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We consider a bivariate normal distribution with linear correlation ρ whose random components are
discretized according to two assigned sets of thresholds. On the resulting bivariate ordinal random variable,
one can compute Goodman and Kruskal’s gamma coefficient, γ , which is a common measure of ordinal
association. Given the known analytical monotonic relationship between Pearson’s ρ and Kendall’s rank
correlation τ for the bivariate normal distribution, and since in the continuous case, Kendall’s τ coincides
with Goodman and Kruskal’s γ , the change of this association measure before and after discretization is
worth studying. We consider several experimental settings obtained by varying the two sets of thresholds,
or, equivalently, the marginal distributions of the final ordinal variables. This study, confirming previous
findings, showshow thegammacoefficient is always larger in absolute value thanKendall’s rank correlation;
this discrepancy lessens when the number of categories increases or, given the same number of categories,
when using equally probable categories. Based on these results, a proposal is suggested to build a bivariate
ordinal variable with assigned margins and Goodman and Kruskal’s γ by ordinalizing a bivariate normal
distribution. Illustrative examples employing artificial and real data are provided.

Key words: Bivariate normal distribution, Discretization, Gamma coefficient, Latent variable, Ordinal
association.

1. Introduction

The use of the multivariate normal distribution as a latent construct for modelling observed
correlated or associated discrete or ordinal variables can be dated back to the seminal book by
Lazarsfeld and Henry (1968) and to the later work by Muthen (1983), in the context of structural
equation modeling. Latent variable modelling has since then gradually become an integral part
of mainstream statistics and is currently used for a multitude of applications in different subject
areas (Beaujean 2014).

It is also an indisputable fact that the ability to simulate artificial data resembling the main
features of some observed dataset or following the specifications of a study design is necessary
when comparing and investigating the behaviour of statistical procedures and exploring their
robustness; such features or specifications can often be conveniently summarized by the empirical
marginal distributions and pairwise measures of correlation or association.

In this work, we will focus our attention on the relationship between a concordance measure
of the bivariate normal latent variable (Kendall’s rank correlation, directly related to the more
popular Pearson’s correlation) and a corresponding association measure of the ordinalized vari-
able (Goodman and Kruskal’s gamma). On the one hand, we will analyze how the correlation of
the latent variable and the marginal distributions of the final ordinal variables affect their correla-
tion/association: we can call it the “direct problem”. Specifically, we will investigate the effect of
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the number of categories and the probability distribution (uniform/symmetrical/skewed) on the
distortion of the association measure. On the other hand, we will provide a procedure that allows
construction and simulation of a random vector of discrete variables with assigned marginal
distributions and association by discretizing a bivariate normal random vector with a pairwise
correlation that is able to induce the desired association among the ordinal variables (the “inverse
problem”, i.e., finding the parameters of the continuous model that produce the (parameters of
the) observed ordinal variables).

The paper is structured as follows. In the next section, we will recall the definition of Good-
man and Kruskal’s gamma coefficient and summarize its main properties, also in comparison with
alternative measures of ordinal association. In Sect. 3, we will analyze the change in magnitude of
association before and after ordinalization of a bivariate normal variable, measured by Kendall’s
tau and Goodman and Kruskal’s gamma, respectively, under a wide array of experimental con-
ditions. Section 4 suggests and examines a procedure for building a bivariate ordinal variable
with assigned marginal distributions and association. Section 5 proposes a possible application to
inference of the algorithm of Sect. 4; Sect. 6 presents an illustrative example with real data. The
last section is devoted to some final remarks and possible research prospects.

2. Measures of Ordinal Association: Goodman and Kruskal’s Gamma

Measures of ordinal association between two variables use the property that the categories of
ordinal variables have a natural order; but the way in which these measures use this information
may differ considerably. Some measures are based on the intuitive notion that ordinal association
should have an interpretation analogous to that of association for metric variables, say, Pearson’s
correlation; in this group, we find Spearman’s ρ, Kendall’s τ , polychoric correlation, Somer’s d,
and Goodman-Kruskal’s γ . These coefficients allow us to make statements of the general form “if
scores on X increase, then most probably, scores on Y will increase” (Kampen and Swyngedouw
2000). Other measures of ordinal association have a background in information theory and have
interpretations in terms of stochastic entropy (Bryson and Phillips 1975; Laird 1979; Gilula et al.
1988). Henceforth, we will focus on the former family of measures.

Let us consider a pair of ordinal variables (X,Y ), with H and K ordered categories, respec-
tively, and introduce the concept of concordance/discordance by considering two independent
realizations (xi , yi ) and (x j , y j ). (xi , yi ) and (x j , y j )will be said to be concordant if xi < x j and
yi < y j , or if xi > x j and yi > y j . Conversely, (xi , yi ) and (x j , y j ) will be said to be discordant
if xi < x j and yi > y j , or if xi > x j and yi < y j . Thus, one can define the probability of
concordance as

Πc = Pr
{
Xi < X j and Yi < Y j

} + Pr
{
Xi > X j and Yi > Y j

}

and similarly the probability of discordance as

Πd = Pr
{
Xi < X j and Yi > Y j

} + Pr
{
Xi > X j and Yi < Y j

}
.

The gamma coefficient belongs to a larger family of ordinal correlation measures (see, e.g.,
Woods 2009, for an exhaustive account); it is defined as the following ratio (see, e.g., Agresti
2010, pp.186–187):

γ = Πc − Πd

Πc + Πd
(1)
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Πc andΠd can be conveniently expressed in terms of the joint probabilities pi j = P(X = xi ,Y =
y j ):

Πc = 2
∑ ∑

i<h

∑ ∑

j<k

pi j phk, Πd = 2
∑ ∑

i<h

∑ ∑

j>k

pi j phk .

By defining the quantities

p(c)
hk =

∑

a<h

∑

b<k

pab +
∑

a>h

∑

b>k

pab

and

p(d)
hk =

∑

a<h

∑

b>k

pab +
∑

a>h

∑

b<k

pab

for each h = 1, . . . , H , k = 1, . . . , K , then Πc and Πd can be rewritten as

�c =
H∑

h=1

K∑

k=1

phk p
(c)
hk , �d =

H∑

h=1

K∑

k=1

phk p
(d)
hk .

For a bivariate continuous random variable, γ can be still computed through Eq. (1): in this case,
since the probability of concordance and the probability of discordance sum up to 1 (there is no
probability of tied values for either X or Y ), then γ = Πc − Πd = 2Πc − 1, and it coincides
with Kendall’s rank correlation τ (Kendall 1945), simply defined as the difference between the
probability of concordance and the probability of discordance. We recall that for two continuous
random variables X and Y , Kendall’s τ depends only on their unique copula C (representing the
dependence structure of the bivariate random vector (X,Y ); see McNeil et al., 2005, chapter 5),
specifically,

τ(X,Y ) = 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2) − 1,

and not on the marginal distributions of X and Y . τ ranges between −1 and +1; it attains the
upper bound if and only if X and Y are comonotonic, whereas it attains the lower bound if and
only if X and Y are countermonotonic.

Like Pearson’s correlation and other correlation measures such as Spearman’s rho and the
aforementioned Kendall’s tau, γ takes values in [−1,+1]. The values −1, 0, and +1 are attained
when Πc = 0, Πc = Πd , Πd = 0, respectively. There are however some potential problems with
the gamma coefficient, which were immediately recognized by Goodman and Kruskal (1954):

• γ is unstable over various “cutting points”, that is to say,γ tends to increase as the categories
of a contingency table are collapsed, since γ gives no consideration to tied pairs, as can
be seen from Eq. (1), and the number of tied pairs increases as the table is collapsed;

• γ also usually yields greater association values than other measures of ordinal association,
as it does not consider any of the tied pairs;

• Finally, γ is a weakly monotonic measure of ordinal association, i.e., it reaches+1 under a
variety of cell frequency configurations, not only in case of strict perfect association (Berry
et al. 2018). For example, the bivariate distribution of Table 1, where all the joint proba-
bilities are zero except those labelled with ×, presents a value of γ equal to +1, although
the relationship between X and Y is not perfectly monotonic (Kendall’s τ and Spearman’s
ρ would be strictly smaller than 1).
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Table 1.
Graphic for a weakly monotonic relationship

1 2 3 4 5 6

1 × ×
2 × ×
3 × ×
4 × ×
5 × ×
6 ×

Table 2.
A trivariate probability distribution and its corresponding bivariate marginal distributions

x y z p(x, y, z)
1 1 1 1/8
1 1 2 3/8
1 2 1 2/8
2 1 2 1/8
2 2 2 1/8

x, y 1 2
1 4/8 2/8
2 1/8 1/8

x, z 1 2
1 3/8 3/8
2 0 2/8

y, z 1 2
1 1/8 4/8
2 2/8 1/8

With the objective of overcoming these pitfalls, some modifications to the gamma coefficient or
alternative measures of ordinal association have been proposed (Rousson 2007; Kvålseth 2017,
2018).

A remark on the possible extension of the gamma coefficient to higher dimensions can be
made. Let us consider the d-variate ordinal random vector XXX = (X1, X2, . . . , Xd)

ᵀ, with d > 2;
then, a γ association matrix remains defined as

�(XXX) = [γi j ]i=1,...,d; j=1,...,d

with γi j = γ (Xi , X j ). Thismatrix however is not necessarily positive semidefinite, as happens for
Spearman’s or Kendall’s rank correlation matrices, which are both valid correlation matrices (see
McNeil et al. 2005, p.207). An easy counterexample is provided as follows. Consider the trivariate
distribution of Table 2. The values of γ for the bivariate distributions (X,Y ), (X, Z), and (Y, Z)

are γxy = 1/3, γxz = 1, and γyz = −7/9, respectively. The corresponding γ association matrix
is:

�(X,Y, Z) =
⎡

⎣
1 1/3 1
1/3 1 −7/9
1 −7/9 1

⎤

⎦ ;

its three eigenvalues are 2.119, 1.322, and −0.441; since one of them is negative, the matrix is
clearly not positive semidefinite.

With n pairs of observations constituting a multinomial sample, the sample analog of γ is
given by γ̂ = (C − D)/(C + D), with C the number of concordant pairs and D the number of
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discordant pairs. It is possible to prove that
√
n(γ̂ − γ ) is asymptotically normal with mean zero

and variance given by

σ 2 =
∑

i

∑

j

pi jφ
2
i j/(�c + �d)

4 = 16

(�c + �d)4

∑

i

∑

j

pi j
(
�c p

(d)
i j − �d p

(d)
i j

)2

where φi j = 4(�d p
(c)
i j − �c p

(d)
i j ) (see, e.g., Agresti 2010).

In practice, replacing pi j , �c, and �d with their sample values in σ 2 yields the ML estimate
σ̂ 2 of σ 2. The term SE = σ̂ /

√
n is an estimated standard error for γ̂ , and Wald confidence

interval for γ is (γ̂ ± z1−α/2SE).
Rosenthal (1966); Gans and Robertson (1981) showed that γ̂ has a tendency to converge

slowly to normality and to have distributional irregularity, bias, and skewness problems, especially
when the true absolute value of γ is large. O’Gorman and Woolson (1988); Carr et al. (1989)
pointed out that better convergence occurs using the Fisher-type transform ξ̂ = 1

2 log[(1+γ̂ )/(1−
γ̂ )], whose asymptotic variance equals the asymptotic variance of γ̂ multiplied by (1− γ 2)−2. A
confidence interval can be constructed for ξ and then inverted to one for γ , by using the inverse

transformation γ̂ = (e2ξ̂ − 1)/(e2ξ̂ + 1) .

3. Analysis of the Relationship Between ρ and γ for Ordinalized Bivariate Normal Distribution

Discretization of continuous variables is commonly encountered in practice. Based on
observed nominal age, income, temperature, and depression score, one can derive ordinal variables
such as young-middle-old age, low-medium-high income, cold-cool-average-hot temperature, and
no-mild-moderate-severe depression. Discretization is usually avoided by statisticians for intu-
itive and valid reasons, the most prominent of which is the associated power and information loss.
Some problems related to identification of statistical models obtained by discretization have been
recently raised by Grønneberg and Foldnes (2019). However, simplicity, better interpretability
and comprehension of the effects of interest, and superiority of some categorical data measures
such as odds ratio have been argued by proponents of discretization (Liu et al. 2002).

The objective of this section is the determination of association magnitude changes when
the univariate components of a bivariate normal distribution are ordinalized, i.e., the range of
each continuous component is divided into contiguous intervals, which are assigned an ordered
category or a consecutive positive integer. A similar and extensive analysis has been conducted
by Demirtas and Vardar-Acar (2017) to investigate the effects of discretization of continuous
variables on the magnitude of linear correlation. If the underlying continuous distribution is
bivariate normal, it can be proved that discretization always preserves the sign of linear correlation
and more importantly leads to a reduction in magnitude. This result, which has been empirically
observed in many simulation studies (see, e.g., Bollen and Barb 1981) and was claimed to hold
only “in large samples” by Demirtas and Vardar-Acar (2017), is just a consequence of a previous,
more general theoretical result, named Lancaster’s theorem (Lancaster 1957), which states that
the correlation of a bivariate normal cannot increase whatever transformations are applied to its
univariate components (see also Mari and Kotz 2001, p.155, where it is reported as an “extremal
property” of the bivariate normal distribution).

For a bivariate normal distribution with correlation coefficient ρ, the following relationship
holds between ρ and Kendall’s rank correlation τ :

τ = 2

π
arcsin ρ. (2)
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Equation (2) holds also for most elliptical distributions, e.g., for bivariate Student’s t , and for most
bivariate distributions whose dependence structure is described by an elliptical copula (McNeil
et al. 2005). If both univariatemargins are discretized/ordinalized throughpre-specified thresholds,
one can compute some measure of ordinal association based on the resulting bivariate ordinal
variable, such asGoodman andKruskal’s γ : we know (see the previous section) that for continuous
bivariate random variables, such as the bivariate normal, the definitions of γ and τ coincide. Thus,
itmakes sense to analyze the relationship between τ andγ as ameasure of the change in association
before and after ordinalization.

Let us start from a very simple case, i.e., dichotomization of themargins of a standard bivariate
normal random variable (Z1, Z2), with zero marginal means, unit marginal variances, and linear
correlation ρ. Consider the bivariate ordinal variable (X,Y ) obtained as follows:

X =
{
x1 Z1 ≤ 0

x2 Z1 > 0
, Y =

{
y1 Z2 ≤ 0

y2 Z2 > 0
, (3)

with x1 < x2 and y1 < y2 being two ordered categories. Therefore, the marginal probabilities for
X and Y are P(X = x1) = P(X = x2) = 1/2 and analogously P(Y = y1) = P(Y = y2) = 1/2.
Since we know that for a bivariate normal distribution P(Z1 ≤ 0, Z2 ≤ 0) = P(Z1 > 0, Z2 >

0) = 1
4 + 1

2π arcsin ρ (see, e.g., McNeil et al. 2005), then the joint probability of (X,Y ) is that
displayed in the following table:

X,Y y1 y2 total
x1 1/4 + 1/(2π) arcsin ρ 1/4 − 1/(2π) arcsin ρ 1/2
x2 1/4 − 1/(2π) arcsin ρ 1/4 + 1/(2π) arcsin ρ 1/2

total 1/2 1/2 1

Based on it, by using Eq. (1), one can compute the gamma coefficient as a function of ρ:

γ = 4π arcsin ρ

π2 + 4(arcsin ρ)2
, (4)

or, recalling (2), in terms of τ :

γ = 2τ

1 + τ 2
, (5)

whose graph is plotted in Fig. 1. This graph clearly shows how Goodman-Kruskal’s γ for the
dichotomized random variable is a strictly increasing and odd function of its analogue Kendall’s
τ for the bivariate normal distribution and, in absolute value, is always larger than or equal to
τ , the equality holding when τ = 0 (i.e., when the two normal components are independent),
when τ equals 1 (perfectly positively correlated normal random variables), or when τ equals −1
(perfectly negatively correlated normal random variables). It is worth noting that in this context, γ
is equal to +1 (−1) only in case of a perfect monotonic (countermonotonic) relationship between
X and Y .
By choosing thresholds different from zero for the random components Z1 and Z2, we can
numerically obtain the value of γ corresponding to any value of τ . Similarly, one can discretize
either or both continuous random components into more than two categories, applying different
sets of thresholds (or, equivalently, assigning different marginal distributions to the final ordinal
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Figure 1.
Graph of the gamma coefficient for a dichotomized bivariate normal random variable with Kendall’s rank correlation τ ,
see Eq. (5). The dashed line is the 45 degrees line passing through the origin

variables). In general, let us consider a bivariate standard normal distribution (Z1, Z2) whose
two continuous components are discretized into two ordinal variables X and Y according to the
following scheme:

X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 Z1 ≤ θ1

x2 θ1 < Z2 ≤ θ2

· · ·
xH θH−1 < Z1 ≤ θH = +∞

, Y =

⎧
⎪⎨

⎪⎩

y1 Z2 ≤ η1

y2 η1 < Z2 ≤ η2 · · ·
yK ηK−1 < Z2 ≤ ηK = +∞

where θ1 < θ2 < · · · < θH = ∞ and η1 < η2 < · · · < ηK = ∞ constitute two sets of thresholds.
If we denote with F(i, j) the bivariate joint cumulative probability P(X ≤ xi ,Y ≤ y j ) of the
bivariate ordinal variable (X,Y ), i = 1, . . . , H , j = 1, . . . , K , and let F1(i) := P(X ≤ xi ) and
F2( j) := P(Y ≤ y j ) be the two marginal cumulative distributions, we have F1(i) = �(θi ) and
F2( j) = �(η j ), and the joint cumulative distribution function (cdf) of (X,Y ) is

F(i, j) = �τ (θi , η j ) = �τ (F
−1
1 (i), F−1

2 ( j)), (6)

where �τ is the joint cdf of a bivariate normal with standard components and rank correlation
τ , and F−1

1 (F−1
2 ) is the generalized inverse of F1 (F2). The joint probabilities pi j = P(X =

xi ,Y = y j ) are then obtained as

pi j = F(i, j) − F(i − 1, j) − F(i, j − 1) + F(i − 1, j − 1) =
1∑

t=0

1∑

v=0

F(i − t, j − v) · (−1)t+v

(7)
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Figure 2.
Kruskal’s γ for an ordinalized bivariate normal random variable with Kendall’s rank correlation τ ; the categories of the
two ordinal variables are set both equal to an integer K and have uniform probabilities 1/K . The dashed line is the 45
degrees line passing through the origin

and based on these pi j , the gamma coefficient can be computed using Eq. (1).
In the following study, we will consider three different possible types of ordinal marginal

distributions, namely, (i) uniform (i.e., equiprobable categories) (ii) symmetrical (non-uniform),
based on normal scores, and (iii) asymmetrical (triangular). We will examine what kind of rela-
tionship τ and γ have under these three macro-settings by considering the same distribution
for the two margins and varying the number of categories. Relevant code developed in the R
environment (R Core Team 2020) is freely available as supplementary material.

Figure 2 displays the graphs of the (τ, γ ) curve when the two marginal distributions have the
same number of equiprobable categories H = K = 3, 4, 5, 10, 20. Table 3 reports the values of
γ for τ ranging from−1 to+1, with step length of 0.1, and several values of the common number
of categories of the two identical margins (H = K = 2, 3, 5, 7, 10, 20, 50, 100). Note that the
(τ, γ ) curve, for a given H , is strictly increasing and always passes through the points (−1,−1),
(0, 0), and (1, 1), and, as one can expect, by increasing H (i.e., when the ordinal distributions
“resemble” a continuous one), it tends to get close to the 45-degree line passing through the origin.
Note that γ is an odd function of τ , i.e., γ (τ) = −γ (−τ). For a given value of τ > 0, γ is a
decreasing function of H ; for a given value of τ < 0, γ is an increasing function of K ; as K tends
toward ∞, γ seems to converge, though slowly, to τ . It is worth observing, however, that even
for a moderately large number of categories, there is a substantial difference between the values
of τ and γ before and after ordinalization. When H = 100, there is still a relative difference of
up to 2% between the values of τ and γ .

We now move to non-uniform symmetrical ordinal distributions; in particular, we con-
sider a probability mass function that somewhat resembles the probability density function
of the normal variable. For this aim, the (−4,+4) interval, whose probability for a stan-
dard normal variable is almost equal to 1, is divided into H equal-width adjacent intervals,
(−4 + 8(i − 1)/H,−4 + 8i/H), i = 1, . . . , H . A similar construction was employed by Becker
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Table 3.
Values of Goodman and Kruskal’s gamma for several combinations of τ and number of categories of the two identical
marginal triangular distributions

τ, K 2 3 5 7 10 20 50 100

−1 −1.00000 −1.00000 −1.00000 −1.00000 −1.00000 −1.00000 −1.00000 −1.00000
−0.9 −0.99448 −0.99321 −0.99036 −0.98698 −0.98016 −0.95799 −0.92968 −0.91622
−0.8 −0.97561 −0.97031 −0.95286 −0.93261 −0.90805 −0.86492 −0.82918 −0.81522
−0.7 −0.93960 −0.92266 −0.87790 −0.84384 −0.81053 −0.76170 −0.72647 −0.71358
−0.6 −0.88235 −0.84482 −0.77885 −0.73856 −0.70299 −0.65525 −0.62312 −0.61176
−0.5 −0.80000 −0.74150 −0.66519 −0.62433 −0.59043 −0.54731 −0.51950 −0.50986
−0.4 −0.68966 −0.61803 −0.54185 −0.50458 −0.47493 −0.43854 −0.41572 −0.40792
−0.3 −0.55046 −0.47841 −0.41176 −0.38119 −0.35756 −0.32926 −0.31185 −0.30596
−0.2 −0.38462 −0.32625 −0.27699 −0.25537 −0.23898 −0.21966 −0.20792 −0.20398
−0.1 −0.19802 −0.16537 −0.13923 −0.12805 −0.11966 −0.10987 −0.10397 −0.10199
0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 0.19802 0.16537 0.13923 0.12805 0.11966 0.10987 0.10397 0.10199
0.2 0.38462 0.32625 0.27699 0.25537 0.23898 0.21966 0.20792 0.20398
0.3 0.55046 0.47841 0.41176 0.38119 0.35756 0.32926 0.31185 0.30596
0.4 0.68966 0.61803 0.54185 0.50458 0.47493 0.43854 0.41572 0.40792
0.5 0.80000 0.74150 0.66519 0.62433 0.59043 0.54731 0.51950 0.50986
0.6 0.88235 0.84482 0.77885 0.73856 0.70299 0.65525 0.62312 0.61176
0.7 0.93960 0.92266 0.87790 0.84384 0.81053 0.76170 0.72647 0.71358
0.8 0.97561 0.97031 0.95286 0.93261 0.90805 0.86492 0.82918 0.81522
0.9 0.99448 0.99321 0.99036 0.98698 0.98016 0.95799 0.92968 0.91622
1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

(1989) (who named it the “uniform cut-points (UCP) method” and employed it to study simi-
larities between uniform association models and ordinalized bivariate normal distribution) and
Ferrari and Barbiero (2012) (to study the effects of discretization of a bivariate normal distribution
on the correlation coefficient). To the i-th interval, the i-th ordered category is associated, whose
probability is thus equal to �(−4 + 8i/H) − �(−4 + 8(i − 1)/H), i = 1, . . . , H ; the residual
probabilities of (−∞,−4) and (4,+∞) are assigned to the first and last categories, respectively.
Thus, the probability distribution is always symmetrical about the central category (if H is odd)
or categories (if H is even). The probabilities obtained according to this scheme are graphically
displayed, for K = 5 and K = 10, in Fig. 3.

Table 4 reports the values of Goodman and Kruskal’s γ for τ ranging from −1 to +1, with
a step length of 0.1, and several values of the common number of categories of the two identical
symmetrical margins. Note that as in the case of equiprobable categories, γ is an odd function of
τ . For a given value of τ > 0 and for K > 3, γ is a decreasing function of K ; for a given value
of τ < 0 and for K > 3, γ is an increasing function of K (for K = 2, we obtain again a uniform
distribution with two equally probable categories). As K tends toward ∞, γ converges to τ , but
much more slowly than in the case of uniform margins. When K = 100, the relative difference
between τ and γ in is not negligible at all, attaining 4.5%. This fact can be easily explained by
just looking at the barplot in the right side of Fig. 3: among the K categories, only the central
ones have appreciable probabilities, so the “actual” number of categories is (much) smaller than
K , and then a larger value of K is required to obtain the same difference between τ and γ that is
achieved in case of uniform distributions.



914 PSYCHOMETRIKA

1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

1 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 3.
Barplot of two symmetrical non-uniform distributions, with 5 (left) and 10 (right) categories, obtained by mimicking the
probability density function of a standard normal variable

Table 4.
Values of Goodman and Kruskal’s gamma for several combinations of τ and number of categories of the two identical
marginal symmetrical distributions (uniform cut-points)

τ.K 2 3 5 7 10 20 50 100

−1 −1 −1 −1 −1 −1 −1 −1 −1
−0.9 −0.99448 −0.99698 −0.99501 −0.99391 −0.99233 −0.98624 −0.9589 −0.935
−0.8 −0.97561 −0.9864 −0.97816 −0.97373 −0.96625 −0.92727 −0.86415 −0.83419
−0.7 −0.9396 −0.96561 −0.94663 −0.9343 −0.90815 −0.83339 −0.75986 −0.73083
−0.6 −0.88235 −0.93147 −0.89509 −0.86429 −0.81635 −0.72489 −0.65291 −0.62681
−0.5 −0.8 −0.8799 −0.81381 −0.76197 −0.70225 −0.60945 −0.54487 −0.52252
−0.4 −0.68966 −0.80262 −0.69807 −0.63458 −0.57406 −0.49032 −0.43628 −0.41811
−0.3 −0.55046 −0.6843 −0.55126 −0.4895 −0.43685 −0.36909 −0.3274 −0.31363
−0.2 −0.38462 −0.50907 −0.38064 −0.33245 −0.29397 −0.24663 −0.21834 −0.2091
−0.1 −0.19802 −0.27417 −0.19424 −0.16799 −0.14776 −0.12347 −0.10919 −0.10456
0 0 0 0 0 0 0 0 0
0.1 0.19802 0.27417 0.19424 0.16799 0.14776 0.12347 0.10919 0.10456
0.2 0.38462 0.50907 0.38064 0.33245 0.29397 0.24663 0.21834 0.2091
0.3 0.55046 0.6843 0.55126 0.4895 0.43685 0.36909 0.3274 0.31363
0.4 0.68966 0.80262 0.69807 0.63458 0.57406 0.49032 0.43628 0.41811
0.5 0.8 0.8799 0.81381 0.76197 0.70225 0.60945 0.54487 0.52252
0.6 0.88235 0.93147 0.89509 0.86429 0.81635 0.72489 0.65291 0.62681
0.7 0.9396 0.96561 0.94663 0.9343 0.90815 0.83339 0.75986 0.73083
0.8 0.97561 0.9864 0.97816 0.97373 0.96625 0.92727 0.86415 0.83419
0.9 0.99448 0.99698 0.99501 0.99391 0.99233 0.98624 0.9589 0.935
1 1 1 1 1 1 1 1 1
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Table 5.
Values of Goodman and Kruskal’s gamma for several combinations of τ and number of categories of the two identical
marginal triangular distributions

τ.K 2 3 5 7 10 20 50 100

−1 −1 −1 −1 −1 −1 −1 −1 −1
−0.9 −1 −0.99467 −0.99648 −0.99377 −0.98691 −0.96792 −0.93751 −0.92107
−0.8 −0.99933 −0.97729 −0.96629 −0.94876 −0.92616 −0.88070 −0.83783 −0.82001
−0.7 −0.98525 −0.94097 −0.90166 −0.86891 −0.83421 −0.77835 −0.73459 −0.71792
−0.6 −0.93982 −0.87473 −0.80945 −0.76715 −0.72757 −0.67084 −0.63032 −0.61554
−0.5 −0.85853 −0.77767 −0.69721 −0.65222 −0.61317 −0.56094 −0.52560 −0.51304
−0.4 −0.74150 −0.65396 −0.57108 −0.52900 −0.49425 −0.44974 −0.42065 −0.41048
−0.3 −0.59061 −0.50867 −0.43537 −0.40046 −0.37255 −0.33779 −0.31557 −0.30788
−0.2 −0.41063 −0.34734 −0.29328 −0.26853 −0.24914 −0.22540 −0.21041 −0.20526
−0.1 −0.20993 −0.17580 −0.14740 −0.13465 −0.12476 −0.11275 −0.10522 −0.10263
0 0 0 0 0 0 0 0 0
0.1 0.20632 0.17431 0.14685 0.13436 0.12462 0.11271 0.10521 0.10263
0.2 0.39722 0.34185 0.29120 0.26742 0.24857 0.22525 0.21039 0.20525
0.3 0.56388 0.49802 0.43112 0.39810 0.37130 0.33745 0.31551 0.30786
0.4 0.70149 0.63884 0.56453 0.52516 0.49212 0.44911 0.42053 0.41044
0.5 0.80905 0.76064 0.68892 0.64700 0.61008 0.55992 0.52540 0.51298
0.6 0.88837 0.85940 0.80082 0.76119 0.72370 0.66940 0.62999 0.61544
0.7 0.94297 0.93060 0.89462 0.86338 0.83011 0.77651 0.73411 0.71777
0.8 0.97707 0.97283 0.96064 0.94475 0.92278 0.87863 0.83717 0.81978
0.9 0.99482 0.99377 0.99154 0.98915 0.98460 0.96620 0.93662 0.92070
1 1 1 1 1 1 1 1 1

In the end, we consider strongly asymmetrical distributions, namely triangular distributions
with H categories, where the probability of the i-th category is proportional to i (through some
positive constant α). Since under this assumption,

∑H
i=1 pi = ∑H

i=1 αi = αH(H + 1)/2, then
pi = 2i/[H(H + 1)]. Choosing this distribution as the marginal distribution of both X and Y ,
Table 5 reports the corresponding values of γ for τ ranging from −1 to +1, with a step length of
0.1, and for several values of the common number of categories. One can notice that, differently
from the two cases analyzed before, due to the asymmetrical nature of the margins, γ is no longer
an odd function of τ , γ (τ) being generally different from −γ (−τ).

For a given value of τ > 0, γ is a decreasing function of K ; for a given value of−0.9 < τ < 0,
γ is an increasing function of K . When τ = −0.9, we have a curious behavior of γ as a function
of K , which is displayed in Fig. 4.

It is worth underlining how the values of |γ | are significantly larger than the corresponding
|τ |, especially when the number of categories is small. This feature is more apparent for negative
values of τ . For example, when τ = −0.5 and H = 5, the value of γ is −0.69721. Even
when discretizing the two continuous components through an extremely large number of ordered
categories, such as 100, the relative difference between the values of τ and γ is still non-negligible
(not smaller than 2.6% when −0.9 ≤ τ ≤ 0.9).

4. Building a Bivariate Ordinal Variable with Prescribed Margins and Gamma Coefficient

Researchers can be interested in building and simulating samples from a bivariate (multivari-
ate) ordinal distributionwith prescribedmarginal distributions and (pairwise) levels of association,
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Figure 4.
Kruskal’s γ for an ordinalized bivariate normal random variable with Kendall’s rank correlation τ = −0.9 as a function
of the common number of categories (from 2 to 10) of the two ordinal triangular variables

expressed in terms of the gamma coefficient. Such a concern may arise when one has to show the
appropriateness and study the performance or robustness of a novel statistical technique, since it
is not always possible to do so by using analytic arguments, except in elementary cases; on the
contrary, generating data replicates that mimic the real data’s characteristics of interest allows one
to study the performance of the statistical method in any given setting. For example, researchers
may be interested in assigning and preserving in their simulation study the marginal structures as
well as ordinal associations (Demirtas 2006). In other circumstances, their concern is matching
marginal means, variances, skewnesses and kurtoses, and intercorrelations (Vale and Maurelli
1983). van der Ark and van Aert (2015), with the aim of investigating the performance of dif-
ferent types of confidence intervals for γ , constructed several bivariate ordinal distributions by
assigning each a fixed value of γ and imposing constraints on the margins, considering uniform
or skewed distributions.

However, when assigning the margins and association (correlation) value for two random
variables, a uniqueness issue arises for the corresponding bivariate distribution. In fact, one of
the fallacies of Pearson’s correlation is that if we consider a bivariate random vector (X,Y ) with
assigned marginal distributions F1 and F2 and a feasible value of ρ, then F1, F2, and ρ do not
in general determine the joint distribution F univocally; on the contrary, there may exist several
(even infinite) joint distributions whose margins are F1 and F2 and whose linear correlation is
ρ (see, e.g., McNeil et al. 2005, p. 202). This issue is not overcome even by other dependence
measures such as Spearman’s ρ and Kendall’s τ , nor most likely by Kruskal and Goodman’s γ .
Nevertheless, if we restrict our focus to the family of joint distributions obtained by discretizing
a specific class of continuous random vectors, we can find that there is a unique joint distribution
satisfying the match of margins and association value.

Let us consider a bivariate ordinal variable with joint probabilities pi j , i = 1, . . . , H , j =
1, . . . , K , and marginal probailities pi · = ∑K

j=1 pi j and p· j = ∑H
i=1 pi j . Let us start with the

simplest case: for a bivariate ordinal distribution with dichotomous margins, H = K = 2, the
problem consists of finding the solution to the following equation system:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p11 p22(1 − γ ) = p12 p21(1 + γ )

p12 = 1 − p·1 − p22
p21 = 1 − p1· − p22
p11 = p1· − p12

which becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(p1· + p·1 + p22 − 1)p22(1 − γ ) = (1 − p·1 − p22)(1 − p1· − p22)(1 + γ )

p12 = 1 − p·1 − p22
p21 = 1 − p1· − p22
p11 = p1· − p12

and then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2γ p222 − p22(1 + 3γ − 2γ (p1· + p·1)) + (1 + γ ) · (1 − p1·)(1 − p·1) = 0

p12 = 1 − p·1 − p22
p21 = 1 − p1· − p22
p11 = p1· − p12

From the first equation of the system above, we derive that p22 is the unique real root (the one
with minus sign) of the second-order equation ax2 + bx + c = 0 with

⎧
⎪⎨

⎪⎩

a = 2γ

b = −(1 + 3γ − 2γ · p1· − 2γ · p·1)
c = (1 + γ ) · (1 − p1·) · (1 − p·1)

;

the other joint probabilities can then be easily computed in cascade from the remaining equations.
Thus, the problem has a unique feasible solution. For example, if we assign themargins p1· = 0.5,
p·1 = 0.5, and set γ = 3/5, we obtain the following second-degree equation: 3x2 − 4x + 1,
whose roots are p22,1 = 1 and p22,2 = 1/3; taking the latter leads to the solution:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p22 = 1/3

p12 = 1/6

p11 = 1/3

p12 = 1/6

Note that this set of probabilities corresponds to the joint distribution of the bivariate ordinal
variable obtained by discretizing a bivariate normal (3) with ρ = 1/2 (or, equivalently, τ = 1/3;
see Eq. (4)).

For larger numbers of categories, there will be infinite solutions, which are not easy to derive,
due to the nonlinear nature of the problem: the gamma coefficient is not linear in the pi j ’s, so the
equation system is nonlinear, as we have already experienced with a 2×2 contingency table. This
means that there are several bivariate ordinal distributions pi j whose margins are the assigned
pi · and p· j and whose gamma coefficient is equal to a prespecified value γ ∈ [−1,+1]. If one is
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interested in building just one bivariate ordinal variable with assigned margins and gamma, he/she
can restrict his/her attention to the class of bivariate ordinal variables with the assigned margins
derived by ordinalization of a standard bivariate normal distribution; then he/she can exploit the
results of the previous section, by accommodating the value of the parameter τ in order to match
the assigned value γ between the assigned ordinal margins. Due to the monotonic relationship
between γ and τ , whose form depends on the selected margins, and the fact that γ can span
its entire natural range [−1,+1], which we proved empirically, we are confident that there will
be a unique bivariate ordinalized distribution satisfying the requested requisites. This means that
among all the bivariate distributions with assigned margins and γ , we select the unique one whose
underlying continuous latent model is the bivariate normal.

Writing the relationship between the two association measures as γ = g(τ ; F1, F2), we just
need to find the (unique) root τ of the equation γ −g(τ ; F1, F2) = 0, γ being an assigned number
in [−1,+1] and F1, F2 being assigned ordinal distributions. Recovering the correct τ is a task
that can be carried out by using an iterative procedure, which requires setting an initial value.
Since we have empirically found that γ after discretization is – in absolute value – larger than
the rank correlation τ of the bivariate normal random variable, one can use τ (0) = γ as a starting
value for the unknown τ . One can then determine the corresponding value of the bivariate ordinal
random variable γ (0) and then iteratively adjust the value of τ according to some updating rule
till γ (t) converges to the assigned value. The updating process shall take into account that when
τ is zero, γ is zero, too, and should prevent the updated value of τ (t) from escaping the interval
[−1,+1]; a proposal is suggested in the following algorithm:

1. Set τ (0) ← 0, γ (0) ← 0; let ε > 0 be an arbitrarily small number
2. Set t ← 1 and τ (t) ← γ

3. Compute F(i, j; τ (t)) by using (6)
4. Compute p(i, j; τ (t)) by using (7)
5. Compute γ (t) for p(i, j; τ (t)) by using (1)
6. If |γ (t) − γ | < ε stop; else

set t ← t + 1,

τ (t) ← τ (t−1) + m(t)(γ − γ (t−1)), with m(t) = τ (t−1) − τ (t−2)

γ (t−1) − γ (t−2)
;

τ (t) ←
{
min(τ (t), 1) if τ (t) ≥ 0

max(τ (t),−1) if τ (t) < 0
;

go back to 3.

Given the monotonic relationship between τ and γ for the bivariate normal model and its ordinal-
ized counterpart, the above algorithm should be able to recover the value of τ inducing the target
γ in a few steps, for any choice of γ and of F1 and F2. The algorithm is implemented in the R
environment and is freely available as supplementary material.

Example 1. Consider the following margins for X : p1· = p2· = p3· = p4· = 0.25, and for
Y : p·1 = 0.1, p·2 = 0.2 p·3 = 0.3, p·4 = 0.4, and assign to γ the value 0.5. After only five
iterations, the algorithm illustrated above recovers the joint distribution ensuring the target γ and
the assignedmargins, by ordinalization of a bivariate standard normal variable, which is displayed
in Table 6.
This joint distribution is not the unique one satisfying the requirements on themargins and gamma.
A different one can be obtained as a convex combination of the cograduation (denoted by the letter
“M”) and countergraduation (“W”) tables (Table 7):
The joint probabilities p∗

i j = λpMi j + (1 − λ)pWi j , with λ = 0.7293, preserve the margins and
ensure the target γ . It is worth underlining that the nonlinearity of γ does not allow its direct
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Table 6.
Joint distribution ensuring the target γ = 0.5 and the assigned margins, by ordinalization of a bivariate standard normal
variable

X, Y 1 2 3 4 total

1 0.0593 0.0782 0.0726 0.0399 0.25
2 0.0248 0.0600 0.0863 0.0789 0.25
3 0.0120 0.0415 0.0817 0.1147 0.25
4 0.0039 0.0203 0.0594 0.1664 0.25
Total 0.1 0.2 0.3 0.4 1

Table 7.
Cograduation (M , left) and countergraduation (W , right) tables based on the margins of the joint distribution displayed
in Table 6

X, Y 1 2 3 4 Total X, Y 1 2 3 4 Total

1 0.1 0.15 0 0 0.25 1 0 0 0 0.25 0.25
2 0 0.05 0.2 0 0.25 2 0 0 0.1 0.15 0.25
3 0 0 0.1 0.15 0.25 3 0 0.05 0.2 0 0.25
4 0 0 0 0.25 0.25 4 0.1 0.15 0 0 0.25
Total 0.1 0.2 0.3 0.4 1 Total 0.1 0.2 0.3 0.4 1

Note that being the distribution of X symmetrical, we have that pMi, j = pWI−i+1, j , ∀i = 1, . . . , 4, with I = 4

derivation for a convex combination of two joint probability distributions. In fact, the value of γ

for a convex combination of two joint distributions is not equal to the same convex combination of
the corresponding γ ’s; in the case of combination of cograduation and countergraduation tables,
it is not equal to λ · 1 + (1 − λ) · (−1) = 2λ − 1.

5. Application to Inference

If a bivariate ordinal sample of size n is available, one can assume it is an i.i.d. sample from
an ordinalized bivariate normal distribution, or, more generally, from an ordinalized bivariate
continuous distribution whose unique copula is the Gaussian one (see, in this sense, Grønneberg
and Foldnes 2019; Foldnes and Grønneberg 2019, for a more detailed account on identifiability
issues). One has then to estimate the value of the unknown τ (or ρ) and those of the unknown
thresholds that define the marginal distributions of X and Y ; this can be done by numerically
maximizing the joint log-likelihood of the observed sample with respect to all the unknown
parameters simultaneously (see Olsson 1979, for details).

As an alternative to this full maximum likelihood approach, one can resort to the following
method of moments for estimating the thresholds and τ :

1. Compute the empirical cumulative distribution functions F̂1 and F̂2 based on the bivari-
ate sample, and the thresholds by using the inverse cdf (see Sect. 3). Compute the sample
value of γ , γ̂M , based on the bivariate sample.

2. Compute the value of τ , τ̂M , of the underlying bivariate normal distribution, inducing
γ̂M given F̂1 and F̂2, by resorting to the iterative procedure of Sect. 4. That is, since we
can write γ = g(τ ; F1, F2) and τ = g−1(γ ; F1, F2), τ̂M = g−1(γ̂M ; F̂1, F̂2).
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Table 8.
The Midtown Manhattan Study: Mental Health and Parents’ Socioeconomic Status

Parents’ Socioeconomic Status Mental Health

Well Mild symptom
formation

Moderate symptom
formation

Impaired Total

A (high) 64 94 58 46 262
B 57 94 54 40 245
C 57 105 65 60 287
D 72 141 77 94 384
E 36 97 54 78 265
F (low) 21 71 54 71 217
Total 307 602 362 389 1660

Given the way the estimates are derived, this method can be classified as a two-stage method
of moments. The unknown parameters are in fact estimated in two sequential steps: first, the
thresholds for Z1 and Z2 are estimated independently based on the empirical cdf of X and Y ,
respectively, and the sample value of γ is calculated as well; then, the dependence parameter τ is
estimated based on the quantities computed at the first stage.

A numerical example with artificial data is provided in the R code provided as supplementary
material, where the two methods are implemented and compared.

6. Real Data

In a now classic study of mental health in Manhattan, New York, Srole and Fischer (1978)
explore the relationship, among others, between mental impairment (Y ) and parents’ socioeco-
nomic status (X ). Table 8, from that study, has been used extensively to illustrate the utility and
application of models for ordered categorical data.
The sample value of Goodman-Kruskal’s γ is 0.15429. By assuming a bivariate standard normal
distribution underlying the bivariate ordinal data, we can derive themaximum likelihood estimates
(MLEs) for Kendall’s tau and the thresholds for the two margins (see Table 9). Note that the MLE
of τ is 0.10762, quite a bit smaller than the corresponding estimate of γ , confirming the empirical
results of the study in Sect. 3. However, the estimate is significantly greater than zero, with an
associated standard error of 0.01718, which provides strong evidence that mental health status
and parents’ socioeconomic status are positively associated (i.e., higher socioeconomic status is
associated with better mental health), even if the strength of that association is quite small. Note
also that all the MLEs of the thresholds are highly significant, except for θ3, which is the central
threshold for the variable parents’ socioeconomic status.

If one applies the two-stage method of moments in Sect. 5, the estimate of τ is equal to
0.10665, just slightly different from the maximum likelihood estimate.

Table 10 displays the expected joint frequencies n(o)
i j under the bivariate ordinalized distri-

bution whose parameters are set equal to the corresponding MLEs. Note that under this model,
the marginal frequency distributions are not equal to the analogous ones of Table 8 (even if they
are very close to each other). This is because the full MLEs of the thresholds are not equal to the
corresponding marginal MLEs (which are used as starting values for the optimization routine).
Comparing the observed and theoretical contingency tables, one can notice some slight discrep-
ancies between homologous frequencies. In order to (approximately) evaluate the goodness-of-fit



A. BARBIERO, A. HITAJ 921

Table 9.
MLEs for the Midtown Manhattan Mental study data, assuming an ordinalized bivariate normal model

Parameter Estimate St. error

τ 0.10762 0.01718***
θ1 −1.00344 0.03702***
θ2 −0.51024 0.03219***
θ3 −0.05579 0.03074
θ4 0.55185 0.03253***
θ5 1.12411 0.03900***
η1 −0.89627 0.03573***
η2 0.11931 0.03080***
η3 0.72393 0.03386***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 (maximized value of the log-likelihood function:
−5171.345). The results are obtained by using the package maxLik

Table 10.
Expected joint frequencies under the ordinalized bivariate normal model whose parameters are obtained by applying the
maximum likelihood method to the data of Table 8

x, y Well Mild Moderate Impaired Total

A 67.8 102.0 50.1 42.1 262.0
B 53.0 93.0 50.7 47.5 244.2
C 55.8 106.8 61.9 62.3 286.9
D 65.8 138.8 86.2 93.9 384.7
E 39.1 91.8 61.5 73.3 265.7
F 25.6 69.3 51.5 70.2 216.6
Total 307.2 601.6 361.8 389.4 1660

of the suggested ordinalized bivariate normal model to the data at issue, we computed the usual
chi-squared statistic based on the theoretical and observed frequencies (all theoretical joint fre-
quencies are greater than 5, so there is no need for pooling cells); its value is 8.84. Under the null
hypothesis that the data come from the ordinalized bivariate normal distribution with parameters
equal to their MLEs, this statistic approximately follows a chi-square distribution with a number
of degrees of freedom equal to 24 − 9 − 1 = 14, where 24 is the number of pooled frequencies
and 9 is the number of estimated parameters. The corresponding p-value is 0.841, leading us to
comfortably accept the null hypothesis. The value of the log-likelihood ratio statistic, given by
−2

∑H
i=1

∑K
j=1 ni j log(n

(o)
i j /ni j ), is equal to 8.959 (p-value 0.834) and thus leads to the same

conclusion.
Other more sophisticated models may fit the sample data better. For some examples of alter-

natives (namely, association models) fitting the Midtown Manhattan Mental study data, see for
example Becker (2014). In particular, a uniform association model can be used: the expected cell
frequencies can be calculated by using the vcdExtra R package (Friendly 2017) (see the sup-
plementary material). Note that these expected frequencies are quite close to their analogs under
the ordinalized bivariate normal model, confirming the findings of Becker (1989) and as stressed
by Kateri (2014). To prove this, one can compute the Kullback-Leibler distances between the two
theoretical joint distributions (p(o)

i j and p(u)
i j , for the ordinalized normal and uniform association

models, respectively): K1 = ∑∑
p(o)
i j log(p(o)

i j /p(u)
i j ) and K2 = ∑∑

p(u)
i j log(p(u)

i j )/p(o)
i j . The
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values are computed as K1 = 0.0001721 and K2 = 0.0001724, which are very small, proving
that the two distributions are very close to each other.

7. Conclusions and Further Research

We focused on the bivariate standard normal variable and studied the change in associa-
tion before and after ordinalization, measured by Kendall’s τ and Goodman and Kruskal’s γ .
This analysis has been facilitated (i) by the wide availability of software implementations of the
bivariate normal cdf (despite its non-closed expression), which is required when computing the
joint probabilities of the bivariate ordinal distribution resulting from discretization, and (ii) by
the analytic relationship between Pearson’s correlation ρ and Kendall’s τ for the bivariate normal
distribution. We empirically investigated the relationship between τ and γ by considering several
specific configurations for the two final marginal distributions (uniform, unimodal or bimodal
symmetric, triangular). The study confirmed a somewhat expected result, i.e., the association
measure tends to inflate after discretization, and to a larger extent when the number of ordered
categories is small. For a same number of categories, we also highlighted the effect of themarginal
probabilities in the change of association. Based on these results, we also elaborated a scheme for
building and simulating samples from a bivariate ordinal distribution with assigned margins and
value of association.

Other bivariate continuous distributions or bivariate copulas can be exploredwhen the interest
is in analyzing the effects of ordinalization on Goodman and Kruskal’s γ or in constructing a
bivariate ordinal variable with assigned marginal distributions and association; one should prefer
the parametric copula families satisfying conditions (i) and (ii) mentioned above. Moreover, one
should focus on so-called “comprehensive” bivariate copulas (Nelsen 2006, p.15), i.e., copulas
able to model continuously the whole range of dependence from the lower to the upper Fréchet
bounds passing through the product copula. As for (i), there is a wide variety of parametric copulas
with a closed-form expression of their joint cdf. As for (ii), an analytic expression linking the
copula parameter to its Kendall’s correlation is not always available. For example, for the Frank
family of copulas,

C(u1, u2; θ) = −1

θ
ln

[
1 + (e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

]
, θ ∈ R \ {0} ,

we have the following relationship between Kendall’s τ and θ : τ(θ) = 1− 4[1− D1(θ)]/θ , with
D1(x) = 1

x

∫ x
0

t
et−1dt , which can be computed numerically. Note that letting the parameter θ

go to 0, the Frank copula boils down to the product copula, with τ(0) = 0; when θ → −∞, C
reduces to the countermonotonicity copula; when θ → +∞, C reduces to the comonotonicity
copula. The Plackett family of copulas has the following form:

C(u1, u2; θ) = 1 + (θ − 1)(u1 + u2) − √[1 + (θ − 1)(u1 + u2)]2 − 4θ(θ − 1)u1u2
2(θ − 1)

,

with θ ∈ (0,+∞) \ {1}. When θ → 1, it reduces to the product copula, whereas for θ → 0,
it tends to the countermonotonicity copula, and for θ → ∞ to the comonotonicity copula. For
this family, there does not appear to be a closed-form expression for Kendall’s τ (Nelsen 2006,
p.171).

Another point to inspect is whether Kendall’s tau for a bivariate continuous distribution is
always smaller – in absolute value – than Goodman and Kruskal’s gamma computed on any
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Figure 5.
Relationship between τ and γ for a bivariate Student’s t random variable before and after ordinalization (marginal
probabilities for the two identical ordinalized variables are 1/3 and 2/3). In both graphs, the dotted line is the bisector of
the first and third orthants. In the right graph, it can be better appreciated the behavior of γ when τ is closer to zero

ordinalized version thereof. We have empirically shown that this happens for the bivariate normal
distribution, in a certain sense reversing what happens with respect to the correlation coefficient,
whose absolute value is always diminished by discretization of both components (Lancaster’s
theorem). Actually, it happens that if we discretize the two components of a bivariate Student’s t
distribution when ρ = τ = 0, the corresponding value of γ between the two ordinalized variables
is generally different from zero, so γ does not generally inherit the sign of τ , and the inequality
|γ | ≥ |τ | is no longer true. For example, if we consider two identical marginal distributions with
probabilities 1/3 and 2/3 for the two ordered categories, then the bivariate Student’s t with 3
degrees of freedom and with uncorrelated components is discretized into the following bivariate
ordinal variable:

X,Y y1 y2
x1 0.1153 0.2180
x2 0.2180 0.4487

whose value of γ is about 0.0424. In the graphs of Fig. 5, the relationship between τ and γ is
displayed for the ordinalized bivariate Student’s t . The reader can also refer to Jin and Yang-
Wallentin (2017) for some potential alternatives to the bivariate normal distribution assumption
as un underlying stochastic model for ordinal data, where the authors study robustness against
misspecification of the underlying distribution with respect to the polychoric correlation estima-
tion.

As an aside, the paper illustrated how bivariate ordinal models can be built for simulation
studies, as an alternative to existing procedures employing categoricalmarginalmodels. Extension
of the proposed procedures to the multivariate case is not straightforward. Analogous issues in
determining the existence of a multivariate binary/ordinal variable with assigned margins and
Pearson’s correlation matrix have been examined by Cario and Nelson (1997), Chaganty and Joe
(2006), and Barbiero and Ferrari (2017). As we noticed, for a multivariate ordinal variable, the
gamma association matrix is not necessarily positive semidefinite, so once all the margins are
assigned, it is not straightforward to establish whether the assigned values of pairwise gamma
coefficients lead to a feasible association matrix or not. However, if one selects a valid correlation
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matrix, this is a feasible Kendall’s tau correlation matrix for any choice of the (continuous)
margins, and thus, per the arguments related to the change in magnitude after discretization, it
should also be a feasible gamma association matrix for any choice of the ordinal margins. The
points raised in this conclusive section can be addressed by future research.

Supplementary material

Computer code developed in the R environment is available at https://tinyurl.com/PMET-D-19-
00173.

Acknowledgments

We are thankful to the Editor and the Reviewers for their valuable time and efforts in thor-
oughly reviewing the early version of the manuscript.

Funding Open access funding provided by Università degli Studi di Milano within the CRUI-CARE
Agreement. Funding was provided by Italian Ministry of Education, University and Research (Grant No.
FFABR2017).

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

References

Agresti, A. (2010). Analysis of ordinal categorical data (2nd ed.). New York: Wiley.
Barbiero, A., & Ferrari, P. A. (2017). An R package for the simulation of correlated discrete variables. Communications

in Statistics-Simulation and Computation, 46(7), 5123–5140.
Beaujean, A. A. (2014). Latent variable modeling using R: A step-by-step guide. Routledge.
Becker, M. P. (2014). Ordered categorical data. Wiley StatsRef: Statistics Reference Online.
Becker, M. P. (1989). On the bivariate normal distribution and association models for ordinal categorical data. Statistics

& Probability Letters, 8(5), 435–440.
Berry, K. J., Johnston, J. E., & Mielke, P. W, Jr. (2018). The measurement of association—A permutation statistical

approach. Berlin: Springer.
Bollen, K. A., & Barb, K. H. (1981). Pearson’s r and coarsely categorized measures. American Sociological Review,

232–239.
Bryson, K., & Phillips, D. (1975). Method for classifying interval-scale and ordinal-scale data. Sociological Methodology,

6, 171–190.
Cario, M. C., & Nelson, B. L. (1997). Modeling and generating random vectors with arbitrary marginal distributions and

correlation matrix. Technical Report, Department of Industrial Engineering andManagement Sciences, Northwestern
University, Evanston, Illinois.

Carr, G. J., Hafner, K. B.,&Koch,G.G. (1989). Analysis of rankmeasures of association for ordinal data from longitudinal
studies. Journal of the American Statistical Association, 84(407), 797–804.

Chaganty, N. R., & Joe, H. (2006). Range of correlation matrices for dependent Bernoulli random variables. Biometrika,
93(1), 197–206.

Demirtas, H. & Vardar-Acar, C. (2017) Anatomy of Correlational Magnitude Transformations in Latency and Discretiza-
tion Contexts in Monte-Carlo Studies, in: Ding-Geng (Din) Chen, John Dean Chen Eds, Monte-Carlo Simulation-
Based Statistical Modeling, Springer, Singapore, 2017

https://tinyurl.com/PMET-D-19-00173
https://tinyurl.com/PMET-D-19-00173
http://creativecommons.org/licenses/by/4.0/


A. BARBIERO, A. HITAJ 925

Demirtas, H. (2006). A method for multivariate ordinal data generation given marginal distributions and correlations.
Journal of Statistical Computation and Simulation, 76(11), 1017–1025.

Ferrari, P. A., & Barbiero, A. (2012). Simulating ordinal data. Multivariate Behavioral Research, 47(4), 566–589.
Foldnes,N.,&Grønneberg, S. (2019).On identification and non-normal simulation in ordinal covariance and item response

models. Psychometrika, 84(4), 1000–1017.
Friendly, M. (2017). vcdExtra: ’vcd’ Extensions and Additions. R package version 0.7-1. https://CRAN.R-project.org/

package=vcdExtra.
Gans, L. P., & Robertson, C. A. (1981). The behavior of estimated measures of association in small and moderate sample

sizes for 2 × 3 tables. Communications in Statistics-Theory and Methods, 10(16), 1673–1686.
Gilula, Z., Krieger, A. M., & Ritov, Y. (1988). Ordinal association in contingency tables: Some interpretive aspects.

Journal of the American Statistical Association, 402, 540–544.
Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American

Statistical Association, 49, 732–764.
Grønneberg, S., & Foldnes, N. (2019). A problem with discretizing Vale-Maurelli simulation studies. Psychometrika,

84(2), 554–561.
Jin, S., &Yang-Wallentin, F. (2017). Asymptotic robustness study of the polychoric correlation estimation.Psychometrika,

82(1), 67–85.
Kampen, J., & Swyngedouw, M. (2000). The ordinal controversy revisited. Quality & Quantity, 34(1), 87–102.
Kateri, M. (2014). Contingency table analysis. Methods and Implementation Using R. New York: Birkhauser.
Kendall, M. G. (1945). The treatment of ties in rank problems. Biometrika, 33, 239–251.
Kvålseth, T.O. (2017).An alternativemeasure of ordinal association as a value-validity correction of theGoodman-Kruskal

gamma. Communications in Statistics-Theory and Methods, 46(21), 10582–10593.
Kvålseth, T. O. (2018). Measuring association between nominal categorical variables: An alternative to the Goodman-

Kruskal lambda. Journal of Applied Statistics, 45(6), 1118–1132.
Laird, N.M. (1979). A note on classifying ordinal scale data. In K. F. Schuessler (Ed.), Social Methodology (pp. 303–310).

San Francisco: Jossey Bass.
Lancaster, H. O. (1957). Some properties of the bivariate normal distribution considered in the form of a contingency

table. Biometrika, 44, 289–292.
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston: Houghton Mill.
Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique. Data mining and knowledge

discovery, 6(4), 393–423.
Mari, D. D., & Kotz, S. (2001). Correlation and dependence. Singapore: World Scientific.
McNeil, A. J., Frey, R., & Embrechts, P. (2005). Quantitative risk management: Concepts, techniques and tools (Vol. 3).

Princeton: Princeton University Press.
Muthen, B. (1983). Latent variable structural equation modeling with categorical data. Journal of Econometrics, 22(1–2),

43–65.
Nelsen, R. B. (2006). An introduction to copulas (2nd ed.). New York: Springer.
O’Gorman, T. W., & Woolson, R. F. (1988). Analysis of ordered categorical data using the SAS system. In Proceeding of

the 13th Annual SAS Users Group Conference (pp. 957–963).
Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443–

460.
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing,

Vienna, Austria. https://www.R-project.org/.
Rosenthal, I. (1966). Distribution of the sample version of the measure of association, gamma. Journal of the American

Statistical Association, 61(314), 440–453.
Rousson, V. (2007). The gamma coefficient revisited. Statistics & Probability Letters, 77, 1696–1704.
Srole, L. E., & Fischer, A. K. (1978).Mental health in the metropolis: The Midtown Manhattan study. Rev: New York U

Press.
Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48(3), 465–471.
van der Ark, L. A., & van Aert, R. C. (2015). Comparing confidence intervals for Goodman and Kruskal’s gamma

coefficient. Journal of Statistical Computation and Simulation, 85(12), 2491–2505.
Woods, C. M. (2009). Consistent small-sample variances for six gamma-family measures of ordinal association. Multi-

variate behavioral research, 44(4), 525–551.

Manuscript Received: 16 NOV 2019
Accepted: 30 SEP 2020
Published Online Date: 27 OCT 2020

https://CRAN.R-project.org/package=vcdExtra
https://CRAN.R-project.org/package=vcdExtra
https://www.R-project.org/

	Goodman and Kruskal's Gamma Coefficient for Ordinalized Bivariate Normal Distributions
	Abstract
	1 Introduction
	2 Measures of Ordinal Association: Goodman and Kruskal's Gamma
	3 Analysis of the Relationship Between ρ and γ for Ordinalized Bivariate Normal Distribution
	4 Building a Bivariate Ordinal Variable with Prescribed Margins and Gamma Coefficient
	5 Application to Inference
	6 Real Data
	7 Conclusions and Further Research
	Supplementary material
	Acknowledgments
	References




