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Abstract
We introduce and study a family of spaces of entire functions in one variable that generalise 
the classical Paley–Wiener and Bernstein spaces. Namely, we consider entire functions of 
exponential type a whose restriction to the real line belongs to the homogeneous Sobolev 
space Ẇs,p and we call these spaces fractional Paley–Wiener if p = 2 and fractional Bern-
stein spaces if p ∈ (1,∞) , that we denote by PWs

a
 and Bs,p

a
 , respectively. For these spaces 

we provide a Paley–Wiener type characterization, we remark some facts about the sam-
pling problem in the Hilbert setting and prove generalizations of the classical Bernstein 
and Plancherel–Pólya inequalities. We conclude by discussing a number of open questions.
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1  Introduction and statement of the main results

A renowned theorem due to Paley and Wiener [21] characterizes the entire functions of 
exponential type a > 0 whose restriction to the real line is square-integrable in terms of 
the support of the Fourier transform of their restriction to the real line. An analogous 
characterization holds for entire functions of exponential type a whose restriction to to 
the real line belongs to some Lp space, p ≠ 2 [9]. To be precise, let Ea be the space of 
entire functions of exponential type a,

Then, for any p ∈ (1,∞) , the Bernstein space Bp
a
 is defined as

where f0 ∶= f |
ℝ
 denotes the restriction of f to the real line and Lp is the standard Lebesgue 

space. In the Hilbert setting p = 2 , the Bernstein space B2
a
 is more commonly known as the 

Paley–Wiener space and we will denote it by PWa in place of B2
a
.

Let S and S′ denote the space of Schwartz functions and the space of tempered distri-
butions, resp. For f ∈ S we equivalently denote by f̂  or Ff  the Fourier transform given 
by

The Fourier transform F  is an isomorphism of S onto itself with inverse given by

By Plancherel Theorem, the operator F  extends to a surjective isometry F ∶ L2(ℝ) → L2(ℝ).
We now recall the classical Paley–Wiener characterization of the space PWa.

Theorem [21] Let f ∈ PWa , then supp�f0 ⊆ [−a, a],

and ‖f‖PWa
= ‖f̂0‖L2([−a,a]) . Conversely, if g ∈ L2([−a, a]) and we define

then f ∈ PWa , f̂0 = g and ‖f‖PWa
= ‖g‖L2([−a,a]).

In particular, the Fourier transform F  induces a surjective isometry between the 
spaces L2([−a, a]) and PWa . We shall write L2

a
 instead of L2([−a, a]) for short.

(1)
Ea =

{
f ∈ Hol(ℂ) ∶ for every 𝜀 > 0 there exists C

𝜀
> 0 such that |f (z)| ≤ C

𝜀
e(a+𝜀)|z|

}
.

B
p
a
=

�
f ∈ Ea ∶ f0 ∈ Lp, ‖f‖Bp

a
= ‖f0‖Lp

�

f̂ (�) =
1√
2�

∫
ℝ

f (x)e−ix� dx.

F
−1f (x) =

1√
2�

∫
ℝ

f̂ (�)eix� d�.

f (z) =
1√
2�

∫
a

−a

f̂0(�)e
iz� d�

f (z) =
1√
2�

∫
a

−a

g(�)eiz� d� ,
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A similar characterization holds true for the Bernstein spaces Bp
a
 , 1 < p < +∞ . We 

refer the reader, for instance, to [4, Theorem 4]. We shall denote by ℕ0 the set of non-
negative integers.

Theorem (Characterizations of Bp
a
 ) Let 1 < p < ∞. Then, the following conditions on a 

function h defined on the real line are equivalent.

 (i) The function h is the restriction of an entire function f ∈ B
p
a
 to the real line, that is, 

h = f0;
 (ii) h ∈ Lp(ℝ) and supp�h ⊆ [−a, a];
 (iii) h ∈ C∞ , h(n) ∈ Lp for all n ∈ ℕ0 and ‖h(n)‖Lp ≤ an‖h‖Lp.

The above theorem holds in the limit cases p = 1 and p = +∞ as well, but in this 
paper we only focus on the range 1 < p < +∞.

We remark that in the Paley–Wiener characterization of the Bernstein spaces, the 
Fourier transform of f0 ∈ Lp(ℝ) is to be understood in the sense of tempered distribu-
tions. Namely, Lp(ℝ) ⊆ S

� , and the Fourier transform extends to a isomorphism of S′ 
onto itself, where f̂  is defined by the formula

The Paley–Wiener and Bernstein spaces are classical and deeply studied for several rea-
sons. A well-studied problem for these spaces, for instance, is the sampling problem and 
we refer the reader to [19, 24] and references therein. Moreover, the Paley–Wiener space 
PWa is the most important example of a de Branges space, which are spaces of entire func-
tions introduced by de Branges in [13]. They have deep connections with canonical sys-
tems and have been extensively studied in the recent years. For an overview of de Branges 
spaces and canonical systems we refer the reader, for instance, to [23].

In this paper we introduce a family of spaces which generalizes the classical 
Paley–Wiener and Bernstein spaces; we deal with spaces of entire functions of expo-
nential type a whose restriction to the real line belongs to some homogeneous Sobolev 
space and we call these spaces fractional Paley–Wiener and Bernstein spaces. In the 
present work we start such investigation: we introduce the spaces, we study some of 
their structural properties, we prove a Paley–Wiener type characterization and generali-
zations of the classical Bernstein and Plancherel–Pólya inequalities. We also point out 
that classical results such as sampling theorems for the Paley–Wiener space do not nec-
essarily extend to the fractional setting (Sect. 5). Finally we mention the papers [20, 22] 
in which the authors studied other generalizations of the Paley–Wiener spaces. We also 
point out that the investigation of these spaces has natural counterparts in the several 
variable setting. We refer the reader to [3] and the upcoming manuscript [17] where we 
present the development of this theory in the setting of several variables.

We now precisely define the function spaces we are interested in. Given a function 
f ∈ S and s > 0 , we define its fractional Laplacian Δ

s

2 f  as

and we set

⟨̂f ,�⟩ = ⟨f , �̂⟩, f ∈ S
�,� ∈ S.

Δ
s

2 f ∶= F
−1(| ⋅ |sFf )

‖f‖s,p ∶= ‖Δ
s

2 f‖Lp .
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We remark that for f ∈ S the fractional Laplacian Δ
s

2 f  is a well-defined function and that 
‖ ⋅ ‖s,p is a norm on the Schwartz space (see, for instance, [18]). Therefore, we define the 
homogeneous Sobolev space Ẇs,p as the closure of S with respect to ‖ ⋅ ‖s,p , i.e.,

As described in [18], the space Ẇs,p turns out to be a quotient space of tempered distribu-
tions modulo polynomials of degree m = ⌊s − 1∕p⌋ , where we denote by ⌊x⌋ the integer part 
of x ∈ ℝ and by Pm the set polynomials of degree at most m, where m ∈ ℕ0 . In [18, Corol-
lary 3.3] we prove that f ∈ Ẇs,p if and only if

• f ∈ S
�∕Pm;

• there exists a sequence {fn} ⊆ S such that fn → f  in S�∕Pm;
• the sequence {Δ

s

2 fn} is a Cauchy sequence with respect to the Lp norm.

If f ∈ Ẇs,p we then set

where the limit is to be understood as a limit in the Lp norm.
In order to avoid working in a quotient space, instead of considering the spaces Ẇs,p , 

we consider the realization spaces Es,p , see [18, Corollary 3.2]. Inspired by the works of 
G. Bourdaud [10–12], if m ∈ ℕ0 ∪ {∞} and Ẋ is a given subspace of S�∕Pm which is a 
Banach space, such that the natural inclusion of Ẋ into S�∕Pm is continuous, we call a 
subspace E of S′ a realization of Ẋ if there exists a bijective linear map

such that 
[
R[u]

]
= [u] for every equivalence class [u] ∈ Ẋ . We endow E of the norm given 

by ‖R[u]‖E = ‖[u]‖Ẋ.
We recall the definition of the homogeneous Lipschitz space Λ̇𝛾 , for 𝛾 > 0 , for details 

see e.g. [15] and [18]. For k ∈ ℕ and h ∈ ℝ ⧵ {0} , let Dk
h
 , the difference operator of 

increment h and of order k, be defined as follows. If k = 1 , Dhf (x) = f (x + h) − f (x) , and 

then inductively, for k = 2, 3,… Dk
h
f (x) = Dh

�
Dk−1

h
f
�
(x) =

∑k

j=0
(−1)k−j

�
k

j

�
f (x + jh) . 

The homogeneous Lipschitz space is defined as

For a non-negative integer m, we denote by Cm the space of continuously differentiable 
functions of order m.

The next result describes the realization spaces Es,p that we will need.

Theorem [18] For s > 0 and p ∈ (1,+∞) , let m = ⌊s − 1

p
⌋ . Then, Ẇs,p

⊆ S
�∕Pm . We define 

the spaces Es,p as follows.

 (i) Let 0 < s <
1

p
 , and let p∗ ∈ (1,∞) given by 1

p
−

1

p∗
= s , define

Ẇs,p = S
‖⋅‖s,p

.

(2)Δ
s

2 f = lim
n→+∞

Δ
s

2 fn,

R ∶ Ẋ → E

Λ̇𝛾 =

�
[f ] ∈ C∕P⌊𝛾⌋ ∶ ‖f‖Λ̇𝛾 ∶= sup

x,h∈ℝ, h≠0
�D⌊𝛾⌋+1

h
f (x)�

�h�𝛾 < +∞

�
.
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 (ii) Let s − 1

p
∉ ℕ0 , m = ⌊s − 1

p
⌋ , and define

Then, the space Es,p is a realization space for Ẇs,p.
We are now ready to define the fractional Bernstein spaces.

Definition 1.1 For a, s > 0 , 1 < p < +∞ and s − 1

p
∉ ℕ0 the fractional Bernstein space Bs,p

a
 

is defined as

Remark 1.2 In this paper we restrict ourselves to the case s − 1

p
∉ ℕ0 , s > 0 , p ∈ (1,∞) . 

The case s − 1

p
∈ ℕ0 could be thought to be the critical case, as in the Sobolev embedding 

theorem. All the proofs break down for these values of s and p, although we believe that all 
the results in this paper extend also to case s − 1

p
∈ ℕ0.

Thus, the case s − 1

p
∈ ℕ0 remains open and is, in our opinion, of considerable interest. 

We will add some comments on this problem in the final Sect. 8.

Remark 1.3 We point out that from the results in the present work we can easily deduce 
analogous results for the homogeneous fractional Bernstein spaces Ḃs,p

a
 , defined as above, 

but without requiring that Pf0;m;0
= 0 . In this way, we obtain spaces of entire functions of 

exponential type modulo polynomials of degree m = ⌊s − 1

p
⌋.

We first consider the spaces PWs
a
 , s > 0 , and we prove some Paley–Wiener type theo-

rems assuming that s − 1

2
∉ ℕ0 . For any s > 0 let L2

a
(|�|2s) be the weighted L2-space

We prove the following Paley–Wiener type theorems. We distinguish the case 0 < s <
1

2
 

from the case s > 1

2
.

Theorem 1 Let 0 < s <
1

2
 and let f ∈ PWs

a
 . Then, supp�f0 ⊆ [−a, a] , f̂0 ∈ L2

a
(|�|2s) and

Moreover, ‖f‖PWs
a
= ‖f̂0‖L2

a
(���2s) . Conversely, let g ∈ L2

a
(|�|2s) , and define f by setting

Then, f ∈ PWs
a
 , f̂0 = g and ‖f‖PWs

a
= ‖g‖L2

a
(���2s).

Es,p =
�
f ∈ Lp

∗

∶ ‖f‖Es,p ∶= ‖Δs∕2f‖Lp < +∞
�
.

Es,p =

�
f ∈ Λ̇

s−
1

p ∶ Pf ;m;0 = 0 , ‖f‖Es,p ∶= ‖Δs∕2f‖Lp < +∞

�
.

B
s,p
a

=
�
f ∈ Ea ∶ f0 ∈ Es,p with norm ‖f‖Bs,p

a
∶= ‖f0‖Es,p

�
.

L2
a
(|𝜉|2s) =

{
f ∶ [−a, a] → ℂ such that ∫

a

−a

|f (𝜉)|2|𝜉|2s d𝜉 < ∞

}
.

(3)f (z) =
1√
2�

∫
a

−a

f̂0(�)e
iz� d�.

(4)f (z) =
1√
2�

∫
a

−a

g(�)eiz� d�.
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Definition 1.4 Given s > 1

2
 , let m = ⌊s − 1

2
⌋ , for any g ∈ L2(|�|2s) we define Tg by setting, 

for � ∈ S,

As we will see, Lemma 3.3, Tg is well-defined for any � ∈ S , in particular Tg ∈ S
� , and 

T ∶ L2(|�|2s) → S
� is a continuous operator.

We denote by D′

c
 the space of distributions with compact support, which is the dual of 

C∞.

Theorem 2 Let s > 1

2
 , m = ⌊s − 1

2
⌋ , assume that s − 1

2
∉ ℕ and set Pm(iz�) =

∑m

j=0
(iz�)j∕j! . 

Let f ∈ PWs
a
 , then supp�f0 ⊆ [−a, a] and there exists g ∈ L2

a
(|�|2s) such that f̂0 = Tg in D′

c
 , 

and

Moreover, ‖f‖PWs
a
= ‖g‖L2

a
(���2s) . Conversely, let g ∈ L2

a
(|�|2s) and define f by setting

Then, f ∈ PWs
a
 and ‖f‖PWs

a
= ‖g‖L2

a
(���2s).

Observe that in particular Theorem  1 says that, if 0 < s <
1

2
 , the Fourier transform 

F ∶ PWs
a
→ L2

a
(|�|2s) is a surjective isomorphism, as in the case s = 0 . On the other hand, 

if s > 1

2
 , F ∶ PWs

a
→ T(L2

a
(|�|2s)) is a surjective isomorphism, where T(L2

a
(|𝜉|2s)) ⊆ D

�

c
 

denotes the image of L2
a
(|�|2s) via the operator T, endowed with norm ‖Tg‖ ∶= ‖g‖L2

a
(���2s).

As a consequence of the above theorems we obtain that the spaces PWs
a
 are reproduc-

ing kernel Hilbert spaces and we are able to make some interesting remarks concerning 
reconstruction formulas and sampling in PWs

a
 for 0 < s <

1

2
 . In particular, we obtain that 

the spaces PWs
a
 are not de Branges spaces. We refer the reader to Sect. 5 below for more 

details.
Then we turn our attention to the fractional Bernstein spaces Bs,p

a
.

Theorem  3 Let s > 0 , 1 < p < ∞ be such that s − 1

p
∉ ℕ . Then, the fractional Bernstein 

spaces Bs,p
a

 are Banach spaces and the following Plancherel–Pólya estimates hold. If 
0 < s <

1

p
 , for f ∈ B

s,p
a

 and y ∈ ℝ we have

If s >
1

p
 and s −

1

p
∉ ℕ0 , for f ∈ B

s,p
a

 and y ∈ ℝ given, define 
F(w) = f (w + iy) − Pf (⋅+iy);m;0(w) , w ∈ ℂ . Then, F ∈ B

s,p
a

 and

(5)⟨Tg,�⟩ ∶= 1√
2�

∫
ℝ

g(�)
�
�(�) − P

� ;m;0(�)
�
d�.

(6)f (z) = ⟨̂f0, eiz(⋅)⟩ =
1√
2�

∫
a

−a

g(�)
�
eiz� − Pm(iz�)

�
d�.

(7)f (z) = ⟨Tg, eiz(⋅)⟩ = 1√
2�

∫
a

−a

g(�)
�
eiz� − Pm(iz�)

�
d�.

‖f (⋅ + iy)‖Bs,p
a
≤ ea�y�‖f‖Bs,p

a
.

‖F‖Bs,p
a
≤ ea�y�‖f‖Bs,p

a
.
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Theorem 4 Let s > 0 and 1 < p < ∞ such that s − 1

p
∉ ℕ0 . Given a function h on the real 

line, the following conditions are equivalent. 

 (i) The function h is the restriction of an entire function f ∈ B
s,p
a

 to the real line, that is, 
h = f0;

 (ii) h ∈ Es,p and supp�h ⊆ [−a, a];
 (iii) h ∈ C∞ and it is such that h(n) ∈ Es,p for all n ∈ ℕ0 and ‖h(n)‖Es,p ≤ an‖h‖Es,p.

Finally, the spaces PWs
a
 are closed subspaces of the Hilbert spaces Es,2 , and thus there 

exists a Hilbert space projection operator �s ∶ Es,2
→ PWs

a
 . It is natural to study the map-

ping property of the operator �s with respect to the Lp norm. We prove the following result.

Theorem  5 Let s > 0 and 1 < p < ∞ such that s −
1

2
∉ ℕ0 , s −

1

p
∉ ℕ0 and 

⌊s − 1

2
⌋ = ⌊s − 1

p
⌋ . Then, the Hilbert space projection operator �s ∶ Es,2

→ PWs
a
 densely 

defined on Es,p ∩ Es,2 extends to a bounded operator �s ∶ Es,p
→ B

s,p
a

 for all s > 0 and 
1 < p < +∞.

The paper is organized as follows. After recalling some preliminary results in Sect. 2, 
we prove Theorem 1 and 2 in Sect.  3. In Sect.  4 we investigate the fractional Bernstein 
spaces proving Theorems 3 and 4, whereas in Sect. 5 we shortly discuss the sampling prob-
lem for the fractional Paley–Wiener spaces. Finally, we prove prove Theorem 5 in Sect. 6, 
and conclude with further remarks and open questions in Sect. 8.

2  Preliminaries

In this section we recall some results of harmonic analysis we will need in the remaining 
of the paper. We omit the proofs of the results and we refer the reader, for instance, to [25]. 
We do not recall the results in their full generality, but only in the version we need them.

Let 0 < s < 1 so that the function � → |�|−s is locally integrable. Then, the Riesz poten-
tial operator Is is defined on S as

Observe that if f ∈ S and 0 < s < 1 , then f = IsΔ
s

2 f = Δ
s

2 Isf .
For p ∈ (0,∞) we denote by Hp , the Hardy space on ℝ . Having fixed Φ ∈ S with 

∫ Φ = 1 , then

where

We recall that the definition of Hp is independent of the choice of Φ and that, when 
p ∈ (1,∞) , Hp coincides with Lp , with equivalence of norms.

(8)Isf = F
−1(| ⋅ |−sf̂ ).

(9)Hp =
{
f ∈ S

� ∶ f ∗(x) ∶= sup
t>0

|f ∗ Φt(x)| ∈ Lp
}
,

‖f‖Hp = ‖f ∗‖Lp .
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The Riesz potential operator extends to a bounded operator on Hp , 0 < p < ∞ , accord-
ing to the following theorem. Part (ii) is due to Adams, see [2].

Theorem 2.1 Let 0 < s < 1 , 0 < p < ∞ . 

 (i) If s < 1

p
 and 1

p∗
=

1

p
− s , then, Is extends to a bounded operator Is ∶ Hp

→ Hp∗.
 (ii) If s = 1

p
 , then, Is extends to a bounded operator Is ∶ Lp → BMO.

Definition 2.2 For M a nonnegative integer, define

and

We recall that, as it is elementary to verify, � ∈ SM , if and only if there exists Φ ∈ S 
such that � = Φ(M) . We will use this fact several times. We also recall that S∞ is dense 
in Hp for all p ∈ (0,∞) , see [25, Ch.II,5.2]. For these and other properties of the Hardy 
spaces see e.g. [25] or [15].

Notice that the Riesz potential operator Is is also well-defined on S∞ for any s ≥ 0 , 
since if f ∈ S∞ , then f̂  vanishes of infinite order at the origin. Moreover, for all s > 0

are both surjective bounded isomorphisms and in fact one the inverse of the other one; see 
e.g. [15, Chapter 1].

3  Fractional Paley–Wiener spaces

In this section we first prove Theorems 1 and 2, we deduce that the space PWs
a
 is a repro-

ducing kernel Hilbert space for every s > 0, s −
1

2
∉ ℕ0 , and explicitly compute its repro-

ducing kernel. We conclude this section by proving that the classical Paley–Wiener space 
PWa and PWs

a
 are actually isometric.

Lemma 3.1 Let f ∈ PWs
a
 , s > 0 . Then, supp�f0 ⊆ [−a, a] , so that f̂0 ∈ D

�

c
 , and 

(
f̂0
)
|Pm

= 0 , 
where m = ⌊s − 1

2
⌋.

Proof It is clear from the description of the realization spaces Es,2 that f0 ∈ S
� , hence, once 

we prove that supp�f0 ⊆ [−a, a] , it immediately follows that f̂0 ∈ D
�

c
 . Let � ∈ SM ∩ C∞

c
 , 

with M ≥ s . Given f ∈ PWs
a
 we define

SM =

{
f ∈ S ∶ �

ℝ

xkf (x) dx = 0 for k ∈ ℕ0, k ≤ M

}

S∞ =

{
f ∈ S ∶ ∫

ℝ

xkf (x) dx = 0 for all k ∈ ℕ0

}
.

(10)Is,Δ
s

2 ∶ S∞ → S∞

f
�
(z) ∶= ∫

ℝ

f (z − t)�(t) dt
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and we claim that f
�
∈ Ea and (f

�
)0 = f0 ∗ � ∈ L2 ; where the symbol ∗ denotes the stand-

ard convolution on the real line. The function f
�
 is clearly entire and, for every 𝜀 > 0,

where the last integral converges since � is compactly supported. Hence, f
�
∈ Ea . Moreo-

ver, since � ∈ SM , then � ∗ � ∈ SM as well for any � ∈ S . Therefore, if {𝜑n} ⊆ S is such 
that �n → f0 in S�∕Pm and Δ

s

2�n → Δ
s

2 f0 in L2 , for any � ∈ S we have1

The last equality follows using the Parseval identity, since � ∈ SM , hence � ∗ � ∈ SM 
as well, so that Is(� ∗ �) ∈ L2 . Moreover, if Ψ ∈ S is such that � ∗ � = Ψ(M) , we have 
Is(� ∗ �) = Is−�

(
R�Ψ(M−�)

)
 , where R denotes the Riesz transform, and � = ⌊s⌋ . Then,

where we have used Theorem 2.1 (i) with 1
2
=

1

p
− (s − �) . Notice that p could be either 

greater or smaller than 1. If p > 1 , then ‖Ψ(M−�)‖Hp ≈ ‖Ψ(M−�)‖Lp < ∞ since Ψ ∈ S , if 
p < 1 , the fact that ‖Ψ(M−�)‖Hp is finite if M is sufficiently large is a well-known fact, see 
e.g. [25]. Therefore,

for any � ∈ S . In particular f0 ∗ � = Δ
s

2 f0 ∗ Is� in L2 and if Φ ∈ S is such that Φ(M) = �,

for M sufficiently large, where we have used Theorem 2.1 (i) with 1 =
1

p
− (s − �) . This 

shows that (f
�
)0 ∈ L2 , and therefore, f

�
∈ PWa . Thus, supp(�f0 ∗ 𝜑) = supp(�f0 ⋅ �𝜑) ⊆ [−a, a] . 

Since for every �0 ≠ 0 , �0 ∈ ℝ , there exists � ∈ SM such that �̂(�0) ≠ 0 , we conclude that 
supp�f0 ⊆ [−a, a] as we wished to show.

Let now s > 1

2
 , s − 1

2
∉ ℕ , and let m = ⌊s − 1

2
⌋ . Fix � ∈ C∞

c
 , � ≥ 0 , � = 1 on [−a, a] . 

For 𝜀 > 0 , we adopt here and throughout the paper the notation

|f
�
(z)| ≤ �

ℝ

|f (z − t)|�(t)| dt ≤ C
�
e(a+�)|z| �

ℝ

e(a+�)|t||�(t)| dt ≤ Ce(a+�)|z|

⟨f0 ∗ �, �⟩ = ⟨f0,� ∗ �⟩
= lim

n→+∞
⟨�n,� ∗ �⟩

= lim
n→+∞

⟨Δ
s

2�n, Is(� ∗ �)⟩.

‖Is(𝜑 ∗ 𝜂)‖L2 = ‖R�
Is−�Ψ

(M−�)‖L2 ≤ C‖Ψ(M−�)‖Hp < ∞

⟨f0 ∗ �, �⟩ = lim
n→+∞

⟨Δ
s

2�n, Is(� ∗ �)⟩

= ⟨Δ
s

2 f0, Is(� ∗ �)⟩

= ⟨Δ
s

2 f0 ∗ Is�, �⟩

(11)

‖(f
𝜑
)0‖L2 = ‖f0 ∗ 𝜑‖L2 = ‖Δ

s

2 f0 ∗ R�
Is−�Φ

(M−�)‖L2 ≤ ‖f‖PWs
a
‖Is−�R�Φ(M−�)‖H1

≤ C‖f‖PWs
a
‖Φ(M−�)‖Hp < ∞ ,

�
�(x) = �(�x), �

�
(x) =

1

�
�(x∕�).

1 We warn the reader that, we shall denote with the same symbol ⟨⋅, ⋅⟩ different bilinear pairings of duality, 
such as ⟨S′

,S⟩ , ⟨D�

c
,C∞⟩ , ⟨Lp′ ,Lp⟩ , etc. The actual pairing of duality should be clear from the context and 

there should not be any confusion.
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Given Q =
∑m

j=0
qjx

j ∈ Pm , we have

This equality holds for all 0 < 𝜀 ≤ 1 and we observe that, since f0 is of moderate growth, 
both I

�
 and II

�
 are given by absolutely convergent integrals. Let M > 0 be such that 

|f0(x)| ≤ C(1 + |x|)M , for some C > 0 . We have

for any N > 0 . On the other hand, using Lebesgue’s dominated convergence theorem it is 
easy to see that, as � → 0,

since Pf0;m;0
= 0 and Q ∈ Pm . Hence, f̂0(Q) = 0 and we are done.   ◻

We now prove our first main theorem.

Proof of Theorem 1 We start proving the second part of the statement. Let g ∈ L2
a
(|�|2s) and 

define f as in (4). Then, since 0 < s <
1

2
 , for z = x + iy,

Therefore, f is well-defined, is clearly entire and belongs to Ea . We wish to show that 
f0 ∈ Es,2 . Observing that

⟨̂f0,Q⟩ = ⟨̂f0,��Q⟩ =
�
f0, �̂�

∗

� m�

j=0

(−1)jqjD
j
�0

��

=

� m�

j=0

qjD
jf0, �̂�

�

=

� m�

j=0

qjD
jf0,�

�
�̂
�

�
+

�
f0,

m�

j=0

(−1)jqjD
j
�
(1 − �

�)�̂
�

��

= I
�
+ II

�
.

|II
�
| ≤ C

m∑

j=0
�|x|≥ a

�

(1 + |x|)M 1

�j+1
Dj(�̂)(

x

�
) dx

≤ C

m∑

j=0
�|x|≥ a

�

(1 + |x|)M+m|Dj(�̂)(
x

�
)| dx

= C�

m∑

j=0
�|t|≥ a

�2

(1 + |�t|)M+m|Dj
�̂(t)| dt

≤ CN�
N ,

I
�
= ∫ Q(D)f0(�t)�(�

2t)�̂(t) dt → Q(D)f0(0)∫ �̂(t) dt = 0 ,

�f (z)� = ���
1√
2�

�
a

−a

g(�)eiz� d�
���

≤ C‖g‖L2
a
(���2s)

�

�
a

−a

���−2se−2y�
� 1

2 ≤ Cea�y�‖g‖L2
a
(���2s).
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and since Is ∶ L2 → L2
∗ , we see that f0 ∈ L2

∗ . Moreover, since f̂0 = g ∈ L2
a
(|�|2s) , it fol-

lows that Δ
s

2 f0 ∈ L2 . Hence f0 ∈ Es,2 , f ∈ PWs
a
 and

Now, let f ∈ PWs
a
 . Lemma 3.1 guarantees that f̂0 ∈ L2

a
(|�|2s) and in particular is compactly 

supported in [−a, a] . From the first part of the theorem, we know that the function

is a well-defined function in PWs
a
 and f̃0 = f0 . Hence, f and f̃  coincide everywhere as we 

wished to show.   ◻

Corollary 3.2 The spaces PWs
a
 , 0 < s <

1

2
 , are reproducing kernel Hilbert spaces with 

reproducing kernel

Proof From (3) we deduce that point-evaluations are bounded on PWs
a
 . In fact,

This easily implies that PWs
a
 is complete, hence a reproducing kernel Hilbert space. For 

z ∈ ℂ , the kernel function Kz satisfies2

Therefore, �(Kz)0(𝜉) =
1√
2𝜋
e−iz̄𝜉�𝜉�−2s𝜒[−a,a](𝜉) and the conclusion follows.   ◻

Next, we consider the case s > 1

2
.

Lemma 3.3 Let s > 1

2
 , s − 1

2
∉ ℕ and let m = ⌊s − 1

2
⌋ . Given g ∈ L2(|�|2s) define Tg ∈ S

� as

f0(x) =
1√
2�

∫
a

−a

g(�)eix� d� = IsF
−1(g���s)(x) ,

‖f‖PWs
a
= ‖g‖L2

a
(���2s).

f̃ (z) ∶=
1√
2�

∫
a

−a

f̂0(�)e
iz� d�

K(w, z) =
1

2𝜋 ∫
a

−a

ei(w−z̄)𝜉|𝜉|−2s d𝜉.

�f (z)� =
������

1√
2�

�
a

−a

f̂0(�)e
iz� d�

������

≤ C‖f̂0‖L2
a
(���2s)

�
�

a

−a

e−2y����−2s d�
� 1

2 ≤ Cea�y�‖f̂0‖L2
a
(���2s).

1√
2�

∫
a

−a

f̂0(�)e
iz� d� = f (z) =

�
f �Kz

�
PWs

a

=
�
f̂0 � (̂Kz)0

�
L2
a
(���2s)

= ∫
a

−a

f̂0(�)(̂Kz)0(�)���2s d�.

2 We denote by ⟨⋅ � ⋅⟩H the Hermitian inner product on a given Hilbert space H.
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for any � ∈ S . Then, Tg is well-defined and T ∶ L2(|�|2s) → S
� is a continuous operator.

Proof By Hölder’s inequality we have

Notice that, since m = ⌊s − 1

2
⌋ and s − 1

2
∉ ℕ , we have − 3

2
< m − s < −

1

2
 . Hence,

where C
�
 denotes a finite positive constant bounded by some Schwartz seminorm of � . 

Moreover,

From these estimates it is clear that T ∶ L2(|�|2s) → S
� is a continuous operator as we 

wished to show.   ◻

Lemma 3.4 Let s > 1

2
 , s − 1

2
∉ ℕ and m = ⌊s − 1

2
⌋ . Given f ∈ PWs

a
 there exists a unique 

g ∈ L2
a
(|�|2s) such that f̂0 = Tg in S′ , that is,

for all � ∈ S.

Proof By the results in [18], since f0 ∈ Es,2 , there exists a sequence {𝜑n} ⊆ S such that 
{Δ

s

2�n} is a Cauchy sequence in L2 , and �n → f0 in S�∕Pm , where m = ⌊s − 1

2
⌋ , that is, 

⟨�n,�⟩ → ⟨f0,�⟩ = ⟨̂f0, �̂⟩ , as n → ∞ , for all � ∈ Sm . Therefore,

as n → ∞ , for all � ∈ Ŝm = S ∩ {� ∈ S ∶ P
�;m;0} = 0 . Moreover, there exists a unique 

g ∈ L2(|�|2s) such that �̂n → g in L2(|�|2s) . Since T ∶ L2(|�|2s) → S
� is continuous, we also 

(12)⟨Tg,�⟩ ∶= 1√
2�

∫
ℝ

g(�)
�
�(�) − P

� ;m;0(�)
�
d�

�⟨Tg,�⟩� ≤ ‖g‖L2(���2s)
�

�
ℝ

��(�) − P
� ;m;0(�)�2���−2s

� 1

2

≤ ‖g‖L2(���2s)
��

����≤1
+����≥1

�
��(�) − P

� ;m;0(�)�2���−2s d�
� 1

2

�|�|≥1
|�(�) − P

� ;m;0(�)|2|�|−2s d�

≤ �|�|≥1
|�(�)|2|�|2s d� + �|�|≥1

|P
� ;m;0(�)|2|�|−2s d�

≤ �|�|≥1
|�(�)|2|�|2s d� + max

0≤j≤m |�
(j)(0)|

(
�|�|≥1

|�|2(m−s)
) 1

2

≤ C
�
,

�|𝜉|≤1
|𝜓(𝜉) − P

𝜓 ;m;0(𝜉)|2|𝜉|−2s d𝜉 ≤ sup
|𝜉|≤1

|𝜓 (m+1)(𝜉)|�|𝜉|≤1
|𝜉|2(m+1−s) d𝜉 < +∞.

⟨̂f0,�⟩ = ⟨Tg,�⟩ = 1√
2�

∫
a

−a

g(�)
�
�(�) − P

� ;m;0(�)
�
d�

⟨�̂n, �⟩ → ⟨̂f0, �⟩
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have that T�̂n → Tg in S′ . We now prove that it holds also T�̂n → f̂0 in (Ŝm)
� In fact, given 

� ∈ Ŝm , we have

Therefore, f̂0 = Tg in (Ŝm)
� , that is, if Q(D)(�) =

∑m

j=0
cj�

(j),

in S′ . In particular, this implies that suppTg ⊂ [−a, a] , hence, Tg ∈ D
�

c
 and suppg ⊆ [−a, a].

We now prove that Q(D)(�) = 0 . Let P ∈ Pm and let � ∈ C∞
c

 such that � ≡ 1 on [−a, a] 
so that �P ∈ S . Since f̂0 is supported in [−a, a] from Lemma 3.1 we get

and, since Tg is supported in [−a, a] as well,

since P
�P,m;0 = �P on [−a, a] . Therefore, we obtain that ⟨Q(D)(�), �P⟩ = 0 as well and, by 

the arbitrariness of �P , we conclude that Q(D)(�) = 0 as we wished to show. Thus, f̂0 = Tg 
in S′ .   ◻

Before proving the next lemma, we need the following definition. Given s > 0 and 
� ∈ Ŝ∞ , notice that |�|s� ∈ Ŝ∞ . Then, given U in S′ , for any we define |�|sU by setting

We now prove the following simple, but not obvious, lemma.

Lemma 3.5 Let s > 1

2
, s −

1

2
∉ ℕ and let f ∈ PWs

a
 . Then, F(Δ

s

2 f0) = |�|sf̂0 , with equality in 
L2
a
.

Proof Since f ∈ PWs
a
 , we already know that F(Δ

s

2 f0) ∈ L2 . We now consider |�|sf̂0 ∈ (Ŝ∞)
� 

and we show that it actually belongs to L2
a
 . Then, we show it coincides with F(Δ

s

2 f0) . Let 
� ∈ Ŝ∞ . Then, from Lemma 3.4 there exists g ∈ L2

a
(|�|2s) such that

since P|�|s� ;m;0 = 0 . Hence,

⟨T�̂n,�⟩ = ∫
ℝ

�̂n(�)
�
�(�) − P

� ;m;0(�)
�
d� = ∫

ℝ

�̂n(�)�(�) d� = ∫
ℝ

�n(�)�̂(�) d�

→ ∫
ℝ

f0(�)�̂(�) d� = ⟨̂f0,�⟩.

f̂0 = Tg + Q(D)(�)

⟨̂f0, �P⟩ = ⟨̂f0,P⟩ = 0

⟨Tg, �P⟩ = ∫
a

−a

g(�)
�
(�P)(�) − P

�P,m;0(�)
�
d� = 0

⟨���sU,�⟩ = ⟨U, ���s�⟩.

⟨���sf̂0,�⟩ = ⟨̂f0, ���s�⟩ = ⟨Tg, ���s�⟩ = 1√
2�

∫
a

−a

g(�)
�
���s�(�) − P���s� ;m;0(�)

�
d�

=
1√
2�

∫
a

−a

g(�)���s�(�) d� ,

�⟨���sf̂0,�⟩� ≤ C‖g‖L2
a
(���2s)‖�‖L2 .
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By the density of Ŝ∞ in L2 , we conclude that |�|sf̂0 ∈ (L2)� , that is, |�|sf̂0 ∈ L2
a
 as we wished 

to show. Now, since f0 ∈ Es,2 , there exists {𝜑n} ⊆ S such that �n → f0 in S�∕Pm and 
{Δ

s

2�n} is a Cauchy sequence in L2 . Then, for � ∈ S∞ , which is dense in L2 , we have

The conclusion follows from the density of S∞ ⊆ L2 .   ◻

Proof of Theorem 2 We first prove the second part of the theorem. Recall that m = ⌊s − 1

2
⌋ 

is the integer part of s − 1

2
 . Given f defined as in (7), we see that for every 𝜀 > 0

since 2(m − s + 1) > −1 and where we have used the inequality 
∑+∞

j=0
rj∕(j + m + 1)! ≤ er , 

for r > 0 . Hence, f is well-defined, clearly entire and it belongs to Ea . Since it is clear that 
Pf ;m;0 = 0 , it remains to show that f0 ∈ Es,2 . We have

so that,

Hence,

⟨Δ
s

2 f ,�⟩ = lim
n→+∞

⟨Δ
s

2�n,�⟩ = lim
n→+∞

⟨���s�̂n, �̂⟩ = lim
n→+∞

⟨�̂n, ���s�̂⟩

= lim
n→+∞

⟨�n,F
−1
�
���s�̂

�
⟩ = ⟨f0,F−1

�
���s�̂

�
⟩ = ⟨̂f0, ���s�̂⟩

= ⟨���sf̂0,�⟩.

������

1√
2�

�
a

−a

g(�)
�
eiz� − Pm(iz�)

�
d�

������

≤
�

1√
2�

�
a

−a

���2s�g(�)�2 d�
� 1

2�

�
a

−a

���−2s�eiz� − Pm(iz�)�2 d�
� 1

2

≤ Cea�z��z�m+1‖g‖L2
a
(���2s)

�

�
a

−a

���2(m−s+1) d�
� 1

2

≤ C
�
e(a+�)�z�

f
(m)

0
(x + h) − f

(m)

0
(x) =

1√
2�

∫
a

−a

g(�)(i�)m(ei(x+h)� − eix�) d�

=
1√
2�

∫
a

−a

g(�)(i�)meix�(eih� − 1) d�,

�f (m)
0

(x + h) − f
(m)

0
(x)� ≤ 1√

2�
�

a

−a

���s�g(�)�eih� − 1����m−s d�

≤ C‖g‖2
L2
a
(���2s)

�

�
a

−a

�eih� − 1�2���2(m−s) d�
� 1

2

≤ C�h�s−
1

2
−m‖g‖2

L2
a
(���2s)

�

�
ℝ

�eit − 1�2�t�2(m−s) dt
� 1

2

≤ C�h�s−
1

2
−m‖g‖2

L2
a
(���2s).
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and we conclude that f0 ∈ Λ̇
s−

1

2 as we wished to show (see [15, Proposition 1.4.5]). Next, 
we need to show that Δ

s

2 f0 ∈ L2 and ‖Δ
s

2 f0‖L2 = ‖g‖L2
a
(���2s).

To this end, let {𝜓n} ⊆ S be such that �n → g in L2
a
(|�|2s) and define �n as in (7), that is,

where, we recall, m = ⌊s − 1

2
⌋ . Observe that, by (12), �n(x) = ⟨T�n, e

ix(⋅)⟩ . Given � ∈ S , 
using Lemma 3.3, we have that all integrals in the equalities that follow converge abso-
lutely and we have that

Therefore, �n → f0 in S′ . Moreover, we have that Dm+1
�n = F

−1
(
(i�)m+1�n

)
 and setting 

s� ∶= s − (m + 1) ∈ (−
1

2
,
1

2
) we have that, on Schwartz functions, Δ

s

2 = Rm+1Δ
s�

2 Dm+1 . 
Therefore,

It follows that {Δ
s

2�n} is a Cauchy sequence in L2 and that

Let us consider now f ∈ PWs
a
 . From Lemmas 3.1 and 3.4 we know that supp�f0 ⊆ [−a, a] , 

and that there exists a unique g ∈ L2
a
(|�|2s) such that f̂0 = Tg in S′ . Hence, the function

is a well-defined function in PWs
a
 by the first part of the proof. Moreover,

so that F(Dm+1 f̃0) = (i𝜉)m+1g . On the other hand, we also have that

Now, for � ∈ S,

sup
h∈ℝ,h≠0

�f (m)
0

(x + h) − f
(m)

0
(x)�

�h�s−
1

2
−m

≤ C‖g‖2
L2
a
(���2s)

�n(x) =
1√
2�

∫
a

−a

�n(�)
�
eix� − Pm(ix�)

�
d� ,

lim
n→∞

⟨�n, �⟩ = lim
n→∞

1√
2�

∫
a

−a

�n(�)
�
�̂(�) − Pm;�̂;0(�)

�
d�dx

= lim
n→∞

⟨T�n, �̂⟩ = ⟨Tg, �̂⟩ = ⟨f0, �⟩.

‖Δ
s

2�n‖L2 = ‖Δ
s�

2 Dm+1
�n‖L2 = ‖F

�
Dm+1

�n

�
‖L2(���2s� ) = ‖�n‖L2(���2s).

‖Δ
s

2 f0‖L2 = lim
n→∞

‖�n‖L2(���2s) = ‖g‖L2
a
(���2s).

f̃ (z) ∶=
1√
2�

∫
a

−a

g(�)
�
eiz� − Pm(iz�)

�
d�

Dm+1
z

f̃0(x) =
1√
2�

∫
a

−a

(i�)m+1g(�)eix� d�,

F(f
(m+1)

0
) = (i�)m+1 f̂0 = (i�)m+1Tg.
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hence F(f (m+1)
0

) = F(Dm+1 f̃0) , i.e., f (m+1)
0

= f̃
(m+1)

0
 . Therefore, f and f̃  coincide up to a poly-

nomial of degree at most m. Since Pf ;m;0 = P
f̃ ;m;0 ≡ 0 , we get f̃ = f  ; in particular,

and ‖Δ
s

2 f0‖L2 = ‖g‖L2
a
(���2s) , as we wished to show.   ◻

As in the case s < 1

2
 , we have the following

Corollary 3.6 For s > 1

2
, s −

1

2
∉ ℕ , the spaces PWs

a
 , are reproducing kernel Hilbert spaces 

with reproducing kernel

Notice that, since Kz = K(⋅, z) ∈ PWs
a
 , PKz;m;0

= 0 , that is, Kz vanishes of order m at 
the origin, where m = ⌊s − 1

2
⌋.

Proof From the previous theorem we know that the Fourier transform is a surjective 
isometry from PWs

a
 onto T(L2

a
(|�|2s)) , the closed subspace of S′ endowed with norm 

‖Tg‖ ∶= ‖g‖L2
a
(���2s) . Therefore, PWs

a
 are Hilbert spaces.

Similarly to the proof of Corollary 3.2 we deduce from the representation formula (6) 
that the spaces PWs

a
 are reproducing kernel Hilbert spaces. Then,

and therefore,

From this identity and (6), the conclusion follows.   ◻

The following lemma is obvious and we leave the details to the reader (or see the 
proof of Lemma 4.1).

Lemma 3.7 The space {f ∈ PWa ∶ f0 ∈ S∞} is dense in PWa.

⟨(i𝜉)m+1Tg,𝜓⟩ = ⟨Tg, (i𝜉)m+1𝜓⟩

=
1√
2𝜋

∫
a

−a

g(𝜉)
�
(i𝜉)m+1𝜓(𝜉) − P(i𝜉)m+1𝜓 ;m;0(𝜉)

�
d𝜉

=
1√
2𝜋

∫
a

−a

g(𝜉)(i𝜉)m+1𝜓(𝜉) d𝜉

= ⟨F(Dm+1 f̃0),𝜓⟩,

f (z) =
1√
2�

∫
a

−a

g(�)
�
eiz� − Pm(iz�)

�
d�

K(w, z) =
1

2𝜋 ∫
a

−a

(
eiw𝜉 − Pm(iw𝜉)

)(
e−iz̄𝜉 − Pm(−iz̄𝜉)

)
|𝜉|−2s d𝜉.

1√
2�

∫
a

−a

f̂0(�)
�
eiz� − Pm(iz�)

�
d� = f (z) =

�
f �Kz

�
PWs

a

= ∫
a

−a

���2sf̂0(�)(̂Kz)0(�) d�

�(Kz)0(𝜉) =
1√
2𝜋

�
e−iz̄𝜉 − Pm(−iz̄𝜉)

�
�𝜉�−2s.
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We now show that the fractional Laplacian Δ
s

2 induces a surjective isometry from 
PWs

a
 onto PWa.

Theorem 3.8 Let s > 0 and assume s − 1

2
∉ ℕ0 . Then, the operator Δ

s

2 ∶ PWs
a
→ PWa is a 

surjective isometry, whose inverse is Is if 0 < s <
1

2
 , whereas if s > 1

2
 the inverse is given by

with h ∈ PWa.

Proof We only need to prove the theorem in the case s > 1

2
, s −

1

2
∉ ℕ . We recall that from 

Lemma 3.5, if f ∈ PWs
a
 , F(Δ

s

2 f0) = |�|sf̂0 ∈ L2
a
 . Hence, the map f ↦ Δ

s

2 f0 is clearly an 
isometry, and supp

(
F(Δ

s

2 f0)
)
⊆ [−a, a] . By the classical Paley–Wiener theorem, Δ

s

2 f0 
extends to a function in PWa , that we denote by Δ

s

2 f .
Let us focus on the surjectivity. Let h ∈ PWa , then, by the previous lemma, there exists 

a sequence {𝜑n} ⊆ {h ∈ PWa ∶ h0 ∈ S∞} such that ‖h − �n‖PWa
→ 0 as n → ∞ . Set

We observe that, since �n ∈ S∞ , we can write

since both the integrals converge absolutely. We are going to show that Φn ∈ PWs
a
 , {Φn} 

is a Cauchy sequence in PWs
a
 , and that Δ

s

2Φn → g in L2 . From these facts the surjectivity 
follows at once. As in the proofs of Theorems 1 and 2, we see that Φn ∈ PWs

a
 . Moreover, 

using [18, Corollary 3.4] and the fact that �n ∈ S∞ , we see that

Hence, Δ
s

2Φn → g in L2 , and the surjectivity follows.
In order to show that the inverse of Δ

s

2 has the expression (13), we observe that 
ĥ0(�)|�|−s ∈ L2

a
(|�|2s) , so that arguing as in the proof of Theorem  2, we see that 

F =
(
Δ

s

2

)−1
h ∈ PWs

a
 . Now, if {gn} ⊆ C∞

c

(
{𝛿n ≤ |𝜉| ≤ a − 𝛿n}

)
 are such that �n → 0 and 

gn → ĥ0(�)|�|−s in L2
a
(|�|2s) , using [18, Corollary 3.4] again we have

Thus, Δ
s

2F = h and the surjectivity follows.   ◻

(13)
�
Δ

s

2

�−1
h(z) =

1√
2�

∫
a

−a

ĥ0(�)���−s
�
eiz� − Pm(iz�)

�
d� ,

(14)Φn(z) =
1√
2�

∫
a

−a

�̂n(�)���−s
�
eiz� − Pm(iz�)

�
d�.

Φn(z) =
1√
2�

∫
a

−a

�̂n(�)���−seiz� d� −
1√
2�

∫
a

−a

�̂n(�)���−sPm(iz�) d�

Δ
s

2Φn = Δ
s

2

(
F

−1(�̂n|�|−s)
)
= �n.

F
�
Δ

s

2F0

�
(t) = lim

n→∞
F

�
Δ

s

2
1√
2�

∫
a

−a

gn(�)
�
eix� − Pm(ix�)

�
d�

�
(t)

= lim
n→∞

F

�
Δ

s

2
1√
2�

∫
a

−a

gn(�)e
ix� d�

�
(t)

= lim
n→∞

�t�sgn(t) = ĥ0(t).
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4  Fractional Bernstein spaces

In this section we study the fractional Bernstein spaces and we first show that the spaces 
B
s,p
a

 are isometric to the classical Bernstein spaces Bp
a
 . The proof is similar to the Hilbert 

case, but we have to overcome the fact that Plancherel and Parseval’s formulas are no 
longer available.

We need the following density lemma.

Lemma 4.1 Let 1 < p < ∞ . Then, the space T = {f ∈ Ea ∶ f0 ∈ S∞} is dense in Bp
a
.

The proof of such lemma is somewhat elementary but not immediate and it is post-
poned to Sect. 7.

Theorem 4.2 Let s > 0 such that s − 1

p
∉ ℕ0 . Then, the operator Δ

s

2 is a surjective isometry

and the inverse is as in (13) (with h ∈ B
p
a
).

Proof We first notice that Δ
s

2 is injective on Bs,p
a

 since these spaces are defined using the 
realizations Es,p of the homogeneous Sobolev spaces Ẇs,p.

We now prove that Δ
s

2 f ∈ B
p
a
 whenever f ∈ B

s,p
a

 . Due to the characterization of 
the Bernstein spaces, Δ

s

2 f  is in Bp
a
 if and only if Δ

s

2 f0 ∈ Lp and supp�Δ
s

2 f0 ⊆ [−a, a] . Let 
� ∈ C∞

c
∩ SM , with M to be chosen later. Given f ∈ B

s,p
a

 we set

and we claim that f
�
∈ Ea and (f

�
)0 ∈ Lp(ℝ) . In fact, f

�
 is clearly entire and, for every 

𝜀 > 0,

where the last integral converges since � is continuous and compactly supported. Hence, 
f
�
 is of exponential type a. Now, let (f

�
)0 = f0 ∗ � be the restriction of f

�
 to the real 

line. Since f0 ∈ Es,p there exists a sequence {𝜑n} ⊆ S such that �n → f0 in S�∕Pm , where 
m = ⌊s − 1∕p⌋ and {Δ

s

2�n} is a Cauchy sequence in Lp . We now argue as in (11). Since 
� ∈ SM , let Φ ∈ S be such that � = Φ(M) , so that Is� = R�Is−�Φ

(M−�) , where R denotes 
the Riesz transform. Then we have

Δ
s

2 ∶ B
s,p
a

→ B
p
a

f
�
(z) ∶= ∫

ℝ

f (z − t)�(t) dt

|f
𝜑
(z)| ≤ �

ℝ

|f (z − t)𝜑(t)| dt ≤ C
𝜀
e(a+𝜀)|z| �

ℝ

e(a+𝜀)|t||𝜑(t)| dt < +∞,

�
ℝ

�(�n ∗ �)(x)�p dx = �
ℝ

�Δ
s

2�n ∗ Is�(x)�p dx

≤ ‖Δ
s

2�n‖Lp‖(R�
Is−�Φ

(M−�)‖H1

≤ C‖Δ
s

2�n‖Lp‖Φ(M−�)‖Hq

≤ C
�
‖Δ

s

2�n‖Lp ,
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where 1 =
1

q
− (s − �) , choosing � = ⌊s⌋ in such a way that q ≤ 1 . In particular, we get that 

{�n ∗ �} is a Cauchy sequence in Lp . Since �n ∗ � → f0 ∗ � in S�∕Pm and Sm is dense in 
Lp

′ , we see that �n ∗ � → f0 ∗ � = (f
�
)0 in Lp.

Therefore, f
�
 is an exponential function of type a whose restriction to the real line is Lp

-integrable. Hence, f
�
∈ B

p
a
 and supp�(f

𝜑
)0 = supp(�f0�𝜑) ⊆ [−a, a] . From the arbitrariness of 

� we conclude that supp�f0 ⊆ [−a, a].
We now argue as in the proof of Lemma 3.5, to show that also supp�Δ

s

2 f0 ⊆ [−a, a] . 
Let Φn ∈ C∞

c
({�n ≤ |�| ≤ a}) , Φn → f̂0 in S′ , and setting �n = F

−1
(
Φn

)
 we have �n ∈ S∞ . 

Now, for � ∈ S , as n → ∞ we have

where the pairings are in S′ . Thus, �n → f0 in S′ , which implies that Δ
s

2 �n → Δ
s

2 f0 in S�∕P , 
so that

as we wished to show.
Since Δ

s

2 f0 ∈ Lp by hypothesis, we conclude that Δ
s

2 f0 is the restriction to the real line 
of a function in Bp

a
 , function that we denote by Δ

s

2 f  . Moreover, we trivially have the equal-
ity ‖f‖Bs,p

a
= ‖Δ

s

2 f‖Bp
a
.

It remains to prove that Δ
s

2 is surjective. Let h ∈ B
p
a
 . Then, by Lemma 4.1, there exists a 

sequence {hn} ⊆ T = {h ∈ B
p
a
∶ h0 ∈ S∞} such that hn → h in Bp

a
.

Let 0 < s <
1

p
 and set

Then, Fn ∈ Ea , Δ
s

2 (Fn)0 = (hn)0 and {Fn} is a Cauchy sequence in B
s,p
a

 since 
‖Fn‖Bs,p

a
= ‖hn‖Bp

a
 . In particular, this means that {(Fn)0} is a Cauchy sequence in Es,p . 

Hence, there exists a limit function F̃ ∈ Es,p . We need to prove that F̃ is the restriction to 
the real line of a function in Bs,p

a
.

Since s < 1

p
 , by Parseval’s identity, we have

so that

where p, p′ are conjugate indices. Observing that

from Theorem 2.1 we obtain

since p�

1+sp�
> 1 . However, for z fixed,

⟨�n,�⟩ = ⟨Φn, �̂⟩ → ⟨̂f0, �̂⟩ = ⟨f0,�⟩ ,

supp
�
Δ

s

2 f0 ⊆
⋃

n

supp
�
Δ

s

2 𝜂n ∪ {0} ⊆ [−a, a] ,

Fn(z) =
1√
2�

∫
a

−a

(̂hn)0(�)���−seiz� d�.

Fn(z) = ∫
ℝ

hn(x)F
−1
(
|�|−seiz��[−a,a]

)
(x) dx ,

�Fn(z)� ≤ ‖(hn)0‖Lp‖F−1
�
���−seiz��[−a,a]

�
‖Lp� ,

F
−1
(
|�|−seiz��[−a,a]

)
= Is

(
F

−1(eiz��[−a,a])
)
,

‖F−1
�
���−seiz��[−a,a]

�
‖Lp� ≤ C‖F−1

�
eiz��[−a,a]

�
‖
L

p�

1+sp�
,
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belongs to Bq
a
 for any q ∈ (1,∞) . Therefore, by the classical Plancherel–Pólya Inequality, 

we obtain

where y = Imz . In conclusion,

Since ‖(hn)0‖Lp = ‖hn‖Bp
a
 , we just proved that the Bp

a
-convergence of {hn} implies the uni-

form convergence on compact subsets of ℂ of {Fn} to a function F of exponential type a. 
Necessarily, F|

ℝ
= F̃ as we wished to show. Notice that we also have that

that is, the inverse is given by equation (13).
Suppose now that s > 1

p
, s −

1

p
∉ ℕ0 . Again, let h ∈ B

p
a
 , {hn} ⊆ T  , hn → h in Bp

a and set

where m = ⌊s − 1∕p⌋ . Then, Fn ∈ Ea and Δ
s

2 (Fn)0 = (hn)0 by [18, Corollary 3.4]. Thus, 
{Fn} is a Cauchy sequence in Bs,p

a
 , that is, {(Fn)0} is a Cauchy sequence in Es,p , hence there 

exists a limit function F̃ ∈ Es,p . We need to prove that F̃ is the restriction of some entire 
function of exponential type a.

Differentiating m + 1 times, since s� ∶= m + 1 − s ∈ (−1∕p, 1∕p�) the integrals below 
converge absolutely so that

Then, if − 1

p
< s� < 0 , the term on the right hand side in (15) equals

and by Theorem 2.1 we obtain

where 1
q
=

1

p�
− s� , by the classical Plancherel–Pólya inequality. If 0 ≤ s′ <

1

p′
 , we repeat 

the same argument with s� − 1 in place of s′ , observing that the the term on the right hand 
side in (15) equals

F
−1
(
eiz��[−a,a]

)
(t) =

a

2�
sinc(a(z + t))

‖F−1
�
���−seiz��[−a,a]

�
‖Lp� ≤ Cea�y�‖sinc(a�)‖

L

p�

1+sp�
,

�Fn(z)� ≤ Cea�y�‖(hn)0‖Lp .

Δ
s

2F0 = lim
n→+∞

Δ
s

2 (Fn)0 = lim
n→+∞

(hn)0 = h0 ,

Fn(z) =
1√
2�

∫
a

−a

(̂hn)0(�)���−s
�
eiz� − Pm(iz�)

�
d� ,

(15)

F(m+1)
n

(z) =
1√
2�

∫
a

−a

(̂hn)0(�)���−s(i�)m+1eiz� d�

= ∫
ℝ

hn(t)F
−1
�
(i�)m+1���−seiz��[−a,a]

�
(t) dt.

∫
ℝ

hn(t)R
m+1

Is�sinc(z − t) dt ,

(16)
�F(m+1)

n
(z)� ≤ C‖(hn)0‖Lp‖sinc(z − ⋅)‖Lq

≤ Cea�y�‖(hn)0‖Lp ,
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and using the classical Bernstein inequality as well.
Therefore, the convergence of {hn} in Bp

a
 implies the uniform convergence on compact 

subsets of ℂ of {F(m+1)
n

} and, in particular, the limit function Gm+1 is of exponential type a. 
Then, F is the anti-derivative of Gm+1 such that PF;m,0 = 0 and F|

ℝ
= F̃ , as we wished to 

show. This shows that the inverse is as in (13) and concludes the proof of the theorem.  
 ◻

Corollary 4.3 Let s > 0 , 1 < p < ∞ and s − 1

p
∉ ℕ0 . Then, norm convergence in Bs,p

a
 implies 

uniform convergence on compact subsets of ℂ.

Proof Let f ∈ B
s,p
a

 . From the identity, (13) with h ∈ B
p
a
 , arguing as in (16), we obtain that

Since Pf ;m;0 = 0 , it follows that for any compact K ⊆ ℂ,

  ◻

We are now ready to prove Theorems 3 and 4.

Proof of Theorem 3 We observe that the completeness follows from the above corollary, or 
from the surjective isometry between Bs,p

a
 and Bp

a
 . For the second part of the theorem we 

argue as follows. Let h ∈ T  , and as in the proof of Theorem 4.2 define

and therefore

Hence,

Hence, from (13), we conclude that F ∈ B
s,p
a

 since, by the classical Plancherel–Pólya ine-
quality ( [26]), h(⋅ + iy) ∈ B

p
a
 and by Theorem 4.2 we obtain

∫
ℝ

hn(t)R
m
Is�−1

(
Dsinc(z − ⋅)

)
(t) dt ,

�f (m+1)(z)� ≤ ea�y�‖Δ
s

2 f‖Bp
a
= ea�y�‖f‖Bs,p

a
.

sup
z∈K

�f (z)� ≤ CK‖f‖Bs,p
a
.

f (w) = (Δ
s

2 )−1h(w) =
1√
2�

∫
a

−a

ĥ0(�)���−s
�
eiw� − Pm(iw�)

�
d� ,

Pf (⋅+iy);m;0(w) =
1√
2�

∫
a

−a

ĥ0(�)���−s
�
e−y�Pm(iw�) − Pm(i(w + iy)�)

�
d�.

F(w) = f (w + iy) − Pf (⋅+iy);m;0(w)

=
1√
2�

∫
a

−a

ĥ0(�)e
−y����−s

�
eiw� − Pm(i(w + iy)�)

�
d�

=
1√
2�

∫
a

−a

ĥ0(⋅ + iy)(�)���−s
�
eiw� − Pm(iw�)

�
d� = (Δ

s

2 )−1
�
h(⋅ + iy)

�
(w).
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as we wished to show. The conclusion now follows from Lemma 4.1.   ◻

Proof of Theorem 4 If f ∈ B
s,p
a

 , then f0 ∈ Es,p and supp�f0 ⊆ [−a, a] , hence (i) implies (ii).

If (ii) holds, then Δ
s

2 h ∈ Lp and supp
�
Δ

s

2 h ⊆ supp�h ⊆ [−a, a] . Hence, it fol-
lows that Δ

s

2 h = f0 , for some f ∈ B
p
a
 . Setting F = (Δ

s

2 )−1f  we have F ∈ B
s,p
a

 . Hence, 
Δ

s

2F0 = f0 = Δ
s

2 h . Since F0, h ∈ Es,p and Δ
s

2 is injective on Es,p , it follows that F0 = h , that 
is, (ii) implies (i).

By applying the classical characterization of Bernstein spaces to Δ
s

2 h and Theorem 4.2 
we easily see that (ii) and (iii) are equivalent.   ◻

5  Reconstruction formulas and sampling in PWs

a

In this small section we make some comments and observations on reconstruction formu-
las and sampling for the fractional Paley–Wiener spaces PWs

a
 . In particular we conclude 

that the fractional Paley–Wiener spaces are not de Branges spaces.

Proposition 5.1 Let 0 < s <
1

2
 . Then, the set {�(⋅ − n�∕a)}n∈ℤ,

is an orthonormal basis for PWs
a
.

If s > 1

2
, s −

1

2
∉ ℕ , the set {�(⋅ − n�∕a)}n∈ℤ,

is an orthonormal basis for PWs
a
.

Proof It is a well known fact that the family of functions {�n}n∈ℤ,

is an orthonormal basis for PWa . The conclusion follows from Theorem 3.8.

We have the following consequences.

Corollary 5.2 For every f ∈ PWs
a
 we have the orthogonal expansion

where the series converges in norm and uniformly on compact subsets of ℂ . Moreover,

‖F‖Bs,p
a
= ‖h(⋅ + iy)‖Bp

a
≤ ea�y�‖h‖Bp

a
= ea�y�‖f‖Bs,p

a

�(z − n�∕a) =
1

2
√
a� ∫

a

−a

e
in

�

a
�
eiz����−s d�

�(z − n�∕a) =
1

2
√
a� ∫

a

−a

e
in

�

a
�
�
eiz� − Pm(iz�)

�
���−s d�

�n(z) =
1

2
√
a� ∫

a

−a

e
it(n

�

a
−z)

dt =
√
a∕�sinc

�
a(z − n�∕a)

�

(17)f (z) =
∑

n∈ℤ

Δ
s

2 f (n�∕a)�(z − n�∕a) ,
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Proof By the classical theory of Hilbert spaces and Plancherel’s formula, we get

where the series convergences in PWs
a
-norm, hence uniformly convergence on the compact 

subsets of ℂ . Finally, formula (18) follows from Theorem 3.8 and the classical Shannon–
Kotelnikov formula.   ◻

A few comments are in order. Both the reconstruction formula (17) and the norm 
identity (18) resemble some known results for the Paley–Wiener space PWa . In particu-
lar, equation (18) can be thought as a substitute of the Shannon–Kotelnikov sampling 
theorem in the setting of fractional Paley–Wiener spaces. However, these results are 
somehow unsatisfactory: we recover the function f and its norm from point evaluations 
of the fractional Laplacian Δ

s

2 f  and not of the function itself. Hence, it is a very natural 
question if we can do something better. Indeed, this is the case for the reconstruction 
formula (17), but we cannot really improve (18). For simplicity, we now restrict our-
selves to the case 0 < s <

1

2
.

Proposition 5.3 Let f ∈ PWs
a
 , 0 < s <

1

2
 . Then, for z ∈ ℂ,

where the series converges absolutely and uniformly on compact subsets of ℂ.

Proof Let f ∈ PWs
a
 and let {fk} ⊆ PWa be a sequence such that fk → f  in PWs

a
 . Then, by 

the Shannon–Kotelnikov theorem, we have that

where the series converges absolutely and in PWa-norm. However, norm convergence in 
PWa implies uniform convergence on compact subsets of ℂ . Thus, we obtain

  ◻

We now point out that, in general, we cannot improve (17) with point evaluations of f 
instead of its fractional Laplacian. More generally, we would like to know if it is possible 

(18)‖f‖2
PWs

a

=
a

�

�

n∈ℤ

�Δ
s

2 f (n�∕a)�2.

f =
�

n∈ℤ

⟨f ��(⋅ − n�∕a)⟩PWs
a
�(⋅ − n�∕a)

=
�

n∈ℤ

a

�

�
1√
2�

∫
a

−a

���sf̂0(�)ein
�

a
�
d�

�
�(⋅ − n�∕a)

=
�

n∈ℤ

Δ
s

2 f (n�∕a)�(⋅ − n�∕a),

f (z) =
∑

n∈ℤ

f (n�∕a)sinc
(
a(z − n�∕a)

)
,

fk(x) =
∑

n∈ℤ

fk(n�∕a)sinc
(
a(x − n�∕a)

)
,

f (x) = lim
k→+∞

fk(x) = lim
k→+∞

∑

n∈ℤ

fk(n�∕a)sinc
(
a(x − n�∕a)

)

=
∑

n∈ℤ

f (n�∕a)sinc
(
a(x − n�∕a)

)
.
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to have a real sampling sequence in PWs
a
 . We will see that, at least in the case 0 < s <

1

2
 , 

this is not the case.

Definition 5.4 Let Λ = {𝜆n}n∈ℤ ⊆ ℝ . The sequence Λ is a sampling sequence for PWs
a
 if 

there exists two positive constants A, B such that

where K
�n

 is the reproducing kernel of PWs
a
 , as in Corollary 3.2.

Since for 0 < s <
1

2
 the space PWs

a
 can be identified with L2

a
(|�|2s) via the Fourier trans-

form, the sequence Λ = {�n}n∈ℤ is a sampling sequence for PWs
a
 if and only if the family 

of functions {K̂
�n
}
�n∈Λ

 is a frame for L2
a
(|�|2s) , that is, if and only if there exist two positive 

constants A, B such that

From Corollary 3.2, when 0 < s <
1

2
 we obtain that �(K

𝜆n
)0(𝜉) =

1√
2𝜋
e−i�̄�n𝜉�𝜉�−2s𝜒[−a,a](𝜉) 

and the following result is easily proved.

Proposition 5.5 The family {e−i�̄�n𝜉|𝜉|−2s}
𝜆n∈Λ

 is a frame for L2
a
(|�|2s) if and only if the fam-

ily {e−i�̄�n𝜉|𝜉|−s}
𝜆n∈Λ

 is a frame for L2
a
.

Proof Assume that {e−i�̄�n𝜉|𝜉|−2s}
𝜆n∈Λ

 is a frame for L2
a
(|�|2s) and let f be a function in PWa . 

Then,

hence, {e−i�̄�n𝜉|𝜉|−s}
𝜆n∈Λ

 is a frame for L2
a
(|�|2s) . The reverse implication is similarly 

proved.   ◻

Therefore, the sampling problem for PWs
a
 , 0 < s <

1

2
 , is equivalent to study windowed 

frames for L2
a
 . The following result, due to [16] (see also [14]) implies that we cannot have 

real sampling sequences for PWs
a
 . Hence, we cannot obtain an analogue of (18) with point 

evaluations of the function instead of point evaluations of its fractional Laplacian.

Theorem [14, 16] The family 
{
g(�)ei�n�

}

�n∈Λ
 is a frame for L2

a
 for some sequence of points 

Λ = {𝜆n}n∈ℤ ⊆ ℝ if and only if there exist positive constants m, M such that m ≤ g(�) ≤ M

.

We conclude the section with one last comment about fractional Paley–Wiener spaces 
and de Brange spaces. These latter spaces were introduced by de Branges [13] and have 
been extensively studied in the last years. Among others, we recall the papers [1, 5–8, 

A‖f‖2
PWs

a

≤ �

�n∈Λ

�f (�n)�2 =
�

�n∈Λ

�
�
f �K

�n

�
PWs

a

�2 ≤ B‖f‖2
PWs

a

,

A‖f̂0‖2L2
a
(���2s) ≤

�

�n∈Z

�
�
f̂0 � (̂K�n

)0
�
L2
a
(���2s)�

2 ≤ B‖f̂0‖2L2
a
(���2s).

‖f̂0‖2L2
a

= ‖���−sf̂0‖2L2
a
(���2s) ≈

�

�n∈Λ

���∫
a

−a

���−sf̂0(�)ei�n����−2s���2s d�
���
2

=
�

�n∈Λ

���∫
a

−a

f̂0(�)e
i�n����−s���

2

d� ,
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19]. The space PWa is the model example of a de Branges space. A classical result, see 
[13], states that de Brange spaces always admit a real sampling sequence, or, equivalently, 
always admit a Fourier frame of reproducing kernels. The above discussion proves that this 
is not the case for the spaces PWs

a
 , 0 < s <

1

2
 . Therefore, the following result holds.

Theorem  5.6 The fractional Paley–Wiener spaces PWs
a
 , 0 < s <

1

2
 , are not de Branges 

spaces.

6  Boundedness of the orthogonal projection

In the previous sections we proved that the spaces PWs
a
 can be equivalently described as

thus, it is clear that the spaces PWs
a
 are closed subspaces of the Hilbert spaces Es,2 . There-

fore, we can consider the Hilbert space projection operator �s ∶ Es,2
→ PWs

a
.

In the case 0 < s <
1

2
 we get from Theorem 1 that the projection operator �s is explicitly 

given by the formula

Similarly, we explicitly deduce �s in the case s > 1

2
 from Theorem 2,

A very natural question is to investigate whether the operator �s densely defined on 
Es,p ∩ Es,2 extends to a bounded operator �s ∶ Es,p

→ B
s,p
a

 assuming that 
s −

1

2
∉ ℕ0, s −

1

p
∉ ℕ0 and ⌊s − 1

2
⌋ = ⌊s − 1

p
⌋ . This is the content of Theorem 5 which we 

now prove.

Proof of Theorem 5 We first assume 0 < s <
1

2
 . Let f be a function in Es,p ∩ Es,2 . By defini-

tion of Es,p ∩ Es,2 , we can assume f to be in the Schwartz space S . Then, the projection �sf  
is given by (19). The function �sf  clearly extends to an entire function of exponential type 
a, which we still denote by �sf  . Moreover, we assumed f ∈ S , so that, for instance, �sf  is a 
well-defined L2 function with a well-defined Fourier transform. Thus,

Hence

where the inequality holds since �[−a,a] is an Lp-Fourier multiplier for any 1 < p < +∞ . 
Therefore, �s extends to a bounded operator �s ∶ Es,p

→ B
s,p
a

 when 0 < s <
1

2
.

Assume now s > 1

2
 . Then, given f ∈ Es,p ∩ Es,2 ∩ S , the projection �sf  is given by (20), 

that is,

PWs
a
=

{
f ∈ Es,2 ∶ supp�f ⊆ [−a, a]

}
,

(19)�sf (x) =
1√
2�

∫
ℝ

f̂ (�)�[−a,a](�)e
ix� d�.

(20)�sf (x) =
1

2� ∫
ℝ

f̂ (�)�[−a,a](�)
(
eix� − Pm(ix�)

)
d�.

Δ
s

2�sf (x) = F
−1
(
| ⋅ |s�[−a,a] f̂

)
= F

−1
(
�[−a,a]

̂
Δ

s

2 f
)
.

‖�sf‖Bs,p
a
= ‖Δ

s

2�sf‖Lp(ℝ) ≤ C‖Δ
s

2 f‖Lp(ℝ) = C‖f‖Es,p ,
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As before, (�sf )
1 is a well-defined L2 function with a well-defined Fourier transform, 

whereas (�sf )
2 is a polynomial of degree m = ⌊s − 1∕2⌋ < s , thus its fractional Laplacian 

Δ
s

2 is zero. Therefore,

Once again we have

since �[−a,a] is a Lp-Fourier multiplier for any 1 < p < ∞ .   ◻

7  Proof of Lemma 4.1

Proof of Lemma 4.1 We recall that, given a function � on ℝ , for t > 0 we set �t =
1

t
�(⋅∕t) . 

We also set �t = �(t⋅) and observe that F(�t) = (F�)t . Moreover, it is easy to see that for 
all p ∈ [1,∞) , �r,�

r
→ � in Lp , as r → 1.

We first claim that the subspace 
⋃

𝛿>0{f ∈ B
p

a−𝛿
∶ f0 ∈ S} is dense in Bp

a
 , 1 < p < ∞ . 

Let f ∈ B
p
a
 be given. Then supp�f0 ⊆ [−a, a] and if 0 < r < 1 , f r ∈ B

p
ar

 so that 
supp�f r

0
⊆ [−ar, ar] . Let � = (1 − r)a∕2 and let � ∈ C∞

c
[−1, 1] , � = 1 on [− 1

4
,
1

4
] , ∫ � = 1 . 

Then f̂ r
0
∗ �

�
∈ C∞

c
 and supp�f r

0
∗ 𝜑

𝛿
⊆ [−a + 𝛿, a − 𝛿] . Therefore, F

−1
(
f̂ r
0
∗ �

�

)
∈ S 

extends to a function f(�) ∈ B
p

a−�
 and f(�) → f  in Bp

a
 as � → 0 . This proves the claim.

Next, let f ∈ B
p

a−�
 be such f0 ∈ S , for 𝛿 > 0 . Let �(�) ∈ C∞

c
[−�, �] , � = 1 on 

[−�∕2, �∕2] . Then (1 − �(�))f̂0 ∈ C∞
c

 and has support in {� ∶ �∕2 ≤ |�| ≤ a} . Therefore, 
F

−1
(
(1 − �(�))f̂0

)
∈ S∞ and extends to a function in Bp

a
 . Thus, it suffices to show that 

‖F−1
�
�(�) f̂0

�
‖Lp → 0 as � → 0 . This fact follows by observing that we may choose

where � ∈ C∞
c
[−

1

2
,
1

2
 with ∫ � = 1 . Then, it is clear that �(�) ∈ C∞

c
[−�, �] , and � = 1 on 

[−�∕2, �∕2] . Finally, for q ∈ (1,∞) , it is easy to see that

as � → 0 .   ◻

Corollary 7.1 Let s > 0 , p ∈ (1,∞) , s − 1

p
∉ ℕ0 , and set m = ⌊s − 1

p
⌋ . For s > 1

p
 , set 

Tm =
{
f ∈ Ea ∶ f0 ∈ S∞,Pf ;m;0 = 0

}
 . Then, if 0 < s <

1

p
 the subspace T  is dense in Bs,p

a
 , 

whereas if s > 1

p
 the subspace Tm is dense in Bs,p

a
 if s > 1

p
 , s − 1

p
∉ ℕ0.

�sf (x) =
1

2� ∫
ℝ

f̂ (�)�[−a,a](�)(e
ix� − Pm(ix�)) d�

=
1

2� ∫
ℝ

f̂ (�)�[−a,a](�)e
ix� d� −

1

2� ∫
ℝ

f̂ (�)�[−a,a](�)Pm(ix�) d�

=∶ (�sf )
1(x) + (�sf )

2(x).

Δ
s

2�sf (x) =
1√
2�

∫
ℝ

���sf̂ (�)�[−a,a](�)e
ix� d� = F

−1
�
�[−a,a]

̂
Δ

s

2 f
�
(x).

‖�sf‖Bs,p
a
= ‖Δ

s

2�sf‖Lp(ℝ) ≤ C‖Δ
s

2 f‖Lp(ℝ) = C‖f‖Es,p ,

�(�) = (� ∗ �)1∕�

‖F−1
�(�)‖Lq = �

1−1∕q‖�̂�̂‖Lq → 0
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Proof We only prove the case s > 1

p
 , s − 1

p
∉ ℕ0 , the other case being easier. By Lemma 

4.1 and Theorem 4.2 we have that (Δ
s

2 )−1
(
T
)
 is dense in Bs,p

a
 . Thus, it suffices to show that 

this latter space is contained in Tm . Let h ∈ T  and let f = Δ
−

s

2 h be given by (13). It is clear 
that Pf ;m;0 = 0 . Moreover, f (m+1)

0
= F

−1
(
(i�)m+1|�|−sĥ0

)
∈ S∞ and extends to a function in 

B
s,p
a

 , by Theorem 4. This easily implies that f0 ∈ S∞ and the conclusion follows.   ◻

8  Final remarks and open questions

We believe that the fractional spaces we introduced are worth investigating and, as we 
mentioned, they arise naturally in a several variable setting [17]. We mention a number of 
questions that remain open.

First of all, it is certainly of interest to consider the cases s − 1

p
∈ ℕ0 . As we pointed out 

already, these cases correspond to the critical cases in the Sobolev embedding theorem. 
From [18, Theorem 3 (iii)] we also have a description of the realization spaces Es,p of Ẇs,p , 
as follows.

Let s − 1

p
∈ ℕ0 . Fix the bounded interval Q = [0, 2�] . If s = 1

p
 , let

while, if m = s −
1

p
 is a positive integer, let

By [18, Theorem 3 (iii)] the space Es,p is a realization space for Ẇs,p . Then, for s − 1

p
∈ ℕ0 

we may still define the spaces Bs,p
a

 as in (1.1), that is,

However, all proofs break down in the cases s − 1

p
∈ ℕ0 , due to the presence of the BMO 

condition. Since for f ∈ Ea , f0 is a smooth function, a more natural definition of Bs,p
a

 seems 
to be

where [f0]m denotes the equivalence class of f0 in S�∕Pm , and endow it with the norm 
‖f‖Bs,p

a
∶= ‖f0‖Ẇs,p . Such definition would require to prove a different description of a reali-

zation space for Ẇs,p when s − 1

p
∈ ℕ0.

To further elaborate on this point, we point out that, as shown by Bourdaud, when 
s −

1

p
∉ ℕ0 , the realization spaces Es,p of Ẇs,p are the unique realization spaces whose 

norms are homogeneous with respect the natural dilations. On the other hand, when 
s −

1

p
∈ ℕ0 there exists no realization space of Ẇs,p whose norm is homogeneous. Finally, a 

“good” definition of Bs,p
a

 in these critical cases should coincide with the interpolating space 
between two spaces with s − 1

p
∉ ℕ0 . In any event, these spaces remain to be investigated.

Es,p =

�
f ∈ BMO ∶ fQ = 0, ‖f‖Es,p ∶= ‖Δ

s

2 f‖Lp < +∞

�
,

Es,p =

�
f ∈ S

� ∩ C
m−1 ∶ Pf ;m−1;0 = 0, f (m) ∈ BMO, f

(m)

Q
= 0, ‖f‖Es,p ∶= ‖Δ

s

2 f‖Lp < +∞

�
.

B
s,p
a

=
�
f ∈ Ea ∶ f0 ∈ Es,p with norm ‖f‖Bs,p

a
∶= ‖f0‖Es,p

�
.

B
s,p
a

=
{
f ∈ Ea ∶ [f0]m ∈ Ẇs,p and if m ≥ 1

p
,Pf0;m;0

= 0
}
,
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Naturally, another question that remains open is the boundedness of the orthogonal pro-
jection � ∶ Es,p

→ B
s,p
a

 in the cases s − 1

p
∈ ℕ0 . Such boundedness would allow one to 

explicitly describe the dual space of Bs,p
a

 , for the whole scale s > 0 and p ∈ (1,∞).
The Paley–Wiener space is a very special instance of a de Branges spaces. These 

spaces where introduced by de Branges also in connection with the analysis of the canoni-
cal systems, see e.g. [13, 23]. It would be interesting to determine whether the fractional 
Paley–Wiener spaces PWs

a
 also arise to the solution of a canonical system defined in terms 

of the fractional derivative.
In [7] it is shown that the Paley–Wiener space, and, more generally, any de Branges 

space, coincides as set with a Fock-type space with non-radial weight. The Paley–Wiener 
(or de Branges) norm given by an integral on the real line is replaced by an equivalent 
weighted integral on the complex plane. We wonder if an analogous result holds true for 
the fractional Paley–Wiener spaces.

Another important fact about the classical Paley–Wiener space is that, up to a mul-
tiplication by an inner function, it admits a representation as a model space of H2(ℂ+) , 
the Hardy space of the upper half-plane. We recall that a model subspace of H2(ℂ+) is 
defined as KΘ = H2(ℂ+)⊖ ΘH2(ℂ+) where Θ is an inner function in ℂ+ . By means of 
the Weyl–Titchmarsh transform, it is possible to interpret the completeness problem for 
eigenfunctions of the Schrödinger equations as the completeness problem for a system of 
reproducing kernel {k

�
}
�
 in some model space KΘ . Thus, there exists a close link between 

model spaces, in particular the Paley–Wiener spaces. It would be interesting to understand 
if an analogous link exists between the fractional canonical systems and the fractional 
Paley–Wiener spaces.
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