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Simple Summary: Semen freezing in dogs is a field of growing interest. The international shipment
of cryoconserved semen contributes to the avoidance of long travels and long-term storage of valuable
gametes. However, the collection of one semen portion on average results in one to three doses for
artificial insemination, which is a poor result in comparison to the outcome in large animals. The
costs for the owners are therefore rather high. In individual dogs, the semen quality of raw semen is
good; however, it could be suboptimal after thawing. To avoid costly freezing of these low-quality
ejaculates, markers of freezability are useful. An abundance of markers are available for large animals,
but not for dogs. This review provides an overview on markers for freezability of canine semen.

Abstract: Markers of freezability allow the selection of ejaculates of good freezability. So far, most in-
vestigations were conducted in boars, bulls, rams and horses, with high economic interests triggering
the efforts. The progress in dogs is comparably slow. A critical evaluation of the methods requires
consideration of practicability, with most labs not even possessing a computer assisted sperm analyser
(CASA); furthermore, small canine ejaculates mostly do not allow the use of large semen volumes.
In dogs, modern markers of freezability no longer assess single membrane constituents or seminal
plasma components but comprise tests of cell functionality and adaptability, energy metabolism,
cluster analyses of kinetic and morphometric parameters, as well as DNA intactness. Identification of
the most efficient combination of tests seems useful. At present, examination by CASA combined with
cluster analysis of kinetic subgroups, JC-1 staining and COMET assay or staining with toluidine blue
seem most appropriate; however, cell volumetry and other functional tests deserve better attention.
A better understanding of spermatozoa energy metabolism might reveal new markers. This review
focuses on the requirements and markers of freezability of canine semen, highlighting potential
future candidates.

Keywords: dogs; semen; cryopreservation; markers

1. Introduction

The freezability of a canine spermatozoa is determined by the complex interplay of
sperm membrane and seminal plasma, diluent and cooling-freezing-thawing protocols [1–6],
and it is influenced by further parameters such as age [7]. The sensitivity to cryoinjuries
is species-specific, and recent reviews comprehensively summarized the requirements for
successful cryopreservation of canine spermatozoa [1,8]. Canine spermatozoa membranes
are less sensitive to cold injury than, for example, boar spermatozoa, due to a relatively
high cholesterol:phospholipid ratio [9] and the polyunsaturated fatty acid (PUFA) content
of the membrane. This is, among others, indicated by the fact that DNA integrity is not
affected by freezing thawing [10], whereas in stallions, it is [11]. Unfortunately, the exact
composition of the sperm membrane PUFA has not yet been unraveled in dogs, as in other
species [12]. However, semen quality after thawing is, in addition, individual dependent. In
some dogs, despite good quality of raw semen, post-thaw semen quality is bad [13–16]. This
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rectifies the intense search for prognostic markers of freezability. To date, mainly kinematic
and morphometric parameters including cluster analyses [17–19], functional assays such
as volumetry [20], the hypoosmotic swelling test (HOST, [21]) or the reaction to (Ca2+)
ionophore treatment [22] and seminal plasma components [16,23] have been investigated;
however, the usefulness for prediction of post-thaw semen quality has not been reviewed in
a comparative manner so far. In dogs, the best results were achieved with functional tests,
such as kinematic assays combined with cluster analyses, cell volumetry and the reaction
to (Ca2+) ionophore, whereas the HOST was not useful for predicting post-thaw semen
quality [21]. This is comparable to other species [24] and highlights the need for complex
assays, investigating more than adaptability to changing osmolarities.

Meanwhile, in other species, an abundance of markers for freezability have been
detected that have not yet been investigated in canines. Particularly in boars, the inves-
tigations are intense (for review: [25]). Only recently, some spermatozoa components of
metabolic pathways related to energy metabolism were identified as probable suitable
markers [26,27]. Another study using transcriptome analysis revealed an upregulation of
several genes, and finally a higher concentration of three proteins related to inflammation
and apoptosis in bad freezer ejaculates [28]. Comparable studies in dogs are lacking. In
bulls, proteomic approaches revealed higher concentration of Arylsufatase A in semen
of good freezers, which is indicative of the cell’s energy metabolism. Further markers
of sperm functionality were assessed in high-density spermatozoa, indicative of normal
glycolysis, zona binding and motility [29]. Meanwhile, in this species, genome-wide associ-
ation studies investigated genetic causes of poor sperm quality, and microsatellites markers
(SNPs), such as BM1500 and UMN2008, were found to be related to freezability, especially
post-thaw motility [30]. In rams, a strong correlation between seminal plasma composition
and freezing resilience of semen has been found [31]. In stallions, among others, caspase
3 activity and the lipoperoxidative status of semen were found to be suitable for the predic-
tion of freezability [32];, as well as the content of cysteine-rich secretory proteins (CRISP-3)
participating in sperm maturation [33]. In men, spermatozoa out of bad freezer ejaculates
contained less enolase 1 and glucose-6-phosphate isomerase (GPI) than cells from good
freezer ejaculates. Both parameters are among others indicators of glycolysis and energy
production [34]. Furthermore, viscosity of fresh semen was negatively related to post-thaw
motility and acrosome integrity, and low citric acid concentration was negatively related to
post-thaw acrosome integrity [35].

Markers of freezability are thus mainly indicators of spermatozoa functionality and
energy metabolism or seminal plasma components. The present review discusses the
usefulness and reliability of markers of freezability of canine spermatozoa and highlights
potential factors of future interest.

2. Cryopreservation and Membrane Damages

Cryopreservation of canine spermatozoa requires high adaptability of the cell to
changing osmolarity and temperature. As in other species, the fluidity of the membrane
changes significantly during the freeze-thawing procedure, which coincides with a re-
arrangement of membrane phospholipids. The membrane fluidity is dependent on the
cholesterol content and the amount of disulfide bonds, the acyl chain length saturation
and the temperature of the surrounding milieu. Very high contents of cholesterol and low
contents of polyunsaturated fatty acids (PUFA) make the membrane more rigid, especially
at low temperatures and, consequently, may result in leaky membrane [36]. Cholesterol
helps to maintain membrane intactness at non-cryogenic temperatures, primarily during
cold shock, which is usually at above-freezing temperatures [37]. When the temperature
decreases, the membrane lipids change toward the crystalline phase with lateral segregation,
lipid peroxidation, loss of lipids and formation of reactive oxygen species [38]. This finally
leads to membrane destabilization and may cause membrane damage, especially when the
cooling rates during freezing are too high or too low [39–41]. In canines, moderate freezing
rates have been shown to be advantageous (−10 to −40/min, [42]). Cell damage occurs
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due to ice crystal formation, concentration of solutes, electrolytes and cell dehydration.
Cryodamage, which is comparable among species, causes, among others, a severe loss of
essential membrane proteins and receptors, degenerative acrosome exocytosis, degradation
of mRNAs, disruption of the perinuclear theca, reduction in mitochondrial activity, changes
in membrane fluidity/integrity and in ion channels, reduction in sperm motility, disruption
of disulfide bridges between cysteine radicals of protamines and DNA fragmentation [25].
Increased cholesterol efflux and a loss of potassium further decrease the fertilizing ability
of the cell by causing preterm capacitation and acrosome reaction [39,40].

3. What Makes Sperm Freezable?

Figure 1 provides an overview of the most important parameters and requirements,
conserved among species.
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3.1. The Composition of the Sperm Cell Membrane

The composition of the sperm cell membrane plays a fundamental role. Sperm mem-
brane is a bilayer of mainly phospholipids, such as cholesterol and saturated, as well as
poly-unsaturated, fatty acids. The composition shows broad species-specific differences, as
well as individual differences. A relatively high cholesterol:polyunsaturated fatty acid ratio,
such as in canines, was among others shown to be advantageous for cryotolerance [43,44].
We recently found a similar expression of cholesterol transport molecules before freezing
(ATP-binding cassette transporter A1; ABCA1) in spermatozoa membranes from canine
good and bad freezers. However, the bad freezers had lower seminal plasma concen-
trations of cholesterol [16]. The incorporation of cholesterol in the sperm membrane via
cyclodextrins was shown to improve post-thaw semen quality in dogs [45], rams [46] and
stallions [47,48], emphasizing the importance of the membrane cholesterol content.

3.2. Membrane Intactness

Membrane intactness is the utmost prerequisite for normal post-thaw cell function.
The interplay of seminal plasma components, such as cholesterol, peptides, hormones,
membrane vesicles and enzymes, with the spermatozoa membrane is an important field
of current investigation; however, there are some differences between species [49–52]. A
loss of surface molecules, such as the progesterone receptor and proteins, especially from
the acrosome, may impair post-thaw quality and fertilizing capacity of the cell [49]. An
assessment of membrane integrity is therefore a useful part of pre-freeze semen evaluation.
Fluorescent dys, such as SYBR-14/PI and CFDA enable visualization of damaged mem-
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branes [53], whereas an evaluation of specifically acrosome damages with fluoresceinated
lectin peanut agglutinin was found to be extremely valuable to assess sperm quality before
freezing and after thawing in dogs and other species [20,54].

Furthermore, the cell’s ability to maintain its energetic homeostasis, i.e., the ability
of sufficient ATP formation in parallel to constant energy loss because of cell activity, is
important. This is, among others, dependent on functional membrane hexose transporters.
In dogs, the hexose transporters Glut 3 and 5 have been detected in intact spermatozoa
membranes and were shown to increase the ATP formation very rapidly [55]; the local-
ization and intensity of expression was modified by capacitation, which emphasizes the
necessity of a proper functioning of the intact membrane [56].

The adaptability to changing osmotic conditions is of utmost importance, since during
freezing, the cell has to release water and will shrink to avoid ice crystal formation, with
consecutive concentration of solutes and electrolytes. A defective membrane will, among
others, affect the function of principal water channel molecules. Aquaporins (AQP) exert a
protective effect during the freeze-thaw procedure, not only by active osmoregulation but
also by regulating the transport of small solutes, such as cryoprotective agents (CPA) [57].
They are widely distributed in testicular and epididymal tissue [58] and were detected in
membranes of human, mouse, rat, boar, stallion, seabream, goose and bull spermatozoa
(for review: [57]), although in a species-specific and sometimes even individual manner.

The impact of water channel molecules on semen freezability has been investigated in
other species [59], and the expression of different AQP was related to the cells’ ability to
survive the cryopreservation procedure, which seems to be species specific [57]. Recently,
AQP-1 has been detected in the membrane of canine spermatozoa and was localized
in the head, midpiece and tail [60]. In another study, AQP-8 was detected in canine
spermatozoa by means of immunoblotting [61]. Unfortunately, an assessment of the site
of expression was, thereby, not possible. The relative amount of AQP-8 was positively
correlated with the percentage of proximal cytoplasmic droplets [61]. Being an orthodox
AQP, AQP-8 is supposed to mainly contribute to cell volume regulation; however, it is
not only permeable to water, and mitochondrial AQP-8 is, in addition, able to transport
hydrogen peroxide. A role for AQP-8 in diffusion of ROS after cryopreservation has been
suggested previously [57]. The function of AQP-8 in canine spermatozoa membranes and
its usefulness as a marker of freezability remain to be investigated.

3.3. Energy Management

Another sensitive factor is the maintenance of mitochondria intactness, which is
essential for a normal cell kinematic after freeze-thawing. In boar spermatozoa, these
organelles are believed to be most sensitive to cryodamage [62]. In dogs, like in men, the
inner mitochondrial membrane potential (IMM) of spermatozoa was found to correlate
more strongly with membrane viability than with cell motility [63]; in some immotile sperm
with high IMM, energy supply by oxidative phosphorylation is sufficient to survive but
not sufficient to support motility—hexose metabolism [55] or gluconeogenesis from lactate
and pyruvate [64] are part of a complex glycogen metabolism, additionally comprising
energy storage in canine spermatozoa [64]. This may direct the interest toward markers
of glycolysis, such as lactate, in dogs. However, the assessment of IMM by use of the JC-1
probe seems to be a good indicator of mitochondria function and oxidative ATP production
before freezing. Further, mitochondria activity assays are commercially available but have
mostly not been investigated as markers of freezability.

3.4. DNA Stability

Finally, DNA stability plays an important role. The stability of DNA after freeze
thawing of spermatozoa shows species-specific differences, which was shown to be related
to the cysteine residues in protamine 1 or an unbalanced protamine 1:2 ratio [65]. In dogs,
we could show that freezing and thawing did not increase the rate of DNA fragmenta-
tion when evaluated immediately after thawing; however, the DNA fragmentation of
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thawed spermatozoa increased significantly within 3 h of storage at +37 ◦C [66]. Centrifu-
gation before freezing increased the rate of DNA fragmentation immediately after thawing,
which might explain the different findings of others [67]. Nevertheless, an assessment
of DNA integrity before freezing is useful and can be performed by using the terminal
deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling (TUNEL) test,
the COMET assay [68] or the sperm chromatin structure assay (SCSA; [66,69,70]). Although
flow cytometric measurements provide more statistical power because of higher cell num-
bers, the microscopic evaluation of single samples using COMET or TUNEL assay before
freezing seems useful. Staining with toluidine blue was found to be fast and exact to assess
the degree of DNA damage [71], also in canine spermatozoa [72]. This dye has great affinity
to the free phosphate groups of DNA and protamines, which are increased in damaged
DNA. However, a rather promising sophisticated approach is the Raman spectrometer. This
technique relies on the interaction of light photons with molecules, resulting in different
light-scattering patterns that can be immediately evaluated using semen or seminal fluid.
Some applications include the differentiation of abnormal and normal seminal plasma and
DNA damage [73].

3.5. The Composition of the Seminal Plasma

The seminal plasma plays a fundamental role in membrane function and adaptability;
its composition shows manifold inter-species differences, and the effect of seminal plasma
during freeze thawing is discussed controversially. In dogs, we recently found higher
concentrations of cholesterol in seminal plasma of good freezers than in seminal plasma
of bad freezers [16]. In another study, the removal of seminal plasma from ejaculates of
good quality decreased post-thaw motility, increased the percentage of morphologically
abnormal sperm and increased the DNA damage during 3 h of post-thaw storage [66].
Centrifugation evidently removes or decreases some ingredients otherwise contributing
to the post-thaw condition of the membrane. A recent proteomic study revealed an abun-
dance of proteins, including sperm membrane derived proteins, among others, related to
cellular function, metabolism, maturation, binding, antioxidant capacity and intercellular
action [74]. Seminal plasma contains manifold natural antioxidants, exerting a measurable
total antioxidant capacity that can be highly variable and was found to be decreased in
infertile dogs [23]. Post-thaw oxidative stress is one of the most detrimental parameters on
spermatozoa membranes. Seminal plasma was found to exert a highly protective effect on
cell mitochondria, especially hydrogen peroxide and hydroxyl radical; centrifugation of
canine semen at 600 g for 10 min caused a significant decrease in mitochondrial membrane
potential and increased lipid peroxidation [75]. A significant reduction in the natural hydro-
gen peroxide and hydroxyl radical concentration after removal of seminal plasma before
freezing will, therefore, most probably increase post-thaw membrane lipid peroxidation
unless replaced by useful substituents in the diluents. However, in ejaculates of bad qual-
ity or from old dogs, centrifugation may be beneficial, and in some protocols, pre-freeze
centrifugation is routinely used to obtain a defined sperm concentration [5]. The real effect
of seminal plasma removal can only be evaluated when the composition is known, as well
as the composition of the ejaculate in terms of subpopulations [18].

In humans, seminal plasma membrane vesicles (MV) have been shown to fuse with
the membrane of human spermatozoa, which resulted in decreased membrane fluidity in
this species. In dogs, membrane vesicles of different sizes and spherical shapes were found
to exert activities of variable enzymes, such as ectonucleotidases, adenosine deaminase,
5’-nucleotidase, ADPase, ATPase, contributing to ATP production and energy supply, as
well as dipeptilpeptidase IV, alkaline phosphatase, total acid phosphatase and prostatic
acid phosphatase activity [76]. In dogs, the interaction of MVs with the spermatozoa has
not yet been proven, and the addition of different concentrations of purified MVs to canine
semen before freezing did not improve post-thaw semen quality, except for a short-term
improvement in distance and velocity parameters [52].
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4. Can We Predict Sperm Freezability in Dogs?

In Table 1, an overview of possible markers of freezability is given, including principles
and parameters under investigation and possible future candidates.

Table 1. Predictors of freezability of canine semen.

Principle Parameter Assay/Method Authors

Kinematic data and
cluster analyses Kinematic data CASA [77]

[17]

DNA integrity assays DNA damage
Comet assay,

SCSA,
Toluidine blue stain

[68]
[66]
[72]

Cell volumetry Adaptability to changing
osmotic milieu

Electric field multi-channel cell
counting system [20]

Mitochondria assays

Inner mitochondrial
membrane potential,
Mitochondria function

ATP production

Flow cytometry, ICC (JC-1 probe)
Commercial assays [63]

Induction of acrosome reaction by
Ca2+ ionophore Acrosome reaction Addition of Ca2+ ionophore [22]

Membrane components proAKAP4 Commercial ELISA [78]
Aquaporin 1, 8 ICC [60,61]

Hexose transporters ICC [55]
Seminal plasma components Cholesterol Chemiluminescence [16]

Lactate [64]

Transcriptome analysis Identification of genes related to good/bad
freezability

Microsatellite markers, SNPs Post-thaw motility, viability, fertility

Principles and parameters under investigation/future candidates are in italics. CASA = computer assisted semen
analysis, HSP = heat shock protein, ELISA = enzyme-linked immunosorbent assay, ICC = immunocytochemistry,
proAKAP4 = precursor of the A-kinase anchor protein 4, SCSA = sperm chromatin structure assay, SNP = single
nucleotide polymorphism.

4.1. Kinematic and Morphometric Parameters—Cluster Analyses

Meanwhile, in dogs, many investigations have been performed, highlighting, among
others, the importance of objective measurement of kinematic parameters [17]. Even though
former studies did not provide satisfying results [13], we previously showed that kinematic
parameters objectively measured by use of CASA, such as progressive motility (P), velocity
curvilinear (VCL), mean coefficient (STR) and linear coefficient (LIN), are useful for the
prediction of post-thaw sperm quality. Sperm samples with P < 83.1%, VCL < 161.3 µm/s,
STR < 0.83% and LIN < 0.48% will have a probability of 85.5% that the post-thaw sperm
quality will be low [17]. In this study, bad post-thaw quality despite good raw-semen
quality (bad freezer) was defined as: progressive motility (<50%), percentage of morpho-
logical aberrations (>40%) and/or membrane integrity (<50%). However, even though
the prediction is not 100%, the use of CASA can be considered a helpful step when other
analyses are not possible. The restricted reliability of measurement of kinematic parameters
is, among others, caused by spermatozoa subgroups. One group evaluated kinematic data
obtained by CASA by use of clustering and discriminant analysis for differentiation of
subgroups with different kinematic characteristics; in this study [77], 11 subpopulations
were found: 4 with high velocity, 2 with medium and 5 with low velocity. The number
of subgroups changed after freeze thawing. The authors state that the evaluation of sub-
groups is essential to demask sperms with very bad resilience toward freeze thawing that
are not recognized when mean values of kinematic parameters are evaluated. Another
group differentiated four subpopulations with different kinematic characteristics that were
maintained after thawing [18]. Despite these differences, measurement of P, VCL, STR
and LIN in raw semen combined with cluster analysis might improve the estimation of
post-thaw quality.
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In another study, the usefulness of computer-assisted sperm morphometry was in-
vestigated in canine spermatozoa [19]. This study impressively showed that subgroups of
spermatozoa with different morphometric characteristics have variable degrees of DNA de-
naturation. Unfortunately, this analysis has not yet been performed in freeze-thawed canine
sperm, but it proved useful for the prediction of post-thaw quality of boar semen [79].

4.2. Cell Volumetry

Spermatozoa volumetry was found to be indicative of the adaptability of the cell to
a changing osmotic milieu, in fresh semen as well as in frozen semen [20]. Cell volume
is controlled by quinine sensitive potassium channels inside the spermatozoa membrane
that are functionally dependent on cytoskeleton intactness [80]. The ability of cell volume
regulation is supposed to be closely linked to the ability of regulation of membrane per-
meability, and a loss of cell volume control before the freeze-thawing procedure coincided
with an increase in cryodamage in canine spermatozoa [20]. Cell volumetry requires an
electric field multi-channel cell counting system that recognizes the changes in the electric
resistance caused by cells as the voltage changes; the latter are related to cell volume,
as greater cells cause greater pulses. Provided such equipment is available, the method
seems useful for estimation of post-thaw sperm quality in dogs. However, keeping in mind
that other cryodamages not related to volume regulation may occur, additional tests may
be required.

4.3. Seminal Plasma Components

The seminal plasma composition is species specific, and individual changes can
influence freezability [16,23,50,52,66]. Meanwhile, some proteomic studies have revealed
the composition of canine seminal plasma [74,81–83]. However, so far, no protein could be
directly related to freezability of canine spermatozoa. The cholesterol content could be a
potential marker [16], but more studies are necessary to prove this hypothesis. Furthermore,
many assays offered by laboratories are not sensitive enough.

Products of glucose metabolism, such as lactate, might indicate a normal metabolic
cell function [64], and lactate concentrations in canine seminal plasma should be related to
post-thaw semen quality in future experiments.

4.4. Membrane Proteins

Structural proteins of the membrane, such as the precursor of the A-kinase anchor
protein 4 (ProAKAP4), stabilizing the mid-piece membrane and influencing motility, have
been investigated in fresh and freeze-thawed semen. In horses, the expression of this
protein was closely related to post-thaw sperm motility [84]. In pigs, the stability of
proAKAP4 after thawing proved to be a quality marker [85]. In canine frozen/thawed
semen, the expression of the precursor was found to be highly variable and dependent on
incubation time and straw size; a correlation between proAKAP4 levels and motility or
other velocity parameters could not be demonstrated [78,86]. However, it was suggested
that the degree of proAKAP4 expression is related to the recovery and maintenance of
velocity [78]. The latter might be interesting for the prediction of the fertilizing capability of
freeze-thawed samples; however, this hypothesis has to be proven using further analyses.
For the measurement of proAKAP4 in canine semen, a commercial ELISA is available.

Heat shock proteins (HSP) are important, among others, for cell protection and repair,
and sperm cell maturation. These chaperons are expressed in testicular tissue and in sper-
matozoa of different species, and their function is not yet fully understood. In boars, the
protein level of HSP90AA1 in the semen was found to be indicative of freezability [87]. In
dogs, HSP60 was detectable in the mid-piece of spermatozoa, HSP70 in the neck and HSP90
in the spermatozoa tail [88]. The induction of capacitation and acrosome reaction did not
change HSP70 expression in canine spermatozoa; however, the induction of acrosome
reaction changed the immunosignal in boar and stallion spermatozoa [88]. The relation be-



Animals 2022, 12, 733 8 of 12

tween HSP expression in canine spermatozoa and resilience to cryodamage remains elusive.
Assessments of both HSP protein content and spermatozoa expression are of interest.

4.5. Response to Ionophore Treatment

Ca2+ ionophore is a substance enabling Ca2+ ions to pass the spermatozoa membrane
by forming stable complexes with the divalent cations. The addition of Ca2+ ionophore
to semen samples induces acrosome reaction, thereby enabling assessment of the cells’
functional competence. In one study [22], the percentage of acrosome reactions induced
with Ca2+ ionophore in raw canine semen samples correlated with the percentage of acro-
some reactions assessed in freeze-thawed samples; furthermore, cell damage assessed with
fluorescein-conjugated peanut agglutinin (PNA-Fitc) and ethidium homodimer (EthD-1)
correlated negatively with the percentage of motile cells after thawing. In another study,
the increase in acrosome reactions after treatment of bull spermatozoa with Ca2+ ionophore
was positively related to an increase in the 90-day non-return rate of inseminated cows [89],
emphasizing the importance of this functional test for the prediction of the fertilizing
potential of semen. However, when freeze-thawed semen from bulls was incubated with a
Ca2+ ionophore, the correlation with fertility was low [90]. Furthermore, during an early
study in humans, ionophore treatment revealed high intra- and inter-assay coefficients
of variation and a high degree of intra- and inter-subject variability [91]. This has to be
considered in addition to the fact that the effect of Ca2+ ionophore treatment is dependent
on concentration and duration of incubation. This has not been sufficiently investigated in
canines, and more studies are needed.

5. Conclusions and Outlook

The at-present most useful combination for a quick prediction of freezability appears
to be a combination of kinematic parameters and DNA integrity. If possible, an examination
by CASA should be combined with cluster analysis of kinematic subgroups, for better
recognition of the causes of bad freezability, and with JC-1 staining and a simple DNA
integrity assay, such as the COMET assay or staining with toluidine blue. Cell volumetry is
useful but requires special equipment. Seminal plasma parameters require more investiga-
tion before application in practice; proteomic analyses of seminal plasma of bad and good
freezers will probably reveal further markers. Further markers of freezability that proved to
be useful in other species, especially those indicative of energy metabolism, mitochondria
activity and DNA intactness, deserve better attention. In the canine species, the genetic
aspect may be underestimated. Bad semen quality has been associated with inbreeding and
the bottleneck effect in wild species. In bulls, genetic diversity was positively correlated
with post-thaw motility and viability [92]. In this species, some microsatellite markers and
single nucleotide polymorphisms (SNPs) were found to be related to post-thaw motility [30].
No study is available investigating possible genetic effects on post-thaw canine sperm
quality in the relevant literature, rendering breed-specific studies using microsatellites and
SNPs highly interesting. However, the practical and economical applications of freezability
markers must be considered.

This review is a snapshot of the present situation. A better understanding of sperma-
tozoa function, especially energy metabolism, might reveal new markers, and the improve-
ment of assays will probably simplify the combined assessment of markers in future.
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