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Superconducting dome in ferroelectric-type materials from soft mode instability
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We present a minimal theory of superconductivity enhancement in ferroelectric-type materials. Simple
expressions for the optical mode responsible for the soft mode transition are assumed. A key role is played
by the anharmonic phonon damping which is modulated by an external control parameter (electron doping
or mechanical strain) causing the appearance of the soft mode. It is shown that the enhancement in the
superconducting critical temperature Tc upon approaching the ferroelectric transition from either side is due
to the Stokes electron-phonon scattering processes promoted by strong phonon damping effects.
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I. INTRODUCTION

Although it was originally thought that ferroelectricity and
ferroelectric-type crystals cannot support superconductivity
[1], connections between the two phenomena were explored
[2–4] early on, and a possible origin of superconductivity was
understood in terms of dielectric screening [5] on the pairing
mechanism or the role of ferroelectric instabilities [6]. Since
then, a number of systems have been discovered where super-
conductivity may coexist with a quantum critical ferroelectric
transition [7,8], and where the presence of the soft mode ap-
pears to enhance the superconducting critical temperature Tc.
Most notably, this is the case of strontium titanate, SrTiO3, for
which several conventional and unconventional mechanisms
have been discussed [4,9,10] since its early discovery [11].
Even though the unusual conditions due to extreme dilution
of electrons make the pairing mechanism in SrTiO3 still a
highly debated topic, a basic BCS framework can be applied
to extract qualitative pairing trends [12,13].

More recently, enhanced superconductivity domes in the
proximity of soft mode instabilities, induced by electron dop-
ing [14] and mechanical strain [15], have been observed. The
role of structural instability in promoting superconductivity is
suggested by the recent finding that plastic mechanical defor-
mations appear to further enhance superconductivity possibly
due to self-organized dislocation networks [16]. Various the-
oretical explanations [10,15,17–19] have been proposed to
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understand such effects in these ferroelectric-type materials,
although a complete picture of the mechanism of Tc enhance-
ment near the instabilities is unclear.

The role of structural instability, and its influence on super-
conductivity, similar to what happens in ferroelectrics [20], is
also a highly debated topic in the context of high-temperature
superconductors, both cuprates [21,22] and the recently dis-
covered hydrides under high pressure [23–25], and, in general,
in strongly coupled superconductors [26]. For example, it is
well known that, before the discovery of cuprates, high-Tc su-
perconductivity was sought in A15 intermetallic compounds
which exhibit soft-mode structural instability [27]. While soft
mode instabilities and phonon softening have been observed
in several cuprates [28–32] always below the Tc [33], their role
in promoting superconductivity remains uncertain [24].

In all the relevant experimental systems [10,14,15,34] the
anharmonic phonon damping plays a key role [24], which
is reflected in gigantic values of the Grüneisen parame-
ter as recently observed in Ref. [15]. If the soft mode is
induced by electron doping, the damping arises from the
enhanced electron-phonon coupling; if, instead, it is induced
by mechanical strain, the damping is increased by the sheer
interatomic potential anharmonicity as the strain pushes atoms
away from the harmonic part of the bonding wells.

Hence it is imperative to understand the effect of the soft
mode on superconductivity by directly considering the effect
of the growing anharmonic phonon damping accompanying
the soft mode instability. From the perspective of effective the-
ories, we proposed a minimal theoretical model based on the
anharmonically extended BCS theory [35,36], which includes
the effect of anharmonic damping of phonons mediating the
superconductivity.
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In this work, we demonstrate that the superconducting
dome in ferroelectric-type materials, or, more generally, sys-
tems with soft-mode structural instabilities, originates from
the enhancement of the superconducting critical temperature
Tc due to anharmonic phonon damping that peaks at the in-
stability point. An analog of this effect, in the absence of
soft mode instabilities, was recently predicted theoretically
[35] and was found to be consistent with recent experimental
observations [37].

II. THEORETICAL FRAMEWORK

A. Soft mode description

We start by assuming an optical phonon undergoing a
ferroelectric-type soft mode transition as a function of a
generic external control parameter n, which could be, e.g.,
mechanical strain or electron doping. The external control
parameter acts on the complex optical dispersion relation by
affecting the phonon damping, i.e., by increasing it up to the
point where the phonon energy vanishes and the soft mode is
created.

In general, at low enough values of the frequency ω and the
wave-vector k, within the so-called hydrodynamic expansion,
the optical phonon dispersion relation satisfies [38]

−ω2 + ω2
0 − i ω � = 0, (1)

where ω0 is the phonon frequency (already renormalized by
anharmonicity) and � is the anharmonic phonon damping,
which is quantitatively related to the Grüneisen coefficient
[15] via the Klemens relation [39]. Here, higher corrections
in the wave vector are ignored for simplicity. In ferroelectric-
type materials the optical phonon that undergoes the softening
is typically the transverse optical (TO) phonon [40], and there-
fore its coupling to electronic degrees of freedom is weak or
negligible due to the vanishing of the dot product [18,41]. Re-
cent work [42,43] (see also Ref. [19]) showed that, in reality, a
significant coupling of the soft TO phonon to electrons can be
induced by Rashba effects due to spin-orbit coupling. Other
mechanisms have been also proposed which can enhance the
coupling [44–47]. In our effective model, we remain agnostic
as to the origin of the coupling of the soft optical phonon to
the electrons and we instead focus on the role of anharmonic
damping connected with the softening.

The presence of the damping � > 0 causes both a renor-
malization of the natural (bare) phonon energy, the real part
of the frequency ω appearing in Eq. (1), which becomes

Re(ω) = 1
2

√
4 ω2

0 − �2 < ω0, (2)

as well as the finite lifetime τ = (�/2)−1 (its imaginary part).
Both these effects can be computed for a given lattice struc-
ture and interatomic interactions via self-consistent phonon
(SCP) theory [48–50] by considering three- and four-phonon
processes, i.e., by accounting for anharmonicity of the lattice.
Here, we shall assume that the damping � is also a function
of an additional external degree of freedom, which could be
mechanical strain or electron doping. In the former case, vary-
ing the mechanical strain causes the atoms to sample more
anharmonic parts of the interaction potential. In the latter
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FIG. 1. Simplified model expressions for the optical mode en-
ergy (blue) and the inverse lifetime τ−1 (orange) upon approaching
the soft mode instability as a function of a generic control parameter
n. Here, ω0 = 0.5, nc = 1.

case, electronic doping changes the electron-phonon damping
which also contributes to �.

We consider an effective description and we remain agnos-
tic about the exact nature of the microscopic processes that
change � as our goal is to have a generic model to study how
variations in � induced by a generic external parameter n lead
to changes in the superconducting Tc. We assume the existence
of a soft mode instability (ferroelectric-type transition) char-
acterized by the typical Curie-Weiss behavior as a function of
an external control parameter n:

Re(ω) =
√

|nc − n|. (3)

In standard ferroelectrics, n is of course the temperature T .
For a derivation of the Curie-Weiss law with n ≡ T induced
by giant phonon anharmonicity (as in many thermoelectric
materials [51]) see Ref. [52]. In ferroelectric-type SCs, n
could be electron doping [14] or the mechanical strain [15],
n ≡ ε. In both cases, the variation of the control parameter n
changes the phonon damping �, as mentioned above.

Using Eq. (3) together with Eq. (2), we solve for the damp-
ing and obtain the following relationship:

�(n) = 2
√

ω2
0 − |nc − n|. (4)

The energy of the mode [real part of the frequency, Eq. (3)]
and the inverse lifetime [imaginary part, Eq. (4)] are plotted
in Fig. 1 for the choice ω0 = 0.5, nc = 1.

It is important to stress that the Curie law in Eq. (3) is valid
only close to the instability n ∼ nc and it cannot be trusted
far away from there. This is also evident from the expression
for the damping in Eq. (4) which stops to be real outside the
window |nc − ω2

0| < n < nc + ω2
0. As a matter of fact, we will

consider the external parameter n only within that range in the
rest of the manuscript.

B. Gap equation with anharmonic phonon damping

We briefly recall the anharmonic BCS framework of
Ref. [36]. We assume a large electron density limit and
isotropic pairing without explicitly taking into account strong
coupling or multiband effects. The latter could be relevant
to the specific case of SrTiO3 and related superconductors.
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Such effects generally modify the superconducting gap, Tc,
and chemical potential away from weak coupling values [13].
In addition, we neglect the role of repulsive Coulomb interac-
tions in driving anisotropic pairing. The interplay of strong
coupling effects with repulsive interactions and anisotropic
pairing can engender novel superconducting phases that
spontaneously break lattice symmetries [53]. Multiple bands
further modify the aforementioned properties [13] and are
expected to greatly enrich the physics we describe below. We
leave generalizations to include these nontrivial effects for
later work. For a generic fermionic Matsubara frequency ωn

and momentum k, we denote the superconducting gap func-
tion as �(iωm, k). We assume throughout a quadratic nearly
free electron dispersion relation for the electronic band. With
a constant coupling g, the gap equation can be derived from
the Eliashberg equations in the one-loop (weak coupling)
approximation, and takes the form [54,55]

�(iωn, k) = g2

βV

∑
q,ωm

�(iωm, k + q)�(q, iωn − iωm)

ω2
m + ξ 2

k+q + �(iωm, k + q)2
,

(5)

where β is the inverse temperature and V is the volume. In
Matsubara frequency space, we choose the pairing mediator to
be a damped optical phonon given by the bosonic propagator
[56]

�(q, i
n) = 1


(q)2 + 
2
n + �(q)
n

. (6)

Here 
n is the bosonic Matsubara frequency for the phonon;

(q) = ω0 is the frequency of the optical phonon. For our

initial treatment, we neglect any dispersion effects of the
optical phonon. We take the damping �(q) equal to Eq. (4) in
order to account for the effect of the soft mode. As the phonon
mode is optical, we choose no additional dispersion effects in
the damping coefficient [39].

Assuming an isotropic, frequency-independent gap
�(iωn, k) ≡ �, we set the external frequency and momentum
to zero without any loss of generality. Converting the resulting
summation into an energy integral (and assuming a quadratic
dispersion relation for the fermions), the gap equation
becomes

1 =
∑

m

∫ ∞

−∞

λT dξ[
ω2

0 + 
2
m − �
m

][
ω2

m + ξ 2 + �2
] , (7)

where the chemical potential is considered to be large so that
the lower limit of the energy integral is taken to negative infin-
ity. We also define the effective coupling constant λ = N (0)g2

and N (0) is the density of states at the Fermi level. We can
now perform the energy integral exactly in the limit of large
chemical potential to obtain a simplified gap equation. The
condition for Tc can then be evaluated by setting � = 0 to get

1 =
∞∑

m=−∞

λ̄

2
∣∣m + 1

2

∣∣(m2T̄ 2
c − m�̄T̄c + 1

) . (8)

Here T̄c ≡ Tc
ω0

, �̄ ≡ �
ω0

, and λ̄ ≡ λ
ω0

are the critical tempera-
ture, damping, and the effective coupling constant normalized
by the phonon frequency. Performing the Matsubara sum us-
ing methods described in Ref. [57] leads to an equation for Tc

that can be numerically solved. This condition is given as

4

(
1 − 4γ λ̄

2�̄T̄c + T̄ 2
c + 4

− 4 ln(4)λ̄

2�̄T̄c + T̄ 2
c + 4

−
λ̄ψ (0)

(
�̄

2T̄c
−

√
�̄2−4
2T̄c

+ 1
)

T̄c

√
�̄2 − 4 − �̄2 + �̄

√
�̄2 − 4 + 4

−
λ̄ψ (0)

(√
�̄2−4
2T̄c

− �̄

2T̄c

)
T̄c

√
�̄2 − 4 − �̄2 + �̄

√
�̄2 − 4 + 4

+
λ̄ψ (0)

(
− �̄

2T̄c
−

√
�̄2−4
2T̄c

)
T̄c

√
�̄2 − 4 + �̄2 + �̄

√
�̄2 − 4 − 4

+
λ̄ψ (0)

(
�̄

2T̄c
+

√
�̄2−4
2T̄c

+ 1
)

T̄c

√
�̄2 − 4 + �̄2 + �̄

√
�̄2 − 4 − 4

)
= 0, (9)

where ψ (0)(x) is the digamma function and γ is the Euler
constant. It should be noted that Eq. (9) is always real (even
when �̄2 − 4 < 0), due to the mutual cancellation of imagi-
nary terms. The solution of the gap equation, Eq. (9), for T̄c

as a function of �̄ is plotted in Fig. 2. The curves exhibit
two kinds of behaviors. The first is a monotonically increasing
behavior of T̄c for small λ̄ (red curve). The second is a non-
monotonic behavior of T̄c with �̄ for larger λ̄ (blue curve). In
both cases, there is no solution for superconductivity for large
enough �̄ � 1, although the exact critical value is different
for various λ̄. The behavior of the T̄c curves for different λ̄ can
be understood in several ways. First, we note that there are
two types of Matsubara frequency transfers that play a role in
the gap Eq. (8): positive (m > 0, Stokes) and negative (m < 0,
anti-Stokes) contributions. The scattering amplitudes between
the electrons and the Stokes (anti-Stokes) phonons are en-
hanced (reduced) by damping effects from the denominator of
the gap equation. Hence, for a given coupling λ̄ and damping

�̄, Stokes (anti-Stokes) phonons lead to a larger (smaller) pair
binding between electrons and require a larger (smaller) crit-
ical temperature to satisfy the gap equation. For small λ̄, the
Stokes scattering dominates for all �̄ and a monotonically in-
creasing T̄c is obtained. But, for larger λ̄, there is a competition
between the Stokes and anti-Stokes scatterings leading to a
minimum in T̄c at nonzero �̄. The behavior of the T̄c curves can
also be understood from a perturbative expansion of the gap
equation for small �̄ up to second order in �̄. The linear order
term O(�̄) is sensitive to electron scattering from Stokes and
anti-Stokes phonons with the latter contributions dominating
to cause a decrease in T̄c. On the other hand, the quadratic
O(�̄2) term is always positive and mostly insensitive to the
sign of the phonon energy exchange acting to enhance pair
binding and T̄c. Below a critical λ̄, the O(�̄2) dominates over
O(�̄) for all �̄ giving a monotonic increase in T̄c (this is due
to the λ̄-dependent prefactors in the � expansion), while for
larger λ̄ the two orders compete resulting in a minimum of T̄c
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FIG. 2. Plot of normalized critical temperature with damping �

for different effective couplings λ̄. For large values of �̄, there is no
solution for superconductivity.

at a finite �̄. The lack of superconductivity for large �̄ can be
understood by taking the limit �̄ � 1 in Eq. (8). In this limit,
the leading order contribution to the gap equation diverges for
m = 0 and hence there is no solution for Tc possible.

III. RESULTS

Emergence of the superconducting dome

Upon using Eq. (4) for the damping coefficient �(n) in
Eq. (9) and solving numerically, we can study the evolution
of Tc as a function of the external control parameter n that
drives the ferroelectric transition. The trend is shown in Fig. 3.
Clearly the theoretical calculations display a superconducting
dome centered on the soft mode at n = nc. In particular, the
Tc grows with approaching the soft mode instability towards
n = nc on both sides, i.e., both above and below nc, or, in other
words, both in the ferroelectric and in the paraelectric phase.
A physical explanation for this widely observed behavior
[10,14,15] is thus offered by the structure of our model.

The mechanism giving rise to the Tc trend in Fig. 3 can be
understood in the following manner. By considering Fig. 1, it
is clear that the damping � grows with approaching n = nc on
both sides of the transition, in qualitative agreement with ex-
periments on ferroelectrics [58]. As n approaches nc in Eq. (4),
�̄ becomes larger and approaches a value of O(1). In the

FIG. 3. Plot of normalized critical temperature around the ferro-
electric critical point n̄ − n̄c for different effective couplings λ̄.

vicinity of this limit, T̄c increases with increasing �̄ regardless
of the coupling λ̄ (see Fig. 2). Hence this correlation of Tc

with �̄ near the critical point leads to a reduction of Tc away
from nc when �̄ decreases. The resulting domelike behavior
of Tc vs n is shown in Fig. 3. The domelike feature is there-
fore ultimately tied to the dominant, damping-assisted, Stokes
scattering processes which act to increase Tc by overcoming
the depairing effects from anti-Stokes processes. This regime
also coincides with a value of �̄ that is small enough to per-
form a perturbative series expansion in the parameter �̄ < 1,
but also large enough so that second order [O(�̄2)] damping
processes dominate over the linear order terms [O(�̄)] in
the gap equation. Notice that this is possible only because
the coefficients of the linear and quadratic terms in the per-
turbative expansion Tc(�̄) = Tc(0) + a�̄ + b�̄2 + O(�̄3) are
nontrivial functions of the various parameters (e.g., λ̄). Their
ratio a/b can be arbitrarily smaller than 1 allowing for a
window a/b < �̄ < 1 in which the quadratic contribution
is leading as mentioned above. The second order processes
lead to a Tc enhancement as described in the previous
section.

The physics of ferroelectric superconductors described
above must be contrasted with previously studied anharmonic
[35,36] or glassy [59] systems where the pairing mediator
contains a nontrivial spatial stiffness term associated with
some dispersive q dependence of the phonon. First, due to the
key role of acoustic phonons in those studies, a nontrivial spa-
tial stiffness is important to achieve enhanced Tc with damping
or decoherence. In the current scenario where the damping
coefficient �̄ is independent of momentum transfer due to
the nature of the optical mode, a nontrivial spatial stiffness
is not necessary to achieve Tc enhancement with �̄. Sec-
ond, the mechanism of Tc enhancement in damped acoustic
or glassy systems involves a constructive interference either
between low and high energy phonons or Stokes–anti-Stokes
processes. In the current theory we propose for ferroelectric
materials, the Tc enhancement occurs mainly from dominant
Stokes processes, while anti-Stokes processes are detrimental
to superconductivity. Finally, the central role of a nontriv-
ial spatial stiffness in Cooper pairing mediated by acoustic,
optical, or glassy modes is to enhance superconductivity for
perturbatively weak anharmonic decoherence only (even for
intermediate λ̄). While Tc peaks at an optimal damping scale,
set by the spatial stiffness of the bosonic mode, it is gradually
suppressed for very strong damping. Consequently, the an-
ticorrelation between strong damping and superconductivity
gives a dip in Tc at nc rather than a dome, not quite consistent
with experiments in ferroelectric materials. We therefore do
not anticipate a central role for a pairing propagator with
finite spatial stiffness (due to nontrivial phonon dispersion
in momentum space), for understanding superconductivity in
ferroelectric materials near a ferroelectric critical point. In the
current proposal, however, Tc is enhanced for strong enough
damping with an abrupt loss of superconductivity above a
critical damping set by λ̄, thus yielding the necessary experi-
mental dependence on n. Therefore, material design principles
that aim to realize this effect experimentally in other realistic
superconducting ferroelectric systems can be guided by re-
gions of the phase diagram with significantly damped bosonic
modes. A weak coupling constant (well within the BCS limit),

L020506-4



SUPERCONDUCTING DOME IN FERROELECTRIC-TYPE … PHYSICAL REVIEW B 105, L020506 (2022)

FIG. 4. Superconducting dome predicted by the anharmonic the-
oretical model with a dispersion of the soft phonon quadratic in
momentum transfer, i.e., 
(q) = ω0 + αq2, where coefficient α is
the stiffness or “velocity.” Tc is plotted as a function of the soft
phonon control parameter n upon approaching the soft mode in-
stability at n = nc = 1. In each plot, curves are plotted for the
following values of the optical energy ω0, from top to bottom:
ω0 = 0.3, 0.4, 0.5, 0.6, 0.7. In each plot, the chemical potential μ is
fixed to the value shown.

in addition, ensures that Tc monotonically increases with
damping up to a critical value, hence ensuring a peak at the
critical point.

Before we conclude, for the sake of completeness we
briefly discuss the possibility of obtaining the experimental
Tc curves near nc in the weak dissipation limit and interme-
diate λ̄. This requires a Tc enhancement with dissipation at
λ̄ ∼ 0.5. Under this working assumption, we must include a
dispersion term of the optical phonon which is quadratic in
the momentum transfer q with a prefactor coefficient α that
sets the stiffness or “velocity” [36], i.e., 
(q) = ω0 + α q2.
Numerically evaluating the gap equation as a function of
n − nc, we plot the resulting Tc behavior in Fig. 4. An explicit
dependence on the chemical potential μ appears due to the
quadratic dispersion term of the optical phonon. While the
role of μ is to reduce the overall scale of Tc (the chemical
potential acts like a mass term and hence reduces Tc), the

general domelike trend of Tc with n is preserved for small
enough ω0. The experimental optical phonon frequencies in
SrTiO3 go as low as a few meV (40 cm−1) and hence well
within the regime of our interest (cf. [60]). Despite the small
Fermi energy in SrTiO3, we expect the smallness of ω0 to be
well within the domelike region. We must note that, for small
μ, the current theory will have to be modified to include strong
coupling effects. For large ω0 and small μ, the dome gives
way to a shallow dip in Tc at the critical point.

IV. CONCLUSION

We presented a theory of superconductivity enhanced by
anharmonic damping in ferroelectric-type materials based on
a minimal agnostic model for the soft mode instability. The
key effect driving the enhancement of Tc at the soft mode
transition is the anharmonic phonon damping which increases
upon approaching the transition on both sides, hence the ubiq-
uitous dome. The domelike feature stems from the dominant,
damping-assisted, Stokes scattering processes which act to
increase Tc by overcoming the depairing effects from anti-
Stokes processes. Treating the damping effects perturbatively,
we showed that the quadratic order damping processes are
key to enhancing the pairing as opposed to linear order terms.
This explains the crucial role of phonon anharmonic damping
near the ferroelectric soft mode to obtain the experimentally
observed behavior of Tc, which is supported by gigantic values
of anharmonic Grüneisen parameter observed in these sys-
tems [15]. The presented theory explains the widely observed
dome in Tc observed at ferroelectric-type transitions purely in
terms of lattice dynamics and phonon physics, and without the
need of invoking any exotic electronic effects. Furthermore,
it provides useful guidelines for material-by-design rules to
engineer ferroelectric-type materials with optimized super-
conducting properties.
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