronic devices[175, 176, 177, 178,
179]. As a major drawback of CVD methods there is therefore the need to transfer graphene
onto a different substrate. On SiC, in contrast, graphene is grown directly on top of
a semiconducting material, namely SiC, making such a C/Si interface compatible with
the modern Si wafers based electronic industry[180]. As we are going to discuss in the
following, the buffer layer does not retain the typical band structure of graphene and
hence it looses most of its peculiar transport properties[181, 182]. Similarly, although
EMLG is to some extent already decoupled from the substrate, residual interactions at the
interface remain - determining, for instance, an intrinsic n-doping which results in the shift
of the graphene Dirac points downwards w.r.t. the Fermi level[25, 181, 182]. Therefore, for
a concrete wide-spread application of the C/Si interface, the graphene layers needs to be
completely decoupled from the underneath structure. In this respect, one possible strategy
that has been widely documented in the literature is provided by the intercalation of
hydrogen beneath the buffer layer. It was indeed shown that the H intercalation saturates
the Si dangling bonds on the (0001) face, transforming the buffer itself into a quasi-free
standing graphene[183, 184, 185, 186, 187] or the buffer plus the overhead monolayer into
a bilayer graphene[188]. Although poorly documented in the literature, the passivation of
the buffer layer, e.g by extensive hydrogenation[189, 183, 184], may play an equivalent role
in decoupling just the monolayer graphene from the interface and transforming it into a
truly free-standing graphene.

Besides the valuable technological implications, the C/Si interface finds its place in
the panorama of corrugated or curved structures because both the buffer layer and the
graphene layer are curved. In particular, the former is strongly corrugated because the
C-lattice forms a moiré pattern (see the box "Moiré pattern" 6.3 on pag. 82). on the
SiC(0001) ( the aforementioned surface reconstruction) that displays C-Si interactions of
rather different strengths at the various lattice positions. Such moiré pattern modulates
also the morphology of the overhead graphene layer, which displays a wavy profile[173, 190].
Therefore, the C/Si interface can be undoubtedly added to the list of the "inhabitants" of
the curved world, that we are describing in this Chapter, and stands out as a model system
to study the impact of curvature on the chemical reactivity. Furthermore, as highlighted
above, the investigation of the H sticking on the buffer layer (and the graphene layer, as
we shall see later) is still less documented in the literature, despite the prospect of relevant
technological applications in the context of graphene production.
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In this Section, we provide the reader with a bird’s eye view of the state-of-the-art of
epitaxial graphene on SiC22. After a brief discussion about the extraordinary properties
of SiC, which makes this material rather unique, we first recap the long debate in the
literature about the structure of the surface reconstruction that leads to the BLG. Next, we
briefly describe the growth process and the experimental techniques that allow controlling
the number of layers. Then, we end this Section with a review of the main theoretical
and experimental works about the passivation of the buffer layer and related techniques
to decouple both the buffer and the graphene layer. It is worth noticing that, in the
literature, the buffer layer is at times called zero layer graphene (ZLG) or interface layer
graphene (ILG). In the following, we will mostly use the term "buffer layer". As for the
second (quasi-freestanding) graphene layer, we will use the term "monolayer graphene", as
it is custom in the literature.

Box 6.3: Moiré pattern

According to the Encyclopedia Britannica[191], the definition of the moiré pat-
tern is the geometrical design that results when a set of straight or curved
lines are superimposed onto another set. Its etymology can be found in
the French word moire, which is a type of textile with a rippled or "wa-
tered" appearance. A moiré pattern emerges because of an interference be-
tween two patterns that are not completely identical, but rather rotated, dis-
placed or with slightly different pitch. Some examples are provided below:

(a) (b) (c)

Picture (a) displays the moiré pattern arising from the superimposition of two set
of parallel lines, with one set rotated by an angle of 5◦ w.r.t. other. Picture (b) dis-
plays the moiré pattern created by the overlapping of two sets of concentric circles.
As a more relevant example, Picture (c) displays the moiré pattern that emerges in
twisted bilayer graphene, a bilayer graphene with one layer rotated by a given angle
w.r.t. the other layer. For the buffer layer graphene on SiC, the moiré pattern is
a consequence of the lattice mismatch between SiC (with lattice parameter 3.07Å)
and graphene (with lattice parameter 2.46Å)[161].

6.4.1 SiC: synthesis, properties and applications

The research into SiC has witnessed explosive growth during the past few decades thanks
to its outstanding physical and chemical properties[192]. The wide band-gap, the high
thermal and electrical conductivity under high-power/high-temperature/high-voltage, or
the extraordinary chemical inertness are just some of these appealing properties which
have opened the door for uncountable applications. There is vast modern literature on
SiC and comprehensive analysis of the topic is clearly far beyond the scope of the present
work. Here, we will limit to give an overview on the subject and refer the interested reader
to the detailed book Fundamentals of Silicon Carbide Technology by T. Kimoto and J.A.

22see J. Hass et. al.(2008)[170], Riedl et. al(2010)[25] and N. Mishra et. al. (2016)[171] for three
extensive reviews on the topic.
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Figure 6.11. Possible occupation sites (A, B or C) in the hexagonal close-packed (hcp) system.

Cooper(2014)[193] or to the extensive reviews by M. Xu et. al.(2021)[192] and R. Wu et.
al.(2015)[194].

SiC is a compound of silicon and carbon with a rigid 1:1 stoichiometry. In mineralogy,
SiC is generally called moissanite, from Henri Moissan23, who was the first to investigate
this material as a mineral found in meteorites of Canyon Diablo[195], Arizona. Neverthe-
less, natural SiC is extremely rare in nature and, indeed, its discovery was reported later
than its first synthesis. The latter dates back to 1892 by Acheson[196], who was able to
produce powders of SiC from silica and carbon. The use of SiC powders produced by the
Acheson process for cutting, grinding, and polishing was the first industrial application of
SiC.

In the bulk structure of SiC, both Si and C are sp3-hybridized, hence each Si atom
is bonded to four C and viceversa. From the structural point of view, a unique feature
of SiC is the so-called polytypism. Polytypism occurs when a material can adopt several
crystal structures which vary only in the stacking sequences, without any changes in the
chemical composition (Kimoto(2014)[193]). Different crystal structures or polytypes are
the results of a different occupation of sites along the c-axis in a hexagonal close-packed
(hcp) system. There are three sites, which are usually denoted as "A", "B" and "C", as
shown in Figure 6.11. For any stacking sequence, two layers cannot successively occupy
the same sites, i.e. "AA..", "BB..", etc. are not allowed. Despite the existence of an
infinite number of possible stacking sequences, most materials are stable only in one type
of stacking, which is usually the zincblende or the wurtzite structure. In contrast, for SiC
there have been reported more than 200 different polytypes. To distinguish all of these
structures, Ramsdell’s notation is commonly employed, which labels each polytype with a
code "nX", where n is the number of Si-C bilayer in the unit cell andX is the crystal system
(C for cubic, H for hexagonal and R for rhombohedral). The most common polytypes for
SiC are 3C-SiC (often called β-SiC), 4H-SiC, 6H-SiC, and 15R-SiC (which are generally
all referred to as α-SiC). For instance, 4H-SiC is characterized by a hexagonal unit cell
with four Si-C bilayers and the stacking sequence "ABCB..." (see Figure 6.12). 4H and
6H-SiC have become the most popular polytypes for SiC applications since S. Yoshida et.
al.(1987)[197] showed the possibility of growing high-quality samples homoepitaxially by
CVD at relatively low temperatures on off-axis substrates. 3C-SiC is also popular and can
be grown heteroepitaxially on Si substrates.

In both surface science and crystallography, one generally needs to refer to specific
directions or crystal planes. For hexagonal SiC polytypes, the latter are commonly ex-

23In 1906, Henry Moissan won the Nobel Prize in Chemistry for being the first to isolate fluorine.

83



Chapter 6. The rise of curvature in carbon nanostructures

A
B
C
A
B
C

A
B
C
B
A
B
C

A
B
C
A
C
B
A
B
C
A

[111]

[0001]

(a) (b) (c)

3C-SiC

6H-SiC

4H-SiC

Figure 6.12. Schematic representation of the structure of the more common SiC polytytpes: (a)
3C-SiC, (b) 4H-SiC and (c) 6H-SiC. Gold and grey circles denotes Si and C atoms, respectively.
The [111] for cubic and [0001] directions for hexagonal systems are also indicated.

pressed using four Miller-Bravais indices, (h1h2h3lh). The equivalence between a crystal
plane (h1h2h3lh) and the three Miller indices (hkl) is given by the following relationships
(Kimoto(2014)[193]):

h1 = h h2 = k h3 = −(h+ k) lh = l

Similarly, a crystal direction [u1u2u3wh] is equivalent to a direction [uvw] defined by three
Miller indices when the following relationships are satisfied:

u1 = (2u− v)/3 u2 = (2v − u)/3 u3 = −(u+ v)/3 wh = w

Figure 6.13 displays a schematic illustration of the bonding pattern in hexagonal SiC, with
the indication of the (0001) crystal-plane -also called "Si-face" - and (0001̄) - also called
"C-face" 24.

The first excellent properties of SiC that are worth mentioning are the mechanical ones,
which are the direct consequence of its structure and the strong Si-C bond (4.6 eV vs 2.3
eV of a Si-Si bond[198]). SiC is one of the hardest known materials, with Young’s modulus
that reaches 700 GPa for the 6H polytype25[193, 201].Furthermore, SiC retains its high
hardness and elasticity even at very high temperatures. For instance, the yield strength,
i.e. the tendency to fracture, is estimated to decrease from 21 GPa at room temperature to
0.3 GPa at 1000◦C, while for Si the yield strength drops to 0.05 GPa already at 500◦C[193].
Such intriguing mechanical properties are accompanied by a rather unique behavior at high
temperatures. For example, SiC has been shown to melt incongruently at ambient pressure,
i.e. with the Si fraction coming out as liquid and C remaining in the solid phase. Such
decomposition starts at around 2600◦C in the experiments[202]. Congruent melting has
been also reported at high pressure (around 5-7 GPa) but some confusion persists in the
literature about the nature of this phase transition[203].

Figure 6.14 shows the theoretical band structure of the 4H-SiC polytype from Ref.[204]

24In cubic polytypes, such as 3C-SiC, the (111) and ( ¯111) faces correspond to the Si and C face,
respectively

25For comparison, Young’s modulus of the diamond is 1050 GPa[199] while that of Si is just 160
GPa[200].
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Figure 6.13. Schematic representation of the bond configuration in hexagonal SiC polytypes
taken from Kimoto(2014)[193]. Si and C-face are indicated.

, as obtained with GGA-PBE calculations plus a GW correction. It is seen that SiC is
a wide band-gap semiconductor with an indirect band-structure. The indirect band-gap
(Γ-M) predicted theoretically by GW is 3.26 eV and agrees well with the experimental
value, 3.29 eV. For the two other more common polytypes, 3C and 6H, the band-gap
is smaller (2.36 and 3.02 eV respectively)[193]. The band-gap is known to decrease at
increasing temperatures but the large value for SiC (compared to 1.12 eV for Si[205] or
1.4 for GaAs[206], for instance) makes it able to operate at high temperatures without
suffering from intrinsic conduction effects. In addition, SiC has a breakdown electric field
strength much larger than that of Si (2.4 × 106 MV/cm vs 0.2 × 106 MV/cm), meaning
that it can withstand a large electric field or voltage gradient without suddenly becoming
an electrical conductor[207]. Last but not least, SiC is characterized by a high thermal
conductivity (4.9 W/cm·K for 4H-SiC[193, 208] vs 1.5 for Si[209]).

The excellent properties of SiC (the most relevant are summarized in Table 6.2) open the
possibility for a great variety of applications. Some of them are already exploited in modern
industry, others are still under scrutiny[192, 194]. For instance, SiC is already used as an
abrasive or structural material, for high-performance brake disks in automobiles, as a fuel in
steel production, as catalyst support, in membrane technology, medical implants (thanks to
its biocompatibility), and, more recently, in electronic devices such as Schottky diodes[192,
194]. Nevertheless, further investigations are needed to "unlock" all the potentialities of
SiC (e.g. the role of defects). Because of its superior quality to Si, SiC has especially
attracted the attention of modern research into semiconductors and it is expected to play
a game-changing role in the field of high-power/high-voltage/high-temperature devices.
Finally, SiC may soon enable the large-scale production of graphene, which is indeed the
main point of this Section.

6.4.2 The (6
√
3× 6

√
3)R30◦ Surface Reconstruction

The buffer layer graphene is grown on the Si-terminated (0001) face26 by thermal annealing
of 4H or 6H-SiC(0001) samples, which are previously thermally etched with hydrogen to

26Growth of the buffer layer has been reported also on the C-terminated (0001̄) face. In this case, the
graphene formation starts at lower annealing temperatures and it is much faster than on the Si-terminated
face, making more difficult the precise control of the number of layers grown.[171, 210]
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Figure 6.14. (a) Representation of the Brillouin zone of hexagonal SiC polytypes taken from
Kimoto(2014)[193]; (b) Electronic band structure of 4H-SiC, obtained by GGA-PBE+GW correc-
tion from Ref.[204]

Table 6.2. Main mechanical, electrical and thermal properties of the two more popular SiC poly-
tytpes (4H and 6H) compared to Si. Unless specified differently, all data are at room temperature.

Property 4H-SiC (6H-SiC) Si

Mechanical[193]

Density (g/cm3) 3.21 2.33
Young’s modulus (GPa) 390 (690) 160
Poisson’s ratio 0.21 0.22
Fracture strength (GPa) 21 7

Electrical

Bandgap[204] (eV) 3.26 (3.09) 1.12
Breakdown 2.4 · 106 0.2 · 106

electric field[193] (MV/cm)
Electron mobility[192] (cm2/(V·s) 1000 (400) 1400
Intrinsic carrier concentration 5 · 10−9(1.6 · 10−9) 1.0 · 1010

(at 300K (cm−3))[192]
Saturated electron 2.0 · 107 1.0 · 107

drift velocity (cm/sec)[192]

Thermal[193] Thermal conductivity (W/(cm·K)) 3.3 (4.9) 1.4-1.5
Specific heat (J/(g·K) 0.69 0.7
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remove any polishing damage[25]. This treatment allows obtaining atomically flat terraces
where graphitization can occur. The thermal annealing can be then performed either in
Ultra High Vacuum (UHV) conditions or under a controlled Ar atmosphere in a radio-
frequency induction furnace27[25, 171, 161, 212]. When UHV conditions are employed, the
optimum preparation process can be divided into three main steps[161]:

(i) The sample is annealed at 850◦C under Si flux, leading to the formation of a Si-rich
3× 3 reconstruction;

(ii) Further annealing at around 950◦C-1000◦C leads to a (
√

3×
√

3)R30◦ phase;

(iii) If the temperature is further increased to 1100-1150◦C, the well-ordered (6
√

3 ×
6
√

3)R30◦ phase is formed. Between 1100◦C and 1200◦C, (
√

3 ×
√

3)R30◦ still co-
exists with the (6

√
3 × 6

√
3)R30◦ phase, until 1250◦C is reached, where the smaller

periodicity disappears.

One can directly go from step (i) to step (iii) by reaching directly the target temperature,
without the formation of the intermediate (

√
3 ×
√

3)R30◦ reconstruction. Heating is
generally conducted by electron bombardment.

The controversial debate about the exact periodicity of the surface reconstruction has
arisen from different interpretations of the LEED pattern and STM images. Indeed, the
(6
√

3× 6
√

3)R30◦ phase, which we call 6R3 henceforth, actually comprises different peri-
odicities, with the 6 × 6 and 5 × 5 the most commonly observed in the experiments[25].
These periodicities are a consequence of the relationships between graphene and SiC lat-
tice constants, that can give rise to a large number of commensurate structures. Following
J. Hass et. al.(2008)[170], if we define aG, bG (aSiC, bSiC) the lattice vectors of graphene
(SiC) , the commensurate phases can be calculated by setting:

|n′aSiC +m′bSiC| ≈ |naG + bG|

where n′,m′, n,m are integer numbers. In terms of the SiC unit vectors and employing
Wood’s notation, both l × l and (l

√
3 × l

√
3)R30◦surface reconstructions can give rise to

commensurate structures, provided that

l =


⌊
aG
aSiC

RG

⌋
(l × l)

⌊
aG

aSiC
√

3
RG

⌋
(l
√

3× l
√

3)R30◦

where b...c is the floor function, aG = 2.46Å (aSiC = 3.08Å) is the lattice constant of
graphene (SiC) and RG =

√
n2 +m2 − nm is a dimensionless distance. The rotation

angles of the graphene sheets w.r.t. to the SiC n′aSiC are given by[170]:

θ(mod 60◦) =

cos−1
(

2m−n
RG

)
(l × l)

cos−1
(

2m−n
RG

)
− 30 (l

√
3× l

√
3)R30◦

27Historically, the thermal decomposition in UHV conditions was the first method employed for the
fabrication of graphene on SiC[172]. Afterwards, in 2009, Emtsev et. al.[211] report the possibility of
growing graphene on SiC also in Ar atmosphere. The use of Ar environment has shown to be better than
UHV in producing graphene samples of high-quality morphology. Such improvement has been related to
the slowing down of the Si evaporation process promoted by the reflection back to the surface of desorbed
Si atoms after colliding with Ar atoms[171]. Later, other fabrication techniques have been proposed.
Nowadays, one of the most used fabrication method is the annealing in the presence of an external Si-flux,
in either UHV conditions or Ar atmosphere. In this Si-flux method, the quality of the graphene samples
is determined by the control of Si vapour pressure using disilane gas.
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Figure 6.15. (a) LEED pattern of the (6
√

3×6
√

3)R30◦ reconstruction at 140 eV, with reciprocal
unit vectors of SiC (green) and graphene (red); (b) Sketch of the different diffraction spots seen
within the 6R3 LEED pattern taken from Ref.[25], originating from four grids: 5 × 5, 6 × 6,
(3
√

3× 3
√

3)-R30◦, (6
√

3× 6
√

3)R30◦.

Table 6.3. A short of list of commensurate graphene/SiC structures taken from Ref. [170]. The
strain ∆l/l is defined as (1− l)/l.

Commensurate SiC unit cell Graphene angle relative to SiC ∆l/l (%)

(6
√

3× 6
√

3)R30◦ 30◦ 0.15
(quasi 6× 6)
9× 9 30◦ ± 2.543◦ 0.05
(quasi 3

√
3× 3

√
3)

5× 5 ±16.10◦ -0.30
(2
√

3× 2
√

3)R30◦ ±6.59◦ 0.44
(quasi 2× 2)

A LEED pattern and a sketch of the different diffraction spots taken from the review of
C. Riedl et. al. (2010)[25] are displayed in Figure 6.15. On this LEED image, spots
corresponding to the 5 × 5 periodicity are hardly visible. Indeed, as shown by Riedl. et.
al.(2007)[161], the appearance of the 5 × 5 domains highly depends on the preparation
process, with more intense spots appearing when an ex-situ prepared (

√
3×
√

3)R30◦(R3)
phase is annealed without Si deposition. Lately, the 5 × 5 periodicity has been rarely re-
ported since it has become a common practice the use of Si-flux throughout the preparation
procedure (see footnote 27 on pag. 87). Spots on the

√
3 grid are residual of the interme-

diate surface reconstruction and disappear as the annealing temperature is increased. On
the other hand, the 6×6 periodicity has been the main source of misunderstanding28, since
a 6× 6 corrugation is often imaged by STM[213, 214, 215, 216]. However, this periodicity
has been proved to be pronounced only at high tunneling bias. When a low tunneling
bias is used (around 0.2 eV) 6R3 periodicity is resolved and a clear moiré pattern with
irregular hexagons emerge[173]. Indeed, as shown in Figure 6.16, on the STM image two
types of rings of different sizes can be identified. In addition, in the larger rings three
protrusions - which are part of a diamond of four atoms - are visible[25, 161]. The latter
are not repeated within the 6 × 6 periodicity, rather they are compatible with the 6R3.
The latter is thus the only structure that can account for both the LEED pattern and the
STM images. For completeness, we report in Table 6.3 a short list of the commensurate
graphene/SiC structures taken from Ref.[170].

28On the 6R3 reconstruction there are some high-symmetry points, where a C atom of the buffer layer
sits directly above an atom of the SiC or where an atom of the SiC lies below the center of an hexagon of
the overhead buffer layer. These high-symmetry points are those that define a (quasi)-6x6 unit cell (see
Fig. 6.16 (a))
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Figure 6.16. (a) Atomically resolved STM micrograph at Utip = 1.7 V, showing the 6 × 6 unit
cell taken from Ref.[161]; (b) Atomically resolved STM micrograph at Utip = 0.2 eV, showing the
(6
√

3× 6
√

3)R30◦ periodicity taken from Ref. [25].

We should mention that some authors have suggested a different interpretation of the
LEED pattern. For instance, in the original work of Von Bommel et. al.(1975)[172], the
diffraction spots were assigned to a "pure" moiré pattern, i.e. formed by the SiC 1×1 unit
cell and graphite (without any reconstruction). Indeed, the 6R3 periodicity is the result of
the lattice mismatch between graphene (2.46Å) and SiC (3.08Å). However, as indicated
by the different intensities of the spots in the LEED pattern, the atoms on the 6R3 surface
are buckled, because of the different strengths of the C-Si bonds that we mentioned at the
beginning. Furthermore, the band structure of the 6R3 reconstruction - that we are going
to discuss shortly - is incompatible with such interpretation.

From the theoretical standpoint, even though the formation of the 6R3 phase has been
confirmed, few works in the literature report the modeling of such periodicity. The main
difficulties arise from the exceptionally large size of its unit cell. The latter has a 32Å
side length ( = (3.08 × 6 ×

√
3) with 3.08Å the SiC 1 × 1 lattice parameter), resulting

in 108 Si atoms and 108 C atoms per SiC bilayer and 338 atoms in a graphene layer
( corresponding to a 13 × 13 graphene superlattice). For the 4H-SiC polytype, the to-
tal number of atoms in the cell amounts to 1310 ( = 338 atoms of the graphene layer
+ [(108 Si atoms + 108 C atoms)× 4] atoms of the SiC substrate + 108 H atoms to satu-
rate the danglings bonds on the C-face), thus posing a great obstacle from the computa-
tional point of view.

Having established the role of the 6R3 periodicity, we shall comment on its electronic
structure. As shown by ARPES measurements[25, 188] and theoretical band structure[181,
217] calculations, the buffer layer preserves the σ-band structure of graphene but the linear
band crossing around the Fermi level typical of Dirac fermions is absent (see Figure 6.17 (a)
and 6.18 (a)). This is consistent with the breaking of the π-network due to the formation
of CSi bonds between the BLG and the SiC substrate. In particular, according to the area
ratio between peaks of three-coordinated and four-coordinated (i.e. Si-bonded) C atoms in
the Core-Level PhotoElectron Spectroscopy (CLPES) spectrum, around 30% of C atoms
are bonded to SiC (see Figure 6.17)[25]. Lacking the π-band structure of graphene and
being a precursor of the epitaxial monolayer, the term "zero-layer" graphene has then been
often used to refer to the 63R phase[25, 188, 218, 219, 220].

6.4.3 Few-layers graphene on SiC

When the 6R3 structure is annealed at T > 1350◦C, true epitaxial graphene layers are
formed on top of the surface reconstruction[174, 182], with the number of layers depending
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Figure 6.17. (a) Inverse grayscale plot of the band structure of the (6
√

3 × 6
√

3)R30◦ surface
reconstruction near the K point obtained by an ARPES experiment perpendicular to the ΓK-
direction taken from Ref. [188]; (b) C 1s spectrum of the (6

√
3× 6

√
3)R30◦ surface reconstruction

( incident photon energy of 600 eV) and its decomposition into different carbon components taken
from Ref. [25]: the S1 peak result from four-coordinated carbons, i.e. carbons that are directly
bonded to one Si atom of the underneath SiC, the S2 peak result from three-coordinated carbons
of the buffer layer while the "SiC" peak refers to carbons of the SiC structure.
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Figure 6.18. (a) Band structure of the buffer layer in the (
√

3×
√

3)R30◦ surface reconstruction
on SiC(0001) and (b) of the monolayer graphene as obtained by plane-wave DFT calculations,
taken from Ref. [217].The shaded energy regions are the projected energy bands of SiC.
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Figure 6.19. The π and π? bands near the Fermi level for 1 (a) and 2 (b) graphene layers;
Photoemission images of 1(c) and 2 (d) graphene layers along the symmetry direction Γ-K-M -Γ.
The dashed lines are scaled DFT band structure of freestanding films. Both images are taken from
Ref. [182].

on the annealing temperature[210, 221, 222]. Again, the experiment can be performed
in a UHV chamber or Ar atmosphere. Interestingly, it was also demonstrated that the
growth of the graphene layer can also be accomplished at a lower temperature (950◦C)
if additional carbon atoms are supplied like in molecular beam epitaxy[223]. Anyway,
the formation of the graphene layers is mediated by the 63R reconstruction, regardless
of the preparation procedure[174]. The covalent bonds between the buffer layer and the
substrate break and the Si atoms at the interface desorb. Accordingly, the buffer layer is
released and thus transformed into a true graphene layer. Simultaneously, the 6R3 phase
is reformed underneath, as it has been confirmed experimentally by CLPES spectra[25].
Since each graphene layer comprises 338 atoms, it is clear that three bulk SiC bilayers (108
C atoms times 3) are needed to form each graphene layer. Such a growth process, with
the unaltered presence of the 6R3 phase, forces the graphene layers above to be rotated
by the same angle (30◦) w.r.t. the SiC substrate. The stacking that is commonly observed
experimentally is the Bernal stacking (ABAB...)29

One of the most compelling features of the C/Si interface is that it allows precise
control and counting of the number of layers grown[25, 170]. ARPES and LEED are again
suitable experimental techniques for this purpose. The first relies on the modification of
the electronic band structure that occurs when the number of layers is increased. Indeed,
in contrast to the buffer layer[226], the monolayer graphene displays the typical linear band
crossing. Yet, the Dirac point (ED) is not located at the Fermi energy, but it is shifted
420 meV downwards, leading to a strong n-doping ( n ≈ 1013cm−2)[25, 181, 226] (see
Figure 6.18 (b) and 6.19 (a)), regardless of the preparation procedure or SiC polytype[25].
As shown by both experimental and theoretical simulations, a close inspection of the
band structure reveals the presence of a band gap (≈ 200 meV) with a midgap state (see
Subsection 1.3.2) in the middle[181, 227]. This midgap state has been ascribed to the
sublattice symmetry breaking determined by the interlayer coupling. When an additional
layer forms on top of the graphene layer (i.e. bilayer graphene on SiC), two parabolic
π-bands are observed in the ARPES measurements. The bands are still shifted by the
n-doping, albeit less than in monolayer graphene (ED ≈ −300 meV). Still, a band gap of
100 meV is observed (see Figure 6.19)[25, 182, 222, 228]. By a straightforward counting of
π-branches, ARPES can be then used to control the number of layers.

ARPES is an accurate techinque but, as it often happens in science, it is a complex
experiment that is not always available. A convenient alternative is provided by the LEED

29The rhombohedral stacking (ABC...) is also common in graphene, being energetically close to the
Bernal one (see for instance Ref. [224]). It characterizes about the 14% of all natural graphite (vs 80% for
the Bernal and <6% for the least common hexagonal, AA, stacking)[225].
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Figure 6.20. (a) LEED pattern from Ref. [25] of the (6
√

3 × 6
√

3)R30◦ surface reconstruction.
In the inset, the graphene (10) spot is marked in green; (b), (c) and (d) the graphene (10) LEED
spots for the different numbers of epitaxial graphene layers grown on 4H-SiC obtained at 126 eV.

experiment. Indeed, during the graphitization process, the LEED pattern undergoes vis-
ible variations[25, 161]. Figure 6.20 displays three LEED patterns at different annealing
temperatures showing the (10) graphene spot with the surrounding spots of the 6R3 phase.
We note that for the buffer layer the graphene spot is weaker than its surrounding spots,
for the monolayer they have approximately the same intensity, whereas for the bilayer the
graphene spot is brighter than the surrounding spots. Thus, LEED can be used as a qual-
itative but practical, in-situ technique to distinguish, at least, from the buffer, the mono,
or the bilayer graphene on SiC.

6.4.4 Hydrogen intercalation and adsorption

The buffer layer graphene does not have the same electronic properties as free-standing
graphene because of the strong interactions with the SiC substrate. Therefore, it is elec-
tronically inactive. In addition, as previously discussed, the buffer layer also affects the
electronic band structure of the overhead layer, which is n-doped. For a practical appli-
cation, such an n-doping has then to be reversed. A possible approach is represented, for
example, by the deposition of organic molecules with strong electron-acceptor groups, such
as F4-TCNQ[229, 230]. However, this reverse doping does not change the nature of the
interface layer.

In contrast, the use of molecular hydrogen has drawn great attention in the last few
years because it allows the transformation of the inactive buffer layer into a true graphene
layer[183, 184, 185, 186, 187, 188, 231, 232].

When the 6R3 phase is exposed to H2 (with a partial pressure of about 950 mbar)
at 600◦C, H atoms intercalate into the buffer/SiC interface and saturates the Si atoms in
the uppermost SiC layer30. Accordingly, the buffer layer decouples from the interface and
transforms into a quasi-free standing layer. Once decoupled, this layer shows the typical
linear dispersing π-bands but the Fermi level is shifted below the Dirac point by about 100

30According to theoretical simulations, hydrogen cannot penetrate the buffer layer at 600◦C. There-
fore, it has been suggested that hydrogen penetration occurs through defects, such as vacancies, grain
boundaries, or open-core screw dislocation[232]
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(e)

Figure 6.21. π-bands measured with ARPES at the K point for (a) monolayer graphene on
SiC(0001), (b) after deposition of a partial F4-TCNQ film, (c) after saturation with F4-TCNQ
molecules and (d) after further growth of a second layer of F4-TCNQ, taken from Ref. [229]; (e)
molecular formula of F4-TCNQ.

C

Si

DB

C

Si

H

(i)

(l)

Figure 6.22. π-band dispersion measured with ARPES perpendicular to the ΓK-direction for (a)
buffer layer (zero-layer, ZL) graphene, (b) after H intercalation, (c) after subsequent annealing to
700◦C and (d) to 900◦ taken from Ref. [25]. π-band dispersion for (e) monolayer graphene (ML),
(f) after H intercalation, (g) after annealing to 700◦C and (d) to 1000◦C. (i) Pictorial representation
of the buffer layer graphene and (l) monolayer graphene after H treatment.

meV, resulting in a slight p-doping[188, 233]. To eliminate the p-doping, the sample has
to be heated to 700◦C, thus leading to the original band structure of graphene (see Figure
6.22). An additional advantage of hydrogen intercalation is its complete reversibility[25,
188]. Indeed, the heating of the sample at 900◦C determines the breaking of Si-H bonds and
progressive desorption of H atoms, which ultimately re-establish the buffer layer structure.

When the hydrogen treatment is applied to the monolayer graphene, bilayer graphene
is formed as a consequence of the buffer layer decoupling[25, 188, 234]. Again, the π-bands
show p-doping which can be removed by heating to 700◦C. The structure with the inactive
buffer layer and the graphene layer on top can be re-formed by increasing the temperature
to 1000◦C[25, 188].

While the hydrogen intercalation has been addressed by several experimental and theo-
retical works, the hydrogenation of the buffer layer has been poorly investigated in the liter-
ature. Furthermore, at present, modeling of the C/Si interface has been limited to systems
with a reduced dimensionality - i.e. with surface reconstruction that differs from the experi-
mental 6R3 phase. Experimentally, at lower temperatures (< 750◦C) hydrogen atoms have
been shown to covalently bind to carbons of the buffer layer instead of intercalating[189].
Pioneering works in this field are those of F. C. Bocquet and coworkers[183, 184]. Ex-
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posing buffer layer sample to hydrogen at room temperature and performing LEED and
HREELS measurements as function of annealing temperature, they showed that H atoms
bind to the buffer layer and are remarkably stable up to ≈ 750 K[183, 184]. These findings
determines a narrow temperature window (≈ 750-1100) for the preparation of quasi-free
standing graphene on SiC by H intercalation, because the latter is expected to compete
with H chemisorption on the buffer layer and H desorption from the intercalation site ('
1100 K)[183, 184].

The H binding energies are expected to be considerably larger on the buffer layer than
on free-standing graphene, because of the strong sp2-sp3 rehybridization induced by the
surface reconstruction[184, 235]. For instance, a plane-wave DFT investigation with a
(4
√

3× 4
√

3)R30◦ reconstruction, with graphene uniformly stretched by about 1.4%, have
provided H binding energies up to 3.5 eV[236]. Furthermore, experiments indicate that the
buffer layer is drastically modified upon hydrogenation, as evidenced by the transformation
of the (6

√
3 × 6

√
3)R30◦ LEED pattern into a quasi-(1 × 1)[184]. Yet, the esteem of H

binding energies on the experimental 63R phase is still lacking in the literature.
Hydrogenation of hydrogen (deuterium) intercalated quasi-free standing graphene on

SiC have also been addressed and its stability confirmed in vacuum up to 550 K[183]. The
latter can be obtained in a two step procedure, as shown by F.C. Boquet at. al.[183]:
first, the intercalation of deuterium below graphene at 950 K and, second, the hydrogen
adsorption on graphene at 300 K. The observation of SiD oscillators confirms the nature of
the intercalation used to obtain quasi-free-standing graphene on SiC, i.e., the intercalated
D is covalently bound to the silicon atoms of the SiC substrate. Likewise, the observation
of CH oscillators proves the successful hydrogenation of quasi-free-standing graphene on
SiC and is consistent with the observation of a drastically reduced DOS near the Fermi
level[183].

As for the graphene layer hydrogenation, there is still little knowledge in the literature.
As we mentioned earlier, the graphene layer is not flat over long-range, but its morphology
is modulated by the underneath surface reconstruction. Goler et. al.[237] showed that
when the graphene layer is exposed in-situ to atomic hydrogen, H atoms preferentially
stick on the maximally convex areas of the C-lattice, forming ortho and para dimers and
even tetramers. These C-H bonds have shown to be chemically stable up to 650◦C. On the
contrary, H atoms did not attach to locally concave parts of the surface. As discussed for
rippled graphene, this preferential sticking combined with the known flexibility of graphene
may be exploited in a future generation of hydrogen storage devices[237]. However, further
studies are needed on this front. In particular, investigation of the graphene layer hydro-
genation is still missing.

The curvature features of the C/Si interface combined with its incredibly technological
value have motivated part of the present work. Chapter 8 and 9 are entirely dedicated to
the C/Si interface. In these Chapters, the hydrogenation of the buffer and graphene layers
on the experimentally observed 6R3 reconstruction is addressed, thus bridging the gap in
the current literature.
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Chapter 7

Bending the rules of PAHs
hydrogenation: the case of
Coroannulene

The first curved system that we present and discuss is coroannulene (C20H10). In Section
6.2, we have introduced this molecule as one of the simplest structures among the family
of curved aromatics, which results from the substitution of the inner 6-membered ring of
coronene with a 5-membered ring. In this Chapter, we discuss in particular the result of
a DFT investigation of the step-wise hydrogenation reaction of coroannulene (C20H10+n,
with n = 1−20) . The work is parallel to that presented in Chapter 4 for coronene[92] and
was motivated again by a collaboration with the experimental group of Prof. L. Hornæker
from the Aarhus University. They exposed coroannulene films grown on a HOPG sub-
strate to a beam of atomic hydrogen. Next, they carried out a temperature-programmed
desorption experiment and monitored the desorption (super hydrogenated) products with
a quadrupole mass spectrometer. The resulting mass distributions, shown in Figure 7.1,
display the appearance of prominent peaks at specific mass-to-charge (m/z) ratios, indi-
cating the accumulation of hydrogenated species more stable than others. A theoretical
investigation of the step-wise hydrogenation of coroannulene was then conducted to iden-
tify such configurations and explain their particular stability. Moreover, through a direct
comparison with coronene, the system is suited to the study of curvature effect on the H
adsorption, thus fitting the main purpose of the present work. This Chapter is organized as
follows: in Section 1, we briefly summarize the computational details of our calculations; in
Section 2, we compare the first H addition in coronene and coroannulene; in Section 3, we
discuss the main hydrogenation pathway leading to perhydrocoroannulene (fully superhy-
drogenated coroannulene); in Section 4, we discuss a proposed alternative pathway and in
Section 5, we comment on some features of the thermal desorption spectra of coroannulene.

7.1 Method

The calculations were performed with the M06-2X[93] exchange-correlation1 functional in
the spin-unrestricted set-up, with the help of the Gaussian16 code[103]. The 6-311G(d,p)
atom-centered basis set was adopted throughout and tight convergence criteria were set on
both the electronic and the structural optimizations. Optimized structures were checked
with harmonic frequency calculations. Binding energies for the addition of H atoms were

1This is the same hybrid-meta GGA functional employed for coronene and selected after the careful
benchmark study on PAH chemistry discussed in Chapter 3.
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Figure 7.1. Mass distributions at different hydrogen exposure time. (Dr. R. Jaganathan and L.
Hornæker, private communication).
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Figure 7.2. Main geometrical parameters of the coroannulene molecules.

computed for a number of sites i according to the following expression

Dn+1
i = En? + EH − En+1

i (7.1)

where En? is the DFT energy of the most stable isomer with n extra hydrogens, EH is the
energy of a hydrogen atom and En+1

i is the energy of the structure with an additional H
at site i. Keeping the same notation introduced for coronene, a star (?) is used to denote
the most stable site, i.e. Dn

? ≡ maxi{Dn
i }. The plausible adsorption sites (typically 3-4

per step) were selected with the help of chemical intuition and at first guided by the rules
established for coronene (see Subsection 4.3.1), even though, as we shall see later, the
presence of curvature and the 5-membered ring introduces some striking differences. The
hydrogenation sequence was continued by selecting at each step the structure with the
largest binding energy2. Energy barriers were computed for the most relevant cases only,
by performing a transition-state search and subsequent frequency analysis.

7.2 First H addition: coroannulene vs. coronene

We begin by briefly describing the geometrical structure of coroannulene. Coroannulene
is a bowl-shaped molecule consisting of a central 5-membered ring surrounded by five
fused 6-membered rings. Figure 7.2 summarizes the main geometrical parameters. As for
coronene, all CC bonds in coroannulene display a bond length that is intermediate between
a single CC (sp2) (1.48Å) and a double CC (1.34Å) bond. On the edges, short (1.38Å)
and long (1.45Å) bonds alternate. These bonds are slightly elongated with respect to
those at the edges of coronene, displaying a bond-length alternation (BLA) of 0.07Å (vs.
0.05Å for coronene). Bonds of the 5-membered ring have a length of 1.42Å. Bond angles
at a central C are 122.8◦, 122.8◦ and 108.0◦, that is the discrete Gaussian curvature (the
angular defect, see Section 6.2) at C in the 5-membered ring is 6.4◦ (about the average of
K in C60 fullerene). The h/R ratio, where h is the height of the bowl and R its radius
is ≈ 0.243 Overall, these geometrical parameters are in good agreement with available
experimental and theoretical data[238].

Table 7.1 summarizes the results for the first hydrogenation of both coroannulene and

2Notice that, again, this does not guarantee that the structure is the lowest energy one for the given
hydrogenation level, see footnote 3 on pag. 50.

3Here, h is calculated as the distance between the centroid of the 5-memebred ring (or equivalently
any of the C atoms in the ring) and the plane containing the outer edge carbons. Then, R is calculated as
the distance between the centroid projected on the plane and one of the outer edge site (see Figure 7.2).
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Center
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Figure 7.3. The three non-equivalent sites of coroannulene.

coronene. Both molecules are characterized by three non-equivalent sites: two-coordinated
sites in the π-system (Z = 2) on the edge, three-coordinated (Z = 3) sites on the edge,
and three-coordinated sites (Z = 3) in the inner ring, which we again refer to as outer
edge, inner edge, and center sites, respectively (see Fig.7.3).

Table 7.1. Binding energies, D (eV), and sticking barriers, Es (meV) for the hydrogenation on
the three non-equivalent sites of coronene (C24H12) and coroannulene (C20H10). These values are
zero-point energy corrected.

C24H12 C20H10

D Eb D Eb

Outer edge 1.11 235 1.37 180
Inner edge 0.37 446 0.76 296
Center 0.30 423 1.23 155

The 5-membered ring determines two important features of coroannulene:

(i) From the topological point of view, it breaks the bipartite nature which is instead
a characteristic of coronene. In Section 2.1.1, we have seen that in bipartite lattice
(like graphene or some PAHs) we can define the concept of π-hyperconjugation[52].
The highest is the π-hyperconjugation of a C in the lattice, the largest is its hydrogen
affinity. Therefore, this concept can help identifying the most reactive site during an
H addition[92]. In this case, π-hyperconjugation can no longer be invoked to explain
the hydrogenation at specific lattice positions;

(ii) As discussed in Section 6.2, the presence of a 5-membered ring is a sufficient condition
for the structure to bend, thus forming a bowl-shaped molecule.

From a chemical point of view, the presence of curvature determines at first the pyramidal-
ization and rehybridization of C atoms. Table 7.2 reports the rehybridized "sp2" hybrids
and the pyramidalization angles, computed through Equations 6.1, 6.2 and 6.5. The cur-
vature determines a substantial pyramidalization of carbon atoms of the inner ring, that
displays θP ≈ 8.36◦. Outer and inner edge sites, with θP respectively of 1.63◦ and 3.81◦,
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Convex

Concave

Figure 7.4. Representation of the hydrogen sticking on a center site on the convex and concave
face of the molecule.

are instead less affected by the rehybridization. Center sites are found in a configuration
that most closely resembles the sp3 (θP = 19.5◦), therefore, from a geometrical perspective,
they are expected to be more "prepared" to accept an incoming H. This should translate
into higher binding energy and a reduced barrier to sticking.

Table 7.2. s-weights and corresponding hybridization (in brackets) of the σ-like orbitals, s-weight
of the π-like orbital and pyramidalization angles θP at each of the three non-equivalent sites of
coroannulene.

σ-like π-like θP

Outer edge 0.31 (sp2.26) 0.34 (sp1.95) 0.35 (sp1.84) 0.0016 1.63
Inner edge 0.21 (sp3.71) 0.39 (sp1.57) 0.39 (sp1.57) 0.0088 3.81
Center 0.49 (sp1.05) 0.24 (sp3.24) 0.24 (sp3.24) 0.041 8.36

Indeed, from a direct comparison of the H adsorption energetics on the two molecules
(see Table 7.1), we note that center and outer edge sites of coroannulene display a compa-
rable hydrogen affinity. In particular, the rehybridization increases the binding energy of
center sites by 310% and reduces the barrier by 64% with respect to coronene. Planarity
and bipartitism of coronene determine a strong edge localization of frontier orbitals, which
translates into very large D and small Eb for H addition on outer edge sites (Z = 2, ξ = 2).
Here, the curvature "breaks" in a sense such a strong edge localization, and, through
pyramidalization, contributes to considerably increasing the reactivity of center sites. The
undercoordination (Z = 2) typical of outer edge sites still determine a great reactivity
of these lattice positions but it no longer represents a net driving force of the reaction.
Noteworthy, the barrier to stick the H on the center site is smaller (by ≈ 25 meV) than on
the outer edge, because the surface is to some extent already puckered around this lattice
positions4.

For the center hydrogenation, one may distinguish between a sticking from the convex

4Remind that the activation barrier for the H adsorption on graphene is mainly due to the puckering
of the surface (see Section 1.3).
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Figure 7.5. Main (Left) and Alternative (Right) hydrogenation sequence.

face (whose energetics is the one reported in Table 1) and from the concave face5(see Figure
7.4). When considering the concave hydrogenation, an inversion of the molecule occurs
during the optimization process. Such inversion restores the orientation with the H on the
convex face. This is a consequence of the great flexibility of the coroannulene molecule, as
indicated by its small bowl-to-bowl inversion barrier (≈ 442 meV at 209 K[239]).

7.3 Main hydrogenation pathway

The lowest energy addition pathway is displayed in Figure 7.5 (Left). We remind that
this sequence is obtained by selecting at each hydrogenation step the structure i with the
largest binding energy (Dn

? ). The energetics along this path is displayed in Figure 7.6, which
reports the sequential H adsorption energy (Dn

i ) as vertical bars. As we have discussed
for coronene, even-numbered species are in a closed-shell (singlet) ground-state, while
odd-numbered species are in an open-shell (double) ground-state. The energetics shows
again an evident even-odd alternation, arising from the larger binding energies resulting
from radical-radical reactions, i.e. those forming even-numbered C20H10+n species. The
amplitude of the oscillation is rather irregular in this case, but, on average, its value
(≈ 1.8 eV) is smaller than that found for coronene (≈ 2.5 eV). This is indicative of a
reduced π-bond strength6 w.r.t. to the flat case, as expected by the reduced overlap
between p orbitals induced upon bending.

The largest binding energies are found for coroannulene with a specific number of extra
H, namelyDn

? = 3.63, 3.33, 3.38, 3, 28, 3.47, 3.75, 3.29 and 3.37 eV for n = 4, 6, 8, 10, 12, 14, 16
and 18, respectively7. The stability of these species is further corroborated by the appear-
ance of sizeable barriers to further sticking Eb (reported in Table 7.3), which are known to
correlate well with D (i.e., the larger the binding energy the smaller the barrier[240]).

The largest adsorption barrier (for the reaction C20H10+n + H → C20H10+n+1) are

5The terms concave and convex may create some confusion in this context. When referring to surfaces
of separation, convex or concave refers to the type of set enclosed by the surface itself considered as an
external face. For instance, the external face of a sphere is a convex face because it encloses a topologically
convex space region. With this definition, in a convex (concave) hydrogenation the hydrogen is stuck on
the convex (concave) face, i.e. it approaches the coroannulene molecule from a region that is topologically
concave (convex).

6As seen in coronene, the breaking of the π-bond is a step required only when forming odd-numbered
species. Then, the even-odd alternation of binding energies can be considered as a rough measure of the
π-bond strength, provided that each species is in its ground-state.

7For all the other species, Dn
? ≤ 3.0 eV.
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Table 7.3. Energy barriers (meV) for forming the n-times coroannulene superhydrogenated species
(C20H10+n) along the two pathways depicted in Figure 7.5 (N.D. = not determined).

n Main sequence Secondary sequence

1 180 155
3 49 161
5 152 120
7 23 175
9 155 155
11 0.0 41
13 80 112
15 199 207
17 0.0 0.0
19 125 49

found for n = 4, 8, 12, 14, 18, thus indicating a great stability for such hydrogenated species.
Overall, these results are in good agreement with the thermal desorption spectra, but some
differences between theory and experiment appear.

For instance, n = 4 is not found to accumulate in the mass traces, although, according
to our findings, this should be a rather stable structure. The stability of n = 4 is, after all,
supported by an electronic effect. In coroannulene, the maximal number of benzenic rings
that one can draw with six delocalized π-electrons, a.k.a. Clar’s number [241] (C), is 2. The
set of six delocalized π-electrons that form a benzenic cycle is usually referred to as Clar’s
sextet. In bare coroannulene, one can realize up to 5 resonance structures with two Clar’s
sextets (rC = 5), also called Clar’s structures. (see Figure 7.8). As H atoms are attached to
the molecule, the number of possibile resonance structures involving 2 Clar’s sextets (that
is, the maximal Clar’s number) is progressively reduced. In particular, for n = 4, one can
draw just two resonance structures preserving this maximal Clar’s number. As soon as a
5th H is stuck on the molecule, regardless of its position, such a resonance is fully removed
and one can draw just a single Clar’s structure with two benzenic rings. Therefore, at least
in the gas phase, n = 4 is expected to be a first "obstacle" to the full hydrogenation of
coroannulene, as corroborated by the large barrier (≈ 152 meV) resulting from our DFT
calculations. The absence of a peak corresponding to this specie in the thermal desorption
spectra may be due to interaction with the substrate, which may facilitate the addition of
the next H atom8.

For n = 6 and n = 10, the situation is somewhat reversed. These structures are found
to accumulate during the experimental hydrogen exposure, even though the computed
small or even vanishing adsorption barriers indicate a small kinetic impediment to the
next H attachment.

In the region of high superhydrogenated structures, the mass distributions show promi-
nent and persistent peaks at n = 14, 16, 17 and 18. The accumulation of n = 14 is in perfect
agreement with our findings: n = 14 has both the largest Dn

? (3.74 eV) and Eb to further
sticking (200 meV) along the entire pathway. Note, indeed, that, when 14 H atoms are
attached to coroannulene, the molecule is left with one 6-membered aromatic ring, i.e. a
stable structural motif that requires extra energy for next hydrogenation to occur.

The presence of a peak corresponding to n = 17 is undoubtedly the most singular
feature of the thermal desorption spectra of coroannulene. Odd-numbered species should
not accumulate during the hydrogen exposure because their hydrogenation is expected to

8In this respect, it is worth noticing that the exact orientation of the coroannulene molecule on the
substrate is not known.
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Figure 7.6. Energetics along the main hydrogenation pathway. Vertical bars indicates (minus)
the binding energy of the nth hydrogen, grey triangles indicates the barrier of the n→ n+1 (meV,
multiplied by 2), while black dots marks the binding energies of additional sites considered at each
hydrogenation step. All values are zero-point energy corrected.

be barrier-less. In Section 7.5, we expand our discussion on this hydrogenation step and
comment on additional calculations we have performed to understand the origin of this
peak.

7.3.1 New rules for the hydrogenation?

For coronene, we were able to rationalize the hydrogenation sequence using very simple
rules of thumb that should apply equally well to any other PAH. It is worthy to briefly
recall these rules[92]:

(i) When closed-shell (S = 0) molecules are involved, the H attachment at specific lattice
positions is dictated by the π-coordination and π-hyperconjugation. In particular, the
H preferentially sticks to undercoordinated sites (Z = 2 or Z = 1 when available)
in the π-system; when more than one undercoordinated site is available, the H pref-
erentially sticks to the carbon with the highest π-hypercoodination number (ξ), i.e.
with the highest number of next-to-nearest neighbors in the lattice with the same
coordination to hybridize with;

(ii) When open-shell molecules are involved (S = 1/2), the reaction is driven by the posi-
tion of the unpaired electron. The latter resides in a midgap state that semilocalizes
from the defect position with a 1/r decay, thus making the ortho and para positions
the most reactive towards the H sticking (again with a preference for sites with small
π-coordination).

As mentioned earlier, the concept of π-hyperconjugation cannot be applied in this
case because the π-network of coroannulene does not constitute a bipartite lattice. On
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the other hand, looking at the hydrogenation sequence shown in Figure 7.5, we observe
that π-coordination9 and semilocalization of the unpaired electron are still good guiding
principles of the hydrogenation reaction. The only step violating these rules is the 2nd
hydrogenation, where the H attaches to a carbon that is distant from the 1st hydrogenated
site (but still on the other sublattice), rather than preferring a closer ortho position. It is
worth noticing that, consequently, the 3rd hydrogenation occurs on an undercoordinated
site (Z = 1) with a relatively large binding energy for an odd addition. The latter, in
conjunction with small binding energy for the 2nd addition, breaks initially the even-odd
alternation.

One may wonder if a new rule involving pyramidalization or rehybridization can be
established to rationalize the hydrogenation sequence of coroannulene. In general, there
is no clear-cut correlation between the pyramidalization angle and the H binding energy.
The reason is that, in a molecule, both the pyramidalization and the presence of edges
contribute, to different extent, to increase the reactivity and their effects cannot be sepa-
rated in a trivial way. Nevertheless, a close inspection of each hydrogenation level reveals
that large pyramidalization angles (typically higher than 6◦) in conjuction with small
π-coordination determines larger hydrogen affinity. When comparing sites with same π-
coordination and comparable pyramidalization (∆θP < 2−3◦), as it happens for outer
edge and inner edge10, the H addition occurs preferentially on outer edge sites. This is well
illustrated, for instance, by the 5th or 9th step (see Figure 7.7). At the 5th hydrogena-
tion, the most pyramidalized sites are central C atoms11 which though have π-coordination
Z = 3. Among inner edge, there are four sites with Z = 2, those close to the previously
hydrogenated positions. Because of the smaller π-coordination, these sites display greater
binding energies (D = 1.43 eV) than inner edge with Z = 3 (D = 0.63 eV). However,
the pyramidalization of these sites is still limited (≈ 4.2◦), and the reaction occurs on an
outer edge site (as for the first H addition). Noteworthy, the H attaches to the most pyra-
midalized site among outer edge. On the other hand, at the 9th step, sites on the inner
5-membered ring with Z = 2 and θP > 6 are available and the H sticks indeed on the C with
the largest pyramidalization angle. Overall, the H attachment on specific lattice positions
is thus determined by a delicate interplay between coordination and pyramidalization.

Besides, an additional concept that allows understanding the hydrogenation sequence
is the aforementioned Clar’s number. The maximal Clar’s number (C) is the number of
circles that one can draw with six delocalized electrons in a cycle of a resonance structure.
For coroannulene, the maximal Clar’s number is 2, while for coronene is 3. Looking at
the hydrogenation sequence, we note that, up to the 8th step, the reaction proceeds in
such a way that the maximal Clar’s number is preserved (see Figure 7.8). The sticking
of the 9th H atom, regardless of the position, determines the reduction of such a number
from 2 to 1. Therefore, as indicated above for n = 4, also n = 8 should represent another
"stop" on the road to perhydrocoroannulene, as indeed indicated by the large barrier to
further sticking (155 meV). The validity of Clar’s number in determining the reactivity of
the coroannulene molecule underlines how the concept of aromaticity, which is originally
defined for planar structures, can still play a crucial role also in curved systems.

9Strictly speaking, π-coordination is also a result of the bipartite nature, because it relies on (actually
determines) the on-site energies of the renormalized lattice (see Subsection 2.1.1). However, in this context
it is still useful to use π-coordination to generally refer to the number of "sp2-neighbors (i.e. unsaturared)
of a C in the lattice.

10Here, an outer edge site is intended as a site on the edge that binds two C atoms. Therefore, during the
hydrogenation, an outer edge site remains so, regardless of the presence of hydrogenated nearest-neighbors.
The same apply to inner edge sites.

11Note that, as for the first H addition, these sites are still characterized by relatively large binding
energies, when compared to outer edge sites.
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Figure 7.7. Binding energies for some sites that were checked at the 5th (n = 5) and 9th (n = 9)
hydrogenation levels. For each site, the π-coordination (Z) and the pyramidalization angle θP is
reported. Green, red and blue circle mark outer edge, inner edge and center sites, respectively.
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Figure 7.8. Pictorial representation of coroannulene Clar’s structures. C is the maximal Clar’s
number, rC is the number of resonance structures with the maximal Clar’s number that one can
draw.
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Figure 7.9. Energetics along the alternative hydrogenation pathway. Vertical bars indicates
(minus) the binding energy of the nth hydrogen, grey triangles indicates the barrier of the n→ n+1
(meV, multiplied by 2), while black dots marks the binding energies of additional sites considered
at each hydrogenation step. All values are zero-point energy corrected.

7.4 An alternative path to perhydrocoroannulene

Figure 7.6 also shows the binding energies of less stable hydrogenated configurations (blu
dots). Again, some of these values are close to Dn

? , thereby suggesting the possibility
of branching points also in the hydrogenation sequence of coroannulene. However, in
considering an alternative pathway, we have decided to start from the very first step,
guided by the fact the hydrogenation on the center site has the smallest barrier height.
The resulting sequence is shown in Figure 7.5, while the corresponding energetics along
this path is displayed in Figure 7.9. Overall, the results are parallel to those for the
main pathway. The most relevant difference is that a sizeable barrier is detected for the
hydrogenation of n = 6, indicating great stability of this structure, in better agreement
with the experimental result. By the same token, in contrast to the main path, a barrier
is found to hydrogenate n = 10, though still small (41 meV). However, a remarkably
smaller barrier (49 meV vs. 125 meV) is found to hydrogenate n = 18, at odds with the
experimental data that show the accumulation of this structure. Noteworthy, n = 4 is
again a very stable structure, while n = 17 is not.

7.5 Build-up of n = 16, 17, 18

A remarkable feature of the thermal desorption spectra shown in Figure 7.1 is the accu-
mulation of the species n = 16, 17, 18, together with the absence of a strong peak for the
fully hydrogenated molecule (n = 20), contrary to what observed for coronene. While the
large binding energy and a large barrier to further sticking confirm the stability of n = 18,
the energetics of both the main and the alternative pathway cannot account for the peaks
n = 16 and 17. The lower stability of n = 20 w.r.t. n = 18 and the large barrier to add the
19th H atom may instead partly prevent the formation of perhydrocoroannulene. Notice,
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Table 7.4. Energies (∆E, eV) and barriers (Eab, meV) for the abstraction reaction (C20H10+n +
H→ C20H10+n−1 + H2) and (minus) binding energies (Dn

? , eV) and barriers (Eb, meV) for the H
addition (C20H10+n + H→ C20H10+n+1).

n +H→ (n− 1) + H2 +H→ (n+ 1)
∆E Eab −Dn

? Eb

16 -1.08 161 -1.89 0.0
17 -2.48 0.0 -3.37 0.0
18 -1.00 120 -1.18 125
19 -3.20 0.0 -3.04 0.0

indeed, that coronene does not show any barrier for the H addition at high hydrogenated
degrees (see Chapter 4).

The case n = 17 is undoubtedly the most singular in the mass distributions since odd-
numbered species are unstable against further hydrogenation and should not accumulate.
In an attempt to understand the presence of such a peak, we have then investigated other
mechanisms that may lead to the formation of the 17th hydrogenated structure. However,
it is worth saying at the outset that none of them provided an unquestionable and satis-
factory explanation of this peak. In the following, we discuss them in detail.

The first alternative reaction that one may invoke is the abstraction through the Eley-
Rideal mechanism, which we have discussed in the context of graphene in Subsection 1.3.3.
In general, the H sticking and the Eley-Rideal reaction competes with each other on a
graphitic surface, but this could not be the case on a small PAH. If energetically easier,
the abstraction on n = 19, n = 18 and n = 17 (e.g. C20H18 + H → C20H17 + H2)
may indeed explain the build-up of n = 16, 17, 18 . Table 7.4 reports the computed
abstraction energies and barrier (together with the sticking barriers) for the relevant steps
(on the main pathway). Overall, the emerging picture is that of abstraction and H addition
competing with each other as in graphene since the abstraction barrier matches (or differs
by a few meV) the sticking barrier. The only noticeable exception is for n = 16, where
the abstraction has a sizeable barrier while the further hydrogenation is barrier-less. This,
in conjunction with the slightly larger ∆E than −D? for n=19, may partially explain the
accumulation of the species in the range n = 16−18.

Another mechanism we considered is the formation of n = 17 through the addition of
a H2 molecule to n = 15. Indeed, the sum of the binding energies for n = 16 and n = 17
is 5.2 eV, that is it exceeds by 0.7 eV the bond dissociation energy of H2 (≈ 4.5 eV). The
feasibility of this process has been confirmed by DFT calculations. Placing an H2 molecule
in the vicinity of an unsaturated bond, the HH bond dissociates and the structure n = 17
is formed. Nevertheless, looking at the energetics profile displayed in Figure 7.6, the same
argument may be applied to other odd-numbered species. For instance, the sum of D10

?

and D11
? gives 5.6 eV, thereby suggesting the possibility for the specie n = 9 to bind a H2.

Therefore, if the above arguments were employed to account for the stability of n = 17,
one should equally expect intense peaks for other odd-numbered species, such as n = 11.

Another process that may explain the formation of n = 17 is the desorption of a H2

from n = 19. In this case, in removing two H atoms, one should consider different dimer
configurations, since there is no guarantee that the backward pathway, going from the
perhydrogenated to the bare molecule, follows the same steps of the onward. The total
number of H dimers that we can remove from a 19-fold hydrogenated structure is evidently
too big and out of reach to be tested. Indeed, the first H can be removed from 19 different
positions, while the second from 18, leading to 19 · 18 = 324 possible configurations, a
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number that cannot be reduced by any symmetrical argument since the molecule has lost
every symmetry after the addition of 19 H atoms. We have then restricted our attention
to just a few configurations. Following chemical intuition, we have considered four ortho
dimers, classified on the basis of the type of binding C atoms (e.g. o-o means that the two
H atoms desorb from two ortho outer edge sites.). In addition, for the sake of comparison,
we also considered a para dimer and a configuration in which the two H atoms desorb from
two distant sites. The energy to desorb the dimer in a given configuration i (∆Ei) were
computed according to

∆Ei = (Ein=17 + EH2)− En=19

where Ein=17 is the DFT energy of the structure with n = 17 after the desorption of the
H2 in the dimer configuration i, En=19 is the energy of the structure with n = 19 and EH2

is the energy of the H2 molecule. The results are listed in Table 7.5.

Table 7.5. Desorption energies (∆E, eV) for different dimer configuration: i-c (inner-center), o-o
(outer edge-outer edge), i-o (inner-outer edge), c-c (center-center) and para.

Configuration ∆E

i-c 0.17
o-o 4.01
i-o 1.00
c-c 0.93
para 0.29

The lowest reaction energy is found for the i−c dimer configuration, whose desorption
leads to the structure n = 17 that forms during the onward hydrogenation pathway. How-
ever, we note that the reaction is endoergic for any configuration considered12, thereby
indicating that the desorption of H2 from n = 19 is not an energetically convenient road
to n = 17.

Other mechanisms may be taken into account to explain the abundance of n = 17, such
as a fragmentation of higher hydrogenated species or structural rearrangements, which are
however hardly captured by a DFT structural optimization. The substrate, that is the
HOPG, may too play a relevant role in this case, by stabilizing the allyl radical that
characterize n = 17. Further experimental and theoretical investigations are then required
to shed light on these still unclear aspects of the coroannulene superhydrogenation.

7.6 Summary and concluding remarks

In this Chapter, we have discussed two possible pathways from bare to superhydrogenated
coroannulene. It may be worth keeping in mind that, in the experiment, it is rather unlikely
that each coroannulene molecule follows the same hydrogenation pathway. Our analysis
has revealed that several alternative paths are feasible, as indicated by some values of the
binding energies to secondary sites along both pathways. It is the sum of all of these possible
ramifications to give rise to the mass traces captured by the experiment. The theoretical
investigation of all of these pathways is clearly out of reach for DFT calculations. The
main and alternative paths discussed here are merely the photograph of two of these,
even though they are expected to have the largest statistical weight. Overall, our results
compare well with the experimental data, but some noticeable differences appear. The

12The reaction energy for the removal of two H from distant sites is not reported because such removal
led to a rearranged structure with the breaking of a CC bond and the opening of a decagonal ring (which
is anyway less stable than n = 17 of the forward pathway.)
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most striking ones are the absence of a peak at n = 4, together with the presence of an
intense peak at n = 17, which seems to prevent the formation of perhydrocoroannulene.
There are convincing theoretical arguments that support the (in)stability of the species
(n = 17) n = 4, at least in the gas phase, in contrast with the experimental observation.
Therefore, we deem the absence/accumulation of these species in the mixture to be due
to the specific experimental setting, e.g. an interaction with the HOPG substrate or
fragmentation patterns that exist under laboratory conditions, rather than being due to
specific features of the gas-phase hydrogenated species. There is also the possibility that
different hydrogenated coroannulene molecules interact with each other on the substrate.
The coverage conditions could support this possibility.
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Chapter 8

The C/Si interface: H adsorption
energetics

Throughout this work, we have repeatedly emphasized the unique properties of graphene
which have attracted the interest of both experimentalists and theoreticians. In the same
way, we have also marked some of its limitations that have hindered the widespread dif-
fusion of this material, together with some aspects that still need to be fully understood.
The C/Si interface introduced in Chapter 6 finds a key place in this context. From a more
applied perspective, it may allow a practical and large-scale production of high-quality
graphene samples, thus solving the issues of currently available fabrication techniques.
From a fundamental point of view, the C/Si interface lends itself to the study of the cur-
vature effects on the chemical reactivity of graphene, which is still a hot topic in modern
graphene literature.

We have ended Section 6.4 by pointing out some lacks in the current research about the
C/Si interface. In particular, we have highlighted that the modeling of the interface in the
experimental surface reconstruction (6R3) and the theoretical investigation of the buffer
and monolayer hydrogenation are still missing in the literature, despite their fundamental
and technological interest, supported by existing experimental evidences provided by the
works of F.C. Bocquet and coworkers[183, 184].

The present Chapter aims to fill such a gap, by showing a DFT investigation of the
H adsorption on the C/Si interface. In particular, the latter has been modeled in the
experimental 6R3 reconstruction, in order to take into account the long-range features of
the interface - i.e. its curvature - on the H adsorption energetics.

The Chapter is organized as follows: Section 1 describes the methods and the computa-
tional setup employed in our calculations; Section 2 presents our results on the structure of
the buffer layer and its hydrogenation; Section 3 addresses the H adsorption on the mono-
layer graphene. In this chapter, we keep using the nomenclature introduced in Chapter
6: the first graphene layer, which is still bonded to SiC, is called "buffer layer" while the
second layer on top is referred to as "monolayer".

8.1 Methods

The calculations were performed within density functional theory as implemented in the
SIESTA package. The method is based on the self-consistent Kohn-Sham approach, using
standard norm-conserving pseudopotentials and linear combinations of atomic orbitals as
a basis set, thus allowing fast and very accurate simulations of systems with a relatively
high number of atoms. The details of the SIESTA method will not be covered here; the
interested reader is referred to the reviews by its developers (Soler et. al.(2002)[28] and
Garcia et. al.(2020)[242]. In our calculations, the exchange and correlations were treated
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Figure 8.1. Unit cell of a minimal structure consisting of four SiC bilayers and a buffer layer
graphene. The bottom C termination of SiC are saturated by H atoms.

within the generalized gradient approximation (GGA), employing the popular PBE xc-
functional[243] which is a good compromise between accuracy and computational cost.
Additional calculations with a Van der Waals inclusive functional, the Vydrov and Van
Voorhis (VV)[244], were also performed for the monolayer graphene. In both cases, a
double-ζ plus polarization (DZP) basis set was used. The unit cell for the modeled 6R3
reconstruction consists of four SiC bilayers (864 atoms), with the bottom C terminations
saturated by H atoms (108 atoms), plus a buffer layer graphene (338 atoms). The total
number of atoms in the unit cell amounts to 1310, rising to 1648 when a second (monolayer)
graphene is added on top. The internal geometry relaxation was performed with the
conjugate gradients algorithm while keeping fixed the unit cell (optimized lattice constant
a = 32.6Å) until tight-convergence criteria were met ( max force tolerance 0.01 eV/Å).
Thanks to the large size of the system, only the Γ point was sampled in the reciprocal
space.

8.2 Buffer layer graphene

We begin by discussing a minimal structure consisting of just the SiC plus the buffer layer
graphene in the experimental surface reconstruction. We remind that the latter is the
(6
√

3×6
√

3)R30◦1, meaning that the lattice vectors defining the graphene superlattice are
6
√

3 times larger than the SiC bulk lattice vectors and rotated by 30◦ w.r.t. them. The
relaxed unit cell is displayed in Figure 8.1. During the structural optimization, just the
buffer layer and the first (uppermost) SiC bilayer were let free to relax.

8.2.1 Structure

The morphology of the buffer layer graphene on SiC is rather unique if compared to
graphene epitaxially grown on other substrates such as metal surfaces. Indeed, graphene
C atoms can form strong covalent bonds with Si atoms of the underneath SiC(0001) face.
Since these CSi interactions have different strengths across the lattice, the buffer layer
displays a pronounced corrugation, which in turn reflects the peculiar 6R3 reconstruction.

1See the box 6.2 on pag. 80
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Figure 8.2. (a) Height map of the buffer layer where different colors referred to different heights
from the minimum of the buffer layer (∆z). The legend of colors is reported on the left side:
green/yellow and red/orange shades indicate more and less puckered carbons respectively. (b)
Repetition of the color map displaying the moiré pattern formed by the C-lattice on the SiC
surface; on the right side, an STM image taken from Ref. [25] is reported for comparison.

Figure 8.2 (a) shows a color map of the buffer layer in the unit cell, where different colors
referred to different heights (z coordinate) (w.r.t. a common reference that here is taken
to be the minimum of the buffer layer, i.e. the C with the lowest z coordinate). By the
repetition of this color map, a (quasi) honeycomb superstructure with hexagons of two
different sizes emerges (shown in Figure 8.2 (b)). The latter is the moiré pattern that the
C-lattice forms on the SiC surface and it is an direct manifestation of the 63R surface re-
construction. Interestingly, such a simple color map shows the same symmetry properties
of the surface density of states mapped by the STM experiments[25].

In Figure 8.3, the cross-sectional views of the corrugation along the two diagonals of the
63R unit cell are reported. We can identify the alternation of crests and troughs of different
amplitudes. The maximal corrugation is reached at the vertexes of the unit cell, where
∆z ≈ 1Å, in agreement with available experimental data[173]. The local structure of the
buffer layer has been unknown for a long time. However, the combination of experimental
and theoretical works in the past years has allowed gaining more detailed information about
the nature of the buffer layer. In our model, a close inspection of the C-lattice reveals the
presence of four different types of C atoms (see Figure 8.4):

(i) "graphene-like" carbons, i.e. three-coordinated carbons characterized by an (almost)
flat local neighborhood, like in planar graphene;

(ii) three-coordinated carbons with 1 Si-bonded nn;
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Figure 8.3. Cross-sectional views of the corrugation along the two diagonals of the 6R3 unit cell.
The black dotted line indicates the average puckering (≈ 0.35Å) that occurs when H is adsorbed
on planar graphene. In the two insets, the arrows indicate the directions of the cross-sections
considered.

(iii) three-coordinated carbons with 2 Si-bonded nns;

(iv) four-coordinated carbons, i.e. those directly bonded to Si.

The same variety of C atoms has been identified also on a different modeled surface re-
construction, namely the (4

√
3 × 4

√
3)R30◦ by Sclauzero et. al.[236]2. In the following,

to distinguish between these different C atoms, we use the notation Cnm where n refers to
the coordination and m to the number of Si-bonded nns3. Hence, C3

0 are "graphene-like"
carbons, C3

1 are three-coordinated carbons with 1 Si-bonded nn, etc. Four-coordinated
carbons are labeled as C4.

C4 carbons represent about 25% of the total number of C atoms in the unit cell, in
agreement with CLPES data[25]. The covalent bonds between C and Si induce a strong
re-hybridization also on the neighboring C atoms, which are then pyramidalized in the
opposite direction (see Figure 8.4 ). Therefore, C3

1 and C3
2 are those responsible for the

more corrugated areas of the buffer layer (i.e. they are those surrounded by visibly different
shades on the color map of Figure 8.2). Figure 8.5 reports the occurrence of each of these
C atoms in the unit cell. It is interesting to note that about 70% of C atoms are C3

1 , while
C3

2 represents less than 2% of the total number of C in the cell.
The presence of strong CSi covalent bonds between graphene and the underneath SiC

induces a sizeable re-hybridization across the whole C-lattice, whose atoms are then found
in a mixed sp2-sp3 hybridization. To grasp the extent of such re-hybridization, one can
look at the percentage of s weight of the π-like orbitals. As discussed in Section 6.1, when
the geometry slightly deviates from planar, the π-like orbital - which is a pure p for a true

2The same authors also report the modeling of a (2
√

3 × 2
√

3)R30◦ periodicity, where configurations
with 3 Si-bonded nearest-neighbors are possible.

3CSi bonded pairs are defined whether their distance is less than 2.3Å, which is the average bond
distance in an elongated CSi bond.
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Figure 8.4. Four different types of C atoms that can be identified across the buffer layer: three-
coordinated C atoms with 0,1 or 2 Si-bonded nns (C3

0 , C
3
1 , C

3
2 , respectively) and four-coordinated,

i.e. Si-bonded (C4).
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Figure 8.5. (Left) Occurrence of each type of C atoms in the unit cell (338 C atoms for the buffer
layer graphene); (Right) Dispersion of the percentage of s fraction of the π-like orbital (%wλ) for
each type of C atoms.
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sp2 configuration - acquires a fraction of s character. In the same way, the three hybrids
involved in the σ-bonds deviate from the ideal sp2. We have seen that, in the hypothesis
of non-bent bonds, Coulson’s theorem allows computing the p hybridization indexes (τi,
i = 1, 3 and λ for the π-like orbital) or the s weights (wτi , i = 1, 3 and wλ for the π-like
orbital) from simple geometrical information:

cos(θτiτj ) = − 1
√
τiτj

(8.1)

λ =
1

1−
∑

i (1− τi)−1
− 1 (8.2)

where cos(θτiτj ) is the angle between two hybrids τi and τj (i.e. a bond angle in the
hypothesis of non-bent bonds). Exploiting Equations (8.1) and (8.2), we have computed the
percentage of s character of the π-like orbitals (% wλ = (1/(1+λ))·100) for each C atoms of
the lattice. Results are reported in Figure 8.5 (left). The strongest rehybridization occurs
in four-coordinated C4 carbons because of the covalent bond formed with the underneath
Si atoms. For these carbons, %wλ can reach ≈ 11% ( vs. 25% for a pure sp3)4. Three-
coordinated C atoms are less hybridized, with %wλ that does not exceed 3%. Overall, the
s weights of the π-like orbitals are widely dispersed on a large range of values for each type
of C, reflecting the great variability across the lattice of CSi interactions. On average, C3

0

carbons are the least re-hybridized but they are not strictly in an sp2 configuration. C3
1

and C3
2 are instead more rehybridized because of the neighboring CSi bonds. Nevertheless,

among C3
1 , which are the most abundant on the buffer layer, also "true" sp2 C atoms

can be identified. Note that one can equivalently look at the pyramidalization angle, θp,
introduced in Section 6.1 and defined by the relationship θP = θσπ − 90◦ with cos(θσπ) =
kπn̂1 = kπn̂2 = kπn̂3, where n̂i are normal vectors directed along the σ-bonds and kπ
is the pyramid "vector" (or π-orbital axis vector). The distribution of the pyramid angles
across the buffer layer, computed through the Equations (6.2)-(6.5), is displayed in Figure
8.11.

Overall, the emerging picture from the above analysis is that of a strongly corrugated
C-lattice with a substantial rehybridization of C atoms, that partly correlates with the
number of Si-bonded nearest neighbors. From the structural point of view, the buffer layer
thus differs a lot from planar free-standing graphene. Therefore, its peculiar geography is
expected to have a significant influence on its chemical reactivity.

8.2.2 H adsorption

In Section 6.4, we have mentioned the H adsorption of the buffer layer as a possible strategy
to decouple the monolayer graphene. Moreover, we have highlighted that, at present, the
H adsorption has been poorly investigated in the literature, especially from the theoretical
side, and thus there is little knowledge about the influence of the buffer layer corrugation
on the H adsorption energetics.

As we have mentioned in 6.4.4, pioneering works by F.C. Bocquet et. al. have shown
that, at low temperatures, H atoms bind to the buffer layer graphene rather than inter-
calating, and do not desorb from the surface up to annealing temperatures of about 750
K[183, 184]. In addition, the buffer layer appears to be drastically modified upon hydro-
genation, as evidenced by the transformation of the (6

√
3× 6

√
3)R30◦ LEED pattern into

a quasi-(1× 1)[184].
In light of these experimental works and in order to fill the gap in current theoretical

literature, we have scrutinized the H adsorption on the buffer layer by computing the H

4Most often, in chemistry one refers to the hybrid orbitals using the p hybridization indexes. Corre-
spondingly, for the most rehybridized C4 atoms the set of hybrid orbitals is {sp2.3, sp2.3, sp2.5, sp8.4}.
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Figure 8.6. Distribution of the pyramid angles (θp) across the buffer layer. Light and dark blue
bars refers to three-coordinated and four-coordinated C atoms, respectively. The inset shows a
sketch of the local neighborhood of a C atom, along with the definition of the pyramidalization
angle.

binding energy on some representative sites. Binding energies were computed according to
the usual formula

D = ESiC+BLG+H − (ESiC+BLG + EH)

where ESiC+BLG+H is the DFT energy of the hydrogenated interface, ESiC+BLG is the DFT
energy of the bare interface and EH the DFT energy of an isolated H atom. In the following,
we use the subscript SiC+BLG to refer to the system SiC (with H saturated termination)
plus the buffer layer and the subscript SiC+BLG+MLG when also the (second) monolayer
graphene is present. The optimization of the hydrogenated system was performed in two
steps: first, by relaxing just the buffer layer (opt (1) in Table 8.1), and second, by letting
to relax also the first SiC bilayer (opt (2) in Table 8.1). D for the two cases are reported
in Table 8.1.

One can immediately note that the binding energies are much larger than on planar
freestanding graphene (≈ 0.8 eV), ranging from 2.49 eV to 3.22 eV5, for the two-steps
optimization procedure, consistent with the large desorption temperatures indicated by
the experiments[183]. Note that these values include the BSSE arising from the use of
AOs. To remove this error, it is common practice to use CP correction (see box 1.2 on
pag. 19). In the present case, the scheme consists in properly re-defining the asymptotic
situation when computing the H binding energy. Namely,

D = ESiC+BLGH − (E′SiC+BLG + E′H) (8.3)

5These binding energies are comparable to those computed by Sclauzero et. al.([236]) for the H
adsorption on (4

√
3× 4

√
3)R30◦ and (2

√
3× 2

√
3)R30◦ surface reconstructions
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Table 8.1. H binding energy (not CP-corrected, eV) on the buffer layer graphene and percentage
of s-character of the π-like orbital of the binding carbon (%wλ) for different types of C (C3

0 , C
3
1 , C

3
2 ).

opt (1): relaxation of the buffer layer; opt(2): relaxation of the buffer layer and the topmost SiC
bilayer. C3

1 → C3
2 denotes the change of the C type after the relaxation.

D (eV)

Type opt (1) opt (2) %wλ

C3
0 2.33 2.49 0.63

C3
0 2.53 2.55 0.75

C3
1 2.68 2.66

C3
1 2.68 2.71 2.72

C3
1 2.69 2.73 1.98

C3
1 2.70 2.75 1.90

C3
1 → C3

2 2.66 2.88 1.46
C3

2 3.05 3.09 2.21
C3

2 3.04 3.09 2.26
C3

1 → C3
2 2.93 3.22 0.00

where

E′H = E?H (8.4)
E′SiC+BLG = ESiC+BLG+

Ẽ?SiC+BLG − ẼSiC+BLG (8.5)

where ESiC+BLGH is the DFT energy of the hydrogenated buffer layer,˜ indicates that the
calculation is performed in the "final geometry", i.e. that of the hydrogenated structure,
while ? denotes the use of the whole basis set6. When such a scheme is applied, the binding
energy range shifts to 2.22-2.95 eV.

Anyway, the corrugation of the buffer layer has a considerable effect on the chemical
reactivity towards H atoms. Furthermore, from Table 8.1, it is seen that binding energies
can increase by more than 0.15 eV when the first SiC bilayer is free to relax, compared to
the case where it is kept frozen. Indeed, upon H adsorption, additional CSi bonds with the
underneath Si Dangling Bonds (DB) can form7, thus making the first SiC bilayer playing
an "active" role during the hydrogenation process8.

A correlation of binding energies with the number of Si-bonded nn can be spotted:
the reactivity follows the order C3

0 < C3
1 < C3

2 . Such a trend indicates that the presence
of nearby CSi bonds plays a primary role in determining the reactivity towards H. On
average, C3

2 , being more rehybridized among three-coordinated C, are more puckered out
of the surface and thus more "prepared" to accept the incoming H, but, as discussed
for coroannulene, there is again no clear-cut correlation between D and the degree of
rehybridization. In addition, one should consider that the type of the binding C can
change after hydrogenation because additional CSi bonds can form, thus further affecting
the H adsorption energetics (in Table 8.1, this situation is indicated as, e.g. C3

1 → C3
2 )).

Yet, the increased reactivity of the buffer layer is not just the by-product of its corru-

6For instance, Ẽ?SiC+BLG is the energy obtained by a single-point calculation of the buffer layer in the
hydrogenated geometry and with the full basis set, i.e. with a ghost atom on the H

7When occurring, the total number of CSi bonds increase at most by one for a single H adsorption
event. The bond formation occurs on a nn or nnn to the H binding C.

8Experimentally, quenching in the Inverse Photo-Emission Spectroscopy (IPES) spectra of the DB-
related peak upon hydrogenation has been observed[189]
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Figure 8.7. Distribution of binding energies (not CP-corrected) mapped on the ∆z profile of the
C-lattice.

gation. The breaking of the π-bonds due to the CSi interactions determines an increase
of the local spin density on the neighboring carbons - like the introduction of pz defects
in free-standing graphene. Such electronic effect contributes to the increase of the binding
energies9. C4 carbons are not listed in Table 8.1 because they are not reactive. When an
H is attached to these sites, it moves to a neighboring three-coordinated carbon during
the relaxation procedure. Indeed, being already in maximal coordination, C4 carbons just
contribute to the stability of the overall interface.

Figure 8.7 provides immediate visualization of the distribution of binding energies
across the C-lattice. One can note that, in general, on "green-yellow areas", D varies
in the range 2.5-2.7 eV while the most reactive are "orange sites" surrounded by strongly
"red-shifted" sites. Even if they are characterized by small ∆z, these are C3

2 carbons, for
which the presence of nearby Si-bonded C increases the local corrugation and spin density,
thus leading to increased reactivity.

8.3 Monolayer graphene

After the characterization of the structure and reactivity of the buffer layer graphene, we
discuss the case of a full interface with monolayer graphene on top of the buffer layer. The
dimensionality of the system, with a total number of atoms in the unit cell amounting to
1648, is exceptionally large, and, to the author’s knowledge, no modeling of such a system
has been reported in the literature so far. The relaxation procedure was performed by
placing a second graphene layer on top of the buffer layer at the interlayer distance of
about 3.3Å, with the same orientation. Just the internal coordinates of the monolayer and
the buffer layer were let to free to relax. After the geometrical optimization, the stacking
of the bilayer resulted to be the Bernal AB stacking, in agreement with the experimental
evidence[25].

9The effect is analog to what is observed in even hydrogenations of coronene and coroannulene, where
the radical-radical character of the reaction determines higher binding energies and vanishing sticking
barriers.
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Figure 8.8. Relaxed unit cell of the full C/Si interface (total number of atom amounting to 1648).
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Figure 8.9. Cross-sectional views of the interface corrugation along the x-side and one diagonal
of the unit cell, as obtained by PBE (left) and vdW-VV (right) optimizations. ∆z is calculated
w.r.t. the minimum of the buffer layer. The insets show the height color map of the monolayer
graphene, with the black arrow indicating the directions of the cross-sectional views on the left.

8.3.1 Structure

Figure 8.8 displays the unit cell of the full interface, as obtained by a PBE calculation. The
interlayer distance, dint after the optimization is 3.33Å, comparable with that of graphite
(3.35Å). dint reduces to 3.14Å when a van der Walls (vdW)-inclusive functional, such as
VV, is employed. It might be surprising that a semilocal functional, such as PBE, results
to be binding, with a reasonable dint for this system with long-range interactions between
the two layers. In the next section, we show that the explanation of such an unexpected
binding can be found in the computational setup employed, and in particular in the use
of AOs. Figure 8.9 shows the cross-sectional views of the interface along one diagonal and
one side of the unit cell. We note that, in contrast to the strong corrugation of the buffer
layer, the monolayer graphene displays a wavy profile like in rippled graphene, with a less
pronounced curvature that is barely "visible" from the optimized structure in Figure 8.8.
From the insets in Figure 8.9, showing the height color maps for the monolayer graphene,
one can note a correspondence between these 2D-ripples in monolayer and the underneath
surface reconstruction. Figure 8.10 displays the cross-sectional views of the monolayer
graphene along the two diagonals. We note that the maximal ∆z for the monolayer is
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Figure 8.10. Cross-sectional views of the corrugation of the monolayer graphene along the
diagonals of the unit cell. The insets show the height color map of the monolayer graphene, with
the black arrow indicating the directions of such cross-sectional views.

about 1/3 of that of the buffer layer graphene (0.32Å, in agreement with experimental
data[190, 237]). Due to the curvature, a rehybridization of C atoms is expected to occur
also across the monolayer graphene, albeit to a less extent than seen for the buffer layer.
As a matter of fact, the local curvature is so small that the percentage of s-weight of the π-
like orbital (%wλ) hardly deviates from 0% (the maximal value it reaches is about 0.03%).
By the same token, the pyramidalization angles across the lattice are very small, not even
exceeding 1◦ (see Figure 8.11). Therefore, the curvature of the monolayer is so small that
its structural properties are locally very similar to those of free-standing graphene10.

8.3.2 Bilayer binding energies

To estimate the binding between the graphene layers, bilayer binding energy (per C atom
in one layer) (Ebil) was computed according to the following formula

Ebil = [ESiC+BLG+MLG − (ESiC+BLG + Egraphene)]/338

where ESiC+BLG+MLG is the DFT energy of the full interface, ESiC+BLG+MLG is the DFT
energy of the SiC+BLG and Egraphene is the DFT energy of a single graphene layer (with
338 atoms). Our results are reported in Table 8.2. The experimental value of the binding
energy in (bare) bilayer graphene is not known. Its value is bound from above by the
cohesive energy of graphite, which is about 52±5 meV[105]. For this system, the computed
binding energy is slightly larger, around 74 meV/atom with a PBE calculation. Such value
increases to 185 meV/atom with a vdW-inclusive functional.

As we have pointed out above, it might be surprising that a semilocal functional such as
PBE, which lacks any non-local electron correlation, turns out to be binding for a system
dominated by the vdW interactions. Such binding was indeed observed also for bare bilayer
graphene, where PBE in combination with AOs predicts a minimum at a correct interlayer
distance and with a reasonable depth[105]. The origin of such unexpected binding lies in the

10This is in clear contrast with the buffer layer, where the presence of the CSi bonds induces a local
strong corrugation.
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Figure 8.11. Distribution of the pyramid angles (θp) across the monolayer graphene. The
inset shows a sketch of the local neighborhood of a C atom, along with the definition of the
pyramidalization angle.

use of AOs. Indeed, AOs calculations are always plagued by the BSSE, as we mentioned
multiple times in this work. It is worthwhile to briefly recall again the origin of such
error: it arises from the enlargement of the basis set experienced by two fragments when
they approach each other. In particular, one fragment can "borrow" basis functions from
the other, thus its basis set is increased and its description improved. In computing the
binding energy, the energy of the asymptote (isolated SiC+BLG and isolated graphene)
results from unmixed basis sets while, in the SiC+BLG+MLG optimization, basis sets
are mixed. Such mismatch is the source of the error and has to be removed when AOs
calculations are employed11. We repeatedly mentioned the usefulness of the popular CP
correction to properly remove the BSSE. For the system at our hands, the CP correction
reads as

ECP = (Ẽ?SiC+BLG + Ẽ?graphene)− (ẼSiC+BLG + Ẽgraphene)

where, again, ˜ means that the calculation is performed in the final geometry (that of
SiC+BLG+MLG), while ? denotes the use of the whole basis set. The CP correction
amounts to ≈ 92 meV/atom for PBE and 124 meV/atom for vdW-VV. The CP-corrected
bilayer binding energies are reported in Table 8.2. When the BSSE is properly accounted
for, we note that PBE is no longer binding, as expected by standard semilocal DFT.
If instead the BSSE is not removed, the PBE binding energy is comparable to the vdW
calculation with the proper CP-correction applied. To understand such a result, we remind
that the BSSE acts as an overbinding effect, which adds to the long-range features of
the vdW-inclusive functionals, clearly determining largely overestimated binding energies.
Therefore, such error has to be properly taken into account when vdW interactions are of
concern. On the contrary, the overbinding induced by the BSSE can balance out the lacking
of long-range features typical of semilocal functionals. Our results suggest therefore that a
pragmatical way to overcome these known shortcomings of semilocal DFT is to include the

11This error can be minimized - but not removed - by employing a large basis set, such as TZP. However,
an enlarged basis set considerably increases the computational cost of the calculation.
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Table 8.2. Bilayer binding energies, Ebil (meV / atom), for the C/Si interface for different
setups, compared with bare bilayer graphene values. Both not CP-corrected (BSSE included) and
CP-corrected (BSSE removed) are reported. For bilayer graphene, the bilayer binding energy as
obtained by a PW calculation with vdW-VV taken from Ref. [105] , is also reported.

Ebil

System Method BSSE included BSSE removed

C/Si interface PBE/DZP 74 -18
vdW-VV/DZP 185 61

Bilayer graphene
PBE/DZP 66 -21
vdW/DZP 163 58
vdW-VV/PW[105] / 47

BSSE in combination with semilocal exchange-correlation functionals when dealing with
systems with long-range interactions. In this regard, PWs calculations, being not affected
by the BSSE, are superior to AOs, but they are known to be much more computationally
demanding. For the system at hand, AOs are the only viable investigation method but,
at the same time, our results highlight the need of taking care of truncation errors such as
the BSSE in this type of DFT calculations.

8.3.3 H adsorption

The corrugation of the buffer layer has a strong influence on its chemical reactivity, de-
termining large H binding energies. On the contrary, the monolayer graphene is just
weakly curved, but still, its reactivity is expected to differ from that of planar free-
standing graphene. To understand the effect of curvature on the reactivity of the monolayer
graphene, H binding energies (D) were computed for several representative sites across the
lattice. As a first optimization, just the monolayer and the adsorbed H were let free to
relax.

The binding energies computed with PBE range from 1.44 eV to 1.71 eV. Hydrogenated
sites are indicated on the height color map of Figure 8.12, together with the corresponding
binding energy. We note a correlation with the relative ∆z (which is again calculated w.r.t.
to the minimum z of the monolayer graphene): concave areas (red) of the monolayer are
characterized on average by lower binding energies than convex areas (green-yellow). This
behavior contrasts with that observed on the buffer layer, where the local corrugation is
more irregular and the reactivity is ruled by the nearby presence of the CSi interactions.
Notice that, the greater reactivity of convex areas was observed also experimentally on the
monolayer graphene on SiC[237] and previously predicted also for rippled graphene[157,
159].

To understand the role of the underneath buffer layer and SiC, one further relaxation
was performed for some of the sites previously considered, namely by letting to relax both
the buffer layer and the topmost SiC bilayer during the optimization of the hydrogenated
interface. As the result of such "full" optimization, the binding energy range shifts to 1.56
eV - 1.71 eV. In particular, the energetics of the hydrogenation on concave areas, i.e. those
closer to the underneath structure, appear to be more influenced by the relaxation of the
topmost SiC bilayer.

Given the small curvature of the monolayer, the computed binding energies might
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Figure 8.12. Distribution of binding energies mapped on the ∆z profile of the C-lattice.

appear unexpectedly large if compared to 0.8-0.9 eV12 typical of planar free-standing
graphene. However, our AOs calculations are again affected by some errors:

(i) the enlargement of the basis set experienced by the H and the puckered interface that
results from their proximity;

(ii) the overbinding due to the bilayer structure mentioned in the previous Section.

The first error can be accounted for by applying again the standard CP-correction, following
Equations (8.3), (8.4) and (8.5). The CP correction in this case amounts to 0.24 eV13, thus
shifting the range of the binding energies to 1.20-1.47 eV.

When applying the above correction, we are not taking into account the BSSE resulting
from the bilayer structure, the second aforementioned source of error. Indeed, since the
CP-correction is an a posteriori method, it uses geometries that are optimized with such
BSSE already included. Therefore, the overbinding arising from the bilayer structure
cannot be corrected trivially while computing the H adsorption energetics. Nonetheless,
in the previous Section, we noted that a better estimate of the bilayer binding energy
with a semilocal functional is provided by including this BSSE, which can play the role
of the missing long-range interactions. Therefore, these arguments suggest not to further
correct the computed binding energies, i.e. including the BSSE of the bilayer structure to
improve the description of the binding between the two layers with the employed semilocal
functional.

8.3.4 Limits of the AOs

The above considerations evidently demonstrate the limits of the AO calculations and the
need for careful control of the ubiquitous BSSE. Yet, AO-based methods allow handling
systems that are much larger than those allowed by PW methods and therefore remain a
powerful tool in the context of DFT calculations. Because of the exceptional dimension of
the system, the estimate of the H binding energy on the monolayer graphene with PWs is
out of reach. Accordingly, to get to a deeper understanding of the H adsorption energetics,

12In Chapter 1, we mentioned that the H binding energy on graphene slightly changes according to the
type of calculation employed. With AO-PBE calculation on a 6 × 6 superlattice and the BSSE included,
the H binding energy is 0.9 eV

13Being an a posteriori correction, such value is indipendent of the relaxation procedure employed, i.e.
it is the same whether the buffer layer and the topmost SiC bilayer are let to relax during the optimization
of the hydrogenated monolayer or not.
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Figure 8.13. The cross-sectional views of the corrugation along the diagonal of a 13×13 graphene
superlattice. The inset shows the optimized structure of the superlattice and an arrow indicating
the direction of the cross-section considered.

other model systems were considered, with the main aim of identifying what contributes
to the large values (1.20-1.47 eV) resulting from our PBE calculations. In particular, four
major characteristics of the C/Si interface were further analyzed, namely:

(i) the large size of the graphene superlattice;

(ii) the presence of a bilayer structure;

(iii) the presence of a substrate (SiC) under the bilayer;

(iv) the n-doping experimentally observed for the monolayer graphene.

Let consider the large size of the graphene superlattice. Due to the 63R surface recon-
struction, the unit cell accommodates a 13 × 13 graphene superlattice. The H binding
energy is influenced by the size of the unit cell because, when relaxing such a large cell,
graphene is not forced to remain flat over the long-range. Geometric perturbations that
break the two-dimensional character of the sheet can set in. Despite being relatively small,
such perturbations can affect the H binding energy. Figure 8.13 reports the corrugation
profile of the 13× 13 graphene superlattice, as obtained by a PBE geometry optimization
with the same computational setup employed for the C/Si interface. Although the cor-
rugation is 4 times smaller than that observed on the monolayer graphene on SiC, the H
binding energy is around 1.11 eV (not CP-corrected), i.e. ≈ 0.2 eV larger than what found
on 6 × 6 superlattice (a smaller unit cell, but reasonably large to minimize defect-defect
interactions). Therefore, the relaxation of a large graphene sheet can considerably impact
the H adsorption energetics.

The second feature of the C/Si interface that is worthwhile to inspect is the bilayer
structure. As discussed above, a pragmatic approach to overcome the deficiency of the PBE
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Chapter 8. The C/Si interface: H adsorption energetics

Figure 8.14. The hydrogenated structure of the model bilayer graphene, with one layer kept
frozen in the buffer layer structure.

functional is to include the overbinding arising from the BSSE between the two layers.
Nevertheless, one may argue that a wrong assessment of such overbinding may be the
source of the large D obtained. An evaluation of such overbinding effect can thus help us
understand its contribution to the H binding energy. An artificial way to capture the extent
of such effect is to minimize the BSSE by relaxing just the nearest neighbors to the binding
C atom and keeping the remaining atoms in their initial position. A comparison between
the H binding energy with full relaxation of the monolayer versus that obtained with this
"constrained" relaxation should provide us with an estimate of the bilayer overbinding,
though approximated. Looking at the most reactive site (1.71 eV), D reduces to 1.63 eV.
Therefore, such infamous overbinding resulting from AOs is likely to count less than 0.1
eV on the H binding energy. This result suggests that the computed binding energies are
feasible and not too much overestimated.

Moving along to point (iii), we may ask how the underneath SiC affects the reactivity
of the monolayer graphene on top. A very rough and - again - artificial way of looking at
this contribution is provided by the removal of the SiC from the system. In other words,
one can look at the H adsorption on bilayer graphene where the bottom layer is kept frozen
in the buffer layer geometry, thus simulating the absence of the SiC substrate (see Figure
8.14). For the most reactive site on the full system (1.71 eV), the binding energy on this
model bilayer is reduced to 1.21 eV. Hence, there is half an eV that comes just from the
presence of the SiC substrate. Again, this is due to a combination of both "geometrical"
and "electronic" effects. The vdW or pseudo-vdW vary largely across the whole unit cell
and a tiny fraction of energy gained in some interaction could account for some tenths
of eV. In addition, the unpaired electron can strengthen some interaction with the buffer
layer.

Last but not least, as discussed in Chapter 6, the substrate with the buffer layer induces
an n-doping on the monolayer graphene, shifting the Fermi level by about 0.42 eV[25]. The
excess charge density on the graphene sheet due to such n-doping (or p-doping) can strongly
affect the H chemisorption energy, as proved on B (or N)-doped graphene[245]. Indeed,
charge doping populates the π? states (and correspondingly depopulates the π state), thus
weakening the π-bonds. Consequently, the H chemisorption is made easier and the binding
energy increases, with a quasi quadratic scaling w.r.t. to the excess charge density[245].
The Fermi level shift in graphene due to charge doping can be related to the excess charge
density n by the following relationship

εf = ~vf
√
πn

where vF is the Fermi velocity of graphene (≈ 106 m/s). The Fermi level shift in monolayer
graphene on SiC corresponds to n ≈ 1013 cm−2, as verified experimentally[25, 181]. Such
doping level is anyway less efficient in promoting the reactivity towards H atoms, whose
binding energy is expected to increase by just one-tenth of eV w.r.t. to the undoped case,
according to previous works on doped graphene[245, 246]. Therefore, that n-doping of the
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monolayer has little influence on the H adsorption energetics.
In light of the present discussion, we can conclude that the large energies released

when binding H on the monolayer graphene can be ascribed to two main factors: the large
dimensionality of the system, which introduces a curvature on the monolayer, though weak,
and the presence of the underneath SiC. The BSSE arising from the bilayer structure and
n-doping seem to play a marginal role, in this regard. Nevertheless, as already pointed out
by some authors in the literature[105], this work restates some of the limitations of the AO
calculations and the need for an a priori scheme to correct the BSSE.

8.4 Summary and Concluding Remarks

In this Chapter, we have shown an in-depth DFT investigation of the C/Si interface mod-
eled in the experimental surface reconstruction. Such work was motivated by the great
interest sparked by this interface and, in particular, by its hydrogenation, in solving some
of the existing issues in graphene technology, such as large-scale production. In addition,
because of its structure, the C/Si interface represented an interesting milestone in our
journey through curved carbon-based systems. Thus, we have scrutinized the H adsorp-
tion energetics on both the buffer and monolayer graphene, to understand the role of their
unique surface properties on their chemical reactivity. According to our DFT calculations,
the H binding energy on the buffer layer can reach values as large as 3.0 eV. The latter are
the result of a geometric effect (the corrugation) and an electronic effect (the breaking of
the π-bonds across the lattice), both governed by the presence of interactions between C
atoms and the underneath Si dangling bonds. For the monolayer graphene, the less pro-
nounced curvature comes with H binding energies that are smaller than those found on the
buffer layer (not exceeding 1.5 eV) but still large when compared to free-standing graphene.
Once taken into account the truncation errors arising from the use of AOs and the more
relevant properties of the interface, such large binding energies have been ascribed to the
large dimensionality of the system (and the corresponding curvature) and the presence of
the underneath SiC.

In Chapter 1, we have discussed that the H adsorption is not the only process that
can occur when a graphene sheet is exposed to an H flux. H atoms can recombine over
the surface, thus forming molecular hydrogen, especially when cold beams are employed
on the pre-covered surfaces and incoming H do not have enough energy to overcome the
barrier to sticking. We have mentioned that the most common abstraction mechanism is
the Eley-Rideal, which is operative in a large range of temperatures. Since the Eley-Rideal
recombination is barrier-less, its rate is determined by the exothermicity of the reaction,
i.e. by the H binding energy. The H adsorption and the Eley-Rideal recombination can, in
general, compete with each other, and therefore their competition will rule the hydrogena-
tion of the buffer layer (and that of the monolayer), that lies at the heart of the monolayer
decoupling strategy outlined in Chapter 6. To integrate further our understanding of the
C/Si interface and its behavior under H exposure, we have then combined our DFT inves-
tigation with a quantum-dynamical (QD) study of the Eley-Rideal recombination on both
the buffer and monolayer graphene. The results of such a DFT-QD study are presented in
the following Chapter.
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Chapter 9

The C/Si interface: quantum
dynamics of the Eley-Rideal reaction

The buffer layer graphene on SiC is more reactive towards H than planar graphene, with
binding energies (D) that can reach 3.0 eV. In the previous Chapters, we have pointed out
that binding energies and adsorption barriers are correlated, that is the larger the binding
energy the smaller is the barrier to sticking (the so-called Bell-Evans-Polany principle).
Therefore, while the hydrogenation of planar free-standing graphene proceeds through the
formation of dimers and clusters - because of the preferential sticking discussed in Subsec-
tion 1.3.4 - the H adsorption on the buffer layer graphene is likely to occur randomly, since
negligibly small or vanishing adsorption barriers are expected across the whole C-lattice.
Yet, at the gas-surface interface, several processes can compete with the H adsorption, thus
affecting the final state of long-term hydrogen exposure of the C/Si interface. In Chapter 6
we have mentioned that the passivation of the buffer layer with H atoms could be a strat-
egy to decouple the monolayer graphene, especially at low temperatures (≈ 500◦) where
H atoms do not intercalate underneath the buffer layer. Hence, it is crucial to investigate
the dynamics of H atoms above the buffer layer in order to properly understand how its
passivation works.

The most relevant competing reaction at the temperatures of interest is H2 recombi-
nation through the Eley-Rideal mechanism. In this reaction, a H atom coming from the
gas phase feels the interaction potential of one hydrogen already adsorbed on the surface.
The H is thus captured by such interaction potential and collides with the chemisorbed H,
thus forming a H2 molecule that leaves the surface. The ER recombination is barrier-less,
then its rate is governed by its exothermicity, i.e. the depth of the chemisorption well.

The question that naturally arises is the following: how does the peculiar geography of
the buffer layer, which results in very large D, affect the rate of the competing Eley-Rideal
reaction? To answer this question and further integrate our understanding of the C/Si
interface upon hydrogenation, we have combined our DFT data on the buffer layer with
a fully quantum-dynamical investigation of the ER reaction. For this purpose, we have
employed a time-dependent wave packet method that was already tested and successfully
applied in the literature to study the ER recombination on metal surfaces and graphite.

In Section 1, we briefly describe this method and we present some preliminary calcula-
tions on graphite to better illustrate it and some basic features of the ER reaction. Section
2 and 3 are dedicated to the discussion of our results on the ER reaction on the buffer layer
and the monolayer graphene on SiC, respectively. An overview on classical and quantum
scattering theory is left to Appendix B.
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9.1 A time-dependent wave packet method

In this Section, we provide the reader with a quick description of the method employed for
the computation of ER cross-sections on graphene. Such method was developed by Persson
and Jackson (1994)[247] for the theoretical investigation of the ER recombination dynamics
on metal surfaces. The interest in modeling such gas-phase reaction was originally inspired
by a series of groundbreaking experiments on the matter conducted in the late 1980s. In
this regard, we could note cite the works of Hall et. al.[248] and Eeshustra et. al.[249]. On
H2 recombination of W, the molecular beam study by Rettner et. al.[250] examining the
isotopic effect in H2 recombination on Cu(111) or the work by Lykke and Kay[251] on the
reaction between gas phase H and Cl adsorbed on Au(111). Such experimental works shed
light on some features of the ER dynamics, like the sensitivity to the initial state of the
gas-phase species or the large internal excitation of the desorbing product molecule. Later,
the experiments were extended to graphite, PAHs and realistic analogs of the interstellar
dust grains for the recognized role of the ER reaction in the interstellar chemistry (see
Chapter 2).

In a nutshell, the method consists in solving a time-dependent Schrödinger’s equation
describing the evolution of heights and the lateral separation of the two H atoms, applying
a flat-rigid surface approximation in the nearby of the target (that is, disregarding the
lattice motion) and modeling the interaction between the two H with a potential of the
London-Eyring-Polany-Sato (LEPS) form[252]. In the following we outline such approach
and illustrate some of the features of the ER reaction with preliminary calculations on
graphene. For a comprehensive description of the method, the reader is referred to the
original papers[253, 254, 255].

The flat-rigid surface approximation allows reducing the dimensionality of the problem
from six to three, by introducing three constants of motion. Indeed, beside the rota-
tionally invariance around the surface normal, such approximation makes the interaction
between the atoms and the surface translationally invariant, thus introducing an addi-
tional axial symmetry. In the center-of-mass (CM) frame, such symmetries makes the
potential V (x1,x2) (with x1 (x2) position vector of the target (projectile)) assuming the
form V (ρ, z, Z), where ρ is the interatomic distance projected on the surface plane, z is
the relative separation along the surface normal and Z the center-of-mass height. The
lateral momentum of the center-of-mass and the z-component of the angular momentum
of the relative motion become conserved quantity, and one can then apply a partial-wave
expansion to the initial state vector[255]

|Ψ〉 =
+∞∑

m=−∞
cm|ψm〉|m〉 (9.1)

where |m〉 is an eigenstate of the center-of-mass angular momentum (〈φ|m〉 = eimφ/
√

2π
with φ being the azimuthal angle of the diatomic), while |ψm〉 are vectors of the remaining
degrees of freedoms. The latter evolve independently according to the Hamiltonian

Hm = T⊥ + Tm‖ + V (9.2)

T⊥ is the kinetic energy operator for the motion along the surface normal and reads as (in
coordinate representation)

T⊥ = − 1

2M

∂2

∂Z2

with M = m1 + m2 the total mass. Tm‖ is the kinetic energy operator for the relative
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9.1. A time-dependent wave packet method

motion and reads as (in coordinate representation)

Tm‖ = − 1

2µ

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)]
+

m2

2µρ2

where µ = (1/m1 + 1/m2)−1 is the reduced mass. Note that such operator contains a
centrifugal term, namely m2/2µρ2. V = V (ρ, z, Z) is the potential energy in the flat-rigid
approximation.

The interaction between the surface and the atoms is assumed to be governed by a
single electronically adiabatic potential energy surface. The latter is modeled in the LEPS
form, namely

V (ρ, z, Z) = Ua(zi) + Ua(zt) + Um(r)+

−
[
Qm(r)2 + (Qa(zi) +Qa(zt))

2 −Qm(r)(Qa(zi) +Qa(zt))
]2 (9.3)

where

Ui(x) =
Di

4(1 + ∆i)
[(3 + ∆i)e

−2αi(x−xi)+

− (2 + 6∆i)e
−αi(x−xi)] (9.4)

and

Qi(x) =
Di

4(1 + ∆i)
[(1 + 3∆i)e

−2αi(x−xi)+

− (6 + 2∆i)e
−αi(x−xi)] (9.5)

In Equations (9.3)-(9.5), i = a,m where a denotes an atomic term and m a molecular term
while r is the internuclear separation, namely r2 = z2 +ρ2. The parameters describing gas-
phase H2 are the binding energy Dm = 4.745 eV , αm = 1.943Å−1 and xm = rm = 0.741Å.
Da is the depth of the H-substrate chemisorption well. The remaining parameters such as
the Sato parameters ∆a and ∆m can be tuned to modify the reactivity and model various
substrates. They are obtained by fitting the potential with first-principle data. For the
problem at our interest, such parameters were fitted to periodic DFT calculations of the
interaction of two H atoms with a (0001) graphite surface. It is worthy to emphasize
that in this potential model, the carbon atom beneath the adsorbed H (i.e. the target) is
held fixed at a puckered configuration. The incoming H (i.e. the projectile) experiences
a physisorption interaction with the substrate. This is the "diabatic" model of Ref. [254]
denoted as Case A. The resulting dynamics is then a fast dynamics, that is the binding
carbon has no time to relax and the incoming H has no time to chemisorb. Such dynamical
process occurs at high collision energies of the projectile, which suggests that the results
provided by the method in such regime should be more consistent with the potential.
However, we should keep in mind that the method employed here disregards any quantum
lattice motion, which may play a relevant role in such regime1. On the other hand, one
may also consider the "adiabatic" model, where the H from the gas phase reacts with the
chemisorbed H but the substrate is allowed to fully relax for every configuration of the two
H atoms. This is denoted as Case B in Ref. [254]. The real dynamics should lie somewhere

1The lattice motion has been included in the work of Pasquini et. al.[256]
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Chapter 9. The C/Si interface: quantum dynamics of the Eley-Rideal reaction

between these two limiting situations[254]2.
The initial wave packet should represent an adsorbate atom 1 (the target) in a given

vibrational eigenstate of Va(z1) and an atom 2 (the projectile) far away from the surface,
with a given angle of incidence θ and kinetic energy Ei. The target has a zero lateral
momentum, p1‖ = 0, while the projectile is represented by a plane wave parallel to the
surface with lateral wave vector k2‖ =

√
2m2Ei and a Gaussian wave function normal to

the surface. Therefore, in the flat-rigid approximation, |ψm〉 of Equation (9.1) reads as

ψm(ρ, z, Z; t = 0) =
1
√
ρ
νn(z1)G(z2)J|m|(k‖ρ)F (ρ) ρ > 0 (9.6)

where J|m| is a cylindrical Bessel function, k‖ = µk2‖/m2 is the lateral wave vector for the
relative motion, νn(z1) is an eigenstate wavefunction of Va(z1) while G(z2) is a Gaussian
function

G(z2) =
1√
π∆z

exp

[
−ikz(z2 − z1)− (z2 − zi)2

2∆z2

]
(9.7)

kz is the average momentum of the target normal to the surface, zi is the average initial
position and δz is its position spread with a corresponding normal kinetic energy spread
∆Ez ≈

√
Ez/(2m)/∆z.kz is given by kz =

√
2m2(Eiz − 〈V 〉, where Eiz = Ei cos2 θi is the

average incident energy at infinity and 〈V 〉 is the average of the potential over the initial
wave packet. F (ρ) is a cut-off function introduced in order to localize the lateral extension
of the wave packet within the grid. It is chosen to be in the form

F (ρ) =

√
π

Aeffc(m; k‖)

1 if |ρ| < ρc

exp

[
−
(
|ρ|−ρc
λ

)2
]

otherwise
(9.8)

where Aeff is the effective area of the lateral spatial extension of the initial wave function,
c(m; k‖) is a relative contribution from component m. In a more compact notation, the
wave packet |ψm〉 is then chosen in the form |ν〉|zikz; ∆z〉|km〉, where it is intended that |ν〉
is the adsorbate vibrational eigenstate, |zikz; ∆z〉 the state describing the vertical motion
of the incident atom, while |km〉 that describing the motion along the surface. The time-
propagation of |ψm〉 is performed by applying a short-time split-operator approximation
to the full time-evolution operator corresponding to Hm (Equation (9.2)). The latter is
based on the Trotter formula

e−iHδt ≈ e−iV
δt
2 e−i(H1+H2)δte−iV

δt
2

where δt is an infinitesimal time-step and H = H1 +H2 + V .
In the original approach described above, the set of coordinates adopted is the center-

of-mass (Z) and the relative motion z of the two atoms[257, 258, 259]. Later, the method
was extended by Martinazzo et. al.[255] to allow for the use of the heights of the two atoms
(zi and zt) as a set of coordinates. The first choice is better suited for the computation of
rovibrational distributions of the ER product molecule and for such reason it is referred
to as "product" set of coordinates. The second is better suited to compute different exit
channel probabilities, such as the exchange, P +TS → T +PS, or the two-atom trapping,
P + TS → PS + TS, where P is the projectile and T the target atom.

For the computation of energy-resolved reaction probabilities, a flux-operator approach
2Sha. et. al. have shown that the resulting reaction probabilities in the two cases are very similar,

because it is the strong HH interaction to dominate the reaction dynamics. The notable difference is that,
in the relaxed case, the lattice begins to "unpucker" as soon as the HH bond forms, making the entrance
channel more attractive. As a result, in the relaxed case the reaction cross-sections in the low energy
regime are larger w.r.t. the rigid-puckered case[254].
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9.1. A time-dependent wave packet method

applied to the time-energy mapping of the wavefunction is employed[255]. To elucidate
such procedure, let consider an initial state |ψ0〉 corresponding to an incoming asymptotic
state |φα〉 in channel α, that is |ψ0〉 = Ωα

+|φα〉, with Ωα
+ the appropriate Möller operator

(see Appendix B). Let P be an operator such that limt→±∞〈ψt|P |ψt〉 exists. Then, the
change of P due to collision will be given by[255]

∆P =

∫ +∞

−∞
〈ψt|Ṗ |ψt〉dt (9.9)

where Ṗ is the dynamical derivative of P , namely Ṗ = i[H,P ]. Using

|ψ0〉 =

∫
dE|Eα+〉〈Eα+|ψ0〉

=

∫
dE|Eα+〉〈Eα|φα〉 (9.10)

we may rewrite Equation (9.9) as

∆P (∞) =

∫
dEP (E)|a(E)|2 (9.11)

where a(E) = 〈Eα+|ψ0〉 = 〈Eα|φα〉 and P (E) = 2π〈Eα+|F |Eα+〉, where the flux-
operator F = Ṗ has been introduced. P (E) represents the energy-resolve change of P .
Since we are interested in product projection operators and the initial wavepacket is local-
ized in the asymptotic reaction region, we have to follow only the forward time evolution
and the energy weights are simply given by a(E) ≈ 〈Eα|ψ0〉 and P (t) = 0 for t < 0 with
|ψ0 ≈ |φα〉.

For the problem at our hand, the energy-resolved probabilities, Pi←f , are then com-
puted from

Pi→f = 2π〈Ei+|Ff |Ei+〉 (9.12)

where Ff is the flux-operator for products into states f given by Ff = Ṗf . Pf is a projector
onto the final internal states f times a projector onto the asymptotic region of the relevant
scattering coordinate, Pf = hR∞ |f〉〈f |, with hR∞ an Heavised operator projecting onto
R > R∞. |Ei+〉 in Equation (9.12) is an energy normalized scattering eigenvector for the
initial condition i

|Ei+〉 =
1

2π

1

〈Ei|ψ0〉

∫ ∞
0

eiEt|ψt〉dt

where the coefficients 〈Ei|ψ0〉 are related to the momentum representation of the initial
wavepacket.

Adsorbing potentials are used as boundary conditions to avoid unphysical reflection at
the edge of the three-dimensional grid. They are started at Zs, z−s ,z+

s ,ρs in product coor-
dinates (+ and − denotes the left and right edges of the z grid respectively) and z+

i,s, z
−
i,s in

reagent coordinates and implicitly define the flux lines. The adopted adsorbing potential
is the transmission-free of Manolopoulus, which is defined in terms of the minimum kinetic
energy for which reflection is less than 1%.

To illustrate some general features of the ER reaction, we begin by showing some
calculations on the H2 recombination on graphitic surface (Di = 0.68 eV)3. Figure 9.1
displays the cross-sections (σ(Å2

)) in a large range of collision energies of the incident
atom and for different vibrational eigenstate of the adsorbate. Note that the reported σ

3These are known results, that the interested reader can find in the paper by R. Martinazzo et. al.
(2006)[255].
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Figure 9.1. Cross-sections (σ, Å2) of the ER reaction on graphite (Di = 0.68 eV) as functions
of the collision energy (Eiz, eV) of the incident H atom. Dark to light red denotes respectively
ν = 0, 1, 2 vibrational eigenstate of the target atom.

are scaled by a factor 1/4 w.r.t. the total cross-sections. Indeed, in contrast to H on metals,
the magnetic moment of the chemisorbed H is not quenched on graphite and therefore such
scaling factor is a spin-statistical factor that accounts for the fact that only 1/4 of the H
couples are the right spin-configuration[40].

In spite of the scaling, cross-sections on graphite remain larger when compared to
metals. This behavior is due to the fact that H on graphite experiences a much weaker
substrate attraction, that allows for steering of the incoming projectile. Moreover, the
stronger interaction of H on metals (Di = 2−2.5 eV) puts the target closer to the surface
(0.5Å vs 1.54Å), thereby leading to smaller cross-sections.

Vibrational excitation of the target atom promotes, as expected, the reaction in the
low energy regime, as indicated by the larger cross-sections, but acts as an inhibiting factor
at larger values, in particular as soon as the so-called collision induced desorption (CID)
channel opens. CID refers to the process P +TS → P +T +S, where the target desorbs in
consequence of the collision and becomes a relevant mechanism as the projectile collision
energy overcomes the target binding energy (not shown).

Figure 9.2 displays the average vibrational and rotational states of the product molecule
(H2) at different vibrational eigenstates of the target atom. The vibrational excitation,
and the internal energy (not displayed), decrease with the increase of the collision energy
of the projectile. Correspondingly, this indicates an increase of the translational energy
of the product and therefore an efficient conversion of the relative kinetic energy into
center-of-mass kinetic energy due to the collision, especially when the target is in low-lying
vibrational states. The rotational excitation is instead a monotonically increasing function
of the collision energy. Higher-energy calculations have shown that above 2 eV, the average
vibrational excitation and the internal energy become an increasing function of the collision
energy, while the rotational excitation levels off.

One may wonder why we are applying a full quantum approach to investigate a barri-
erless reaction such as the Eley-Rideal, where classical methods should be rather adequate
in describing its dynamical features. Besides the fact that reaction at our interest involves
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Figure 9.2. Vibrational (ν) and Rotational (j) excitation of the product molecule (H2) as func-
tions of the collision energy (Eiz, eV) of the incident H atom. Dark to light red denotes respectively
ν = 0, 1, 2 vibrational eigenstate of the target atom.

light atoms, Martinazzo et. al.[255] showed that oscillations appearing in the cross-sections
displayed in Figure 9.1 cannot be reproduced by classical and quasi-classical trajectory cal-
culations. They are due to a selective population of the low-lying vibrational eigenstates of
the product molecule, that is they are not due to any particular feature of the potential but
they arise from the obvious quantization of the product states4, which is able to manifest
itself in a global observable such as the reaction cross-section. In parallel, the quantum
CID cross-sections display a peak structure that may be assigned to the population of
metastable states of a rotationally excited transient H2 molecule.

9.2 ER recombination on the buffer layer

Employing the time-dependent wave packet method described above, we have investigated
the ER reaction on the buffer layer graphene. As mentioned in the introduction to this
Chapter, the purpose was to understand the influence of corrugation on the rate of the
abstraction process. The ER reaction cross-sections were then computed by tuning the
depth of the chemisorption well of the target atom (Di) in the range of the H binding
energies found with DFT calculations. We shall highlight that our calculations are of
model type, also because they assume normal incidence only.

The target atom was left in its vibrational ground state. For the incident atom, a large
range of collision energies was considered. Its average energy was set to Ei0 = 1.0 eV and
the average height at zi0 = 9.5Å. The time-step δt of the time propagation was set to 0.25
fs and the propagation was performed until the wave packet was completely adsorbed by
the adsorbing potentials. The calculation was performed in the "product" coordinate sets.
The optimized grid parameters are summarized in Table 9.1.

The ER reaction cross-sections (σ) computed in our simulations are displayed in Figure

4Clearly, also the correct prediction of the rovibrational populations appears straightforward in a
quantum calculation and (though possible, to some degree) rather involved in the QCT case.
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Figure 9.3. Eley-Rideal reaction cross-sections, σ, (Å2), as functions of the incident atom collision
energies, Eiz (eV), at target binding energies (different colors) typical of the buffer (Left) and
monolayer graphene (Right) on SiC.

9.3 (left). These σ already include the spin-statistical factor of 1/4. Earlier classical and
quasiclassical trajectory analysis on graphite by R.Martinazzo et. al.[255] have shed light
on the details of the scattering mechanism and the resulting cross-sections. For the system
at hand, in the range of 2.0-2.7 eV, the behavior of the ER cross-sections is parallel to
that observed on graphite, hence we can reasonably assume that the underlying scattering
mechanism is the same. Namely, In the low energy regime, a slight increase of Eiz results
in an increase of σ, because the target is able to capture projectiles with higher impact
parameters. A further increase of Eiz determines a loss of reactivity and a reduction of σ
because other mechanisms can set it (for instance, the projectile can be scattered away or
collide multiple times with the target). The effect of deepening the chemisorption well of
the target is clear: σ starts to steeply decrease at collision energies that are smaller and
smaller as D increases. Yet, σ are still large, and, contrary to what observed on metal
surfaces5, they exceed 1Å2 up to D ≤ 2.7 eV and Eiz ≤ 1.0 eV.

The situation dramatically changes at larger D. Above 2.9 eV, σ keeps decreasing
over the entire range of Eiz considered and they become even vanishing at the largest
values when the collision energy exceeds ≈ 1.75 eV. On the buffer layer graphene, binding
energies close to 3.0-3.2 eV are typical of C32 atoms, i.e. carbons with 2 Si-bonded nearest
neighbor. Because of the vanishing reaction cross-sections, one can then expect that the
ER reaction hardly occurs on these sites. The picture that emerges from the combination
of our DFT and QM calculations may be described as follows. When the C/Si interface
is exposed to an H flux, the hydrogenation may, in principle, proceed randomly, since H
atoms should not find any barrier to sticking, by virtue of the large D. However, most of
the sites are still characterized by sizeable ER cross-section and, once hydrogenated, can
undergo abstraction reaction. In contrast, the small fraction of C atoms represented by
C32 with the largest binding energies, is expected to remain populated by H throughout
the entire H exposure, because of a vanishing (or negligibly small) cross-section.

5Note that the H binding energies on typical metal surface are comparable, ranging from 2.0 to 2.5 eV.
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9.3. ER recombination on the monolayer graphene

Table 9.1. Grid parameters for the quantum calculations, where P stands for "product" coor-
dinate set; (x, z) = (Z, z); Ni is the number of grid points along the coordinate i and ∆xi is the
grid spacing. Distances are in angstrom.Zs, z−s , z+s , ρs define the coordinates where the absorbing
potentials are started.

P
Zmin 0.00
∆Z 0.035
NZ 216
zmin -5.00
∆z 0.070
Nz 225
Lρ 13.0
Nρ 190
Zs 6.00

(z−s )z+
s (-3.10)8.0

ρs 12.0

9.2.1 Vibrational and rotational excitations

Figure 9.4 displays the behavior of vibrational and rotational excitations of the product
molecule as a function of the collision energies, at different D of the target. The vibrational
and rotational state of the product depends on the scattering mechanism followed during
the reaction. For the problem at hand, the investigation of the reaction mechanism was
out of scope. Nevertheless, the description of Figure 9.4 can be again guided by the
quasiclassical picture of the scattering mechanism provided by earlier works on graphite.

At low binding energies and in the low collision energy regime, a hot vibrational and
cold rotational product is formed. The latter arises from a collinear or quasi-collinear
scattering mechanism, where the projectile directly impinges on the target and most of
the translational energy is thus converted into internal vibrations. In this regime, an
initial increase of the projectile collision energy determines a reduction of the vibrational
excitation and a corresponding more efficient conversion of incident kinetic energy into
product translational energy (see above). As mentioned earlier, a further increase of the
collision energy determines a loss of reactivity, because the projectile can scatter away
or regain its energy after colliding with the target. Then, the reaction generally occurs
through glancing collisions by H with high impact parameters, leading to rotationally hot
and vibrationally cold molecules. Noticeably, the trend is reversed as the binding energy
exceeds 2.7 eV: when the target atom is strongly bound to the surface, both the vibrational
and rotational excitation increases with the collision energy.

9.3 ER recombination on the monolayer graphene

The H2 recombination have been investigated also on the monolayer graphene, again by
tuning the depth of the chemisorption well of the target atom in the range of values found
with DFT calculations. The resulting spin-statistics corrected cross-sections are displayed
in Figure 9.3 (right), while the vibrational and rotational states of the product molecule
are displayed in Figure 9.5.

At the relevant values, the behavior of σ is parallel to that observed for the low binding
energy regime on the buffer layer: the reactivity is initially promoted by an increase of the
projectile collision energy, but then, at larger Eiz, the recombination mechanism becomes

135



Chapter 9. The C/Si interface: quantum dynamics of the Eley-Rideal reaction

Figure 9.4. Vibrational (Left) and Rotational (Right) excitations of the product molecule (H2),
as functions of the collision energy of the incident atom, Eiz (eV), at binding energies of the target
(different colors) typical of the buffer layer graphene on SiC
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Figure 9.5. Vibrational (Left) and Rotational (Right) excitations of the product molecule (H2),
as functions of the collision energy of the incident atom, Eiz (eV), at binding energies of the target
(different colors) typical of the monolayer graphene on SiC

0.0 0.5 1.0 1.5 2.0 2.5 3.0

E
iz
 / eV

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

<
 ν

 >

0.0 0.5 1.0 1.5 2.0 2.5 3.0

E
iz
 / eV

0

3

6

9

12

15

18

<
 j
 >

0.7 eV

1.1 eV 

1.2 eV

1.3 eV

1.4 eV

1.7 eV

0.8 eV

136



9.3. ER recombination on the monolayer graphene

gradually rather inefficient6. Nevertheless, we note that σ still exceeds 1Å2 on the whole
range of collision energies, and therefore, also for the monolayer, the rate of the ER reaction
remains quite large (e.g. larger than on typical metal surfaces).

Similar considerations apply to Figure 9.5. Vibrational and rotational excitations are
steeply decreasing and increasing functions of Eiz, respectively, as for the H2 recombination
on graphitic surfaces[255].

6We should also remind that as Eiz exceeds the target binding energy, the CID channel opens, thus
leading to a further fall of the ER cross-sections
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Part III

Towards a curved theory of
π-conjugation
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Chapter 10

The mathematics of the curved
world

In this Chapter we introduce some mathematical concepts that are instrumental for the
later development of a mathematical description of curved π-systems, which is left to
Chapter 11. During his Ph.D. course, the author has spent a great amount of time on
the study of differential geometry, a wide field of maths that, roughly speaking, applies
the theory of differential calculus to the study of arbitrary "curved" spaces. This Chapter
represents then a summary of part of the knowledge acquired on this topic. The expert
reader will notice that we will not talk about connections or covariant derivative, fun-
damental concepts that lie at the heart of the subject and, in particular, of the general
theory of tensors on differentiable manifolds1. The reason is that the author has decided
to give here more emphasis to the classical theory of surfaces (2-dimensional Riemannian
manifold emdedded in a 3-dimensional Euclidean space (E3)), which is more relevant to
this work2 . In a sense, such approach follows the historical development of the topic.
Indeed, Riemannian manifolds[261] were first introduced, namely differentiable manifolds
endowed with a (0, 2) covariant tensor field, gij , called metric tensor. The latter allows
measuring arc lengths of curves, angles between vectors on manifolds, curvature proper-
ties, and therefore guarantees a rich geometrical structure. However, it was later realized
that the metrics is not necessary for a self-contained theory of curvature: one just needs
a set of coefficients following a specific transformation law, called affine connection. If the
reader is interested in this second general approach to the subject, (s)he is referred to the
wonderful book Tensors, Differential forms and Variational Principles, by D. Lovelock and
H. Rund (1989)[262], which the author discovered by chance but that was fundamental for
his comprehension of the matter.

This Chapter is organized as follows: in Section 1 we review some basic concepts about
the theory of curves and surfaces; in Section 2, we introduce the first fundamental form;
in Section 3 we will see how the first fundamental form enables us to measure distances,
angles and area elements on a generic surface; in Section 4, thanks to the introduction
of the second fundamental form, we will begin to talk about the concept of "curvature";
in Section 5, we introduce the principal curvatures and the related mean and Gaussian
curvature - this is the most important Section for the purposes of Chapter 11; finally, in

1 In this context, it is suffices to know that a manifold is a topological space that locally resembles an
Euclidean space, but globally may look completely different. More precisely, a manifold (M) is a separable
Hausdorff topological space that can be covered by an atlas, that is a collection of charts {Uα, hα} with
α a set of indexes, where Uα are open sets of a point p ∈ M and hα are homeomorphisms to Rn, i.e.
hα : Uα → Rn. A manifold is said to be differentiable if it is endowed with a differentiable structure, i.e.
an atlas such that each of its charts are C∞-compatible with each other.

2The interested reader is referred to the book of Kreyszig (1991)[260], that specifically deals with the
differential geometry of surfaces.
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Section 6 we present the theory of curvature of Riemannian spaces. Connections with the
general theory of "affinely connected spaces" will be made throughout when possible.

10.1 Introduction: curves and surfaces

As we shall see later in this Chapter, in many investigations of geometrical properties
(such as the curvature itself), one looks at special classes of curves to extract relevant
information on the surface under examination. Therefore, the study of curves on surfaces
is at the heart of classical differential geometry and needs to be treated in detail for our
subsequent discussion. In this Section, we begin by reviewing some basic concepts about
curve in E3. Next, we give a formal definition of a surface and its representation.

10.1.1 Curves in E3

Let consider an Euclidean space E3 and introduce a Cartesian coordinate system xi (with
i = 1, 3) so that any point q ∈ E3 can be represented as x = (x1, x2, x3). A curve
C is defined by a one-parameter representation x = x(t), with t defined in the interval
I : a ≤ t ≤ b, such that xi(t) are of class Cr, with r ≥ 1, and ∀t ∈ I, at least one of the
three functions x′i(t) = dxi(t)/dt is different from zero.

Among all allowable parametric representation for a curve, a special role is played by
the representation in terms of the arc length, s, also called "natural parameter", defined
according to

s =

∫ b

a

√√√√ 3∑
i=1

(
dxi
dt

)2

dt =

∫ b

a

√
(x′|x′)dt

where (·|·) is the standard scalar product in E3 and ′ denotes the derivative w.r.t. t.
The reasons is that many results of the theory of curves in E3 are simplified in such
representation. We introduce the element of arc or line element of C, ds2, symbolically
defined as

ds2 =
3∑
i

dx2
i = (dx|dx) (10.1)

A curve with allowable parametric representation x(s) can be characterized through
the definition of a number of vectors. First, one define the unit tangent vector, T (s) to
the curve C at the point x(s) as

T (s) = lim
h→0

x(s+ h)− x(s)

h
=
dx

ds
= ẋ(s) (10.2)

Being T a unit vector, by differentiating the relation (T |T ) = 1, we get (T |Ṫ ) = 0. Hence,
if the vector Ṫ = ẍ is not the null vector, it has to be orthogonal to the unit tangent vector
- in other words it lies on the plane normal to the curve C at the point under consideration.
The corresponding unit vector

P (s) =
Ṫ (s)

|Ṫ (s)|
(10.3)

is referred to as unit principal normal to the curve C. The vectors T and P together
span a plane called osculating plane. Since P belongs to both the osculating and the
normal plane, it follows that this vector is actually the intersection between these planes.
The absolute value of P ,

κ(s) = |P (s)| =
√

(ẍ(s)|ẍ(s)) ≥ 0 (10.4)
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Figure 10.1. A curve C with the tangent vector T , the principal normal vector P and the
curvature vector k at a given point.

is called the curvature of the curve C at the point x(s)3. This name is justified upon
considering that κ(s) is related to the rate of change of the unit tangent vector; therefore,
for a straight line, ẋ(s) ≡ k with k a constant, everywhere on C, and κ(s) ≡ 0. One also
define the reciprocal of the curvature

ρ(s) =
1

κ(s)
(10.5)

that is called the radius of curvature of the curve C at the point x(s). It is advantageous
for our later development of the theory to introduce the notation k(s) = Ṫ and call this
vector the curvature vector of the curve C.

Remark 1. Notice that, while the sense of the unit tangent vector to a curve depends on
the orientation of the curve resulting from the choice of a certain representation, the unit
principal normal vector is independent of the orientation of the curve.

With the above definition, the unit principal normal is given by P (s) = ρ(s)ẍ(s).
Since the latter and the unit tangent vector are orthogonal, one can uniquely introduce
the following vector

B(s) = T (s)× P (s) (10.6)

which is orthogonal to both T and P and is called the unit binormal vector of the
curve C at the point x(s). From this definition, we have that T ,P ,B in this order define
a right-handed local frame which is generally referred to as moving trihedron. Let now
consider the two following scalar products, (B|B) = 1 and (B|T ) = 0. By differentiation,
we obtain

(B|Ḃ) = 0 and (Ḃ|T ) + (B|Ṫ ) = 0

Since Ṫ = κP , we find that

(Ḃ|T ) = −(B|Ṫ ) = −κ(B|P ) = 0

Hence, if the vector Ḃ is not null, it has to be orthogonal to both T and P , i.e. it is
parallel to the unit principal normal. We may set then

Ḃ(s) = −τ(s)P (s) (10.7)
3For a generic allowable parametric representation x(t), the analytic expression of the curvature reads

as

κ =

√
(x′|x′)(x′′|x′′)− (x′|x′′)2

(x′|x)3/2
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Figure 10.2. A curve C with the moving trihedron defined by the vector T ,P ,B. The yellow
and blue rectangles are the osculating and the normal plane respectively.

where τ(s) = −(P (s)|Ḃ(s)) is called the torsion of the curve C at the point x(s) (L.I. de
la Vallé (1825)[263]), or at times also second curvature. The following Theorem holds (we
omit the proof):

Theorem 10.1.1. A curve, with non-vanishing curvature κ, is plane if and only if its
torsion vanishes identically.

From a geometrical perspective, the torsion τ thus measures how much the curve
"leaves" the osculating plane, while the curvature κ is related to the degree of curva-
ture on the osculating plane. In light of this, it should be clear that T ,P ,B and their
first derivatives contain much of the information about the local geometry of a curve in E3

In particular, because of their linear independence, one can write any vector defined at a
point of a curve C in terms of T ,P ,B. This applies also to the derivative vectors Ṫ , Ṗ , Ḃ.
The corresponding formula are due to Frenet [264] and they are one of the most important
results of the theory of curves. With some simple algebra, one finds, in matrix notation,

ṪṖ
Ḃ

 =

 0 κ 0
−κ 0 τ
0 −τ 0

TP
B

 (10.8)

10.1.2 Surfaces

Let consider the following real single-valued vector function

x(u1, u2) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)) (10.9)

in the two real variables u1 u2, which is defined on a bounded and simply connected set B
on the plane (u1, u2). Any point (u1, u2) ∈ B is associated then to a point P ∈ E3 with
position vector x(u1, u2). We denote by M the set of points we get when (u1, u2) vary
in B. Equation (10.9) is said to be a parametric representation of the setM and, from a
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Figure 10.3. A surface M represented in terms of the vector-valued function x = x(u1, u2).
x1, x2, x3 define the coordinate system in the Euclidean space E3, while u1, u2 are the coordinates
on the domain B. Each point P of the setM corresponds to just one ordered pair (u1, u2) in B.

geometrical point of view, it represents a surface (2-dimensional space4) embedded in E3
5.

Remark 2. The reason for using superscripts and subscripts will be explained in Subsection
10.2.1, when dealing with transformation laws.

In order to apply differential calculus to a geometric "object" like that defined from
Equation (10.9), we must require the existence of a certain number of partial derivatives of
x(u1, u2) w.r.t. uα (henceforth, we use a Latin index to refer to the Cartesian coordinate
in E3 and a Greek index to refer to the parameters u1, u2 of B). In addition, we must
exclude the possibility that x(u1, u2) represents merely a curve in E3. This amount to
make the following assumptions:

(i) The function x(u1, u2) is of class Cr with r ≥ 1. Each point of M corresponds to
just one pair (u1, u2) in B.

(ii) The Jacobian matrix of elements Jαi = ∂xi/∂u
α is of rank 2 in B.

A parametric representation that satisfies Assumptions (i) and (ii) is said to be an allow-
able representation. Assumption (ii) excludes the possibility thatM represents a curve6,
for which rank(J) = 1. Moreover, is a necessary and sufficient condition for the linear
independence of the following vectors

x1 :=
∂x

∂u1
and x2 :=

∂x

∂u2

that will play a central role in the later development of the theory.
There is no unique parametric representation of the set M. Indeed, one may impose

4Here, we will always use the term "space", although it is understood that these are more generally
(and rigorously) differentiable manifolds (see footnote 1 on pag. 141.

5This is not the unique allowable representation of a surface. Indeed, in some context it is more
convenient to define the surface as the graph of a two-variables function (when possible), z = f(x, y).

6There may be points where rank(J) < 2. These are called singular point for the representation. If
they are singular w.r.t. any allowable representation ofM, they are referred to singular points of M. An
example are poles of a sphere.
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the following transformation law

uα = uα(ūβ) (α, β = 1, 2) (10.10)

to obtain a new parametric representation x(ū1, ū2). Of course, for such a new represen-
tation to be an allowable representation, it has to satisfy again Assumptions (i) and (ii).
We therefore require that

(i) The functions (10.10) are defined in a domain B̄ such that the corresponding range
of values includes B.

(ii) The functions (10.10) are a one-to-one transformations of class Cr with r ≥ 1 every-
where in B̄.

(iii) The Jacobian D of the matrix of elements Dαβ = ∂uα/∂ūβ is different from zero
everywhere in B̄.

A coordinate transformation satisfying these conditions is said to be an allowable coordi-
nate transformation. By means of (10.10), we may classify allowable representations into
equivalence classes. Namely, we say that two allowable representation are equivalent if
they belong to the same equivalence class, i.e. there is a transformation law of the form
(10.10) mapping one into the other. We are now in position to give the following

Definition 10.1.1. A surface is a point set in space E3 which can be represented by an
allowable representations of an equivalence class.

Because of the Assumption (i) on the parametric representation, the correspondence
between the points of a surface and the ordered pair (u1, u2) is one-to-one. Therefore, u1

and u2 can be considered as coordinates onM. The corresponding curves u1 = const and
u2 = const are called coordinate curves.

Let turn now our attention to curves on a surface. A curve C on a surface M can
be determined by a parametric representation of the form uα = uα(t), of class Cr with
r ≥ 1 where t is a real parameter7 in a given interval I : a ≤ t ≤ b. When we substitute
such representation into the parametric representation of M, we get a set of points of
coordinates xi(uα(t)) defining the curve C on the surface. As for generic curves in E3, we
could introduce the local Frenet reference of frame specified by the vectors T ,P ,B at each
point of the curve. However, as we shall see in the following, for the present case we may
exploit the geometrical structure of the surface on which the curve is defined to introduce
a new reference of frame.

Following the arguments of Subsection 10.1.1, it is still convenient to introduce the
tangent vector T (t) again by taking the first derivative of x(uα(t)) w.r.t. t. Hence, we get

T (t) =
dx

dt
=

∂x

∂u1

du1

dt
+
∂x

∂u2

du2

dt
= xαu

′α (10.11)

Remark 3. In the last step of Equation 10.11 we have used the Einstein summation con-
vention. If in a product, an index figures twice, once as superscript and once as subscript,
summation must be carried out from 1 to 2 w.r.t. that letter. The summation sign is
omitted. We adopt this convention henceforth.

Therefore, the unit tangent vector of the curve C at a point P on the surfaceM is a
linear combination of the above introduced vectors, x1,x2, The latter are vectors tangential
to surface coordinate curves passing through the point P . If P is not a singular point for

7For the present discussion, it is irrelevant whether the curve is defined through a natural representation
x(s) or not.
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the allowable parametric representation at hand, then x1,x2 are linear independent and
we have the following definition

Definition 10.1.2. The vectors x1 and x2 span a plane called tangent plane (TP (M))
that is tangent to the surface M at the point P . Such plane contains tangent vectors of
any curve onM passing through P .

With the above definitions, we are now able to introduce the first concepts of Rieman-
nian geometry.

10.2 Basic concepts of Riemannian geometry: the first fun-
damental form

As we pointed out in the introduction to Section 10.1, most of the key results on differential
geometry of curved surfaces arises from the study of curves. The first task we consider is
thus the determination of the element of arc ds2 of a curve C defined on a surface. We will
see that this problem leads to one of the most important concept in the theory of surfaces.

Let consider a curve C, represented as uα(t), on surfaceM : x(u1, u2). From Equation
10.11, we may represent a displacement vector from a point P ∈ C on the surface as
dx = xαdu

α. Hence, from the definition of line element of C given in Equation 10.1, we
find

ds2 = (dx|dx) = (x1|x1)(du1)2 + 2(x1|x2)du1du2 + (x2|x2)(du2)2 (10.12)

We introduce the notation (xα|xβ) = gαβ , so that we can write

ds2 = gαβdu
αduβ (10.13)

Such quadratic form is called the first fundamental form. Its discriminant g is given by

g = det(gαβ) = g11g22 − g2
12

We shall see later in this Section that the first fundamental form enables us to measure
arc lengths, angles and areas on a surface. Therefore, it is said to define a metric on a
surface. The coefficients gαβ are the components of a tensor called the metric tensor.
The concept of a tensor will be explained shortly in Subsection 10.2.1 in connection with
coordinate transformation laws.

Definition 10.2.1. A Riemannian space is a space in which a Riemannian metric, i.e. a
metric defined by a positive definite8, quadratic differential form, is introduced.

In consequence of such definition, surfaces are two-dimensional Riemannian spaces, and
their corresponding geometry is a Riemannian geometry.

Before looking at the relevant applications of the first fundamental form, it is worthy to
introduce some basic concepts about tensor calculus. As we mentioned in the introduction,
tensor calculus enables to approach the theory of differential geometry from a more general
perspective. Being a special case of the general theory, we will see that also many aspects of
the theory of surfaces are simplified when treated with the aid of some basic rules governing
tensor calculus. Moreover, the latter allows an immediate generalization to Riemannian
spaces of higher dimensions.

8In the mathematical literature, the term "pseudo-Riemannian" is at times used to denote an indefinite
Riemannian metric.
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10.2.1 Transformation laws: contravariant and covariant tensors

Let consider an allowable coordinate transformation

uα = uα(ūβ) (10.14)

Henceforth, we drop the restriction of the dimension (n = 2), that is both α and β now
range from 1 to n, where n > 2 is the dimension of a generic Riemannian space. The
transformation law given in Equation 10.14 and its inverse9 can be written in the form

uα = fα(ū1, ū2, ..., ūn) (10.15)

ūα = hα(u1, u2, ..., un) (10.16)

Therefore, we may also write uα = fα(h1, h2, ..., hn). Differentiating w.r.t. uβ and exploit-
ing the laws of partial differentiation, we find

∂uα

∂uβ
=
∂fα

∂hγ
∂hγ

∂uβ

Since uα and uβ are independent if α 6= β, we obtain

∂uα

∂ūγ
∂ūγ

∂uβ
= δαβ

By the same token,
∂ūα

∂uγ
∂uγ

∂ūβ
= δαβ

where δαβ is the delta Kronecker symbol (δαβ = 0 (1) whether α 6= β (α = β)). From the
rules of partial differentiation, we have the following relations between the differentials in
the coordinate systems (duα, dūβ)

dūβ =
∂ūβ

∂uα
duα (10.17)

Conversely, we find

duγ =
∂uγ

∂ūβ
dūβ (10.18)

We say that Equation 10.14 induces a homogenous linear transformation on the differen-
tials. Notice that the coefficients of such transformation are functions of the coordinates.
A transformation of the kind (10.17) is referred to as a contravariant transformation law.
More precisely, we say that

Definition 10.2.2. A set of real numbers T 1, T 2, ..., Tn associated to a point P of n-
dimensional (Riemannian) space constitute the components of a contravariant tensor of
first order or type (0,1)-tensor if, under an allowable coordinate transformation of the kind
(10.14), they transform according to

T̄ β =
∂ūβ

∂uα
Tα (10.19)

Notice that the above definition holds also for a generic space, without the need of a
metric. type (0, 1)-tensor are usually referred to as contravariant vector. The corresponding
components vα of a contravariant vector v, are indicated by a superscript. Definition 10.2.2
can be easily extended to more general type (0, s)-tensor, i.e. a set of ns real numbers

9We are assuming that uα = uα(ūβ) is of class Cr with r ≥ 1. Then, its inverse exists and is of the
same class.
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Tα1,α2,...,αs with α1, α2, ..., αs = 1, ...n specified by s superscripts, transforming according
to

T̄ β1,β2,...,βs =
∂ūβ1

∂uα1

∂ūβ2

∂uα2
. . .

∂ūβs

∂uαs
Tα1,α2,...,αs (10.20)

Remark 4. In general, the quantities Tα1,α2,...,αs will be given not only to a point P but
on a certain region D of the space. In other words, they will be functions of coordinates
defined in D. Then, we say that in D a type (0, s)-contravariant tensor field is given.
Type (0, 1)-contravariant tensor fields are generally known as vector fields.

Let consider again the first fundamental form ds2 = gαβdu
αduβ . Being the line element

of a curve C, ds2 must be an invariant w.r.t. any allowable coordinate transformation.
Therefore, we have to ask how the quantities gαβ must behave under an allowable coordi-
nate transformation in order that ds2 be an invariant. In doing so, we must consider that
the quantities duα, duβ behave as contravariant vectors. We may consider this problem
from a more general perspective, looking at the quantity

I = vαv
α

We assume I to be an invariant w.r.t. any allowable coordinate transformation and vα the
components of a contravariant vector. We have

v̄β v̄
β = vαv

α

By substitution of the inverse of the contravariant transformation law (10.23), we find

v̄β v̄
β = vαv̄

β ∂u
α

∂ūβ
(10.21)

Such relation must hold for any arbitrary vector vα. Hence, by comparing the coefficients
of corresponding components v̄β on both side of Equation (10.21), we find

v̄β =
∂uα

∂ūβ
vα (10.22)

Equation (10.22) defines a transformation law that differs from the contravariant transfor-
mation law expressed in Definition 10.2.2. Therefore, this leads us to the following

Definition 10.2.3. A set of real numbers T1, T1, ..., Tn associated to a point P of n-
dimensional (Riemannian) space constitute the components of a covariant tensor of first
order or type (1, 0)-tensor if, under an allowable coordinate transformation of the kind
(10.14), they transform according to

T̄β =
∂uα

∂ūβ
Tα (10.23)

The extension to a general (r, 0)-tensor field is trivial

T̄β1,β2,...,βr =
∂uβ1

∂ūα1

∂uβ2

∂ūα2
. . .

∂uβr

∂ūαr
Tα1,α2,...,αr (10.24)

In light of Equation (10.20) and (10.24), we are now in position to give the general definition
of a (mixed) (r, s)-tensor field. Namely,

Definition 10.2.4. A set of nr+s real numbers T β1,β2,...,βs
α1,α2,...,αr associated to a point P of n-

dimensional (Riemannian) space constitute the components of a mixed type (r, s)-tensor if,
under an allowable coordinate transformation of the kind (10.14), they transform according
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to
T̄ κ1,κ2,...,κs
γ1,γ2,...,γr =

∂uα1

∂ūγ1
. . .

∂uαr

∂ūγr
∂ūκ1

∂uβ1
. . .

∂ūκs

∂uβs
T β1,β2,...,βs
α1,α2,...,αr (10.25)

In consequence of the above discussion, one can easily prove the two following theorems:

Theorem 10.2.1. Under an allowable coordinate transformation of kind (10.14), the co-
efficients gαβ of the first fundamental form transform according to

ḡµν =
∂uα

∂ūγ
∂uβ

∂ūν
gαβ

i.e. they are the components of a type (0,2)-covariant tensor field.

Theorem 10.2.2. Under an allowable coordinate transformation of kind (10.14), the dis-
criminant g of the first fundamental form transforms according to

ḡ = D2ḡ g = D̄2ḡ

where D (D̄) are the Jacobians of the (inverse) coordinate transformation.

Before moving on, it is worthy to list some basic rules of tensor calculus. By addition
of corresponding components of two tensors of the same type, T β1,...,βs

α1,...,αr and Sβ1,...,βs
α1,...,αr , we

obtain a tensor with components

V β1,...,βs
α1,...,αr = T β1,...,βs

α1,...,αr + Sβ1,...,βs
α1,...,αr

which is called the sum of those tensors. If we multiply every component of a tensor by
a scalar we obtain a tensor of the same type. It follows that the totality of tensor of the
same type defined at a point P of a n-dimensional Riemannian space form a vector space
(T sr ).

Any tensor of second order can be represented as a sum of a symmetric and a skew-
symmetric one

Tαβ =
1

2
(Tαβ + Tβα) +

1

2
(Tαβ − Tβα)

Remark 5. The metric tensor gαβ is symmetric, that is its skew-symmetric part vanishes
identically.

If we equate two indices of a mixed (r, s)-tensor, a contravariant and a covariant index,
and sum w.r.t. this pair of indices, we obtain a (r − 1, s − 1)-tensor. Such operation is
called contraction of the given tensor. Notice that by a contraction of a (1, 1)-tensor we
obtain a scalar

vαα = v1
1 + v2

2 + . . .+ vnn

10.2.2 Vectors on a surface

We will now apply the knowledge gained on tensor calculus to the theory of surfaces.
Therefore, in the following we will restrict our attention to two-dimensional Riemannian
space embedded again in E3 and to first order tensors, i.e. vectors. In the preceding
Subsection, we have introduced covariant and contravariant vectors as entirely different and
independent entities. This is the case when the space under investigation is not endowed
with a metric tensor. However, as we shall see in this Subsection, in Riemannian space we
may correlate these two types of vectors and, in addition, interpret them geometrically in
a very simple manner.

First, we have the following
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Definition 10.2.5. A vector v bound at a regular point P of a surface M which lies in
the tangent plane TP (M) at P is called a vector in the surfaceM at P .

Therefore, the vectors on M are just a subset of the set of all vectors bound at P ,
which of course includes also vectors that do not belong to the tangent plane. In light of
this Definition, it is natural to express v in terms of {xα}, i.e. the (local) basis spanning
the tangent plane. Hence

v = vαxα = v1x1 + v2x2 (10.26)

We should remind that xα are tangent to the coordinated curves though P onM but they
are not unit vectors. In particular, their lengths are related to the metric tensor through√

(xα|xα) =
√
gαα

The ordered pair v1, v2 are the lengths (taken with a suitable sign) of the respective parallel
projections of v upon the axis of the coordinate system defined by xα in TP (M), measured
in units of √g11 and √g22 respectively. The vector v, as geometrical object, is an invariant,
and, therefore, under an allowable coordinate transformation ūβ = ūβ(uα), we have

v = v̄βxβ̄ (10.27)

where
xβ̄ ≡

∂x

∂ūβ

Since

xα = xβ̄
∂ūβ

∂uα

we find

v = vαxα = vαxβ
∂ūβ

∂uα
(10.28)

By comparing (10.27) and (10.28), we obtain

v̄β =
∂ūβ

∂uα
vα (10.29)

In other words, we have proved the following

Theorem 10.2.3. The contravariant components vα of a vector v in a surface M at a
regular point P are the lengths (taken with a suitable sign) of the parallel projections of
v on the axes of the (parallel) coordinate system in TP (M) defined by vectors xα; those
lengths are measured in units of √g11 and √g22 respectively.

Instead of taking the parallel projections of v, we may as well consider its orthogonal
projections on the axes of the above defined coordinate system. Let then γα be the angle
between v and xα. The length of the orthogonal projection Lα will be

Lα = |v| cos(γα) =
|xα|
|xα|
|v| cos(γα)

=
(xα|v)√
(xα|xα)

=
1
√
gαα

(xα|v) (10.30)

Hence, the number (xα|v) is the length (taken with a suitable sign) of the orthogonal
projection of v on the xα-coordinate axis, measured in units of 1

√
gαα. Of course, these

numbers will depend on the choice of the coordinates onM. Therefore, under an allowable
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Figure 10.4. Controvariant (vα) and covariant (vα) components of a vector v interpreted as
the parallel (Left) and orthogonal (Right) projections on the vectors spanning the tangent plane
(x1,x2).

coordinate transformation, we find

v̄β = (xβ̄|v) =
∂uα

∂ūβ
(xα|v) = vα

∂uα

∂ūβ
(10.31)

We have thus obtained the following result

Theorem 10.2.4. The covariant components vα of a vector v in a surfaceM at a regular
point P are the lengths (taken with a suitable sign) of the orthogonal projections of v on the
axes of the coordinate system in TP (M) defined by vectors xα; those lengths are measured
in units of 1/

√
g11 and 1/

√
g22 respectively.

We have thus provided a geometrical interpretation of contravariant and covariant
components of a vector. Now, by replacing v in (xα|v) with its expansion in the tangent
plane, we find

vα = (xα|vβxβ) = gαβv
β (10.32)

in other words, the metric tensor establishes a correspondence between the covariant and
contravariant components of a vector. More generally, one says that vα are the components
of a contravariant vector, that is said to be an element of the tangent plane (or space for
n > 2) TP (M) at the point P ; vα are instead the components of a covariant vector, that
is an element of the dual tangent space T ?P (M). Therefore, the metric tensor establishes a
one-to-one mapping between the tangent space and its dual.10. Furthermore, if v1 and v2

are two contravariant vectors belonging to the same tangent space , the bilinear form

(v1|v2) = gαβv
αvβ (10.33)

is obviously an invariant and can be regarded as an inner (or scalar) product of the vectors
v1 and v2 at P 11.

The one-to-one mapping between the tangent space and its dual possess an inverse and
it is the contravariant metric tensor gαβ to establish the connection between contravariant
and covariant components. The covariant and the controvariant metric tensor are conjugate
that is

gαγg
γβ = δβα (10.34)

10Notice that for an arbitrary space devoid of a metric no such relationship exists.
11Again, in arbitrary space devoid of a metric, the scalar product between two vectors of the same kind

is an ill-defined quantity. One can only define the inner product of vectors which are respectively co- and
controvariant, i.e. the operation of "index contraction" we have introduced above, vαvα
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10.2. Basic concepts of Riemannian geometry: the first fundamental form

In closing this Subsection, we should mention the special case in which gαβ = δαβ
12 at a

given point P ofM. In such situation, we have

vα = gαβv
β = δαβv

β = vα (10.36)

that is, the covariant and contravariant components are identical. This is the rather special
case in which the tangent vectors xα are orthogonal, that is the tangent space TP (M) is
Euclidean and, as consequence, the parallel and orthogonal projections of the vector v
coincide13.

A more general case is the one in which the metric tensor is everywhere constant (see
footnote 13 of pag. 153). In this case, we say that

Definition 10.2.6. A space endowed with a Riemannian metric is flat whenever it admits a
coordinate systems for which the components of the metric tensor are constants everywhere.

10.2.3 Normal to a surface

We have seen that at each point P of a surfaceM we can associate the two basis vectors
x1 and x2 that are tangential to the coordinated curves defined on the surface and span
the tangent plane TP (M) at that point. Since we are assuming that the two-dimensional
surface is embedded in E3, we can define a unit vector N orthogonal to both xα and such
that x1,x2,N define a local right-handed coordinated system at P . Such vector is called
unit normal vector and is given by

N =
x1 × x2

|x1 × x2|
(10.37)

where × denote the standard cross-product in E3. Since

|x1 × x2| = |x1|2|x2|2 sin2 α = g11g22(1− cos2α)

= g11g22 − (x1|x2)2 ≡ g

We have
N =

1
√
g

(x1 × x2) (10.38)

12The reader may find misleading the distinction between δαβ or δαβ , since these two mathematical
"objects" have basically the same effect. These two Kronecker deltas are just two particular cases of the
so-called generalized Kronecker delta, δβ1,...,βrα1,...,αr

a numerical (r, r)-tensor defined as

δβ1,...,βrα1,...,αr
= det


δβ1α1

δβ1α2
... δβ1αr

δβ2α1
δβ2α2

... δβ2αr

... ... ... ...

δβrα1
... ... δβrαr

 (10.35)

The generalized Kronecker delta is then the sum of r! terms, each of which is a product of r "standard"
Kronecker deltas.

13In this regard, we should mention that it is always possible to find a linear transformation on the
tangent space TP (M which reduces the scalar product (v|v) = |v|2 to a sum of squares, i.e.

|v|2 = (v̄1)2 + (v̄2)2 + . . .+ (v̄n)2

where v̄α denotes the components in the new coordinate system in TP (M). This is clearly the linear
transformation which reduces the coefficients gαβ of the metric tensor defined at P to Kronecker deltas
δαβ . In general, such liner transformation will not have the same effect also on a neighboring tangent
space at Q, TQ(M). Nevertheless, this result tells us that the tangent space at a point P of a Riemannian
space is essentially Euclidean. In other words, Riemannian spaces with positive definite metric are locally
Euclidean. If it is possible to find a linear transformation which is such that the transformed metric
tensor are independent of the positional coordinates and thus constants everywhere, it follows that the
Riemannian space is simply an Euclidean space.
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Notice that the sense of the unit normal vector depends on the choice of the coordinates
on S.

Definition 10.2.7. A surface is said to be orientable, if there does not exist a closed curve
C through a point P which is such that, when displacing continuously a positive unit normal
vector from P along C and back to P , one obtains a positive normal direction at P opposite
to the original one.

An example of a non-orientable surface is the Möebius strip. In the following, we will
restrict our attention to orientable surfaces.

10.3 Measurement of lengths, angles and areas in a surface

With the knowledge gained on the basis of Riemannian geometry and tensor calculus, we
are now able to look at the applications of the first fundamental form. In particular, we
will see that the latter enables us to measure lengths, angles and elements of area in a
surface.

Let consider a contravariant vector v at point P of the surface M. From the above
discussion, its length is given by

|v| =
√

(v|v) =
√
gαβvαvβ =

√
vαvα (10.39)

where, in the last step, we have used the property of the (contravariant) covariant metric
tensor to (raise) lower an index of a contravariant (covariant) vector (or tensor). Such
property clearly follows from the mapping between the tangent space and its dual. The
angle γ between two controvariant vectors v and w is given by

cos(γ) =
(v|w)

|v||w|
=

gαβv
αwβ

√
gµνvµwν

√
gσγvσwγ

=
vαw

α√
vβvβ

√
wγwγ

(10.40)

Let consider now two curves C1 : uα = fα1 (t) and C2 : uα = fα2 (t) on a surfaceM : x(u1, u2)
which intersect at P . By definition, the angle θ of intersection is the angle between the
vectors tangent to C1 and C2 at P , i.e.

v1 =
d

dt
(x(fα1 (t))) = xα(fα1 )′

v2 =
d

dt
(x(fα2 (t))) = xα(fα2 )′

where ′ denotes the derivative w.r.t. t. According to Equation (10.40) we then obtain

cos(θ) =
gαβ(fα1 )′(fβ2 )′√

gµν(fµ1 )′(fν1 )′
√
gστ (fσ2 )′(f τ2 )′

(10.41)

If C1 and C2 intersect orthogonally at P , then cos(γ) = 0, i.e.

gαβ(fα1 )′(fβ2 )′ = 0

We may apply the above arguments to the tangent vectors to the coordinates curves on
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M, namely x1 and x2. We find then that the angle between the coordinates curves is

cos(θ) =
g12√
g11g22

(10.42)

We have then the following

Theorem 10.3.1. A coordinate system onM is orthogonal, that is the coordinate curves
intersect orthogonally at any point, if and only if g12 = 0 everywhere on the surface.

The metric tensor allows also to compute the area of a portion H of a surfaceM. Here,
we just provide the final result14, namely

Definition 10.3.1. The area A(H) of a portion H of a surface M : x(u1, u2) is defined
by the double integral

A(H) =

∫∫
U

√
gdu1du2 (10.43)

where U denotes the domain in the u1u2-plane corresponding to H. The expression

dA =
√
gdu1du2 (10.44)

is called the element of area of H.

We can convince ourselves about the validity of the above definition looking at the
expression (10.44). Indeed the area element can be interpreted geometrically as the area
of an "infinitesimal parallelogram" whose sides are the vectors x1du

1 and x2du
2. From

the definition of cross product, we have indeed

|x1du
1 × x2du

2| = |x1 × x2|du1du2

and |x1×x2| =
√
g. Therefore, the area A(H) is the "sum" of these infinitesimal parallel-

ograms which locally approximate the surfaceM.

10.4 The second fundamental form

In this and the subsequent Sections, we will investigate the geometrical shape of surface in
a neighborhood of any of its points. As we pointed out in Section 10.1, it will be natural
to start from the study of the curvature of curves on the surface under examination. We
first notice the following simple fact: at any point of a curve C on a flat surface, the
unit principal normal P and the unit surface normal N are always orthogonal to each
other. On the other hand, for a curve on a generic surface, the unit principal normal lies
in the same (normal) plane containing the unit surface normal vector, but their angle will
depend on the geometrical shape of the surface around the point under consideration. As
consequence, on generic surface, the curvature vector k of a curve will have both a normal
component - lying in the normal plane - and a tangential component - lying in the tangent
plane. This simple observation will lead us to the definition of the so-called normal and
geodesic curvature, that are of fundamental importance in the differential geometry of
surfaces.

First, let γ be the angle between the unit principal normal P and the unit surface normal
N . Then,

cos(γ) = (P |N) (10.45)
14A proof of this result can be found at pag. 111 of the book "Differential Geometry" by Kreyszig(1991).
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Figure 10.5. A representation of a curve C on a surface. The curvature κ of the curve C has
two components: one along the surface normal N , the so-called normal curvature κn; one lying in
the tangent plane (yellow) and directed along the vector N × T , the so-called geodesic curvature
κg. The latter coincide with the curvature of the curve C ′ obtained by projecting orthogonally the
curve C on the tangent plane

Notice that the value of such scalar product will change along the curve C. From Subsection
10.1.1, we have Ṫ = κP , hence P = ẍ/κ, where x(u1, u2) is the surface parametrization.
Therefore

κ cos(γ) = (ẍ|N) (10.46)

Let now look for an explicit expression of ẍ. We have

ẍ =
d

dt
(xαu̇

α) = xαβu̇
αu̇β + xαü

α (10.47)

Substituting Equation (10.47) into the scalar product (ẍ|N) and reminding that (xα|N) =
0, we find

(ẍ|N) = (xαβ|N)u̇αu̇β (10.48)

We introduce the notation Ωαβ = (xαβ|N). Notice that the value of Ωαβ will depend
on both the curve and the surface under examination. Moroever, since xαβ is symmetric
under the permutation of its indices, so it is Ωαβ . The corresponding quadratic form

Ωαβdu
αduβ = Ω11(du1)2 + 2Ω12(du1du2) + Ω22(du2)2 (10.49)

is called the second fundamental form. Differentiating the orthogonality relation
(xα|N) = 0 we find

(xαβ|N) + (xα|Nβ) = 0

Therefore, from the definition of Ωαβ we also get the following important relations

Ωαβ = −(xα|Nβ) (10.50)

For the first fundamental form, we could write ds2 = gαβdu
αduβ ≡ (dx|dx). Similarly, for
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the second fundamental form, we have

Ωαβdu
αduβ = −(dx|dN) (10.51)

Equation (10.51) thus shows that the second fundamental form is invariant w.r.t. any
allowable coordinate representation which preserves the sense of N . Furthermore, the
coefficients Ωαβ have to behave as the components of a type (0, 2)-tensor.

Remark 6. While the first fundamental form is positive definite, the second fundamental
form may vanish. In particular, as we shall see in Subsection 10.4.2, the sign of the
discriminant Ω = Ω11Ω22 − Ω2

12 of the second fundamental form at a given point of the
surface is strictly related to the shape of the surface around that point.

10.4.1 Normal and geodesic curvature

Now let t be any allowable parameter of the curve C. Then, we may write

u̇α =
duα

dt

dt

ds
≡ (uα)′

s′
(10.52)

Hence, in consequence of Equations (10.48), (10.49) and (10.52), we may write the second
term of (10.46) as

κ cos(γ) =
Ωαβ(uα)′(uβ)′

(s′)2
=

Ωαβ(uα)′(uβ)′

gαβ(uα)′(uβ)′

or

κ cos(γ) =
Ωαβdu

αduβ

gαβduαduβ
(10.53)

Relation (10.53) is one of the most important result of the theory of surfaces. To understand
its geometrical implications, let consider a curve C : uα = uα(s) with curvature κ = κ(s)
and let γ = γ(s) be the angle between the unit principal normal vector P (s) to C and
the corresponding unit surface normal N(u1(s), u2(s)) toM. Obviously, the direction of
the unit tangent vector T = xαu̇

α to C is determined by the ratio u̇1/u̇2. On the other
hand, the values of the first and second fundamental form are fixed at any point P of the
surface under scrutiny, i.e. they are independent of the special choice of the curve C on
M passing through P . This means that the curvature κ(s) of C at P depends solely on
the direction of the unit tangent vector and of the unit principal normal vector to C at P .
Since these vectors span the osculating plane, we have the following

Theorem 10.4.1. All curves of class Cr with r ≥ 2 on a surface M which pass through
any fixed point P and have at P the same osculating plane, which does not coincide with
the tangent plane TP (M) of the surface at P , also have the same curvature at P .

Let then restrict our attention to the class of curves with common tangent at P . The
direct consequence of Theorem 10.4.1 is that the right-hand side of Relation (10.53) is
constant, that is, the curvature of these curves depends only on the angle γ between P
and N at P .This result is generally known as the Meusnier theorem[265] , which thus
specifies the distribution of the curvatures of the set of all curves which pass through P in
a given direction. For those curves, we may write

κ cos(γ) = κn (10.54)

where κn is a constant when a fixed tangent direction has been chosen. The geometrical
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significance of κn can be understood in a simple manner as follows. If γ = 0, then κ ≡ κn;
if γ = π then κ = −κn. In other words, |κn| is the curvature of the curve of intersection
of the surface M and a plane passing through both the tangent to the curve at P and the
normal to M at P . These curves form a very special class of curves that usually referred
to as normal sections of M. κn is then called the normal curvature and one thus
introduce the normal curvature vector as

kn = κnN (10.55)

We shall see in the following that the study of normal sections lies at the heart of the
curvature theory of surfaces. Nevertheless, to understand such state of affairs, we need to
briefly consider also a more general situation.

Let consider a curve C : uα = uα(s) and denote with C ′ the orthogonal projection of C
on the tangent plane TP (M) at P . We define the geodesic curvature κg (Liouville(1850))
of C at P as the curvature of the projected curve C ′ at P , taken with a suitable sign. The
sign of κg is defined as follows: let suppose that the curvature of C ′ at P is not zero; then
κg is positive if the centre of curvature of C ′ at P lies in the direction of the unit vector

E = N × T (10.56)

where N is the usual surface normal at P and T the tangent vector to C at P . κg has
a negative sign if the centre of curvature lies in the opposite direction. Looking at Figure
??, it is clear that for the geodesic curvature we may write

|κg| = κ sin(γ) (10.57)

Therefore, in light of the previous discussion on the normal curvature, we may write the
curvature vector k(s) = κ(s)P (s) of the curve C as the sum of the normal curvature vector
kn(s) and of the geodesic curvature vector kg = κgE

k = kn + kg = κnN + κgE (10.58)

In general the geodesic curvature will depend not only on the curve C considered but also
on the surface on which the curve is defined. The only exception to this occurs when
Ṫ = 0 and therefore κg = 0. Curves for which the geodesic curvature vanishes identically
are called geodesics15.

There is fundamental difference between the normal curvature κn and the geodesic
curvature κg: the former depends on both fundamental forms, while16

Theorem 10.4.2. The geodesic curvature κg of a curve C on a surfaceM depends on the
first fundamental form only (and also, of course, on C).

Let now move back to normal sections. From the definition of the geodesic curvature,
it follows that, if we project a normal section on the tangent plane, we obtain a straight
line, which by definition has a vanishing curvature, i.e. κg ≡ 0. Normal sections are
therefore special curves for which the curvature vector is entirely determined by the normal
curvature.

We may summarize the above results as follows: for a generic curve C on a surfaceM,
the curvature vector has both a tangential and a normal component w.r.t. the tangent plane

15An example may be the equator of a sphere, since in this case T , Ṫ and N lie in a plane.
16We omit the proof of this fundamental theorem, which requires to find a representation of κg depending

on functions of gαβ . The reason is that the proof requires the knowledge of the Christoffel symbols, which
we will introduce in Section
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TP (M), that correspond to the concept of geodesic κg and normal curvature κn. Normal
sections are a rather special class of curves for which κg = 0 and they are determined by
the intersection of the surface M and a plane passing through both the tangent to the
curve at P and the normal to M at P . In a sense, we may say that normal sections are
intrinsic curves of a surface since, at fixed tangent direction, their curvature is determined
entirely by surface properties, namely the fundamental forms. Since we are interested in
gaining information about the curvature properties of a surface, in the following we will
restrict our attention to normal sections only.

10.4.2 Elliptic, parabolic and hyperbolic points

In the preceding Subsection, we saw that, in consequence of the Meusnier theorem, we can
restrict our attention to normal sections of a surfaceM. The curvature of such curves is
entirely determined by the normal curvature κn that reads as

κn =
Ωαβdu

αduβ

gαβduαduβ
(10.59)

Equation 10.59 enables us to distinguish from three possible forms ofM in a neighborhood
of a point at which Ωαβ are not vanishing. We know that the first fundamental form is
always positive definite, therefore the sign of κn depends solely on the second fundamental
form. If v = (v1, v2) is the vector specifying a given direction bound at P , the problem
translates to the study of the sign of the equation Ω11(v1)2 + Ω22(v2)2 + 2Ω12(v1v2) = 0.
Setting x = v1/v2, we need to solve

Ω11x
2 + 2Ω12x+ Ω22 > 0

The solutions will depend on the sign of the discriminant ∆ at the point P , which is given
by

∆ = 4(Ω2
12 − Ω11Ω22) ≡ −4Ω (10.60)

where Ω is the discriminant of the second fundamental form.

(i) If ∆ < 0 (Ω > 0), the associated equation admits two complex solutions. Therefore,
κn "maintains" the sign, or, in other words, has the same sign for all possible direc-
tions of the normal sections at P . A point of this kind is called an elliptic point
of the surface. An example is provided by the ellipsoid or the sphere, for which any
point is an elliptic point.

(ii) If ∆ = 0 (Ω = 0), we have a single solution to the associated equation, i.e. we can
identify a direction from P specified by v for which κn = 0, also known as asymptotic
direction17. P is then called a parabolic point of the surface. Any point of a
cylinder or of a cone (with the exception of the apex) is parabolic.

(iii) If ∆ > 0 (Ω < 0), there will exist two possible directions for which κn = 0. Therefore
κn does not maintain the sign for all directions. The two asymptotic directions
separate the directions for which κn is positive from those for which is negative. P
is then called a hyperbolic or saddle point of a surface.

Notice that, due to the invariance property of the second fundamental form under a
coordinate transformation, the distinction established above is independent of the choice
of the coordinate system on the surface. Hence, it is a "true" characterization of the shape
of a surface around any of its points.

17More generally, any curve for which κn = 0 is called an asymptotic curve.
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Figure 10.6. A representation of an elliptic, parabolic and hyperbolic point (denoted with a red
dot), and the corresponding values of the discriminant of the second fundamental form (Ω), the
principal curvatures κ(i) and the Gaussian curvature K.

10.5 Principal curvatures

In light of the preceding discussion about the normal curvature, it is natural to ask for
directions for which κn attains its maximum and minimum values. Obviously, this question
does not make sense at points of a surface for which κn is constants, i.e. is independent of
the direction of the normal sections. Such property holds if and only if the coefficients of
the second fundamental form Ωαβ are proportional to gαβ . We have then the following

Definition 10.5.1. A point P is said to be an umbilic point if at that point the following
relation holds

Ωαβ = λ(u1, u2)gαβ (10.61)

In this case Ω = λ2g. Therefore, since g > 0, if λ 6= 0, we have Ω > 0 and the point is
referred to as an elliptic umbilic. If λ = 0, also Ω = 0, and the point is called a parabolic
umbilic (or flat or planar umbilic).

Henceforth, we assume then that the point P is not an umbilic point. We first determine
those directions for which the normal curvature has an extreme value. To this aim, let
re-write Relation (10.59) as

(Ωαβ − κngαβ)lαlβ (10.62)

where we have set lγ = duγ . In addition, we set

Παβ = Ωαβ − κngαβ (10.63)

If we differentiate Equation (10.63) w.r.t. lγ treating κn as a constant18, we get

∂

∂lγ
(Παβl

αlβ) = Παβ

(
∂lα

∂lγ
lβ + lα

∂lβ

∂lγ

)
= Παβ(δαγ l

β + δβγ l
α)

= (Πγα + Παγ) lα

18Remind that dκn = 0 is a necessary condition for κn to be an extreme value.
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Since both gαβ and Παβ are symmetric, we have Παγ ≡ Πγα, hence we obtain

Πγαl
α = 0 =⇒ (Ωαβ − κngαβ) lα = 0 (10.64)

A (contravariant) vector whose components are lα - which is not a null vector - can satisfy
Equation (10.64) if and only if the determinant of (Ωαβ − κngαβ) vanishes identically.
Hence

(Ω11κng11)(Ω22 − κng11)− (Ω12 − κng12)2 = 0

With some straightforward algebra, we arrive at

κ2
ng − κn(Ω11g22 + Ω22g11 − 2Ω12g12) + Ω = 0 (10.65)

The roots of Equation (10.65) determines those directions for which the normal curvature
κn attains its extreme values. These directions are called the principal directions of
normal curvature at the point P under consideration. The corresponding values of κn
are called principal curvatures of the surfaceM at P and they are denoted as κ(1) and
κ(2).

The principal directions and principal curvatures are of basic importance in the curva-
ture theory of surface. Therefore, in the following, we will consider them in more detail.
First of all, we state the following

Theorem 10.5.1. The roots of Equation (10.65) are real. At any point which is not an
umbilic point, the principal directions are orthogonal.

The proof of this Theorem is rather simple. The reality of the principal directions
follows directly from their geometrical interpretation. For the orthogonality, let lα(1) and
lα(2) be those directions. Hence, they satisfy

(Ωαγ − k(i)gαγ)lα(i) = 0 (10.66)

with i = 1, 2. If we multiply the corresponding Equations (10.66) by lγ(2) and lγ(1), sum
w.r.t. γ and subtract the equations thus obtained, we get

(κ(2) − κ(1))gαγl
α(1)lγ(2) = 0

Since κ(1) 6= κ(2), it follows that the principal directions are orthogonal.

Definition 10.5.2. A curve on a surfaceM whose direction at every point is a principal
direction is known as a line of curvature ofM.

Notice that, since Equation (10.65) is quadratic, through any (not umbilic) point of a
surface of class Cr with r ≥ 3, there pass exactly two curves, which, according to Theorem
10.5.1, are orthogonal. Hence, we also have

Theorem 10.5.2. The lines of curvature on any real surfaceM of class Cr with r ≥ 3 are
real curves. IfM has no umbilics the lines of curvature form an orthogonal net everywhere
onM.

Consequently, one may always choose coordinates u1, u2 onM so that the coordinates
curves are the lines of curvature of the surface under examination. If we introduce this
kind of coordinates, then Equation (10.64) must be satisfied for duα = 0. This leads to
the following system of linear equations

g12Ω22 − g22Ω12 = 0

g11Ω12 − g12Ω22 = 0
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Excluding umbilics, the determinant Ω22g11 − Ω11g22 is different from zero, therefore the
above system admits only the trivial solutions g12 = Ω12 = 0. We have thus proved the
following

Theorem 10.5.3. The coordinates curves of any allowable coordinate system on a surface
M coincide with the lines of curvature if and only if for this system

g12 = Ω12 = 0 (10.67)

at any point where those coordinates are allowable.

10.5.1 Gaussian and Mean curvature

Let return on Equation (10.65) and divide it by g

κ2
n −

[
1

g
(Ω11g22 + Ω22g11 − 2Ω12g12)

]
κn +

Ω

g
= 0 (10.68)

From the theory of second order equations, we are now able to introduce the two following
concepts

Definition 10.5.3. The product

K = κ(1)κ(2) =
Ω

g
(10.69)

is called the Gaussian curvature of the surfaceM at the point P .

Definition 10.5.4. The arithmetic mean of the principal curvatures

H =
1

2
(κ(1) + κ(2)) =

1

2
Ωαβg

αβ =
1

2
Ωα
α (10.70)

is called the mean curvature of the surfaceM at the point P .

According to their definition, it immediately follows that K and |H| are invariant
w.r.t. any allowable coordinate transformation. The sign of H depends instead on the
orientation of the surface, because of the explicit dependence on Ωαβ . Because of its
invariance property, the Gaussian curvature K can be considered as the main "intrinsic"
measure of the curvature of a surface at a given point P . Since g > 0 always holds, we
thus have

Theorem 10.5.4. At elliptic points, the Gaussian curvature is positive (K > 0), at
parabolic ones it vanishes (K = 0), and at hyperbolic ones it is negative (K < 0).

When the coordinate curves on a surface are the lines of curvature, one can easily find
that principal curvatures, the Gaussian and the mean curvatures are given by the following
simple expressions

κ(1) =
Ω11

g11
κ(2) =

Ω22

g22
(10.71)

K =
Ω11Ω22

g11g22
(10.72)

H =
1

2

(
Ω11

g11
+

Ω22

g22

)
(10.73)
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In closing this Section, we state and prove one of the most important Theorem on the nor-
mal and principal curvatures, which will turn out to be very useful for our later discussion
in Chapter 11.

Theorem 10.5.5 (L.Euler[266]). Let α be the angle between a direction at a point P and
the principal direction at P corresponding to κ(1). Then

κn = κ(1) cos2(α) + κ(2) sin2(α (10.74)

where κn is the normal curvature corresponding to the considered direction at P .

The Euler’s theorem allows thus to express the normal curvature at a point of any
curve on the surface as a function of the principal curvatures κ(i). To prove this Theorem,
let assume P to be not umbilic. We choose coordinates onM so that the coordinate curves
are the lines of curvature. Then, since Ω12 = 0, we may write

κn =
Ω11(du1)2 + Ω22(du2)2

ds2
(10.75)

Thanks to Equation (10.71), Equation (10.75) reduces to

κn = κ(1)g11(u̇1)2 + κ(2)g22(u̇2)2 (10.76)

Now the direction under consideration is determined by the vector ẋ = xαu̇
α, and the

direction corresponding to κ(1) is given by the vector x1. Since the lines of curvature are
orthogonal, and |ẋ| = 1, the angle α between x1 and ẋ and the angle β = π/2−α between
x2 and ẋ are given by

cos(α) =
(x1|ẋ)

|x1||ẋ|
=
√
g11u̇

1

sin(α) = cos(β) =
(x2|ẋ)

|x2||ẋ|
=
√
g22u̇

2

Therefore, comparing the above expression with Equation (10.76) we obtain the Euler’s
theorem. This completes the proof.

The concepts introduced in these pages represent the minimal background on differen-
tial geometry for the understanding of the discussion exposed in Chapter 11. An application
of such concepts is exposed in the box 10.1, where the simple case of a spherical surface is
considered. For the sake of completeness, the author has decided to add a further Section
for the interested reader, where the theory of curvature is put on firmer grounds thanks to
the introduction of the so-called curvature tensor, though still restricting the attention to
spaces endowed with a metric.

Box 10.1: The sphere S2

We consider a sphere S2 of radius R embedded in E3 with parametrization x =
x(R cos(φ) cos(θ), R cos(φ) sin(θ), R sin(φ)), with 0 ≤ θ ≤ 2π and −π/2 ≤ φ ≤ π/2
(see the Figure below).
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First, let determine the analytical expression of the vectors xθ and xφ spanning the
tangent plane TP (S2) at a given point of the sphere:

xθ =
∂x

∂θ
= (−R cos(φ) sin(θ), R cos(φ), 0)

xφ =
∂x

∂φ
= (−R sin(φ) cos(θ),−R sin(φ) sin(θ), R cos(φ)

Hence, we can determine the components gαβ of the metric tensor in this represen-
tation

gθθ = (xθ|xθ) = R2(cos2(φ) sin2(θ) + cos2(φ) cos2(θ)) = R2 cos2(φ)

gφφ = (xφ|xφ) = R2(sin2(φ) cos2(θ) + sin2(φ) sin2(θ) + cos2(φ)) = R2

gθφ = gφθ = (xθ|xφ) = R2(sin(φ) cos(θ) sin(θ) cos(φ)− sin(φ) sin(θ) cos(φ) cos(θ)) = 0

For the (unnormalized) surface normal N ′, we have

N ′ = xθ × xφ = det

 i j k
−R cos(φ) sin(θ) R cos(φ) cos(θ) 0
−R sin(φ) cos(θ) −R sin(φ) sin(θ) R cos(φ)


= (R2 cos2(φ) cos(θ), R2 cos2(φ) sin(θ), R2 sin(φ) cos(φ))

Since ||N || =
√

(N ′|N ′) = R2 cos(φ), the corresponding unit surface normal is

N = (cos(φ) cos(θ), cos(φ) sin(θ), sin(φ))

To compute the coefficients Ωαβ of the second fundamental form, we need first to
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10.6. The curvature tensor

obtain the second derivative xαβ , namely

xθθ =
∂xθ
∂θ

= (−R cos(φ) cos(θ),−R cos(φ) sin(θ), 0)

xφφ = (−R cos(φ) cos(θ),−R cos(φ) sin(θ),−R sin(φ))

xθφ = xφθ = (R sin(φ) sin(θ),−R sin(φ) cos(θ), 0)

Therefore,

Ωθθ = (xθθ|N) = −R cos2(φ)

Ωφφ = (xφφ|N) = −R
Ωθφ = Ωφθ = (xθφ|N) = 0

To sum up, we have

gθ,φ =

(
R2 cos2 φ 0

0 R2

)
Ωθ,φ =

(
−R2 cos2 φ 0

0 −R

)
As a special curve on S2, let consider the equator φ = 0. The corresponding normal
curvature κn will be given by

κn =
−R(dθ)2 −R(dφ)2

R2(dθ)2 +R2(dφ)2
≡ − 1

R

that is, |κn| = 1/R, i.e. the curvature of circle. Indeed, the equator is the normal
section of the sphere (also called a great circle), obtained by the intersection of
S2 with a plane passing through its centre. Notice that in this case, the angle γ
between the unit surface normal and the unit principal normal of the equator is
precisely γ = 0, that is κ ≡ κn.
Since gθφ = Ωθφ = 0, it follows that the coordinate curves θ = k and φ = k with k a
constant, are the lines of curvature of the sphere (see Theorem 10.5.3). Therefore,
the principal curvatures are simply given by

κ(1) =
−R cos2(φ)

R2 cos2(φ)
= − 1

R
κ(2) =

−R
R2

= − 1

R

Indeed, we can always draw a great circle passing through any point P of a sphere.
In other words, any direction from a point P of a sphere has the curvature of a
great circle, −1/R, i.e. any point of a sphere is umbilic. For the Gaussian and mean
curvature we find

K = κ(1)κ(2) = − 1

R2
H =

1

2
(κ(1) + κ(2)) = − 1

R

Obviously, the mean curvature H coincides with the principal curvatures since for
the sphere the curvature is constant everywhere.

10.6 The curvature tensor

We first derive an explicit expression for the vectors Nα = ∂N/∂uα. For this purpose,
let consider the unit surface normal N at a point P of a surfaceM and differentiate the
relation (N |N) = 1

(Nα|N) = 0
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Hence, the vectors Nα must lie in TP (M), i.e.

Nα = cγαxγ

To determine the coefficients cγα, let take the scalar product with xσ

(Nα|xσ) = cγαgγσ

Since (Nα|xσ) = −Ωασ and gγσgστ = δτγ , we find

(Nα|xσ)gστ = −Ωατg
στ = cγαgγσg

στ = cτα

but Ωασg
στ ≡ Ωτ

α. Then

Nα = −Ωβ
αxβ (10.77)

which are known as the formulae of Weingarten.
Let now consider the following partial derivatives

xαβ =
∂2x

∂uα∂uβ

These vectors may be written as linear combinations of all three vectors x1,x2,N , i.e.

xαβ = Γγαβxγ + aαβN (10.78)

We shall then determine the coefficients Γγαβ and aαβ . To this aim, let multiply both side
of Equation (10.78) by N ; since (xγ |N) = 0 and (xαβ|N) = Ωαβ , we find

aαβ ≡ Ωαβ

In other words, the coefficients of the second fundamental form can be interpreted also as
the normal components of the vectors xαβ . In order to determine the coefficients Γγαβ , we
take the scalar product with xλ

(xαβ|xλ) = Γγαβ(xγ |xλ) = Γγαβgγλ

Since (xγ |xτ ) = δτγ , with xτ = gρτxρ, we thus find

Γταβ = (xαβ|xτ ) = (xαβ|xλ)gλτ (10.79)

In this way, we have then completely determined the coefficients appearing in the linear
combination (10.78). Nevertheless, we can show that Γγαβ can be expressed in terms of the
components of the metric tensor and their derivatives only. Moreover, we shall see that
these coefficients are of fundamental importance not only for the theory of surfaces but
also in the context of the general theory of spaces devoid of a metric. We first introduce
the following notation

Γαβγ := (xαβ|xγ) (10.80)

These quantities are called Christoffel symbols of the first kind. From the properties
of the metric tensor, we have

Γαβγ = gλγΓλαβ (10.81)

or
Γταβ = gγτΓαβγ (10.82)
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The quantities Γταβ are called Christoffel symbols of the second kind (E.B. Christof-
fel(1869)).Since xαβ = xβα, Christoffel symbols of both kinds are symmetric w.r.t. the
permutation of the first two (covariant) indices,

Γαβγ = Γβαγ Γταβ = Γτβα

To find a representation of the Christoffel symbols in terms of the metric tensor and its
derivative only, let differentiate the expression gαγ = (xα|xγ) w.r.t. uβ

gαγ
∂uβ

= (xαβ|xγ) + (xα|xγβ) ≡ Γαβγ + Γγβα (10.83)

From the symmetry properties of gαβ and the Christoffel symbols of the first kind, we may
also write

gγβ
∂uα

= Γγαβ + Γβαγ (10.84)
gβα
∂uγ

= Γβγα + Γαγβ (10.85)

Adding (10.83) and (10.84) and subtracting (10.85), taking into account the symmetry in
the first two indices, we arrive at the following important formula

Γαβγ =
1

2

(
∂gβγ
∂uα

+
∂gγα
∂uβ

−
∂gαβ
∂uγ

)
(10.86)

Since Γταβ = gγτΓαβγ , we have automatically proved that also the Christoffel symbols of
the second kind can be written entirely in terms of the metric tensor and its derivatives.
Therefore, to sum up, the second partial derivatives xαβ of the vector function x(u1, u2)
representing a surfaceM are given by the following linear combination

xαβ ≡ Γγαβxγ + ΩαβN (10.87)

where Γγαβ are functions of the components of the metric tensor and Ωαβ are the coefficients
of the second fundamental form. These relations are known as the formulae of Gauss.

Remark 7. One can prove that the Christoffel symbols of the first and second kind are
not components of any tensor. Indeed, under an allowable coordinate transformation uα =
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uα(ūβ), they transform according to19( e.g. for the second kind)

Γ̄τσλ =
∂ūτ

∂uγ
∂uα

∂ūσ
∂uβ

∂ūλ
Γγαβ −

∂2ūτ

∂uα∂uβ
∂uα

∂ūσ
∂uβ

∂ūλ
(10.88)

The formulae of Weingarten and Gauss are in a sense similar to the formulae of Frenet.
For a curve of class Cr with r ≥ 2, we saw that at any point P we can associate the vectors
T ,P ,B and that any vector bound at P can be represented as a linear combination of the
corresponding derivatives Ṫ , Ṗ , Ḃ, provided that they exist. For a surface, the situation
is somewhat similar but now the relevant vectors are x1,x2 - spanning the tangent space
TP (M) - and the surface normal N , with their derivatives expressed by the above derived
formulae. The question that naturally arises is the following: if functions gαβ(u1, u2)
and Ωαβ(u1, u2) are given, there always exists a surface such that the given functions are
the coefficients of the corresponding fundamental forms? In other words, we are asking
whether the partial differential equations defined by the formulae of Weingarten and Gauss
do always admit solutions. The answer is of course negative unless certain integrability
conditions are satisfied. We shall see in the following that, in the search of such integrability
conditions, we will arrive at one of the most important result in differential geometry, the
so-called Theorema Egregium.

LetM : x(u1, u2) be a surface of class Cr with r ≥ 3. Then, we must have

∂xαβ
∂uλ

=
∂xαλ
∂uβ

which, by keeping the same notation used so far, we re-write as

xαβλ = xαλβ (10.89)

From xαβ = Γγαβxγ + ΩαβN , we thus find

xαβλ =
∂Γγαβ
∂uλ

xγ + Γγαβxγλ +
∂Ωαβ

∂uλ
N + ΩαβNλ

19In general theory of differential geometry of arbitrary spaces (devoid of a metric and not embedded
in a "bigger" Euclidean space), a set of coefficients Γjhk satisfying the transformation law (10.88) is called
affine connection, and a space endowed with such set an affinely connected space. The concept of affine
connection arises from the following simple observation: if Xj are the components of a contravariant vector
field, the corresponding differential dXj does not behave as a contravariant vector field; this suggest the
introduction of a new type of differential DXj

DXj = dXj + P j(up, Xh, duk)

where up denotes again the coordinate system on the space. One can prove that, in order for DXj to
transform according to a contravariant vector field, we must have P j = ΓjhkX

hduk, where Γjhk have to
satisfy precisely the transformation law (10.88). The operator D is also called absolute differential. For a
scalar field φ(uk) of class C1, it is natural to write dφ = (∂φ/∂uk)duk. Therefore, one may wonder about
the existence of a counterpart of this relation for absolute differentials. For this purpose, one needs to
construct a tensorial analogue of partial derivatives. The latter is the so-called covariant derivative

∇kXp =
∂Xp

∂uk
+ ΓphkX

h DXp = ∇kXpduk

which can be proved to constitute the components of a type (1, 1) tensor (thus ensuing again that DXj

is (1, 0) tensor). This is how the concept of covariant derivative is introduced from the more general
perspective of tensor calculus. The connection with the Riemannian geometry is immediate once it is
recognized that an affine connection can always be constructed from a symmetric, non-singular (0, 2)-
tensor field aij(up) of class C1. When the latter is identified with the metric tensor, one thus obtains the
Christoffel symbols defined in the main text.
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In consequence of the formulae of Weingarten and Gauss, we can also write

xαβλ =
∂Γγαβ
∂uλ

xγ + Γγαβ(Γσγλxσ + ΩγλN)− ΩαβΩτ
λxτ +

∂Ωαβ

∂uλ
N

With a straightforward manipulation of the indices, we obtain

xαβλ =

(
∂Γσαβ
∂uλ

+ ΓγαβΓσγλ − ΩαβΩσ
λ

)
xσ +

(
ΓραβΩρλ +

∂Ωαβ

∂uλ

)
N (10.90)

and by interchanging β and γ,

xαλβ =

(
∂Γσαλ
∂uβ

+ ΓγαλΓσγβ − ΩαλΩσ
β

)
xσ +

(
ΓραλΩρβ +

∂Ωαλ

∂uβ

)
N (10.91)

In order for (10.90) to be equal to (10.91), in the difference xαβλ−xαλβ = 0, the coefficients
of each vector must vanish. Hence, in the case of N we find that the following formula
must hold

ΓραβΩρλ − ΓραλΩρβ +
∂Ωαβ

∂uλ
− Ωαλ

∂uβ
= 0 (10.92)

These relations are called the formulae of Mainardi-Codazzi [267, 268]. For the coefficient
of xσ, we find instead

Rσαλβ = ΩαβΩσ
λ − ΩαλΩσ

β (10.93)

where we have set

Rσαλβ =
∂Γσαβ
∂uλ

−
∂Γσαλ
∂uβ

− ΓγαβΓσγλ − ΓγαλΓσγβ (10.94)

the quantities Rσαλβ are the components of a type (1, 3) tensor that is called the Riemann
curvature tensor20. Formulae (10.92) and (10.93) are precisely the integrability condi-
tions we were looking for. At this point, we shall investigate a little more the Riemann
curvature tensor and find a geometrical interpretation that justify its name21. To this
purpose, let first define the covariant Riemann curvature tensor

Rταλβ = gστR
σ
αλβ (10.95)

which is a type (0, 4) tensor. From its definition and with some index manipulation, one can
20 In arbitrary spaces endowed with just an affine connection Γjhk the curvature tensor is introduced

in a similar manner, as a natural extension to the concept of "curvature" given in the theory of calculus,
namely it is related to a ("second") repeated covariant derivative. In particular, for a type (1, 0) tensor
field Xj , we have

∇k∇hXj −∇h∇kXj = RjlhkX
l + Slhk∇lXj

where Sjhk = Γjhk − Γjkh are the components of a type (1, 2)-tensor called torsion tensor. In Riemannian
spaces, due to the symmetry property of Christoffel symbols in its covariant indices, it clearly follows that
Sjhk ≡ 0. For this reason, Riemannian spaces are said to be torsion-free spaces.

21The geometrical interpretation of the curvature tensor in affinely connected spaces (see footnote 20
on 169) is more tricky to understand, because of the absence of the geometrical structure brought by the
metric tensor. In a nutshell, the geometrical meaning of Rjlhk emerges when one looks for the necessary
conditions for a vector field Xj(t) defined on curve C on the spaceM to be parallel. A vector field Xj(t)
is said to be parallel along a curve C if and only if the partial differential equations DXj = 0 are satisfied
along C, where D denotes again the absolute differential (see footnote 19 on 168). From such definition,
one can prove that a necessary condition for Xj to be parallel is

RjlhkX
l = 0
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show that also the components of the covariant Riemann tensor can be entirely expressed
in terms of the coefficients of the second fundamental form, namely

Rταλβ = ΩαβΩλτ − ΩαλΩβτ

From the symmetry property of the Christoffel symbols, it is immediate to prove that the
curvature tensor Rσαλβ is skew-symmetric under the permutation of the index λ and β. In
addition, it holds

Rσαλβ +Rσλβα +Rσβαλ = 0 (10.96)

Then, in consequence of (10.96) and (10.95), we also have

Rταλβ = −Rταβλ (10.97)

i.e. the covariant Riemann curvature tensor is skew-symmetric under the permutation of
its last two indices. Similarly, one can prove that it is skew-symmetric also under the
permutation of the first two indices,

Rταλβ = −Rατλβ (10.98)

From (10.97) ,we can write the following formula

Rταλβ +Rλβατ +Rβατλ = 0 (10.99)

The latter, combined with (10.98) and (10.97), leads to the following additional symmetry
property

Rταλβ = Rλβτα (10.100)

From (10.97), (10.98) and (10.100) together, it follows that, for a two-dimensional Rieman-
nian space where the curvature tensor has n4 = 24 = 16 components, only four components
are different from zero, namely

R1212 = R2121 = Ω22Ω11 − (Ω12)2 = Ω

R2112 = R1221 = (Ω12)2 − Ω22Ω11 = −Ω

These relations have an important consequence: since the Christoffel symbols depend only
on the coefficients gαβ of the first fundamental form, the same holds for the components
of the Riemann curvature tensor and, therefore, also for the discriminant Ω of the second
fundamental form.. Recalling then the definition of the Gaussian curvature, we can now
state the following

Theorem 10.6.1 (Theorema egregium (Gauss1827)[269]). The Gaussian curvature K of a
surface is independent of the second fundamental form but depends only on the coefficients

The above condition is not always satisfied in general, since the components Rjlhk depend on the partic-
ular connection assigned to the space under consideration. However, it is possible to construct a special
connection for which the components of the curvature tensor vanishes everywhere. This is the case of
the so-called flat spaces, for which Euclidean space are an example. Hence, for flat spaces, RjlhkX

j = 0
becomes a necessary and sufficient condition. If we apply the condition DXj = 0 to the case of the tangent
vector (field) uj(t) to a curve C, we can prove that the curve uj = uj(t) has to to satisfy the following
differential equations

d2uj

dt2
+ Γjhk

dxh

dt

dxk

dt
= 0

The curves satisfying the above equations are referred to as autoparallel curves. If one identify the affine
connection with the Christoffel symbols of a Riemannian space, it can be proved that solutions of the
above equations are precisely the geodesics of the Riemannian space (κg = 0). In other words, geodesics
are curves for which the tangent vector at a point P can be obtained from the parallel transport of the
tangent vector to a neighboring point Q.
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gαβ of the first fundamental form, and their first and second derivatives

K =
R1212

g
(10.101)

The importance of such conclusion lies in the fact that it makes the Gaussian curvature
K a true intrinsic invariant. Indeed, according to Definition 10.5.3, K depends on the
coefficients Ωαβ of the second fundamental form, which are well defined if and only if the
space is embedded in E3

22, being the normal components of the vectors xαβ . On the
other hand, from the Theorema Egregium, it follows that the existence of gαβ with their
derivatives is sufficient for the development of self-consistent theory of curvature. In other
words, once gαβ are given, no appeal whatsoever need to be made to the fact that the
Riemannian space is embedded, and "true" intrinsic theory of Riemannian spaces can be
developed.

In closing this Section, we state also an other important result of differential geometry,
which allows to put on firmer grounds what we have discussed in Chapter 6 concerning
Euler’s formula applied to fullerenes (see Section 6.2 and footnote 13 at page 72).

Theorem 10.6.2 (Gauss-Bonnet). LetM be a surface of class Cr with r ≥ 3 and ∂M a
closed curve of class Cp with p ≥ 2, representing the boundary of the surface, if any. Then

∫
∂M

κg(s)ds+

∫
M
KdA = 2πχ(M) (10.102)

where κg(s) is the geodesic curvature along the curve ∂M, parametrized in terms of its arc
length s, K is the Gaussian curvature ofM and dA the element of area ofM.

This theorem was first published by O. Bonnet in 1848, but it was probably already
known to Gauss, and it is therefore referred to as the Gauss-Bonnet theorem23. Equation
(10.102) can be regarded as an integral identity that the Gaussian curvature (K) of a
surface and the curvature of its boundary (κg) have to satisfy. The quantity χ(M), called
the Euler’s characteristic, can be then regarded as a topological invariant, a number
that describes the shape of the surface regardless of the way it is bent24. When the Gauss-
Bonnet theorem is applied to surfaces of polyhedra, it leads to the expression of the Euler’s
characteristic given in Chapter 6, namely

χ = V − E + F (10.103)

where V , E and F are, respectively, the numbers of vertices, edges and faces in the given
polyhedron. χ is then 1 and 2 for any convex polyhedron in two and three dimensions,

22Of course, the same conclusions can be extended to higher dimensions, considering a Vn−1 Riemannian
manifold embedded in En.

23A proof in the context of n-dimensional Riemannian manifold can be found at pag. 281 of the book
by D. Lovelock and H. Rund(1989)

24As a simple application, let consider for instance a flat surface. The Gaussian curvature is everywhere
vanishing (K = 0) and the integrated geodesic curvature along the edges is zero as well. Therefore, for a
flat surface, like a sheet of paper, χ = 0. If we bend the sheet of paper to form a cylindrical surface, we
still get χ = 0 for the corresponding cylinder, since the Gaussian curvature is again identically vanishing.
On the other hand, we cannot find a continuous deformation that bends the sheet of paper into a sphere
of radius R, since for the sphere ∫

M
KdA =

1

R2
(4πR2) = 2πχ

that is, the Euler’s characteristic is χ = 2.
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respectively, but it can take different values in more complicated objects, e.g., the octa-
hemioctahedron (χ = 0) or the cubohemioctahedron (χ = −2). It is extended to smooth
surfaces by triangulation, i.e., for planar objects by subdivision into triangles, and in higher
dimensions by subdivision into simplices25.

25A simplex is a generalization of the notion of a triangle to arbitrary dimensions. Those that can be
fully represented in three-dimensional space are the 0-simplex (a point), the 1-simplex (a line segment),
the 2-simplex (a triangle) and a 3-simplex (a tetrahedron). In general, a n-simplex can be constructed
with n linearly independent vectors drawn from a common origin by considering the basis vectors and their
differences.

172



Chapter 11

Hybridization and Local Curvature

So far, the description of curved systems has been restricted to simple geometrical models,
that limit to assess the distortion around C atoms through pyramidalization (POAV) or
rehybridization. If one wants to go beyond such a description, the very first task to address
is defining the "curvature" at a C atom, and eventually, relating this curvature with its
atomic-scale effects, namely the above-mentioned hybridization and pyramidalization. This
non-trivial problem has not been tackled in the literature so far, according to the author’s
knowledge.

In this Chapter, we will discuss a new model that draws the theory of Riemannian
geometry to properly define the curvature at carbon atoms. Hence, we will show how
this curvature enters the definition of the geometry around carbons (i.e. bond angle and
hybridization). To validate our model, we will then present some applications to simple
but interesting systems.

11.1 The model

Let T0M be the tangent space to the 2-surfaceM ⊂ R3 at the point x0 where a C atom
is found. Let e1 and e2 two unit vectors along the line of principal curvatures1, κ(1) κ(2)

respectively, in such a way that (e1, e2,N), with N the surface normal, forms a right-
handed reference system. For instance, for the surface of a carbon nanotube with the
normal oriented outward, e1 is the unit vector orthogonal to the tube axis (associated to
the curvature κ = −1/R, with R the tube diamater) and e2 is the one directed along the
tube axis (associated to κ = 0, a direction of vanishing normal curvatures) (see Subsection).

Let consider then a neighboring atom at a point x ∈ M, its position ∆x = x − x0

relative to x0 and the projection X of the latter onto T0M. The vector X ∈ T0M can
be used to define a curve γ(t) ∈ R3 joining x0 to x with normal curvature κn at x0. The
curve is not unique unless we fix the "shape" of the surface around x0, a rather delicate
issue that boils down to the meaning of "surface interpolating the carbon atom sheet" and
of "curvature" at a carbon atom. Henceforth, we make the simplest choice of a locally
quadratic shape because of its advantages w.r.t. possible alternatives, e.g. a spherical
surface of radius κ−1 tangent to T0M. Compared to the latter, for instance, our choice
gives rise to simpler analytical expressions, it is free of constraints2 and it does describe
a locally spherical surface when the bond length ρ is such that ρ � κ−1 (see Subsection
11.2.1).

Let then X̂ = X/||X|| be the unit vector along the directionX , s the curve parameter

1These vectors clearly coincide with the tangent vectors xα ≡ ∂x/∂uα to the coordinate curves once
the latter are chosen to be the lines of curvature.

2It may be worth noticing that if a neighboring C atom has to lie on the spherical surface tangent to
T0M the length ρ‖ of the projected bond on T0M is restricted by the condition ρ‖ ≤ κ−1, with κ = 1/R.
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Chapter 11. Hybridization and Local Curvature

Figure 11.1. Schematics showing a surfaceM, the tangent plane T0M at a C atom, the reference
system (e1, e2,n) identified by the lines of principal curvatures and a bond to a neighboring C
atom (yellow arrow).

and κn the normal curvature at x0. Under our assumptions we have γ̇(0) = dγ/ds(0) = X̂,
γ̈(0) = κnn = γ̈(s)3. These guarantee that κn is indeed the curvature of the curve at s = 0,
where T = X̂ is the unit tangent vector and Ṫ satisfies (Ṫ |T ) = 0 and ||Ṫ || = |κn|. In
other words, the curve joining two neighboring carbons is a lines of curvature (i.e. with
vanishing geodesic curvature, κg) of the locally quadratic surface, hence hereafter we set
κn ≡ κ. Then

γ̇(s) = X̂ +

∫ s

0
γ̈ds = X̂ + κsN

γ(s) = x0 +

∫ s

0
γ̇ds = x0 + X̂s+

1

2
κs2N

Upon requiring that γ(s) = x for some s = s̄, we find s̄ = ||X|| ≡ ρ‖ (the projected
bond length onto the tangent space) since the condition

γ(s̄)− x0 = X +
1

2
κ||X||2N (11.1)

sets the projection of ∆x onto T0M to be X. As a result the normal component of the
relative position is determined by ρ‖ and the (normal) curvature as 1

2κ||X||
2N .

There remains to establish the relation between κ and the principal curvatures. To this
end, let (r, θ, φ) be the spherical coordinate system associated to (e1, e2,N) and

x = ρ sin θ cosφ

y = ρ sin θ sinφ

z = ρ cos θ

the coordinate of the relative position vector on the frame (e1, e2,N) (ρ ≡ bond length).
Clearly, X = ρ sin(θ) cos(φ)e1 +ρ sin(θ) sin(φ)e2, ρ‖ = ρ sin(θ) and the (normal) curvature
κ is related to the principal curvatures according to the Euler’s theorem (see Theorem

3In other words, the curve joining two neighboring carbons is a parabolic curve with constant acceler-
ation vector, given by the surface normal in x0, the position of the central carbon considered.
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11.1. The model

(10.5.5) on pag. 163)
κn = κ(1) cos2(φ) + κ2 sin2(φ)

Hence,

(n|∆x) =
1

2
κnρ

2
‖ =

1

2

(
κ(1)x2 + κ2y2

)
or equivalently

∆x = xe1 + ye2 +
1

2

(
κ(1)x2 + κ2y2

)
N (11.2)

Equation (11.2) show that X uniquely defines ∆x, that is, the latter is entirely specified
by the length ρ‖ of X and its orientation φ (κn ≡ κn(φ)), ∆x = ∆x(ρ‖, φ).

Let consider now two displacement vectors, ∆x1 and ∆x2, corresponding to two bonds
that the C at x0 makes with its nns. Let ||∆xi|| = ρi be the corresponding bond length
and κi the (normal )curvature (i = 1, 2). The bond angle Θ12 is thus given by

cos(Θ12) =
(∆x1|∆x2)

||∆x1|| · ||∆x2
=

1

ρ1ρ2

(
(X1|X2) +

1

4
κ1κ2ρ

2
1,‖ρ

2
2,‖

)
(11.3)

Let ∆φ = φ1 − φ2 be the bond angle projected onto T0M, hence (X1|X2) = cos(∆φ).
Equation (11.3) thus becomes

cos(Θ12) = sin(θ1) sin(θ2)

[
cos(∆φ) +

1

4
κ1κ2ρ1ρ2 sin(θ1) sin(θ2)

]
(11.4)

which is a general relation that requires just the knowledge of the angles that each ∆xi
makes with the surface normal, the projected bond angle ∆φ and the normal curvatures
κi (that are given once specified the orientation of the bond w.r.t. the lines of principal
curvature)4.

Now, κi and ρi set the value of sin(θi), indeed

sin2(θi) =
ρ2
i,‖

ρ2
i

(11.5)

but ρi,‖ itself is determined by ρi and κi, upon noticing that

||∆xi||2 ≡ ρ2
i = ρ2

i,‖ +
κ2
i

4
ρ4
i,‖

which is a second order equation for y = ρ2
i,‖ that admits the (positive) solution

ρ2
i,‖ =

2

κ2
i

(√
1 + κ2

i ρ
2
i − 1

)
(11.6)

Note that, in the limit of vanishing curvature κi → 0, ρ2
i,‖ → ρ2

i . The substitution of the

4It may be worth noticing that the "curvature" properties enter here in the form of the product κ1κ2,
which is the prototype of a Gaussian curvature defined through two generic normal curvatures.
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above expression into Equation (11.5) gives5

sin2(θi) =
2√

1 + κ2
i ρ

2
i + 1

(11.7)

With Equation (11.7), we can write down the following explicit formula

cos(Θ12) =
2√(√

1 + ρ2
1κ

2
1 + 1

)(√
1 + ρ2

2κ
2
2 + 1

) cos(φ1 − φ2)+

+ sgn(κ1κ2)

(√
1 + ρ2

1κ
2
1 − 1√

1 + ρ2
1κ

2
1 + 1

√
1 + ρ2

2κ
2
2 − 1√

1 + ρ2
2κ

2
2 + 1

)1/2
(11.8)

We stress that this is a rather general expression and applies to any situation. It only
requires the the lines of principal curvature, the associated curvatures and the orientation
of the bonds with respect to such lines, in particular the angle ∆φ = φ1 − φ2 that the
"projected bonds" make with each other. In the following, we apply it to some simple but
interesting cases.

11.2 Applications

11.2.1 Spherical surface

The simplest case is that of a spherical surface, where each point is umbilic, i.e. κ1 = κ2 = κ
for any direction on the surface. Then, for the bond angle cos(Θ12) we get

cos(Θ12) = sin(θ1) sin(θ2)

(
cos(∆φ) +

1

4
Kρ1ρ2 sin(θ1) sin(θ2)

)
where K is the Gaussian curvature of the sphere. In the equilibrium situation where there
are three σ bonds (ρi ≡ ρ) making a projected bond angle of ∆φ = 2π/3 and θi ≡ θ
(Θ12 ≡ Θ), the above expression reduces to

cos(Θ) = sin2(θ)

(
−1

2
+

1

4
Kρ2 sin2(θ)

)
since sin2 = 2/(

√
1 + ρ2κ2 + 1) (Equation (11.7)) and K = +1/R2, with R = κ−1 (see

Subsection), we have

cos(Θ) = 1− 3√
1 + a2 + 1

(11.9)

where a = ρ/R ≡ κρ. In Section 6.1 we saw that, in the hypothesis of non-bent bonds,
the Coulson’s directionality theorem allows computing the hybridization indexes from the

5One can also write down θi as function of ρi and κ, using

cot(θi) =

√
1

2
(
√

1 + ρiκi − 1)

to write

cos(θi) = sgn(κi)

√
cot2(θi)

cot2(θi) + 1
= sgn(κi)

√√
1 + ρ2

iκ
2
i − 1√

1 + ρ2
iκ

2
i + 1

since the plus (minus) sign holds for κi > 0 (κi < 0).
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Figure 11.2. Schematics showing a spherical surface M, the tangent plane T0M at a C atom,
the cartesian reference system (x, y, z), a position vector x1 (red arrow) and the projected bonds
X1,X2 (dotted yellow arrows).

geometry around the C atom. Here, we assume that the C atom employs spτ hybrids to
form the three σ bonds and a spλ hybrid to form the π-like bond. Therefore,

cos(Θ) = −1

τ
λ =

1

1− 3(1 + τ)−1
− 1

When using Equation (11.9) to compute the σ and π hybridization indexes we obtain

τ =
1 +
√

1 + a2

2−
√

1 + a2
λ =

1√
1 + a2 − 1

− 1 (11.10)

which give explicitly the hybridization indexes as functions of the sphere radius R. In the
limit R� ρ,

τ ≈ 2 + a2/2

1 + a2/2
≈ 2 +

3

2
a2 λ = 2

1

a2

which correctly reduce to τ = 2 and λ→∞ for R→∞.
The spherical geometry is the simplest case where exact analytical expressions can

be derived and, therefore, it allows putting on firmer ground the validity of the locally
quadratic approximation that we assumed at the outset. To this aim, let z =

√
R2 − x2 − y2

be a semisphere of radius R, defined as the graph of a two-dimensional function f(x, y) = z.
In this representation, each point on the semisphere is

xi =
(
xi, yi,

√
R2 − xi − yi

)
Without loss of generality, we can assume a C atom to be located at the North Pole of the
semisphere, i.e. x0 = (0, 0, R). Let again X1,X2 ∈ T0M be the projected bond vectors
with its two nns and consider the equilibrium situation in which ∆φ = 2π/3. Under such
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assumption, the nn coordinates are entirely determined by R and ρ‖ = ||X||. Indeed

x1 = ||X1|| = ρ‖

y1 = 0

while the second nn is rotated on the xy-plane by 2π/3

x2 = −1

2
||X2|| = −

1

2
ρ‖

y2 =

√
3

2
||X2|| =

√
3

2
ρ‖

The relative position vectors ∆xi = xi − x0 (i = 1, 2) then read as

∆x1 =
(
ρ‖, 0,

√
R2 − ρ2

‖ −R
)

(11.11)

∆x2 =

(
−1

2
ρ‖,

√
3

2
ρ‖,
√
R2 − ρ2

‖ −R

)
(11.12)

From Equation (11.11) and (11.12), cos(Θ) is readily obtained

cos(Θ) =
1

ρ2

(
2R2 − 3

2
ρ2
‖ − 2R

√
R2 − ρ2

‖

)
(11.13)

In order to compare Equation (11.13) with Equation (11.9), we need to express ρ‖ in terms
of the fundamental variable ρ. First, we note that

||∆x1||2 ≡ ρ2 = 2R2 − 2R
√
R2 − ρ2

‖

that can be inverted to give

ρ2
‖ = R2 − 1

R2

(
2R2 − ρ2

)2 (11.14)

Equation (11.13) can be re-written as cos(Θ) = 1 − (3/2)ρ2
‖/ρ

2, then substituting in this
formula Equation (11.14), we arrive at

cos(Θ) = 1− 3

2

(
1− a2

4

)
(11.15)

where 0 ≤ a = ρ/R ≤
√

2. In Figure 11.3, cos(Θ) is plotted as function of a according to
both Equations (11.9) and (11.15). When employing a locally quadratic approximation,
we are "flattening" the geometry around the C atom w.r.t. the original spherical shape.
Therefore, ∆ρ = ρ−ρ‖ is greater on the sphere than on the locally quadratic approximated
surface. Accordingly, the approximation (overestimates) underestimates (Θ) cos(Θ). Nev-
ertheless, Figure 11.3 clearly shows that for a broad range of a - up to the rather unphysical
case where a ≈ 1

2 , i.e. R = 2ρ - the quadratic and spherical models provide essentially the
same result6. From Equation (11.15), σ and π hybridization index can be readily obtained

τ =
8

4− 3a2
λ =

12− 9a2

6a2

6Clearly, cos(Θ) is of the same order in a in both models, hence a significant difference appears only
at the 4th order (o(a4)) in the expansion of cos(Θ) around a = 0.
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Figure 11.3. cos(Θ), τ and λ hybridization indexes plotted w.r.t. a = ρ/R, in the quadratic
(green) and spherical (blue) model. For the bond angle cos(Θ) also shown their difference (∆)
with a black dotted line.

which correctly reduce to τ = 2 and λ→∞ for a→ 0 (R→∞).

11.2.2 Nanotubes

As a second example, let consider a zig-zag nanotube, where there exist two equal bonds
of length ρ forming an angle Θ with each other and an angle Θ′ with the remaining one
(the one directed along the tube axis). Let ∆φ, ∆φ′ be the corresponding projected bond
angles, that satisfy ∆φ+ 2∆φ′ = 2π.

If we cut the tube normally to its axis, along a zig-zag line, the C atoms form a regular
polygon with N sides, of length l equal to the "widths" of the hexagons (the height can be
arbitrary, as long as this geometry is of concern). Hence, according to the law of cosines7

we have
l2 = 2R2

(
1− cos

(
2π

N

))
=⇒ l ≡ 2R

∣∣∣sin( π
N

)∣∣∣ (11.16)

where R is the tube radius. For cos(Θ), we apply Equation (11.8), with κ1 = κ2 ≡ κ,
ρ1 = ρ2 ≡ ρ, to get

cos(Θ) =
2√

1 + ρ2κ2 + 1
cos(∆φ) +

√
1 + ρ2κ2 − 1√
1 + ρ2κ2 + 1

(11.17)

From Equation (11.16), (11.6) and l = ρ‖
√

2 (1− cos(∆φ)) we can write cos(Θ) in terms

7This trigonometrical theorem relates the lengths of the sides of a triangle to the cosine of one of its
angles. namely c2 = a2 + b2 + 2ab cos(γ), where γ denotes the angle contained between sides of lengths a
and b and opposite the side of length c.
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Figure 11.4. Schematics illustrating the main geometrical parameters of zig-zag and armchair
nanotubes.

of ρ and R only. After some straightforward algebra, we have

cos(Θ) =
−4R2 sin2

(
π
N

)
+ 2ρ2

‖

ρ2
‖(
√

1 + ρ2κ2 + 1)
+

√
1 + ρ2κ2 − 1√
1 + ρ2κ2 + 1

= −2R2

ρ2
sin2

( π
N

)
+
ρ2
‖

ρ2
+

√
1 + ρ2κ2 − 1√
1 + ρ2κ2 + 1

= −2R2

ρ2
sin2

( π
N

)
+

2√
1 + ρ2κ2 + 1

+

√
1 + ρ2κ2 − 1√
1 + ρ2κ2 + 1

Hence

cos(Θ) = 1− 2R2

ρ2
sin2

( π
N

)
(11.18)

which correctly reduces to Θ → π/3 for vanishing curvature8. The average curvature
κ readily follows from Euler’s theorem, reminding that for the cylindrical geometry the
principal curvatures are κ(1) = −1/R and κ(2) = 0, hence

κ =
1

R
sin2

(
∆φ

2

)
=
R

ρ2
‖

sin2
( π
N

)
=

R
2
κ2 (
√

1 + ρ2κ2 + 1)
sin2

( π
N

)
The above equation can be solved in κ to give

κ =
4R2 sin2

(
π
N

)
4ρ2 −R2 sin4

(
π
N

)
and thus the projection of the bond onto T0M is entirely determined by ρ and R through

ρ‖ =

√
R

κ
sin2

( π
N

)
=

√
4ρ2 −R2 sin4

(
π
N

)
4

8For vanishing curvature, π/N → 0, hence sin2(π/N) → π2/N2. In addition, for a (n, 0) zigzag
nanotube, the tube radius R is related to the chiral index n ≡ N through 2R = (

√
3/π)ρN (see Box on

page ). Therefore

cos(Θ) ≈ 1− 2R2

ρ2

π2

N2
= 1− 2R2

ρ2
π2 3

4π2

ρ2

R2
= −1

2
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which correctly reduces to ρ‖ ≡ ρ for R→∞ (π/N → 0).
As done for the spherical surface, we may use Equation (??) to compute the σ hy-

bridization index (τ1 ≡ τ2 for the two bonds with equal average curvature κ). Again, by
Coulson’s directionality theorem , cos(Θ) = −1/τ1, then by a straightforward calculation
we get

τ1 =
ρ2

2R2 sin2
(
π
N

)
− ρ2

w1 =
2R2 sin2

(
π
N

)
− ρ2

2R2 sin2
(
π
N

)
(11.19)

(11.20)

where w1 is the corresponding s-weight. As for the τ3 hybridization index, corresponding
to to the hybrids directed along the line of vanishing curvature, it can be determined from
τ1 and cos(Θ′). The latter follows again from Equation (11.8) with k2 ≡ k(2) = 0, i.e.

cos(Θ′) =
2

√
2

√√
1 + ρ2κ2 + 1

cos(∆φ′) = sin(θ) cos(∆φ′)

Since ∆φ′ = π − (∆φ/2) and cos(∆φ′) = − cos(∆φ/2), then

cos(Θ′) = − sin(θ) cos

(
∆φ

2

)
(11.21)

To remove the explicit dependence from the projected bond angle ∆φ, we can square the
above expression and use sin(∆φ/2) = (R/ρ sin(θ)) sin(π/N)9 to get

cos2(Θ′) =
1

ρ2

(
ρ2
‖ −R

2 sin2
( π
N

))
(11.22)

With Equaton (11.22) at hand, the τ3 hybridization index (and the w3 s-weight) easily
follows from τ3 = 1/(τ1 cos2(Θ′)), i.e.

τ3 =
2R2 sin2

(
π
N

)
− ρ2

ρ2
‖ −R2 sin2

(
π
N

)
w3 =

ρ2
‖ −R

2 sin2
(
π
N

)
(ρ2
‖ − ρ2) +R2 sin2

(
π
N

)
(11.23)

(11.24)

The calculation of the π hybridization index (τ4 = λ) is easily performed in the s-weight
representation, from the conservation law 2w1 + w3 + w4 = 1. After som boring but
straightforward algebra, we arrive at

w4 =
(ρ2
‖ − ρ

2)(ρ2 − 2R2 sin2
(
π
N

)
)

(ρ2
‖ − ρ2)R2 sin2

(
π
N

)
+R4 sin4

(
π
N

)
Upon noticing that

ρ2
‖ − ρ

2 = −κ
2

4
ρ4
‖ = −R

2

4
sin4

( π
N

)

9This follows from l = 2ρ‖ cos
(
π−∆φ

2

)
= 2ρ‖| sin

(
∆φ
2

)
| and l = 2R| sin(π/N)|.
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we find

w4 =
2R2 sin2

(
π
N

)
− ρ2

4R2 −R2 sin2
(
π
N

)
λ =

4R2 − 3R2 sin2
(
π
N

)
+ ρ2

2R2 sin2
(
π
N

)
− ρ2

(11.25)

(11.26)

which correctly reduce to w4 → 0 (λ→∞) when R→∞.
Equations (11.19), (11.23) and (11.25) express the σ and π hybridization indexes (or

corresponding s-weights) in terms of the fundamental variables of the zig-zag nanotube,
namely the tube radius R, the chiral index N and the bond length ρ. These expressions are
rather cumbersome and may be difficult to handle. We may then seek for an approximation
in the limit of small curvature κ ≈ 0 (i.e. for a large diameter nanotubes). To this aim,
let expand sin2(π/N) to second order around π/N = 0. For λ, we find

λ = 2

(
1− 3

4 sin2
(
π
N

)
+ 1

4
ρ2

R2

sin2
(
π
N

)
− 1

2
ρ2

R2

)

≈ 2

(
1− 9

16
ρ2

R2 + 1
4
ρ2

R2

1
4
ρ2

R2

)

= 2

(
1− 5

16a
2

1
4a

2

)
(11.27)

where a = ρ/R.
Beside the hybridization indexes, the effect of curvature on carbon hybridization can

be assessed by the pyramid angle, introduced in Section 6.1. In case of zig-zag nanotubes,
a convenient measure of the distortion is the angle that the π-like orbital makes with the
σ-bond directed along the line of vanishing curvature, since by symmetry arguments it
follows that the former has to be orthogonal to the plane formed by the other two σ-bonds
with κ 6= 0. Such angle (γ) can be computed from cos(γ) = −1/

√
τ3τ4 (see Section). A

direct calculation gives

cos(γ) = −1

2

√
4ρ2 −R2 sin4

(
π
N

)
− 4R2 sin2

(
π
N

)
4R2 − 3R2 sin2

(
π
N

)
+ ρ2

(11.28)

At small curvature radii,

cos(γ) ≈ −1

2

√√√√4ρ2 − 9
16

ρ2

R2 − 3ρ2

4R2 − 9
4ρ

2 + ρ2

= −1

2

√√√√ ρ2

4R2

(
1− 9

16a
2

1− 5
16a

2

)

= −a
4

(
1− 9

16a
2

1− 5
16a

2

)1/2

(11.29)

In Figure 11.5, the hybridization indexes and the pyramid angles as computed from
Equations (11.19), (11.23), (11.25), (11.28), (11.27) and (11.29) are plotted w.r.t. N and
compared to the corresponding values obtained from the optimized geometries of (N, 0)
nanotubes (i.e. by a direct application of the Coulson’s theorem). Overall, the derived
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Figure 11.5. σ (τ), π (λ) hybridization indexes and pyramid angle (γ) obtained from Equations
(11.19), (11.23), (11.25), (11.28) (dark green circles), their small-curvature approximations (dotted
dark green line) and those obtained by application of Coulson’s theorem to optimized structure of
(N, 0) nanotubes (light green circles).

Equations provide hybridization indexes that are in good agreement with those obtained
from optimized structures. Noteworthy, our Equations precisely reproduce the behavior at
large curvatures, which, for zig-zag nanotubes, appears to set in already at N ' 10.

Let consider now an armchair nanotube. The latter is a less lucky situation in which
analytical expressions in terms of the only variable a = ρ/R cannot be established. The
reason is that all the three σ bonds are "affected" by curvature: two bonds are directed
along two lines of equal average curvature κ and the third points towards the direction
normal to the tube axis, i.e. with κ = −1/R. A formula, however approximated, that
relates the bond angle Θ to the variables R, ρ and N can be written down by applying
the following geometrical arguments. If we cut the again the nanotube along the direction
normal to the tube axis, an irregular polygons of "short" and "long" sides, respectively
equal to ρ and H, where H is the "height" of the hexagon, is formed. The number of ρ and
H sides is equal and matches the nanotube chiral index N , hence for the corresponding
central angles we can write 2αN + 2βN = 2π. In addition, sin(2α) = H/(2R) and
sin(2β) = ρ/(2R), therefore sin(α) = sin(π/N − β) and

sin
( π
N
− β

)
= sin

( π
N

)
cos(β)− cos

( π
N

)
sin(β)

=

√
1− ρ2

4R2
sin
( π
N

)
− ρ

2R
cos
( π
N

)
and

H = 2R

√
1− ρ2

4R2
sin
( π
N

)
− ρ cos

( π
N

)
For the bond angle, cos(Θ) = 1 − l2/(2ρ2), with l the "width" of the hexagon. Here, we
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Figure 11.6. The anti-, cis- and trans-annulene structures
.

may set10 l2 ≈ H2 − ρ2, thus getting

cos(Θ) ≈ 3

2
−2R2

ρ2
sin2

( π
N

)
+

− 1

2
cos

(
2π

N

)
+

2R

ρ
sin
( π
N

)
cos
( π
N

)√
1− ρ2

4R2
(11.30)

which correctly reduces to cos(Θ) = −1/2 in the limit of vanishing curvature.

11.2.3 1-dimensional systems: [n]-annulenes

Published papers: M. Cappelletti, M. Leccese, M. Cococcioni, D. M. Proserpio and R.
Martinazzo, The Different Story of π-bonds, Molecules, 26, 3805, 2021.

As a last example, we consider [n]-annulenes, ring-closed carbon chains (with n atoms)
that are the prototypical example of molecules to which Hückel theory applies. Because
of their reduced dimensionality, [n]-annulenes represent a particularly attractive system
and lend theirselves to both computational and analytical investigations even at large n.
Therefore, before getting into the issue of curvature, it is worth introducing the main struc-
tural properties of such molecules and discussing some DFT calculations we performed.

[n]-annulenes can appear in three different structural variants (depicted in Figure 11.6),
that generally referred to as cis, anti and trans. These three variants present different delo-
calized bonds between carbon p electrons and allow one to probe the role of the σ skeleton
separately from that of the delocalized bond. This is a fundamental issue that lies at the
heart of the theory of aromaticity and the nature of π-bonds. For a long time, chemists
have deemed that aromaticity, which is generally related to uniform bond lengths (the in-
famous D6h symmetry in benzene), was uniquely ascribed to an extended delocalization of
π electrons. The latter represents, however, only part of the story, since π-bonds actually
turn out to be distortive and favor non-uniform geometries. By reassessing the role of
the σ skeleton, several works in the field have later shown that the onset of uniform bond
lengths is due a rather delicate interplay between the σ and π bonds[270]. In this respect,
one-dimensional systems such as [n]-annulenes are particularly attractive. Indeed, the pla-
nar structures, cis and anti, feature an exact σ-π separation and p-p interactions that are
not affected by the ring size. It is their different σ skeleton to determine their relative
stability, with cis structures preferred for small n and anti for large n. On the other hand,
trans-annulenes feature an ideal "environment" for σ-bonding, only marginally affected by

10The equality sign strictly holds for an hexagon on a plane, where ρ, H and l forms a right triangle.
In general, one should set H2 = l2 + ρ2 − 2lρ cos(ϕ) where ϕ is the angle between l and ρ. The employed
formula can be then considered as an approximation to large radii. Larger deviation from the attended
bond angles and hybridization indexes will occur at small N (for N = 10, ϕ ≈ 89.2).

184



11.2. Applications

1/100 1/501/30 1/10 1/61/18 1/4

1 / n

1.38

1.41

1.44

1.47

1.50

ρ
 /
 Å

1/100 1/501/30 1/10 1/61/18 1/4

1 / n

0.00

0.05

0.10

0.15

0.20

0.25

B
L
A

 /
 Å

anti
cis
trans

1/100 1/501/30 1/10 1/61/18 1/4

1 / n

8.0

8.5

9.0

9.5

10.0

10.5

11.0
A

E
 /
 e

V

Figure 11.7. From left to right: The atomization energy per C atom (AE), the average CC bond
length (ρ̄) and the bond length alternation (BLA) for the CnHn structures exemplified in Figure
5, as functions of 1/n, on a linear-log scale

the ring size, and a (cis-bent) interaction between p orbitals for π bonding that becomes
increasingly important when increasing n[153].

We should note that the three structures have two different limits for n→∞: the first is
the rather unphysical geometry attains by the cis-sequence, the second is the stable configu-
ration of trans-polyacetilene, here reached from two different "directions". This infinite-size
limit allows one accessing properties of the extended system, trans-polyacetilene, from a
molecular perspective - free of finite-size effects thanks to the ring topology - and applying
levels of theory that are much higher than those typically available in the condensed phase.

Figure 11.7 shows the results of DFT calculations we performed with the M06-2X
functional, which, as seen in Chapter 3, is particularly suitable for this kind of systems.
The left panel displays the atomization energy per C atom, i.e. the energy of the reaction
1
nCnHn → C + H, as a function of 1/n in a linear-log scale. The graph makes clear the
stability order before-mentioned and the infinite-size limiting behavior alluded to, where
the anti and trans sequence tend to the same common value AE ≈ 10.3 eV which is our
computed AE for trans-polyacetilene. The latter is about 2 eV higher than the hypothetical
chain with CH bonds made with pure C p orbitals, and CC σ bonds built with sp hydrids.
In a sense, it is a carbyne-like system where for any structural unit C2 a π bond is replaced
with two (odd) CH bonds[153].

The middle panel of Figure 11.7 highlights the structural differences between the iso-
mers in terms of the average CC bond length. Again, it shows that the stable structures
share a common average CC bond lengths (ρ̄), disregarding the evident alternation due to
aromaticity-antiaromaticity for small n. The latter is more evident in the right panel of
the same figure, where the BLA is seen to undergo wild oscillatory behavior which extends
up to n ≈ 30. The behavior of BLA highlights how the distortivity is highly modulated by
aromatic-antiaromatic character of the π-cloud, with anti-aromatic molecules being highly
distortive11. The BLA vanishes, or is vanishingly small, up to n = 10 for the cis-sequence
and up to n = 14 for the other two sequences. The latter is clear-cut manifestation of the
delicate interplay between the π distortivity and the σ resistivity12.

Let return now on the study of curvature, and consider at first the simplest case of a cis
structure. Here, all C atoms lie on a curve γ(t), that is a one-dimensional circle S1, whose

11An exception is for n = 8 where the poor overlap between p orbital gives to the π cloud a little weight
on the overall energetics.

12The case n = 4 is a bit off the general trend, featuring much larger BLA and R̄. This is probably a
consequence of the ring strain, which is considered to be the major effect causing distortion in this system.
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Figure 11.8. Schematics illustrating the main geometrical parameters of cis (a) and anti (b)
[n]-annulenes.

curvature in each point is given by κ = −1/R. Therefore, the relationship between local
curvature and hybridization we established above for two-dimensional systems translates in
one dimension without noteworthy modifications, if one identify e1 with the curve tangent
vector T (t) = γ̇(t) and N as the principal normal Ṫ (t)/||Ṫ (t). From simple geometrical
arguments (see Figure 11.8 (a)), we have

R =
ρ

2 sin
(
π
n

)
and then the curvature is given by κ = −2 sin(π/n)/ρ. For the projected bond angle,
cos(∆φ) = π, then, assuming equal bond lengths, from Equation 11.8, we get

cos(Θ) =
−2√

1 + ρ2κ2 + 1
+

√
1 + ρ2κ2 − 1√
1 + ρ2κ2 + 1

=

√
1 + ρ2κ2 − 3√
1 + ρ2κ2 + 1

or

cos(Θ) =

√
1 + 4 sin2

(
π
n

)
− 3√

1 + 4 sin2
(
π
n

)
+ 1

(11.31)

From Equation 11.31, the τCC hybridization index (−1/ cos(Θ)) and the corresponding
s-weight can be readily obtained

τCC =
1 +

√
1 + 4 sin2

(
π
n

)
3−

√
1 + 4 sin2

(
π
n

)
wCC =

1

4

(
3−

√
1 + 4 sin2

(π
n

))
(11.32)

(11.33)

which correctly reduce to τCC → 1 (wCC → 1/2, for n → ∞, i.e. the hybrid involved in
the CC σ-bond tends to a pure sp hybrid orbital. Factoring out the fourth hybrid which
is a pure p, the knowledge of wCC is sufficient to get wCH from the s-weight conservation,
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i.e. wCH = 1− 2wCC. Then

τCH =
3−

√
1 + 4 sin2

(
π
n

)
−1 +

√
1 + 4 sin2

(
π
n

)
wCH =

1

2

(√
1 + 4 sin2

(π
n

)
− 1

)
(11.34)

(11.35)

For n → ∞, τCH → ∞ (wCH → 0), i.e. the C atom employs a pure p orbital to bind
the H atom. Figure 11.9 compares the s-weight computed according to Equations 11.33
and 11.35 to the hybridiziation obtained by the application of the Coulson’s theorem to
the cis geometries optimized with DFT. We note that for some n (e.g. n = 12, 16, 18),
the C atom employs two different hybrids for the σ-bonds with its C nns. This feature is
not due to the BLA, which characterizes every cis structure for n ≤ 12, rather it is due
to the CH bond and in particular whether the HĈC1 and HĈC2 angles are equal or not.
Our analysis cannot take into account such situations since we have set CC σ-bonds to be
equal at the outset. Nevertheless, the infinite-size limit is well reproduced, since in this
limit the before-mentioned angles approach the same value of π/2.

BLA can be introduced in this model "by hand", upon considering that

n

2
(2α) +

n

2
(2β) = 2π

where 2α and 2β are the central angles in S1 subtented respectively by the chords ρ+ and
ρ− (the long and short bonds). Since α = (2π/n)− β, we have

sin(α) = sin

(
2π

n

)
cos(β)− sin(β) cos

(
2π

n

)
(11.36)
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and

ρ+ = sin

(
2π

n

)√
1 +

ρ2
−

4R2
− ρ− cos

(
2π

n

)
(11.37)

Equations 11.36 and 11.37 allow relating ρ+ and ρ− with the curvature radius R, hence
the curvature κ. With some algebra, one arrives at

R =
1

2

√√√√(ρ+ + ρ− cos
(

2π
n

)
sin
(

2π
n

) )2

+ ρ2
− (11.38)

Reminding that κ = −1/R, cos(Θ) can then be computed according to

cos(Θ) =
−2√(√

1 + ρ2
+κ

2 + 1
)(√

1 + ρ2
−κ

2 + 1
)+

+


√

1 + ρ2
+κ

2 − 1√
1 + ρ2

+κ
2 + 1

√
1 + ρ2

−κ
2 − 1√

1 + ρ2
−κ

2 + 1

1/2

Let consider now the case of trans-annulenes. In the following, we assume to have a
closed bent-like chain of n carbon atoms with average bond lengths ρ̄, thus disregarding
any BLA. The curvature properties of trans structures are equivalent to that of a zig-zag
nanotube (indeed they are to all effect the zig-zag lines of zig-zag nanotube) and allow
then applying the equations derived in Subsection 11.2.2 with just a minor modification
of the central angle. Indeed, here n represents the number of atoms along the chain
(i.e. n = 2N) and then the relation between the central angle and the radius R reads as
sin(2π/n) = l/2R, with l the distance between a C atom and its nnn (the previous "width"
of the hexagon in the nanotube geometry). Therefore, for the s weights we have

wCC =
2R2 sin2

(
π
n

)
− ρ̄2

2R2 sin2
(
π
n

)
wCH =

ρ̄2
‖ −R

2 sin2
(
π
n

)
(ρ̄2
‖ − ρ̄2) +R2 sin2

(
π
n

)
wπ =

2R2 sin2
(
π
n

)
− ρ̄2

4R2 −R2 sin2
(
π
n

)

(11.39)

(11.40)

(11.41)

where ρ̄2
‖ can be determined from

ρ̄‖ =

√
4ρ̄−R2 sin4

(
2π
n

)
4

Note that, as for zig-zag nanotubes, the curvature radius is related to n through 2πR ≈
l(n/2) ≈

√
3ρ̄(n/2) as n→∞.

The anti-structures displays a less trivial geometry where carbons lie on two distinct
(but concentric) circumferences (see Figure 11.8 (b)) and have thus different hybridization.
Since we are more interested in the n→∞ limit, where the anti sequence tends to trans-
polyacetilene, we can directly look for an approximated expression of cos(Θ) at small
curvatures. To this aim, let consider that each C makes equal bond angles with its nn and
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that ρ̄ is the average bond length. Then, from simple geometrical arguments it follows

cos(Θ) = 1− l2

2ρ̄2

where l is the distance between nnn on the largest circumference of radius R, and it is
related to n through

l2 =
2

κ2

(
1− cos

(
4π

n

))
Hence, for cos(Θ) we have

cos(Θ) = 1− 1

κ2ρ̄2

(
1− cos

(
4π

n

))
(11.42)

As n→∞, the length of the largest circumference can be approximated by n/2 times the
distance between nnn in trans-polyacetilene, ltP, i.e. 2πκ−1 ≈ (n/2)ltP and ρ̄→ ρtP. Let
then expand the cosine around 1/n = 0

cos

(
4π

n

)
= 1− 1

2

(
4π

n

)2

+
1

4!

(
4π

n

)4

+ o((1/n)5)

= 1− 8π2

n2
+

32π4

3n2
+ o((1/n)5) (11.43)

Substituting Equation 11.43 into Equation 11.42 and replacing n ≈ 4π/(κltP), we get

cos(Θ) ≈ 1− 1

κ2ρ2
tP

(
1− 1 +

1

2
l2tPκ

2 − 1

24
l4tP + o(κ5)

)
= 1−

l2tP
2ρ2

tP
+

1

24

l4tPκ
2

ρ2
tP

+ o(κ3)

= cos(θtP) +
1

24

l4tPκ
2

ρ2
tP

+ o(κ3) (11.44)

where θtP is the bond angle in trans-polyacetilene (≈ 124.0◦). For the µ hybridization
index we get

µ = − 1

cos(θtP) + 1
24
l4tPκ

2

ρ2
tP

= µtP

(
24ρ2

tP cos(θtP)

24ρ2
tP cos(θtP) + l4tPκ

2

)
(11.45)

which correctly reduces to µ ≡ µtP, for κ→ 0.

11.3 σ-π Hubbard model and curvature

In this last Section, we see how the above derived equations relating the local curvature
with the hybridization of C atoms can be exploited in a (2-state or 2-site) σ-π Hubbard
bond model. The latter has been described in detail elsewhere[129], so here we limit to
briefly outline its main features.

The starting point is the general Hubbard Hamiltonian H that in (second-quantization
formalism) reads as

H =
∑
i,σ

εia
†
i,σai,σ − t

∑
σ

a†b,σaa,σ − t
∑
σ

a†a,σab,σ +
∑
i

Uini,↑ni,↓
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where σ runs over the spins (σ = (↑, ↓)), i runs over the two lattice sites (i = (a, b)),
ai,σ(a†i,σ) destroys (creates) an electron in state (orbital) i with spin σ, εi are on-site
energies, t is the hopping energy while Ui the on-site Coulomb repulsion. The problem can
be readily re-formulated in first quantization formalism, where the Hamiltonian for two
electrons reads as

H = h1 + h2 + V

with hi the monoelectronic operator for the electron i and V the Coulomb repulsion. For
orthogonal states, the equivalence between the two Hamiltonians is obtained upon setting

〈a|h|a〉 ≈ εa 〈b|h|b〉 ≈ εb
〈a|h|b〉 = 〈b|h|a〉 = −t

〈aa|V |aa〉 = Ua 〈bb|V |bb〉 = Ub

and neglecting the remaining e-e matrix elements. The ground-state energy and wavefunc-
tion can be obtained13 as

ε = −2tξΦ = Φ0 + ξΦg

where we have set εa = εb = 0 and Ua = Ub = U and defined the transmission factor

ξ =

√
1 +

U2

16t2
− U

4t

When U � t, ξ → 1 and ε ≈ −2t, Φ ≈ (1/
√

2)(φa(r1) + φb(r1))(φa(r2) + φb(r2)). This is
the molecular orbital limit where the two electrons are paired in a molecular orbital and the
bond energy attains its maximum value 2t (the factor of two is the number of electrons).
On the other hand, when U � t, ξ → 0 and the wavefunction takes a purely covalent form
Φ ≈ Φ0 with a vanishing small binding energy ∼ 4t2/U .This is the Heitler-London (a.k.a.
Heisenberg) limit, where the electrons reside on their nuclei in an entangled state.

The case of non-orthogonal states can be handled similarly, by setting S = 〈a|b〉 = 〈b|a〉.
One finds that the ground-state energy in this case reads as

ε =
4t̄(1− S2)S + U(1 + S2)

2(1− S2)2
+

−

√(
4t̄(1− S2)S + U(1 + S2)

2(1− S2)2

)2

+
4t̄2 + 2t̄S(U − 2t̄S)

(1− S2)2

where14 t̄ = t+ εaS.
One can apply the above model separately to σ and π-like bonds. For the sake of

simplicity, we assume that C atoms make a non-bent σ-bond using spµ hybrids and π-like
bond with spλ hybrids, leaving two further hybrids spτ for the remaining σ bonds with

13The calculation is easily performed in the 〈Φ0|, 〈Φg| basis, where 〈Φ0| is the 2-electron wavefunction
in the covalent configuration while 〈Φg| is the combination of ionic configurations

Φ0 =
1√
2

(φa(r1)φb(r2) + φb(r2)φa(r1))

Φg =
1√
2

(Φa + Φb)

where Φa = φa(r1)φb(r2) and Φb = φb(r1)φb(r2).
14Note that, in the non-orthogonal case, the hopping energies depend on the reference energy of the

one-electron Hamiltonian h, that is usually set to be the asymptotic limit of the one-electron potential.
Therefore, one set h̄ = h−ε0 and replace εa → ε̄a = εa−ε0 (same for b) and t→ t̄ = −〈a|h−ε0|b〉 = t+ε0S.
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Figure 11.10. Schematics of the C2h configuration taken from Ref. [129] considered for describing
binding in a Y2X=XY2 molecule, illustrating the spλ used for the π bond, together with the angle
β that they make with the XX axis. The central atoms X use further spτ and spµ hybrids for the
XY and XX σ bonds.

two of the three nn (here, considered to be equal, like in a C2h configuration, see Figure
11.10).

In the following we address the case of U = 0 and focus on the double bond. The
spµ and spλ hybrids determine the effective overlap matrix elements and the hopping
parameters, namely Seff

σ , t
eff
σ for the σ-bond and Seff

π , t
eff
π for the π-bond15. The two spµ

(normalized) orbitals involved in the bond reads as

|φa〉 =
1√

1 + µ
(|s〉+

√
µ|p〉) (11.46)

|φa′〉 =
1√

1 + µ
(|s′〉+

√
µ|p′〉) (11.47)

Then by expanding the matrix elements Sσ = 〈φa|φa′〉 and tσ = −〈φa|h|φb〉 in terms of
the atomic orbital contributions we get

Seff
σ =

1

1 + µ
{Sσ(ss)− 2

√
µSσ(sp)− µSσ(pp)}

teffσ =
1

1 + µ
{tσ(ss)− 2

√
µtσ(sp)− µtσ(pp)}

(11.48)

(11.49)

with the following common definitions for AO matrix elements

Sσ(ss) = 〈s|s′〉 tσ(ss) = −〈s|h|s′〉
Sσ(sp) = 〈s|p′x〉 tσ(sp) = −〈|s|h|p′x〉
Sσ(pp) = 〈px|p′x〉 tσ(pp) = −〈px|h|p′x〉

where x denotes the axis along the double-bond. According to the AO orientation, we have

15They also determine the on-site energies but these are irrelevant in the present model since in a total
energy comparison they just give constant energy term that is geometry independent.
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tσ(ss), Sσ(ss) ≥ 0, while tσ(sp), Sσ(sp), tσ(pp), Sσ(pp) ≤ 0.
For the π-bonds, the spλ hybrids use |p〉 and |p′〉 orbitals that make an angle of β with

the x-axis (see Figure). Then, if z is the axis orthogonal to the bond axis, we have

|p〉 = cos(β)|px〉+ sin(β)|pz〉
|p′〉 = − cos(β)|p′x〉 − sin(β)|p′z〉

and thus

Seff
π =

1

1 + λ

{
Sσ(ss)− 2

√
λ cos(β)Sσ(sp)+

− λ
(
cos2(β)Sσ(pp) + sin2(β)Sπ(pp)

)}

teffπ =
1

1 + λ

{
tσ(ss)− 2

√
λ cos(β)tσ(sp)+

− λ
(
cos2(β)tσ(pp) + sin2(β)tπ(pp)

)}

(11.50)

(11.51)

where, according to the AO orientations, Sσ(ss), Sπ(pp), tσ(ss), tσ(pp) ≥ 0, and Sσ(sp),
Sσ(pp), tσ(sp), tσ(pp) ≤ 0. Notice that, as β → π/2 (limit of planar configuration), we
have λ → ∞, Sπ → −Sπ(pp) and tπ → −tπ(pp), consistently with the direction of p
orbitals.

We turn now the attention to the relationship between the curvature and the above-
defined parameters. Let focus on the σ-bond and consider the hybridization index µ as
curvature-dependent, i.e. µ ≡ µ(κ) where κ is the average curvature as introduced in
Section 11.1. Since we are interested in the limit of small curvature, we can Taylor-expand
the Sσ and tσ around κ = 0, i.e. for tσ

tσ(κ) ≈ tσ(0) +
∂tσ
∂κ

∣∣∣∣∣
κ=0

κ+
1

2!

∂2teffσ
∂κ2

∣∣∣∣∣
κ=0

κ2 + o(κ3) (11.52)

Let compute the first and second derivative of the effective hopping parameter w.r.t. κ
from Equation (11.49). We have

∂teffσ
∂κ

= − 1

(1 + µ)2

∂µ

∂κ
{tσ(ss)− 2

√
µtσ(sp)− µtσ(pp)}+

+
1

1 + µ

{
− 1
√
µ

∂µ

∂κ
tσ(sp)− ∂µ

∂κ
tσ(pp)

}

=
1

1 + µ

∂µ

∂κ

{
− teffσ −

1
√
µ
tσ(sp)− tσ(pp)

}
(11.53)

Let define the term in brackets in Equation (11.53) as T (µ) := −teffσ −(1/
√
µ)tσ(sp)−tσ(pp).

In terms of tσ(ss), tσ(sp), tσ(pp), the latter reads as

T (µ) =
1

1 + µ

{
− tσ(ss) +

µ− 1
√
µ
tσ(sp)− tσ(pp)

}
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11.3. σ-π Hubbard model and curvature

For the second derivative, a straightforward calculation gives

∂2teff

∂κ2
=

1

1 + µ
T (µ)

{
∂2µ

∂κ2
− 2

(1 + µ)2

∂µ

∂κ

}
+

√
µ

2(1 + µ)µ2

∂µ

∂κ
tσ(sp) (11.54)

Notice that, in our model, the hybridization index depends quadratically on κ, therefore
the first derivative of µ w.r.t. κ vanishes at κ = 0. Hence, from Equation (11.52), (11.53)
and (11.54) we find

teffσ ≈ teffσ (0) +
1

2

{
1

2
T (µ)

∂2µ

∂κ2

}
κ2 + o(κ3) (11.55)

As a simple application, let consider the case of syn-[n]-annulenes, for which in Subsection
11.2.3 we derived explicit expression for the hybridization indexes as functions of κ. Here,
we assume that each C atom makes σ-bonds with its nn involving spµ hybrids. Therefore

µ =
1 +

√
1 + 4 sin2(π/n)

3−
√

1 + 4 sin2(π/n)

wµ =
1

4

(
3−

√
1 + 4 sin2(π/n)

)
For n → ∞, we remind that 2πκ−1 ≈ nρ̄, where ρ̄ is the average CC bond length, hence
we can write

∂

∂κ
=

ρ̄

2π

∂

∂x
∂2

∂κ2
=

ρ̄2

4π2

∂2

∂x2

with x ≡ 1/n. Moreover, we can take advantage of the much more simple expression for
the s-weight wµ and use

∂µ

∂x
≡ ∂

∂x

(
1

w
− 1

)
= − 1

w2

∂w

∂x

Hence

∂w

∂x
=

∂

∂x

(
1

4

(
3−

√
1 + 4 sin2(πx)

))
= −π 1√

1 + 4 sin2(πx)
sin(πx) cos(πx)

Note that, for x = 0, ∂w/∂x = 0, as we mentioned above. For the second derivative, a
straightforward calculation gives

∂2w

∂x2
= −π ∂

∂x

(
1√

1 + 4 sin2(πx)

)
sin(πx) cos(πx)+

− π√
1 + 4 sin2(πx)

(cos2(πx)− sin2(πx))
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Figure 11.11. Hopping (left) and overlap (right) parameters in homonuclear atom pairs, as
functions of the interatomic distances. Results from first principles calculations of Ref.s 2,3. The
red dashed line denotes the average CC bond length of a cis-structure in the infinite size limit.

Substituting these derivates into the Taylor expansion (11.52), we arrive at

teffσ ≈ teffσ (0) +
ρ̄2

4π
T (µ(0))κ2 (11.56)

where T (µ(0)) = −1
2{tσ(ss) + tσ(pp)} (C employs pure sp hybrids for the σ-bond in this

limit). According to our calculations, the average bond length in cis-annulenes is expected
to converge around ∼ 1.49Å. Using realistic values of the parameters - analytically ex-
pressed in terms of Chebyschev polynomials, see Figure 11.11 - we find that T (µ) > 0 and
therefore increasing the curvature κ has the effect to strengthen the σ-bond. Accordingly,
cis structures are preferred at large curvature radii, i.e. at small n, as we showed above.

The above analysis can be extended with minor modifications to π-bond and a similar
Taylor-expansion can be written for the λ hybridization index.

11.3.1 A simple application: the bending-stiffness

In closing this Chapter, we show a rather simple analytical application of the above model
to the calculation of a mechanical property of [n]-annulenes, namely the bending stiffness,
K. The latter can be defined for a rod of length L as the second derivative of the energy
density w.r.t. the curvature κ, or equivalently, for our CnHn molecules, as

K =
1

ρ̄

∂2ε

∂κ

where ε = E/n ≡ −AE is the formation energy per structural unit (provided that E
is referenced to the atomization limit), ρ̄ is the average bond length projected onto the
molecular axis and κ−1 is the ring radius. Since in the limit we are interested, we have
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Figure 11.12. Bending stiffness of the structural sequences defined in Figure 11.6, on a linear-log
scale.

again 2πκ−1 ≈ nρ̄, the bending stiffness takes the form

K = lim
n→∞

ρ̄

4π2

∂2ε

∂(1/n)2
(11.57)

Equation (11.57) can be used to obtain K by fitting the AE vs. 1/n curves shown in the
left panel of Figure 11.7 to a smooth curve and taking its second derivative w.r.t. 1/n. The
results of such a calculation are shown in Figure 11.12, where the structures investigated
are seen to attain clearly different limits as n → ∞. Disregarding the unphysical limit
of the cis-sequence, the anti and trans ones present rather different values of K, namely
K ≈ 8.3 eV Å for the first and K ≈ 3.3 eV Å for the second. The latter two give the
stiffness of trans-polyacetilene for bending in two different ways: While the limiting anti
structure describes an in-plane deformation of the "ribbon", the trans- sequence mimics an
out-of-plane deformation. In turn, the first one involves the σ backbone only - the bending
of the σ-bonds between C atoms - while the second calls into question the π bonds only.
The latter is thus a manifestation of the π-resistivity to cis-bending. This shows how
atomic properties show up in the extended system and determine the properties of the
material[153].

In Subsection 11.2.3 we have established a simple relationship between the σ hybridiza-
tion index µ and the curvature κ for the anti structures. Therefore, since the bending-
stiffness of anti-structures is determined by the σ bonds only and reminding that for U = 0,
εσ = −2teffσ , we can apply our curvature-dependent model to derive an analytical expres-
sion of K in terms of AO contributions. First, we use Equation (11.45) to compute the
second-derivative ∂2µ/∂κ2 at κ = 0

∂2µ

∂κ2

∣∣∣∣∣
κ=0

= − 1

12

µtPl
4
tP

ρ2
tP cos(θtP)

= −1

3
µtPρ

2
tP

(1− cos(θtP))

cos(θtP)
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Then, for the bending stiffness we get

K = lim
κ→0

1

ρ

∂2εσ
∂κ2

= − 2

ρtP

∂2teffσ
∂κ2

∣∣∣∣∣
k=0

= − 2

ρtP

1

1 + µtP
T (µtP )

(
−1

3
µtPρ

2
tP

(1− cos(θtP))

cos(θtP)

)
=

2

3

µtPρtP
(1 + µtP)2

(1− cos(θtP))2

cos(θtP)

[
−tσ(ss) +

µtP − 1
√
µtP

tσ(sp)− tσ(pp)

]
(11.58)

In the above formula we may set θ = 124◦ and ρtP = 1.398 (average bond length in trans-
polyacetylene). For the µ hybridization index, in trans-polyacetylene, each C actually
employs two different hybrids in the σ-bonds with its two neighboring C atoms, namely
µ1 ≈ 1.67 and µ2 ≈ 1.90. Accordingly, such hybridization indexes lead to an esteem of the
bending stiffness in the range of 4.44(µ = 1.67) − 5.31(µ = 1.90) eV Å, which is overall
close to the extrapolation to infinite size limit as obtained by DFT calculations (≈ 8.3 eV
Å), despite we have worked in a bare tight-binding approximation (U = 0).
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Chapter 12

Conclusions

In this work we have presented a detailed theoretical investigation of some π-conjugated
carbon-based systems such as graphene and polycyclic aromatic hydrocarbons (PAHs).
Our main purpose has been to understand changes in chemical properties occurring when
these systems deviate from their original planar geometry and bend to form curved struc-
tures. Furthermore, we have looked for a mathematically rigorous description of the curva-
ture of such systems and its effect on the atomic-scale - e.g. the re-hybridization of carbons
- in order to go beyond the bare geometrical models adopted so far. Therefore, this subject
has been approached from two perspectives: with DFT-based ab-initio calculations on rel-
evant systems, and, with a rigorous mathematical analysis. Concerning the computational
approach, we have mainly focused on the investigation of the H sticking, because of the
relevance of this simple reaction in disparate fields, from astrophysics to hydrogen storage
and graphene technology.

We have started from the basis, thus considering the world of flat π-systems. After an
introduction on the physics of planar graphene and PAHs, and their reactivity towards H,
we have presented an investigation of the stepwise hydrogenation reaction of the coronene
molecule (C24H12), a small PAHs. The interest in this system has been motivated by the
role that PAH are supposed to play in the chemistry of the interstellar medium. In particu-
lar, they may allow to shed light on a still unsolved and puzzling question in astrochemistry,
namely the relative abundance of the H2 in those regions where this small molecule should
be mainly dissociated by UV photons and heat. In photodissociation regions, PAHs have
been detected, with a chemical state strongly depending on the environment. At interme-
diate temperature and in areas with a lower UV flux, they are expected to exist mainly in
their neutral and superhydrogenated forms, and they are supposed to act as catalyst for
the H2 formation. In order to understand their role, it is hence crucial to identify these
superhydrogenated structures.

This work, in particular, has started thanks to a collaboration with the experimental
group of Prof. Liv Hornekær from Aarhus University. They exposed a model molecule
such as coronene, deposited on an inert substrate, to a H flux and recorded mass spectra
at different exposure times in a temperature-programmed desorption experiment. This
analysis has revealed that coronene molecules with a specific number of extra hydrogens,
namely n = 10, 14, 18, 24, accumulate in the mixture during the exposure, thus suggesting
a remarkable stability for these hydrogenated structures. Therefore, in order to spot them,
we have studied systematically the energetics of a stepwise H addition to coronene, by
means of DFT as implemented in the Gaussian16 code. At each hydrogenation level, we
have computed the H binding energies (D) and adsorption barrier Eb, also taking into
account the possibility of branching in the hydrogenation sequence. Contrary to previous
works on similar systems, we have adopted a high-level density functional, namely themeta-
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hybrid GGA M06-2X exchange-correlation functional, that we have selected after a careful
benchmark of several modern functionals, developed by the Thrular’s group (MPW1B95,
M06, M06L, M06HF, M062X, M11).

In agreement with the experimental data, we have found large binding energies and
sizeable barriers to further sticking for n = 0, 2, 10, 14, 18, 24, thereby suggesting for these
species a great stability towards both abstraction/desorption and further hydrogenation.
In particular, the exceptional stability of n = 10, 14 and 18 can be traced back to additional
electronic effects, namely three, two or one residual aromatic rings that are left in the π-
substystem when, respectively, 10, 14 and 18 H are attached to the molecule. On the other
hand, n = 24 owes its great stability to a full saturation of the π-system.

Interestingly, the hydrogenation sequence can be entirely rationalized in terms of very
simples rules of thumb that should apply equally well to any other PAH. In particular,
for closed-shell molecules, i.e. when n is even, the factors driving the next H addition
are the π-coordination and π-hyperconjugation. The former determines the localization of
frontier orbitals at the edges of the π electronic system, increasing the H affinity of those
sp2 sites that have the smallest number of sp2 neighbors. The latter, on the other hand,
discriminates between sites with the same π-coordination but different number of next-to-
nearest neighbors in the π-lattice. In particular, the highest is such number the highest is
the H affinity. Instead, for open-shell molecules, i.e. when n is odd, the next addition
is driven by the unpaired electron density, which resides in a midgap state that delocalizes
through Pauli’s resonance and enhances the reactivity of ortho and para positions.The study
of the stepwise H addition to coronene thus helped us to identify the main driving forces
of the H sticking into specific lattice positions of a planar π-conjugated system.

Exploiting the great accuracy of the M06-2X for PAHs, we have extended our analysis
to larger clusters, such as circumcoronenene (C54H18) and doublecircumcoronene (C96H24).
We have focused in particular on the computation of the H adsorption barriers, with the
aim of extrapolating an estimate for the infinite-size limit, i.e. graphene. The reason is
that the exact value of the adsorption barrier on graphene is still unknown in the liter-
ature, although most of the theoretical investigations converge towards a value close to
∼ 0.2 eV. For the larger, doublecircumcoronene, by properly taking account the BSSE af-
fecting our atomic-orbital calculations, we have found Eb ≈ 335 meV. It is rather unlikely
that this value reduces to 0.2 eV when extrapolated at infinite size (for circumcoronene
Eb ≈ 319 meV), and therefore our calculations suggest a much larger barrier height for H
sticking on graphene than previously estimated.

Next, we have engaged into the exploration of the world of curved π-systems. First, we
have investigated the coroannulene molecule (C20H10). The latter can be considered as the
curved analog of coronene, that is obtained by simply replacing the inner 6-membered ring
with a 5-membered ring, which are known to be the source of positive Gaussian curvature.
Besides the possibility of a direct comparison with the flat relative, the interest in curved
PAHs such as coroannulene comes again from our Universe: it has been recently suggested
that some spectral features of the unidentified infrared emissions may due to non-planar
components in aromatic molecules; furthermore, superhydrogenated curved PAHs may as
well catalyze the H2 formation in some regions of the ISM.

As for coronene, our analysis relies on a collaboration with the Aarhus surface sci-
ence group, that repeated the experiment on coroannulene. The latter has revealed that
coroannulene molecules with n = 6, 8, 10, 12, 14, 16, 17, 18 extra H accumulate in the mix-
ture during the exposure, thus suggesting that these numbers of H lead to structures with
remarkable stability. Therefore, in order to spot them, we have studied systematically the
energetics of a stepwise H addition to coroannulene, with the previous successful strategy
applied to coronene.

The curvature in coroannulene has the first effect to induce a sizeable rehybridization
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and pyramidalization of the inner-ring C atoms. This translates into higher reactivity w.r.t.
coronene, namely D = 1.23 eV vs. D = 0.30 eV on the central carbon. In other words, the
curvature makes the edge localization of frontier orbitals less effective, contrary to what
occurs on planar π-conjugated systems. By continuing the hydrogenation sequence, we have
found large binding energies for n = 0, 4, 6, 8, 10, 12, 14, 16, 18. Overall, these findings are in
good agreement with the experimental results and are further corroborated by the heights
of the sticking barriers, which are found to be particularly large for n = 0, 4, 8, 12, 14, 16
and 18. Among these, the structure with n = 14 shows a prominent and persistent peak
in the mass spectra, in agreement with the largest binding energy and barrier found for
this structure along the hydrogenation sequence. Its exceptional stability can be traced
back again to a residual aromaticity left by the previous hydrogenations, namely when
n = 14 the remaining carbon atoms of the lattice form an aromatic ring, i.e. a stable motif
that requires extra energy for further hydrogenation. However, some differences with the
experiment arises and makes coroannulene a much more "tricky" molecule than coronene.
First, the mass traces displays a build-up of the species n = 16, 17, 18 which appears to
prevent the formation of perhydrocoroannulene (n = 20). This may be partly explained
by the large barriers to hydrogenate n = 18 and the large stability of n = 16 and n = 18
when compared to n = 20. Yet, the mass spectra shows also a remarkable accumulation
of the structure with n = 17, which is rather odd since odd-numbered species should be
unstable towards further hydrogenation. Despite n = 17 has one of the largest binding
energy among odd-numbered species and a vanishing barrier was detected to hydrogenate
n = 16, it is still unclear why it accumulates in the experimental setting.

A careful analysis of the adsorption sites reveals that the H addition is driven by an
interplay between pyramidalization and π-coordination. In particular, highly pyramidalized
sites with low π-coordination number display the largest H affinity - this is typically the case
of central carbons once the nearby edges have been hydrogenated. For open-shell molecules,
the unpaired density delocalization is still a good guiding principle, as seen for coronene.
Besides, we notice that a helpful principle to understand the reactivity of coroannulene is
the so-called Clar number, i.e. the number of circles that one can draw with 6 delocalized π
electrons in an aromatic Clar’s structure. In particular, the first positions to be hydrogenated
are the ones which preserve the maximal Clar’s number of coroannulene. This highlights
how the aromaticity still plays a crucial role in determining the reactivity even in curved
systems.

The second curved structure we have considered is the C/Si interface. This system
has drawn an ever-increasing interest in the last few years because it allows producing
quasi-free standing graphene samples of extremely high-quality in a relative simple way.
The mentioned interface presents two carbon layers - a "buffer layer" and a "monolayer"
graphene - which are both curved because the C-lattice forms a Moiré structure on the
SiC(0001) surface ((6

√
3×6
√

3)R30 reconstruction) that displays CSi interactions of differ-
ent strengths at the various lattice positions of the large supercell. Hence, in this system
the curvature is of a totally different nature with respect to coroannulene, namely it is
induced by an interaction with a substrate.

We have studied the H sticking on both the buffer and the monolayer, again focus-
ing the attention on the effect of curvature on the H binding energy. The hydrogenation
of the buffer layer is rather attractive also from the applied perspective, since it is ex-
pected to completely decouple the on top graphene layer, thereby making the latter really
free-standing. Contrary to previous theoretical investigations on this system, we have con-
sidered a minimal structure (1310 atoms) modeling the clean buffer surface in the experi-
mental surface reconstruction. In this way, we are able to take into account the long-range
features of the interface, namely its curvature, on the H adsorption energetics.

According to our findings, binding energies vary considerably across the buffer layer,
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ranging from 2 eV to 3.2 eV, and turn out to be much larger than the energy released when
binding H on planar free-standing graphene (around ≈ 0.8 eV with DFT-PBE calculations).
This great variability can be assigned to the unique geometrical structure of the buffer layer.
Indeed, 4 different types of C atoms can be identified across the layer: three-coordinated
C with 0, 1 or 2 nearest-neighbors (nn) that bind a Si atom of the underneath SiC or
four-coordinated C, i.e. directly bonded to a Si atom. Three-coordinated C atoms with
2 Si-bonded nns show the largest H affinity for a combination of a geometrical and an
electronic effect: the strong CSi bonds in the nearby induce sizeable pyramidalization and
break the π-bond, leaving a spin-density around the binding C, thus increasing its reactivity.

Next, we have added a second graphene layer on top of the buffer layer, thus realizing
the full C/Si interface (for a total number of atoms amounting to 1648). First, we have com-
puted the bilayer binding energies (Ebil) with both PBE and a VdW-inclusive functionals
(VV). Interestingly, when employing semilocal functionals in conjuction with atom-centered
basis sets, the inclusion of the overbinding basis-set superposition error (BSSE) between the
two layers provides a better estimate of Ebil ( 74 meV vs. 61 meV with VdW-VV and BSSE
removed with the standard CP-correction). In a sense, the BSSE can play the role of the
missing long-range interactions of a semilocal functional such as PBE.

Then, we have computed the binding energies on several lattice positions of the mono-
layer graphene. Here, D are still quite large, even though the monolayer displays just a
wavy profile with a corrugation not exceeding ∆z ≈ 0.3Å. In particular, D = 1.4−1.7 eV,
where larger values are found on the convex areas of the layer, in agreement with available
experimental results.

The energetics of the H adsorption determines both the propensity of a surface to
trap H atoms wandering above it and that of already adsorbed H to undergo abstraction
reaction. In this case, the most relevant mechanism is the Eley-Rideal (ER) recombination,
which is operative in a large range of temperatures. In the ER recombination, a H coming
from the gas phase is captured by a H already adsorbed on the surface, thus forming a H2

molecule. The reaction is barrier-less and hence its rate is determined by its exothermicity,
i.e. the H binding energy. Therefore, in a second stage of the work, we have combined
our DFT data with a quantum dynamical investigation of the Eley-Rideal (ER) reaction,
with the main aim of understanding the impact of the peculiar geography of the buffer
layer - i.e. its large D - on the ER reaction cross-sections. By means of a time-dependent
wavepacket method on model LEPS potential energy surface, we have thus computed the
ER cross-sections (σ) in a broad range of collision energies (Eiz) of the incident atom at
different binding energies of the targon. The latter have been selected in a broad interval
(1.2−3.2 eV), as provided by our DFT calculations on the C/Si interface. Despite the ER
reaction is a barrier-less process, binding energy of the targon has a significant impact on
the scattering cross sections. In particular, as D increases, σ starts to steeply decrease at
collision energies which are smaller and smaller. Noteworthy, σ still exceeds 1Å2 in large
range of binding energies (D ≈ 1.2−2.5 eV), contrary to what observed on metal surfaces
despite a comparable binding strength. For the largest values considered (3−3.2 eV), cross
section becomes almost vanishing at Eiz ' 1.6 eV suggesting that the ER reaction hardly
occurs on sites with such high D, i.e. three-coordinated C with two Si-bondend nns of the
buffer layer.

In the meanwhile, we have exploited some known concepts of differential geometry of
surfaces to set up a model that relates the geometry around a C atom (and its hybridization)
to the local curvature of the surface. To this aim, we have made the simplest assumption
of a locally quadratic surface around the C atom, because this choice is free of constraints
and gives raise to simple analytical expressions. First, we have expressed the vector joining
two neighboring C (∆x) in terms of the local basis (e1, e2,N), where (e1, e2) span the
tangent space to the surface at point where the C is found and N is the surface normal.
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Under such assumptions, the normal components of ∆x is given by the normal curvature
κn of the curve joining two neighboring C. Considering two bonds, ∆x1,∆x2, we have
thus obtained for the bond angle Θ12,

cos(Θ12) =
2√(√

1 + ρ2
1κ

2
1 + 1

)(√
1 + ρ2

2κ
2
2 + 1

) cos(φ1 − φ2)+

+ sgn(κ1κ2)

(√
1 + ρ2

1κ
2
1 − 1√

1 + ρ2
1κ

2
1 + 1

√
1 + ρ2

2κ
2
2 − 1√

1 + ρ2
2κ

2
2 + 1

)1/2

The above expression only requires the knowledge of the lines of principal curvature, the
associated curvatures (κ(1), κ(2) - which allows to express the normal curvature of any curve
on the surface (here κ1 and κ2) thanks to the so-called Euler’s theorem - and the orientation
of the bonds w.r.t. such lines, in particular the angle ∆φ = φ1−φ2 that the projected bonds
make with each other. Since the bond angles are related to the hybridization through
the Coulson’s directionality theorem, the above expression allows to compute the σ and π
hybridization indexes in terms of the local curvature. We have validated such a model by
applying it to simple but interesting situations (spherical surfaces, carbon nanotubes and
closed-ring C chains). This paves the way to analyze curvature in π-systems beyond the
bare geometrical models adopted so far: we are now in a position to include the effect of
rehybridization, hence to deal with arbitrary curvatures.
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Appendix A

Thermodynamics of PAH
hydrogenation

Let consider the stepwise hydrogenation reaction of coroannulene. With the complete ener-
getics at hand (Chapter 7), a thermodynamic analysis can be performed and temperature
and pressure effects can be included in our DFT calculations. Before showing our results,
we introduce some relevant thermodynamical quantities. First, let consider the following
chemical equilibria1

C20H10+n +H → C20H10+n+1

2H→ H2

We define the fractional hydrogenation level as

f =
N0(H)

N0(H)/2 +N0(Co)
(A.1)

where N0(H) is the total number of (extra) hydrogen available in a given sample and
N0(Co) the total number of coroannulene molecules (bare plus hydrogenated coroannu-
lene). The free energy of n-fold hydrogenated structure is

Gn = En − kbT lnZ intn + kbT ln

(
pn
ξn

)
where En is the DFT zero-point corrected energy, Z the internal partition function, pn
the partial pressure and ξn the thermal pressure, i.e. ξn = kbT/λ

3
nwith λ3

n the De Broglie
thermal wavelength. The internal partition function accounting for rotational, vibrational
and electronic contributions is given by

Z intn ' 1

σn

(
T

θ

)3/2 Fn∏
j=1

[
1− exp

(
−
~ω(n)

j

kbT

)]
Zeln (A.2)

where θn = ~2/2I(n)kbT is the rotational temperature of the n-fold hydrogenated structure
with I(n) = (πI

(n)
A I

(n)
B I

(n)
C )1/3 being its moment of inertia, given in terms of the principal

values of inertia tensor, ω(n)
j the normal mode frequencies (j = 1, 2, ...Fn where Fn is the

number of vibrational degrees of freedom, Fn = 3(36 + n) − 6) and Zeln the electronic
partition function, Zeln = 1 + mod (n, 2). For molecular hydrogen, the classical limit
of rotational partition function is inappropriate at temperature T . 100 and one should

1The following considerations apply equally to coronene or any other PAH.
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consider the sum over all states. To properly handle this situation, Equation (A.2) was
still employed in the slightly modified form

Z intH2
' 1

2

kbT

hcB

(
1− exp

(
− ~ω
kbT

))
(A.3)

where the rotational constant B was adjusted in order to make the entropy, S = −kbT lnZ,
continuous at 298.15 K (where S was computed from the Shomate equation2.).

If one is interested in determining the most stable species at a given thermodynamic
condition, one may consider the "formation reaction"

C20H10 +
n

2
H2 → C20H10+n

and the corresponding Gibbs free energy

∆Gf (P, T, f0) = Gn(P, T )−G0(P − phy, T )+

− n

2
GH2(phy, T )

where phy = f0P and look, for given conditions, P , T and f0, for the smallest values.
Following this strategy, we have computed the formation Gibbs free energy for each hy-
drogenated species in a broad range of temperature and total pressure (1 ≤ T ≤ 600 K
and 10−13 ≤ P ≤ 10 bar) for several fractional hydrogenation levels. Figure A.1 shows a
phase diagram for f0 = 1/2. Because of the exothermicity of the hydrogenation reaction,
we note that high T and low P (low T and high P ) hinder (favor) the formation of su-
perhydrogenated species. At the thermodynamical conditions employed in the experiment
(T ≈ 200 K and P ≈ 10−13 (UHV)), perhydrocoroannulene is unstable w.r.t. less hydro-
genated species. This suggests that fully superhydrogenation is hardly reached at these
thermodynamical conditions. Instead a preferential formation of n = 14 is indicated, in
agreement with the experimental findings3.

A.1 Mixture free energy

As a complementary approach to the thermodynamical analysis of PAH hydrogenation,
we have considered a mixture of PAHs and (atomic/molecular) hydrogen and the problem
of minimizing the mixture free energy. The initial mixture composition can be defined in
terms of the number of molecules per each hydrogenated specie, N0

n, plus the number of
H atoms, N0

H , and H2 molecules, N0
H2

. The associated initial Gibbs free energy is G0
mix.

The mixture composition can then be optimized stochastically, by introducing random
variations on each mixture components. After any variation, the mixture free energy, G1

mix

is re-computed and compared with that of the previous composition: if lower, G1
mix < G0

mix,
the newly random-generated composition is "saved" and used for the next step; otherwise
that composition is "discarded" and another random-generated composition is checked
until G1

mix < G0
mix is found. We have applied this stochastic procedure to a mixture with

2Shomate Equation for standard entropy S◦ (J/mol K) reads as

S◦ = A ln (t) +Bt+ C
t2

2
+D

t3

3
− E

2t2
+G

where t = T/1000 is the reduced temperature (K) and A,B,C,D,E,G are temperature-dependent param-
eters (their values can be found in the NIST Chemistry WebBook[271].

3We have seen in Chapter 7 that mass traces also displays a build-up of n = 16−18 species. The phase
diagram shown here provides a complementary picture of the coroannulene superhydrogenation but is, of
course, far from being able to capture the complexity of the experiment.

204



A.1. Mixture free energy

Figure A.1. Phase-diagram at f0 = 1/2 showing the most stable hydrogenated molecules (nH) at
given thermodynamical conditions. Colored areas delimit the region of thermodynamical stability;
different colors are used for different nH.

initial composition consisting of only bare coroannulene and an excess of H2, i.e. setting
N0
i ' 0 with i = 1, .., 20 andN0

H ' 0. In principle, one may introduce random variations on
each Ni from the very first optimization step. However, a more reasonable choice consists
in allowing the (i+ 1) structure to "form" in the mixture only once the mixture with the
hydrogenated molecules up to n = i has reached the equilibrium4. In the following, we
describe in detail the computational strategy employed5.

A.1.1 Computational strategy

The composition of a mixture at a give step i is specified by a set C = [N
(i)
H , N

(i)
H2
,

N
(i)
0 , .., N

(i)
M ], where N (i)

H is the number of H atoms, N (i)
H2

is the number of H2 molecules

and N (i)
n that of n-hydrogenated coroannulene molecules, where n = 0, 1, ..M with M the

total number of hydrogenation steps (i.e. M = 20 for coroannulene)6. Variations on the
abundances are introduced by adding to these, δN (i)

H , δN (i)
H2

, δN (i)
n , that are given by (e.g.

for N (i)
n )

dN (i)
n =

1

W
2

(
ξ − 1

2

)
N (i)
n (A.4)

where ξ ∈ [0, 1] is a (pseudo)-random number and W is a scaling factor that allows tuning
the extent of random variations (for W = 1, dN (i)

n ∈ [−N (i)
n , N

(i)
n ]). Henceforth, we omit

4In other words, we are assuming that each hydrogenation step is "independent" of the others. Then,
the equilibrium composition is reached through multiple "local" equilbria, C20H10+n + H→ C20H10+n+1.

5Such approach was implemented in a FORTRAN90 code.
6Remind that this is the mixture with the optimized composition generated by the i− 1 step.
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𝐶 = [𝑁! , 𝑁!! , 𝑁", 𝑁#, . . , 𝑁$]

𝛿𝑁! , 𝛿𝑁!! , 𝛿𝑁%
(𝑛 = 0 − 𝑘)

𝐶" = [𝑁"#, 𝑁"#!, 𝑁
"
$, . . , 𝑁%" , 𝑁%&'. . 𝑁(]

Compute
𝐺!"#
$,"

𝐺!"#
$," < 𝐺!"#

$,"&'

|𝐺!"#
$," − 𝐺!"#

$,"&'| < 𝛿

𝐶( = 𝐶 𝐶( = 𝐶
𝑘 = 𝑘 + 1

True 

True False 

False 

Figure A.2. Flowchart describing the optimization procedure.

the superscript i. To ensure the mass balance of coroannulene molecules, we first set

Ñn = Nn + dNn

Ñt =
M∑
n

Ñn

and then we properly re-define the random-variated populations at step i as

N ′n = Ñn
N0
t

Ñt

(A.5)

where N0
t is the total number of coroannulene molecules that has been fixed at the outset.

Once the abundance of H atoms in the mixture is modified (according to Equation (A.4)),
the new population of H2 molecules is given by the mass conservation law

dNH2 =
1

2

(
−dNH −

M∑
n

ndN ′n

)
(A.6)

Notice that dN ′n 6= dNn are the final "true" random-variation, i.e. dN ′n = N ′n − Nn.
With the newly random-generated mixture composition, the mixture Gibbs free energy is
computed according to

G
(i)
mix =

M∑
n=0

N ′nGn +N ′HGH +N ′H2
GH2
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A.1. Mixture free energy

As we mentioned before, we make the assumption of a stepwise optimization, where
[Nn, Nn+1, ..., NM ] populations are set to zero until [NH, NH2 , N0, ..., Nn−1] is optimized. In
this sense, the full mixture composition optimization is divided into M sub-optimizations,
that we call K = 1, 2, ...,M . The suboptimization K = 1 involves the species n = 0, 1,
K = 2 the species n = 0, 1, 2, etc. Since the interval of the random variation depends on
the input composition at that step (see Equation (A.4)), at the very first step when the
abundance of Nn is "unconstrained", its value is set to a fraction (typically 1/100 but this
can be tuned in the input file) of the most abundant specie in the mixture at that moment.
This choice guarantees that the equilibrium is hardly changed. Flowchart in Figure A.2
summarize the optimization procedure.

At the end of any sub-optimization, the reached equilibrium composition defined in
terms of number of molecules (N ′n) is saved and fitted according to

s(x) =
M∑
n=0

N ′nLn(x)

where Ln(x) is a Lorentzian function

Ln(x) =
1

π

γ
2

(x− n)2 + (γ2 )2

with γ is a scale parameter (the full width at half-maximum) that allows tuning the shape
of the lorentzian.

A.1.2 Simulation results

In the following, we show the results of several simulations at different temperatures and
pressures. The top panel of the following Figures displays all the peaks appearing in
the mixture composition during the optimization. The other panels display the mixture
composition at end of a given sub-optimization (K).

Let first discuss the case of a stoichiometric excess of H2 w.r.t the initial population of
coroannulene molecules. We see that at low temperature (T = 1K) and pressure (P =
10−13 bar), the stable structures - n = 4, 6, 8, 10, 12, 14, 18, 20 - we have identified in
Chapter 7 accumulate in the mixture, as it is made evident by the appearance of intense
peaks. Notice that, by following the mixture composition at different sub-optimization K,
when a stable structure is allowed to form, all coroannulene molecules are hydrogenated
at that hydrogenation level.

At low temperatures, increasing the pressure appears to have little effect on the mixture
composition. On the other hand, the effect of temperature in hindering the hydrogenation
is clear. At T = 50 K (and P = 10−13 bar), peak at n = 10 is absent in the mixture
composition. By the same token, n = 20 does not accumulate, thereby suggesting that
perhydcoroannulene does not form at such thermodynamical conditions, in agreement with
the phase-diagram of Figure A.1. Increasing further the temperature at T = 200 K, only
peaks at n = 6, 14 show up (beside n = 0). Notice that, increasing the pressure to P = 1
bar, pushes the equilibrium towards superhydrogenated species, and peaks at n = 4, 6, 8, 12,
etc. show up again in the mixture composition.

Our code allows simulating also non-stoichiometric situations. An example is shown
below, where N0

H2
≈ (1/2)N s

H2
where N s

H2
is the stoichiometric quantity of H2. We see that

the stepwise hydrogenation arrives at most at n = 10, with a small fraction of hydrogenated
molecules with n = 12.
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Appendix B

Scattering theory: an overview

In this Appendix1, we give an overview of the classical and quantum scattering theory. In
the following, we introduce the simplest case in which the collision partners do not have
an internal structure (single-channel scattering theory). Although the scattering between
two H atoms described in the main text does not match this situation2, such simplification
allows introducing some basic concepts, such as that of scattering operator or cross-section,
which are at the heart of the scattering theory. In closing this section, we will give some
hints about how the theory is extended to the case of a multi-channel problem. For a more
comprehensive and detailed discussion on the matter, the interested reader is referred to
the book of J.R. Taylor (1972)[272].

Let start with a classical approach to the scattering problem, which best fits the "pic-
ture" of scattering that we can have in mind. The projectile and the target are the "actors"
of a scattering event3. The latter can be divided into three main "scenes":

(i) long before the collision, the projectile and the target are far away from each other,
thus they do not experience any interaction. They move according to their initial
conditions;

(ii) As the projectile enters the "interaction region", that is in the nearby of the tar-
get, both atoms undergo a very complicated motion that depends on the interaction
potential;

(iii) long after the collision, the projectile and the target move again freely, with a motion
determined by the earlier collision.

In classical mechanics, one may follow the motion of the system throughout the entire scat-
tering process, thus defining a trajectory x(t), or "orbit". However, since the interaction
region is of few atomic diameters, the actual orbit during the tiny "collision times"4 is not
observable in a scattering experiment. On the contrary, in a typical scattering experiment
one "prepares" an initial state and then, roughly speaking, records the final state long after
the collision. Therefore, we are just interested in the asymptotic limits, where the actual

1The writing of this Appendix served as a moment to re-organize the knowledge on scattering theory
and quantum dynamics acquired during the period spent at the LCAR laboratory of the University of
Toulouse in the group of Prof. Didier Lemoine.

2Actually, all the chemically interesting collisions are multi-channel scattering problems, that occur
with some change in the internal structure of the colliding parterns

3Here, we deal with a gas-phase scattering process. However, most of the results shown in this Appendix
can be extended with minor modifications to a gas-surface reaction.

4Even for a "slow" collision like that of a thermal neutron scattering off a big molecule, the collision
time is around 10−10 s. Chemical reactions can be even faster, especially when involving light atoms such
as H, with collision times in the order of femtoseconds.
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orbit x(t) is no more than a free motion

x(t)
t→−∞−−−−→ xin(t) = ain + vint (B.1)

x(t)
t→+∞−−−−→ xout(t) = aout + voutt (B.2)

where vin is the initial velocity and ain defines the position the system would have in
absence of interaction at t = 0. Similarly, vout is the final velocity and aout is the position
that the system would have had at time t = 0 if it had moved freely all the time. If we are
able to compute (aout,vout) from the initial conditions (ain,vin), the scattering problem
is entirely solved. There is a one-to-one correspondence between the "in" asymptote and
the "out asymptote, which is defined by the actual orbit x(t). Hence, every orbit with
an in asymptote has an out asymptote and for every pair of such asymptotic states there
exists an actual orbit x(t). However, the opposite is not true, because a general potential
V (x) supports also states that are bound all the time, in contrast to the earlier defined
"scattering orbits". The set of bound and scattering orbits make up all the possible orbits
of the system.

Moving to quantum mechanics, we can no longer "assign" simultaneously a definite
position and momentum to our system (the celebrated Heisenberg’s uncertainty principle).
The latter is defined by an abstract state vector |ψt〉 in a given Hilbert space H, obeying
the time-dependent Schrödinger’s equation

i
d

dt
|ψt〉 = H|ψt〉 (B.3)

with H a time-independent Hamiltonian. Given the initial condition |ψt〉 = |ψ0〉 at t = 0,
the general solution to Equation is

|ψt〉 = e−iHt|ψ0〉 = U(t)|ψ0〉

where U(t) is the time-evolution operator : a unitary5 operator that maps the state at t = 0
to the state at time t. Keeping the same terminology used for the classical case, we can
call U(t)|ψ〉 an "orbit", even if it is not a classical trajectory in R3. As we have stated in
the introduction, we start by considering a very simple situation: a spinless particle that
scatters off a fixed potential. For this problem, H = L2(R3) and the Hamiltonian reads as

H = H0 + V (x)

where H0 is the free-particle Hamiltonian and V (x) a fixed potential6. We now assume
that U(t)|ψ〉 describes the evolution of a scattering experiment. Again, we can talk about
asymptotic limits, i.e. long before the collision

U(t)|ψ〉 t→−∞−−−−→ U0(t)|ψin〉

where U0(t) = e−iH
0t is the free time-evolution operator. Long after the collision,

U(t)|ψ〉 t→+∞−−−−→ U0(t)|ψout〉

The scattering theory, like many other theories, is grounded on a set of fundamentals

5An operator is unitary if it is isometric (U†U = 1, that is U(t) must conserve the norm of the state
vector) and surjective (UU† = 1, that is every state must have a "past".).

6Both classical and quantum scattering theory does not apply to all types of potential, instead they
require the latter to be "well-behaved" (see Chapter 2 of Taylor (1972)[272] for the conditions that the
potential has to satisfy). Fortunately, this class of potential include almost all potentials of interest (square
well, Yukawa, etc., but not the Coulomb potential!).
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theorem. An exhaustive discussion of these theorems and their proofs is far beyond the
scope of this section. Here, we just state them and elucidate their physical meaning and,
more importantly, their consequences. The first is the so-called

Theorem B.0.1 (Asymptotic conditions). For a "reasonable" potential V , ∀|ψin〉 ∈ H,
there is a |ψ〉 such that

U(t)|ψ〉 − U0(t)|ψin〉 → 0 (B.4)

as t→ −∞, and, likewise for |ψout〉 as t→ +∞.

This theorem states that every state of the system can be an asymptotic state, that is
to say, that, in a scattering experiment, one can choose arbitrarily the initial state. From
this theorem, it follows that

|ψ〉 = lim
t→−∞

U †(t)U0(t)|ψin〉

and similarly for |ψout〉. We can then introduce two operators defined according to

Ω± = lim
t→∓∞

U †(t)U0(t)

that are called Möller wave operators. Their meaning is the following: acting on any vector
in H, the wave operators give the actual state at t = 0 that would evolve from (Ω+) (or
to (Ω−)) the asymptote represented by that vector. In a sense, the Möller operators are
half -collision operator, because they divide the duration of the scattering process in two
(infinite) time intervals.

The second fundamental theorem expresses an orthogonality condition. We have men-
tioned that among all the states in H, there are bound and scattering states. Let call B
the subspace spanned by the bound states and R+ (R−) the subspace of states with an in
(out) asymptote. Therefore, one can easily prove that

Theorem B.0.2 (Orthogonality). Under the validity of the asymptotic condition,

R+ ⊥ B R− ⊥ B (B.5)

Such theorem implies that the scattering states must lie in a space spanned by the
continuum eigenvectors of the spectrum of H. The last theorem that lays the foundations
for the scattering theory is completeness condition

Theorem B.0.3 (Asymptotic completeness.). The subspace R+ coincides with the
subspace R− and they are the orthogonal complements of B. In other words, H = R+ B.

The physical meaning of this theorem is that every orbit with an "in" asymptote has
an "out" asymptote. Furthermore, the scattering and the bound orbits are all possible
orbits of the system. From a formal point of view, such theorem states that the Möller
operators have a common image and therefore one can introduce a well-defined operator
that realizes a one-to-one correspondence between |ψin〉 and |ψout〉. Namely, we may write

|ψout〉 = Ω†−|ψ〉 = Ω†−Ω+|ψin〉

and introduce the so-called scattering operator, S = Ω†−Ω+. S is at the heart of the
scattering theory and the reason can easily be understood. Let try to answer to the
following question: what is the probability that a particle entering the collision with a
state |φ〉 emerges in the state |ξ〉? From the definition of the Möller operators we have
that |φ+〉 = Ω+|φ〉 is the actual state at t = 0 that evolve from the in asymptote (and
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similarly |ξ−〉 is the state that would evolve into the out asymptote). Therefore, we may
write

w(ξ ← φ) = |〈ξ−|φ+〉|2

= |〈ξ|Ω†−Ω+|φ〉|2

= |〈ξ|S|φ〉|2 (B.6)

Albeit w(ξ ← φ) is not directly measurable in a scattering experiment7, the expression
(B.6) suggests that the S-matrix elements play a fundamental role in the scattering the-
ory. We shall therefore proceed in finding an expression of the S-matrix elements on a
"convenient" basis.

Since S is a mapping between free asymptotic states, it commutes with H0, and there-
fore they share a common set of eigenvectors. We can choose, for instance, the momentum
basis |p〉, whose spatial wave function is the plane wave

〈x|p〉 =
1√

(2π)3
eipx

with the normalization8

〈p′|p〉 = δ3(p′ − p)

and look for the matrix elements 〈p′|S|p〉. The result9 is

〈p′|S|p〉 = δ3(p′ − p)− 2πiδ(Ep′ − Ep)t(p′ ← p) (B.7)

The first delta Dirac function selects equal values of the initial and final momentum, i.e. it
is a non-scattering term that leaves the momentum unchanged. The second term describes
instead a scattering process: the energy is conserved but not the individual components of
the momentum. The key information is found in the term t(p′ ← p), which is a smooth
function that is strictly related to an observable of the scattering experiment, namely
the differential cross-section, that we shall discuss shortly. It is worthy to note that this
function is defined only on-shell, i.e. when Ep′ = Ep

10. Most often, one re-write the
decomposition (B.7) of S as

〈p′|S|p〉 = δ3(p′ − p) +
i

2πm
δ(Ep′ − Ep)f(p′ ← p) (B.8)

7Because of some intrinsic limits of the experiments and the laws of quantum mechanics: one cannot
produce or uniquely identify the state φ〉 and ξ〉. One we can instead measure is the differential cross-section
(see below).

8Remind that H0 has improper eigenvectors, i.e. vectors that are not normalizable in the usual sense
and therefore do not belong to the Hilbert space. However, these vectors are such that their integral on a
bound interval [α, α+ ∆α], normalized as

x(α,∆α) =
1

∆α

∫ α+∆α

α

xα′dα′

belongs to the Hilbert space even in the limit ∆α→ 0.
9In the derivation, one decompose S in 1+R, where R is the difference between the scattering operator

and its value in the absence of interactions (namely the identity operator)and recognize that both S and
R commutes with H0.

10One can extend this definition off-shell and define an operator T , aka T -matrix, whose matrix elements
are t(p′ ← p) when p′2 = p2.
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Figure B.1. A pictorial representation of an idealized scattering experiment. On the left it is
represented an "ideal" beam machine; on the right a target.

where f(p′ ← p) is known as scattering amplitude and it is related t(p′ ← p) through

f(p′ ← p) = −(2π)2mt(p′ ← p) (B.9)

B.1 Cross-sections

Let return on the analysis on a typical scattering experiment and reflect a bit more on
what we can extract from such experiment.

From quantum mechanics, we know that 〈p|ψout〉 determines the probability that long
after the collision the particle is found with momentum p. In the experiment, however,
one cannot measure such probability, rather one measures the probability that the particles
emerges in a solid angle dΩ about the direction p̂, where the counter is placed. That is
one look at

w(dΩ← ψin) = dΩ

∫ ∞
0

p2dp|ψout|2

where we integrate over the magnitude of p, because we are interested just in the direction
of the emerging particle (the magnitude is fixed by the energy conservation!). As for
the initial state |ψin〉, we just know that, in momentum representation, ψin(p), is peaked
around a value p0. By all means, an accelerator will not produce the same wave packet
over and over again. Rather, we can imagine that it will produces states |φρ〉 that differ
by some displacement ρ, that we call impact parameter

φρ(p) = e−iρpφ(p)

We can assume such ρ to be randomly distributed in the plane perpendicular to p0. There-
fore, if we repeat the experiment several times with random ρi, then we can write

Nsc(dΩ) =

∫
d2ρ nincw(dΩ← φρ)

where ninc is the number of projectiles incident per unit area perpendicular to p0. Note that
both ninc and Nsc can be measured in a scattering experiment. Because ρi are randomly
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distributed, ninc is uniform, hence

Nsc(dΩ) = ninc

∫
d2ρ w(dΩ← φρ)

The integral over ρ can be interpreted in the following way: it is an area integral over
the plane perpendicular to p0, in which each element of of area d2ρ is weighted by the
probability factor w(dΩ← φρ). In view of this, such term is called effective cross-sectional
area of the target potential for scattering of the wave packet φρ into dΩ, and it is indicated
with σ(dΩ← φ). In the classical limit, the probability w(dΩ← φρ) can assume the values
0 or 1, therefore the integral picks out just the actual area which scatters into dΩ. If
the wavefunction is sufficiently peaked about p0, the cross-section σ will be independent
of any detail of φ(p), except for p0 itself. Therefore, such condition allows removing the
unrealistic assumption that the accelerator produces states that differ just by a lateral
displacement. We shall then write σ(dΩ ← φ) = σ(dΩ ← p0)11. Through our discussion
we have always made use of an infinitesimal angle dΩ. In such limit, σ is proportional to
dΩ itself and therefore we may write

σ(dΩ← p0) =
dσ

dΩ
(p← p0)dΩ

where dσ/dΩ is the so-called differential cross-section and represents the most detailed
information obtainable from the scattering experiment.

At last, we shall find the relationship between the observable cross-section and the
scattering amplitude introduced above. The derivation is, however, somewhat long12.
Here, we limit to give the final expression, namely

dσ

dΩ
(p← p0) = |f(p← p0)|2 (B.10)

This is a central result: it expresses the observable differential cross-section in terms of the
matrix elements of the S scattering operator13. The remaining task would be to compute
such matrix elements from the actual potential V (x) that defines our system. We will not
cover this further step here but we mention that f(p ← p0) can be closely related to the
Fourier transform of the V (x). In closing this Section, we shall discuss briefly the case
of a two spinless particle scattering and the multi-channel scattering theory, which allows
introducing some useful concepts for the next Section.

B.2 Scattering of two-spinless particles

The two-particle scattering problem can be reduced to that of one-particle scattering from
a fixed potential if one works in the so-called CM representation. Let consider the two-

11Realistically, the accelerator will produce wave packets of different shapes and impact parameters,
then we must average over both variables. However, if wave packets are well peaked around a given
momentum, the average over different impact parameters will produce a result that is independent of the
shape.

12see Section 3-e (p.49) of Taylor book (1972)[272]
13A crucial assumption in the derivation of such result is that the region where φ(p) is appreciable

different from zero must be small, so that f(p← p0) can be reasonably assumed to be constant. In other
words, the momentum wave function must be sharply peaked compared to f . In principle, this requirement
can always be met.
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particle14 Hamitlonian

H =
p2

1

2m1
+
p2

2

2m2
+ V (x) = H0 + V (x) (B.11)

with V (x) = V (x1 − x2) a local and translational invariant potential. We can re-express
Equation (B.11) in terms of the total and relative momenta, defined according to

P̄ = p1 + p2

P =
m2p1 −m1p2

m1 +m2

The Hamiltonian in the CM frame then reads as

H =
P̄ 2

2M
+

[
P 2

2m
+ V (x)

]
= HCM +Hrel (B.12)

where M = m1 + m2 and m = (m1m2)/(m1 + m2). Since HCM and Hrel depends on
independent variables, P̄ and P respectively, they commute. Therefore, for the time-
evolution operator of the system we have

U(t) = e−iHt = e−i(HCM+Hrel)t

= e−iHCMt ⊗ e−iHrelt (B.13)

where ⊗ denotes the tensor product15. From Equation (B.13) establishes that the center-
of-mass and relative motions are independent. Furthermore, the CM evolves like a free-
particle while the relative motion evolves like a single-particle in a fixed potential16. In-
heriting the theory established for the single-particle problem, we can then expect the
two-particle Möller operators taking the form17

Ω± = 1CM ⊗ Ω±

where 1CM is an identify operator acting on HCM that accounts for the fact that the CM
follows a free motion, while Ω± are standard Möller operator acting on Hrel. By the same
token, the scattering operator reads as

S = Ω†−Ω+ = 1CM ⊗ S (B.14)

Note that [S, P̄ ] = 0, hence the total momentum is conserved.
The remaining task would be computing the differential cross-section. For the problem

at hand, the differential cross-section can be defined in various frames of reference. In most

14We consider here the case of two distict particles.
15Remind that we are now dealing with a two-particle Hilbert space. If H1 and H2 are the Hilbert

spaces of particle 1 and 2 respectively, than the full Hilbert space is H = H1 ⊗H2. It is possible to show
that, if |φ〉1 (|η〉2) is an orthonormal basis of H1 (H2), then |φ〉1 ⊗ |η〉2 is an orthonormal basis of H.
Hence, any |ψ〉 ∈ H can be written as a linear combination of product states |φ〉 ⊗ |η〉 or, in other words,
product states span the entire two-particle Hilbert space. Linear operators can be extended on tensor
product spaces upon defining their action on product states, namely (A⊗B)(|φ〉 ⊗ |η〉 = A|φ〉 ⊗B|η〉.

16Note that in the original factorization of H = H1 ⊗H2, one can write

U0(t) = exp

(
−i p

2
1

2m1

)
⊗ exp

(
−i p

2
2

2m2

)
for the free time-evolution operator but not for the U(t).

17This is not a rigorous way of introducing the two-particle Möller operators. We should prove again
the asymptotic condition and completeness, but this is not relevant for the present discussion.
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experiments one works in the so-called laboratory frame defined by the condition that the
target is at rest, as it is usually the case. In theoretical calculations, however, it most
convenient to adopt the so-called CM frame, defined by the condition that the CM is at
rest, i.e. 〈P̄ 〉 ≡ 0. In such frame of reference18, it is possible to show that the differential
cross-section reads as

dσ

dΩ
(p← p0) = |f(p← p0)|2 (B.15)

which matches Equation (B.1) of the one-particle scattering problem with the novelty that
now p0 and p are the initial and final momenta of the projectile measured in the CM frame.

B.3 Extension to multi-channel scattering

To conclude this overview on the scattering theory, we briefly discuss the case of a multi-
channel collision process. The term is used to refer to (more realistic) situations in which
the colliding partners do have an internal structure, which can change as a consequence
of the collision. Any molecular collision describing a chemical reaction is of this kind
and therefore there is an obvious need of extending the theory described in the previous
Sections to such processes. Beside the increase of the dimensionality of the problem, the
first striking difference w.r.t. the single-channel case is that we can no longer identify
a unique scattering coordinate that brings the system in the asymptotic situation when
t → ±∞. Indeed, we do not have a single asymptotic situation any more, because now
molecules can rearrange themselves. For instance, let consider the scattering between an
atom T adsorbed on a surface S and a projectile P , like the one we are interested in.
Several outcomes of the collision are possible

P + TS −→

PT + S
PS + T
P + T + S
PS + TS

Each of these asymptotic situations defines a so-called arrangement, which corresponds to
a particular asymptotic Hamiltonian Ha

Ha = Ka + ha

where Ka is the kinetic energy of the scattering motion in the given arrangement and ha

is the internal Hamiltonian of the arrangement. The latter is given by the sum of the
molecular Hamiltonians of each fragment.

The internal Hamiltonian ha has one or more bound states. Each of these bound
states defines the so-called channel in the given arrangement. For instance, the PT + S
arrangement of the aforementioned reaction, the rovibrational quantum numbers (ν, j) of
the product molecule PT define the channel of the arrangement. In a given (ν, j) channel,
the molecule PT moves freely. In the total Hilbert space H, one can then identify channel
subspaces H(α,a) ⊂ H that are spanned by vectors of the form

|ψ(α,a)〉 = |ξ〉|φα〉

where |ξ〉 is a vector describing the translational motion in the given arrangement a, while
|φα〉 is the α-th bound state vector of the internal Hamiltonian ha. At a given total en-

18An typical "in" state of a collision process in the CM frame is of the type φ1(p1)φ2(p2), where φ1

describes the state of a projectile emerging from an accelerator or a collimator, while φ2 is a target state.
Both need to be well-peaked in momentum space, namely φ1 about p0 and φ2 about −p0 (P̄ = p1+p2 = 0).
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ergy, only some channel spaces will be available as asymptotic spaces, while other will be
forbidden. The former are therefore termed as open channels, while the latter as closed
channels19. Once this basic structure of the multi-channel theory is established, one can
prove that theorems such as the asymptotic condition and asymptotic completeness still
hold, bearing in mind that now we have channel evolution operators (Uα(t), channel com-
ponents of the "in" and "out" scattering asymptotes and channel Möller operators

Ωα
± = lim

t→∓∞
U †t U

α
t

The latter allow to introduce a set of scattering operators

Sβα = (Ωβ
−)†Ωα

+

which establish the connection between "in" and "out" asymptotic channel components

|ψβout〉 = Sβα|ψαin〉

We do not go further inside into the details of the multi-channel theory. The interested
reader is again referred to the excellent book20 of Taylor (1972)[272] if (s)he wishes to
deepen (her) his knowledge on this fascinating and rigorous approach to collision processes
involved in chemical reactions.

19Different channels spaces in the same arrangement are orthogonal with each other.
20see in particular Chapters 16-18.
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