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Abstract
In the nineteenth and twentieth centuries many mathematicians referred to intuition 
as the indispensable research tool for obtaining new results. In this essay we will 
analyse a group of mathematicians (Felix Klein, Henri Poincaré, Ludwig Bieber-
bach, Arend Heyting) who interacted with Luitzen Egbertus Jan Brouwer (the father 
of the intuitionist foundational school) in order to compare their conceptions of intu-
ition. We will see how to the same word “intuition” (in German Anschauung) very 
different meanings corresponded: they varied from geometrical vision, to a unitary 
view of a demonstration, to the perception of time, to the faculty (shared by every-
body) of considering concepts that habitually occur in our thinking separately. Fur-
thermore, we will discover that these different meanings had a philosophical, very 
relevant counterside: they passed from a racial characterization of mathematics to a 
pluralistic view of it.

Keywords  Foundation of mathematics · History of mathematics · Intuition · Logic · 
Philosophy of mathematics · Racism

1  Introduction

1912: Bertus Brouwer read his inaugural address, "Intuitionism and Formalism", in 
which he named his foundational school as neo-intuitionism, in (partial) continu-
ity with previous intuitionists, among whom he mentioned Poincaré. 1914: Brou-
wer thanked Felix Klein, editor-in-chief of the prestigious journal Mathematische 
Annalen, for the gratifying news that he had been accepted as an editor. In the same 
year Ludwig Bieberbach praised Brouwer for "Intuitionism and Formalism". 1925: 
Arend Heyting received his doctorate with a thesis on the axiomatization of intui-
tionist projective geometry, with Brouwer as supervisor.
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These are only some examples of personal or intellectual acquaintances between 
Brouwer on the one hand and Klein, Poincaré, Bieberbach, Heyting on the other. 
This article is concerned with the nuances of meaning with their philosophical and 
social repercussions.

2 � Kant

Kant’s philosophy of mathematics represented the background of all the authors that 
we are going to mention. Therefore, I will outline here its main aspects, without 
entering into the debates that a careful analysis of his writings has triggered during 
the years regarding various problematic details.1

In his Critique of pure reason, aiming at establishing whether metaphysics could 
be considered a science, Kant invoked mathematical truth as a paradigm of neces-
sary and universal truths. In both the Preamble to the Prolegomena to Any Future 
Metaphysics and the B-Introduction to the Critique of Pure Reason, Kant introduced 
the analytic/synthetic distinction: judgments the predicates of which belong to or 
are contained in the subject concept are called analytic; judgments the predicates 
of which are connected to but go beyond the subject concept are called synthetic. 
Mathematical judgments are a priori because they are necessary, but are not ana-
lytic, because their predicates add something to their subjects: such judgements do 
not cut the subject into parts to find out the predicate, but they express a synthesis 
between subject and predicate. In the case of arithmetic, Kant presented his famous 
example “7 + 5 = 12” and claimed that “no matter how long I analyze my concept of 
such a possible sum [of seven and five] I will still not find twelve in it […] One must 
go beyond these concepts [of seven and five], seeking assistance in the intuition that 
corresponds to one of the two […] and one after another add the units of the five 
given in the intuition to the concept of seven…and thus see the number 12 arise”. 
(Kant, 1838, B15).

In the case of geometry2 Kant explained that all its principles – even those that 
Euclides would have called “axiomata” (i.e. those that are common to other aspects 
of reality like a = a) express relations among basic geometric concepts inasmuch as 
these can be exhibited in intuition:

’A straight line between two points is the shortest,’ is a synthetical proposition. 
For my conception of straight contains no notion of quantity, but is merely 
qualitative. The conception of the shortest is therefore for wholly an addition, 
and by no analysis can it be extracted from our conception of a straight line. 
Intuition must therefore here lend its aid, by means of which, and thus only, 
our synthesis is possible. Some few principles preposited by geometricians 
are, indeed, really analytical, and depend on the principle of contradiction. 
[…] for example, a = a, the whole is equal to itself, or (a+b) —> a, the whole 

1  See https://​plato.​stanf​ord.​edu/​entri​es/​kant-​mathe​matic​s/#​KanAn​sHisQ​ueHow​PurMa​tPos.
2  As an example of problematic detail in Kant’s philosophy of mathematics, we can quote here the ques-
tion whether Kant was committed merely to the syntheticity of the axioms of mathematics or was also 
committed to the syntheticity of mathematical inference itself.

https://plato.stanford.edu/entries/kant-mathematics/#KanAnsHisQueHowPurMatPos
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is greater than its part. And yet even these principles themselves, though they 
derive their validity from pure conceptions, are only admitted in mathematics 
because they can be presented in intuition. What causes us here commonly to 
believe that the predicate of such apodeictic judgements is already contained 
in our conception, and that the judgement is therefore analytical, is merely the 
equivocal nature of the expression. We must join in thought a certain predicate 
to a given conception, and this necessity cleaves already to the conception. But 
the question is, not what we must join in thought to the given conception, but 
what we really think therein, though only obscurely, and then it becomes mani-
fest that the predicate pertains to these conceptions, necessarily indeed, yet not 
as thought in the conception itself, but by virtue of an intuition, which must be 
added to the conception. (Kant, 1838, B17)

Kant’s geometrical framework was Euclidean geometry. Therefore, after the dis-
covery of non-Euclidean geometries, the synthetic a priori status of Euclidean geo-
metrical statements came into question.

As for numbers, we find their concept in the Transcendental Analytic. There 
Kant deduced the table of twelve categories, or pure concepts of the understanding, 
divided into “mathematical” (the first six) and “dynamical”(the other six) (Kant, 
1838, B110). The concept of number was included in the category of totality, which 
resulted at its turn from the combination of the concepts of unity and plurality. Fur-
thermore, Kant specified that the categories must be “schematized” in order to be 
connected to the objects of experience, because they have a non-empirical origin in 
pure understanding. Transcendental schemata mediate between pure concepts and 
appearances. In particular, the number3 was the scheme of temporal intuition:

For the external sense the pure image of all quantities (quantorum) is space; 
the pure image of all objects of sense in general, is time. But the pure schema 
of quantity (quantitatis) as a conception of the understanding, is number, a rep-
resentation which comprehends the successive addition of one to one (homo-
geneous quantities). Thus, number is nothing else than the unity of the syn-
thesis of the manifold in a homogeneous intuition, by means of my generating 
time itself in my apprehension of the intuition. (Kant, 1838, B182)

2.1 � Klein

As we shall see below, Felix Klein has been repeatedly cited as the ‘discoverer’ of 
the existence of two racial attitudes, a Teutonic one, characterized by reliance on 
‘intuition’, and a Latin-Jewish one, which is intrinsically logical-analytical.

His interest in the distinction between the two types of intuition certainly emerges 
on several occasions in his work, which he defined in various ways: one, which 
guides research but is imprecise, is called (depending on the context) spatial or 

3  According to Ruvidotti 2011, in order to better understand what Kant meant here, we should point out 
of Kant’s theoretical description two kinds of numbers as media: a number n linking each image of a 
single quantitas (for instance each image of ‘7’) to its concept (for instance to the concept of ‘7’) and a 
number s linking each n to the concept of quantitas.
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immediate or naïve; the other, which consists in the correct definition of mathemati-
cal objects by means of axiomatization, is called idealized, abstract or refined.

In his Leipzig inaugural lecture delivered in 1880 but published in 1895, he pre-
sented a set of mathematical models, compiled together with Alexander von Brill at 
the Technische Hochschule in Munich, both for teaching purposes and for his own 
research, in order to stress the importance of ‘intuition’ in geometry not only in order 
to make mathematics more accessible but also to bring forth new ideas for abstract 
research (Klein, 1895, pp. 539–540). Furthermore, he stated that results achieved via 
arithmetical approaches should be reconnected with spatial intuition.

In his 1895 lecture, delivered at the public session of the Königliche Gesellschaft 
der Wissenschaften zu Göttingen and entitled Über Arithmetisierung der Mathema-
tik, he re-examined the role of intuition (Anschauung) in mathematics. He blamed 
the fact that Gauß’s incautious use of spatial intuition (Raumanschauung) as proof 
of the universal validity of propositions that were not at all universally valid had led 
to demands for exclusively arithmetical reasoning in mathematics.4. This was a pity, 
because mathematics is certainly not exhausted in logical deduction but that, along-
side the latter, intuition completely retains its specific importance” (Klein, 1896, p. 
144, translated by Martin Mattheis). He spoke of a 

naïve intuition, which is in large part an inherited talent and  emerges uncon-
sciously from the in-depth study of this or that field of science. The word 
‘Anschauung’ has not perhaps been suitably chosen. I would like to include here 
the motoric sensation with which an engineer assesses the distribution of forces in 
something he is designing, and even that vague feeling possessed by the experi-
enced number cruncher about the convergence of infinite processes with which he 
is confronted. I am saying that, in its fields of application, mathematical intuition 
understood in this way rushes ahead of logical thinking and in each moment has 
a wider scope than the latter. (Klein, 1896, p. 147, translated by Martin Mattheis).

Here Klein used the adjective ‘naïve’ to express an ‘imprecise faculty’ (a sort of 
sixth sense) that prompts scholars during their research activities. He stated that it 
largely inherited, and it can be assumed (on the basis of the above quote) that in a 
smaller part, to a more limited extent, it is due to experience in a specific field.5. He 
then argued that imprecise spatial intuition should first be idealized in the axioms in 
order to proceed with a mathematical approach. Therefore, he introduced a second 
kind of intuition, here called ‘idealized’. He specified that such an approach should 
also be pursued in mechanics and mathematical physics (Klein, 1896, p. 146).

In his University of Göttingen courses, in his 1898/90 winter semester lectures on 
non-Euclidian geometry, published handwritten in 1892, Klein described once again 
the interplay between axioms and spatial intuition as countering the inexactness of 
intuition:

4   Allmendinger 2014, pp. 47–50 stresses that, although Klein rejected in principle the idea of accepting 
proof from intuition, in Klein 1892a, 1892b, p. 359 he derives just such proofs, showing that an algebraic 
question can be resolved intuitively purely by graphic geometric presentation.
5   “Thus, Felix Klein subsumed under the general term of Anschauung a certain degree of intuition 
gained through experience. (Mattheis 2019, p.97).



1 3

Philosophia	

Rather, in true geometric thinking, spatial intuition accompanies us at every 
step we take. […] I assign the axioms the role that they represent postulations 
with the aid of which we transcend the inaccuracy of intuition or the limita-
tions of intuition in order to achieve unlimited accuracy. (Klein, 1892a, b, p. 
354, translated by Martin Mattheis)
With our notion of the essence of intuition, an intuitive treatment of figurative 
representations will tend to yield a certain general guide on which mathemati-
cal laws apply and how their general proof may be structured. However, true 
proof will only be obtained if the given figures are replaced with figures gen-
erated by laws based on the axioms and these are then taken to carry through 
the general train of thought in an explicit case. Dealing with sensate objects 
gives the mathematician an impetus and an idea of the problems to be tackled, 
but it does not pre-empt the mathematical process itself. (Klein, 1892a, b, pp. 
359–360, translated by Martin Mattheis)

In his 1908 lecture series on “Elementary Mathematics from a Higher Stand-
point”, he distinguished between spatial intuition and ‘idealizing spatial intuition’ 
(idealisierende Raumanschauung) which addressed the abstract notion of geometri-
cal objects, i.e. the mathematical idea freed from the error-prone inexactness of real 
objects (Klein, 1908, p. 88).

This is the proper place to say a word about the nature of space intuition. It 
is variously ascribed to two different sources of knowledge. One the sensibly 
immediate, the empirical intuition of space, which we can control by means of 
measurement. The other is quite different, and consists in a subjective ideal-
izing intuition, one might say, perhaps, our inherent idea of space, which goes 
beyond the inexactness of sense observation. (Klein, 1908, p. 88)

Such a distinction between sensately immediate intuition and idealizing inner 
intuition goes back to the respective concepts developed by Kant (Allmendinger, 
2014, pp. 52–53).

In 1908 Felix Klein introduced a further term to the circle of concepts differenti-
ating ‘intuition’. In this context, he placed ‘sensate intuition’ alongside the notion of 
‘abstract intuition’ and gave a clear example of what he meant by ‘sense’ intuition 
(or ‘immediate’ intuition) as opposed to ‘abstract’ intuition:

It is precisely in the discovery and in the development of the infinitesimal cal-
culus that this inductive process, built up without compelling logical steps, 
played such a great role; and the most effective heuristic aid was very often 
sense intuition. And I mean here the immediate sense intuition, with all its 
inexactness, for which a curve is a stroke of definite width, not the abstract 
intuition, which postulates a completed passage to the limit, yielding a one-
dimensional line. (Klein, 1908, pp. 455–456)

It is clear that what he meant by abstract intuition was the same as the meaning 
he had already assigned to concept of idealizing intuition. Furthermore, his allu-
sion to the existence of different mathematical personalities, that are more or less 
fond for an intuitive approach (than to an abstract approach) to the discipline dates 
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to 1908. He stressed that these respective approaches continued to play an impor-
tant role in the development of new mathematical ideas in mathematical physics, 
mechanics and differential geometry:

The force of conviction inherent in such naïve guiding reflections is, of course, 
different for different individuals. Some – and I include myself here – find 
them very satisfying. Others, again, who are gifted only on the purely logical 
side, find them thoroughly meaningless and are unable to see how anyone can 
consider them as a basis for mathematical thought. (Klein, 1908, p. 460)

However, in reference to David Hilbert’s lectures on the Foundations of Arithme-
tic and Logic (Hilbert, 2013) he argued that even at the highest level of abstraction, 
when attempting to free oneself from any form of intuition, for example in num-
ber theory considered in a purely formal way, some minimal amount of intuition 
remains all the same, even if it is only to recognize the symbols with which one is 
operating merely in accordance with axiomatic rules. (Klein, 1908, pp. 32–35).

Klein considered intuition within an educational context in Volume II of Elemen-
tary Mathematics from a Higher Standpoint, writing6:

in schools you will always have to connect teaching at first with vivid concrete 
intuition and then only gradually bring logic elements to the fore; in general, 
the genetic method alone will provide a legitimate means slowly to develop a 
full understanding of concepts. (Klein, 1909, pp. 435–436)

He had alluded to the genetic teaching method in the first volume of Elementary 
Mathematics from a Higher Standpoint, proposing a principle resembling ‘philogen-
esis recapitulates the ontogenesis’:

6   His educational viewpoint played a key role in drawing up the 1905 Breslau Teaching Commis-
sion of the Gesellschaft Deutscher Naturforscher und Ärzte (GDNÄ)’s Meran Curriculum Proposal, 
which essentially formulated two key demands regarding mathematics teaching at secondary schools: 
“Strengthening the capacity to think in three dimensions (= geometrische Anachauung) and training the 
habit of functional reasoning.” (Mattheis 2019, p. 93) Klein had already expressed his opinions concern-
ing the need for reform of the teaching of mathematics in both secondary schools and universities, which 
he felt were too oriented towards humanistic education, in his Erlanger Antrittsrede. He was convinced 
that training of the mind through mathematical exercises was necessary both for natural scientists and 
for doctors. He realized the difficulties involved in adding further courses to medical courses, therefore 
he preferred to change things in secondary schools by modifying the educational methods used by math-
ematics teachers. What he required from them was ‘a more spirited treatment’ of the subject. Namely, the 
‘mathematics that is often presented possesses little that is of real educational value. Instead of develop-
ing a proper feeling for mathematical operations, or promoting an intuitive grasp of geometry, the class 
time is spent learning mindless formalities or practicing triivial tricks that exhibit no underlying princi-
ple. One learns to reduce with virtuosity long expressions that are devoid of meaning […]’. (Rowe 1985, 
p. 138) Hence, he suggested introducing more practical mathematics courses: ‘[…] we wish to hold exer-
cises in drawing and building models’ (Rowe 1985, p. 139) similar to what was done in polytechnics. A 
comparison between his initial and later viewpoints on teaching is given by Klein himself (1923, 18), 
Manegold (1970, 92), Pyenson (1979), and by (Rowe 1985). It is interesting to stress that, while at the 
beginning what he required of future mathematics teachers was research autonomy at high mathemat-
ics levels, in later life he stated: ‘I would now suggest that teaching candidates of average talent should 
confine themselves to such studies as will be of fundamental importance in the later exercise of their 
profession, while everything beyond this should be reserved for those with unusual talent or favorable 
circumstances’. (Rowe 1985, p. 128) In any case, his stress on intuition by teaching remained constant.
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In order to give precise expression to my own view on this point, I should like 
to bring forward the biogenetic fundamental law, according to which the indi-
vidual in his development goes through, in an abridged series, all the stages 
in the development of the species. […] Now, I think that instruction in math-
ematics, as well as in everything else, should follow this law, at least in gen-
eral. Taking into account the native ability of youth, instruction should guide it 
slowly to higher things, and finally to abstract formulations; and in doing this 
it should follow the same road along which the human race has striven from its 
naïve original state to higher forms of knowledge. (Klein, 1908, pp. 588–589)

The reference to different approaches to mathematics on a racial basis is found in 
the famous VI Evanston lecture of 1893 (p. 42) where he expressed the following 
views:

Finally, it must be said that the degree of exactness of the intuition of space 
may be different in different individuals, perhaps even in different races. It 
would seem as if a strong naive space-intuition were an attribute pre-eminently 
of the Teutonic race, while the critical, purely logical sense is more fully 
developed in the Latin and Hebrew races. A full investigation of this subject, 
somewhat on the lines suggested by Francis Galton in his researches on hered-
ity, might be interesting.

Needless to say, the distinction between naïve and refined intuition echoed ear-
lier and later ones.7 Namely, Klein wrote ‘the naïve intuition is not exact, while the 
refined intuition is not properly intuition at all, but arises through the logical devel-
opment from axioms considered as perfectly exact.’ The naïve intuition is described 
as follows: ‘in our naïve intuition, when thinking of a point we do not picture to 
our mind an abstract mathematical point, but substitute something concrete for it. In 
imagining a line, we do not picture ourselves ‘length without breadth,’ but a strip of 
a certain width’. (p. 39) He added that ‘there actually are many cases where the con-
clusions derived by purely logical reasoning from exact definitions can no more be 
verified by intuition.’(p.39) He stressed the utility of a method based on geometrical 
intuition:

7   In his first Evanston lecture (Klein 1894, p. 2), Klein placed mathematicians in three main categories: 
logicians, formalists and intuitionists, stating: “the word logician is here used, of course, without refer-
ence to the mathematical logic of Boole, Peirce, etc.; it is only intended to indicate that the main strength 
of the men belonging to this class lies in their logical and critical power, in their ability to give strict 
definitions, and to derive rigid deductions therefrom.’ But he immediately set such categorization aside, 
splitting mathematicians into only two categories.
  He cited Karl Weierstrass as an example and argued that the formalists mainly excelled in the formal 
usage of a given question, ‘in devising for it an ‘algorithm’’ using Paul Gordan, Arthur Cayley and James 
Sylvester as examples. Finally, he wrote (Klein 1894, p. 3): ‘To the intuitionists belong those who lay 
particular stress on geometrical intuition (‘Anschauung’), not in pure geometry only, but in all branches 
of mathematics. What Benjamin Peirce has called ‘geometrizing a mathematical question’ seems to 
express the same idea’. Lord Kelvin and Karl von Staudt were examples. Finally, he affirmed: ‘Clebsch 
must be said to belong both to the second and third of these categories, while I should class myself with 
the third, and also the first.’ It is clear that these categories are different from the dicotomic categories of 
mathematical approaches that he presented in other texts (and even in the Evanston lectures).
  On the three categories of mathematicians, see Franchella 2019.
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I am of the opinion that, certainly, for the purposes of research it is always nec-
essary to combine the intuition with the axioms. I do not believe, for instance, 
that it would have been possible to derive the results discussed in my former 
lectures, the splendid researches of Lie, the continuity of the shape of alge-
braic curves and surfaces, or the most general forms of triangles, without the 
constant use of geometrical intuition (p. 40)

and expressed his opinion that only a limited amount of abstract mathematics 
(based on refined intuition) is used in the applied sciences8: ‘[…] it must not be 
forgotten that mathematical developments transcending the limit of exactness of the 
science are of no practical value. It follows that a large portion of abstract math-
ematics remains without finding any practical application’ (p. 44). But he immedi-
ately specified, unequivocally:

I hope that what I have here said concerning the use of mathematics in the 
applied sciences will not be interpreted as in any way prejudicial to the cultiva-
tion of abstract mathematics as a pure science. Apart from the fact that pure 
mathematics cannot be supplanted by anything else as a means for developing 
the purely logical powers of the mind, there must be considered here as else-
where the necessity of the presence of a few individuals in each country devel-
oped in a far higher degree than the rest, for the purpose of keeping up and 
gradually raising the general standard. Even a slight raising of the general level 
can be accomplished only when some few minds have progressed far ahead of 
the average (p. 44)

thus implicitly praising the few individuals in each nation who manage to culti-
vate abstract mathematics. He thus praises (non-Teutonic) abstract mathematics as 
the pinnacle of human achievement (even if it is not, in itself sufficient, for research 
progress).

Rowe, 1986 points out that such a racial distinction (intuition vs. logic) was a fea-
ture of the culture of the day, citing a letter from Weierstrass to Sonia Kowaleskaja 
as proof:

Kronecker is different [from their mutual colleague Ernst Kummer]. He 
quickly makes himself familiar with everything that is new; his ready ability 
to grasp enables him to do so, but not in a penetrating manner. He does not 
possess the talent to engage himself in a good, but unfamiliar work with the 

8   He added a hierarchy of the sciences, according to the use that can be made of abstract mathematics 
in them:’I believe that the more or less close relation of any applied science to mathematics might be 
characterized by the degree of exactness attained, or attainable, in its numerical results. Indeed, a rough 
classification of these sciences could be based simply on the number of significant figures averaged in 
each. Astronomy (and some branches of physics) would here take the first rank; the number of significant 
figures attained may here be placed as high as seven, and functions higher than the elementary transcen-
dental functions can be used to advantage. Chemistry would probably be found at the other end of the 
scale, since in this science rarely more than two or three significant figures can be relied upon. Geometri-
cal drawing, with perhaps 3 to 4 figures, would rank between these extremes; and so we might go on.’ 
(Klein 1894, p. 43).
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same scientific interest that he pursues his own studies. Beyond this he shares 
the shortcoming that one finds in many intelligent people, especially those of 
Semitic stock: he does not possess sufficient fantasy (intuition I would pre-
fer to say). And it is true, a mathematician who is not something of a poet 
will never be a complete mathematician. Comparisons are instructive: an all-
embracing vision focused on the loftiest of ideals distinguishes [Niels Henrik] 
Abel from Jacobi, Riemann from his contemporaries ([Gotthold] Eisenstein, 
[Johann Georg] Rosenhain [both of Jewish descent]), and [Hermann von] 
Helmholtz from [Gustav Robert] Kirchhoff (although the latter is without a 
drop of Semitic blood) in an altogether splendid manner”. (Rowe, 1986, p. 
442)

It should also be noted that Klein’s racial references were intended positively. For 
example, he first praised James Joseph Sylvester with numerous adjectives: ‘Syl-
vester was extremely engaging, witty and effervescent. He was a brilliant orator and 
often distinguished himself by his pithy, agile poetic skill, to the mirth of everyone’ 
and then considered Sylvester’s best traits to be typical of his ‘race’: ‘By his bril-
liance and agility of mind he was a genuine representative of his race; he hailed 
from a purely Jewish family, which, having been nameless before, had adopted the 
[sur]name Sylvester only in his generation.’ (Klein, 1926, p. 163; transl. Rowe, 
1986, p. 440).

He also expressed positive views of Jewish mathematician Kronecker:

In that he was mainly concerned with arithmetic and algebra, in later years 
however setting up definite intellectual norms for all mathematical work, he 
appears as the specifically Jewish talent, but in a special, individual enhance-
ment. For he has foreseen many relationships of a fundamental nature in his 
fields of work, without being able to work them out clearly yet. (Klein, 1926, 
p. 281, transl. Rowe, 1986, p. 442)

Klein reserved the same treatment for Jewish Jacobi:

As is well known, the year 1812 brought with it the emancipation of the Jews 
in Prussia. Jacobi was the first Jewish mathematician to take a leading place in 
Germany, and in so doing he was again at the forefront of a great, and for our 
science significant, development. This measure opened up a large reservoir of 
new mathematical talent for our country, whose powers, along with those of 
the French immigrants, very soon bore fruit. It appears to me that our science 
has won a strong stimulant through this type of blood replenishment. Along 
with the already mentioned law regarding shifts of productivity from country 
to country, I would like to designate this phenomenon as the effect of national 
infiltration. (Klein, 1926, p. 114; transl. Rowe, 1986, p. 440)

Klein spoke of infiltration by a member alien to the German nation, but one 
which brought a beneficial transfusion of blood.

As Bair et al. 2017 (p. 200) note, the term ‘racist’ can be understood in (at least) 
two distinct ways: (1) someone interested in analysing differences in intellectual 
outlook between distinct ethnicities (racist1); (2) someone who believes in the 
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inferiority of one ethnicity to another based on such differences, and advocates cor-
rective action (racist2). Klein’s discussions of ethnic differences possibly make him 
racist1.

The letter written to Jewish mathematician Otto Toepliz,9 who had been 
appointed full professor in Kiel and was himself recruiting new teachers, similarly 
cannot be considered racist in the second sense. In it, Klein (who had also himself 
hired Jewish Godon in Göttingen) recommends a certain prudence in recruiting only 
teachers of Jewish origin. Namely, Klein noted a ‘tribal’ solidarity between Jews 
which nurtured views that their efficiency was in fact inspiring a new anti-Semitism 
in response. Excessive enlistment of Jews could, therefore, act as grist to the mill in 
an unpredictable future. Siegmund-Schultze commented: ‘Der Brief zeigt den gros-
sen alten Organisator der Göttinger Mathematiker Klein in seinem Urteil unsicher. 
Er schwankt zwischen überkommenen antisemitischen Klischees, Anerkennung der 
Begabung jüdischer Mathematiker, Einräumung antisemitischer Diskriminierung 
und Befürchtungen für die zukünftige Entwicklung des Faches.’ (Siegmund-
Schultze, 2016, p. 26) It seems to me that the letter contains a concern for the fate 
potentially awaiting the Jewish community whose influence seemed (as in ancient 
Egypt) to be growing because of its gifts and robust sense of community. The lat-
ter could be considered a cliché about Jews but his language is cautious rather than 
aggressive.

However, this distinction was taken up by others, starting with Erich Rudolf 
Jaensch, a former student of his who stated that Klein was intrigued by the ‘con-
flict between the German spirit and the preponderance of a completely different type 
of thinking in mathematics’ and continually returned to this theme in his seminar 
‘despite the fact that it was intentionally repressed by several of the participants.’ 
(Jaensch-Althoff 1939, p. 32; transl. Rowe, 1986, p. 440). According to Rowe (1986, 
p. 441), it is doubtful that Jaensch ever attended this seminar, as his name does not 
appear in the protocol book written by Klein himself. Furthermore, the protocol 
book supplies us with the fact that the racial issue came up in the seminar on one 
occasion, when a student named Steckel spoke about his experiences teaching in 

9   Nun komme ich, um nichts zurückzuhalten, zur Frage des Antisemitismus. Sie wissen, wie ich es 
selbst immer gehalten habe, seit ich 1874 die Berufung von Gordan nach Erlangen veranlasste: mir war 
der einzelne Jude willkommen, indem ich voraussetzte, dass er mit den übrigen Mitgliedern der Univer-
sität kooperieren werde. Aber nun haben sich im Laufe der Zeit die Gegensätze prinzipiell verschärft. 
Wir haben auf der einen Seite nicht nur ein ungeheures, der merkwürdigen Leistungsfähigkeit entspre-
chendes Vordrängen des Judentums, sondern das Hervorkommen der jüdischen Solidarität (welche dem 
Stammesgenossen auf alle Weisen in erster Linie zu helfen strebt). Dazu nun als Rückwirkung den star-
ren Antisemitismus. Das Problem ist ein allgemeines, bei dem Deutschland, soweit nicht gerade die mod-
erne östliche Einwanderung in Betracht kommt, nur eine sekundäre Rolle spielt. Niemand kann sagen, 
wie sich das Ding [sie] weiter entwickelt. Aber ich mache darauf aufmerksam, dass die sämmtlichen 
fünf Gelehrten, die Sie für Ihr Ordinariat in Aussicht nehmen, jüdischen Ursprungs sind. Ist dies eine 
zweckmässige Politik? Ich nehme von vornherein an, dass Sie das nicht beabsichtigt haben. Man kann 
auch beinahe so argumentieren: dass der an allen Universitäten etc. latent vorhandene Antisemitismus die 
christlichen Kandidaten so bevorzugt habe, dass nur noch jüdische zur Verfügung stehen. Aber ich bitte 
doch darüber nachzudenken. Wir treiben möglicherweise in Gegensätze hinein, die für unsere gesam-
mten Zustände unheilvoll werden können. (Quoted from Siegmund-Schultze 2016, p. 26).
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Eastern Europe, arguing that Jews and Germans think differently when performing 
calculations.10

Later, Theodor Vahlen, who was an executive official in the ministry in 1933, 
and a professor in Berlin, gave an address on assuming his office as rector of Uni-
versity of Greifswald on 15 May 1923 entitled "Wesen und Wert der Mathematik" 
and, after presenting mathematics as a search for beauty, observed that this means 
that it depends on ‘Geschmack’ (taste) which varies from person to person, and from 
people to people. He stressed a clear difference between the ‘ideal’ Greeks, who 
preferred pure mathematics and the ‘practical’ Romans, who limited themselves to 
measuring fields and commercial calculations. In more recent times, he noted the 
difference between the Anglo-Saxons and the Germans seeing the Anglo-Saxons as 
more inclined to applied mathematics while the Germans focused on number and 
space foundations. Then, Vahlen, added, if peoples are grouped into races, there 
is a dividing line between West and East in mathematics with the latter preferring 
arithmetic and the former geometry. At this point, Vahlen quoted Klein (‘one of our 
greatest geometers’) stating that ‘modern people have a strongly developed, fer-
tile view of space, which is a particular advantage of the Teutonic Race’ and that a 
‘purely logical, sharply critical sense’ characterizes the Jews, generating a ‘disinte-
grating criticalism’ (Vahlen, 1923, p. 21). Furthermore Vahlen recalled that Klein 
deplored a lack of spatial sense in Jews that leads them ‘to a disdain for and under-
estimation of the visual, to a preference for the unapparent, even to a taste for the 
unapparent, for the paradoxical’ (Ibid.). Cited in this way, Klein’s distinctions within 
mathematics culminated in open Antisemitism.

Curiously and somewhat ironically, according to Segal, ‘in 1929 there appeared 
a set of books by Phillipp Stauff called Sigilla veri which purported to reveal the 
pernicious influence of Jews in German intellectual and cultural life. The mathema-
tician Felix Klein was mentioned11 in Volume 3, on page 552’. (Segal, 1986, pp. 
127–128) Furthermore, as Rowe, 1986 narrates (p. 422), in November 1933 Hugo 
Dingler, in a memorandum sent to the Bavarian Ministry of Culture consisting of a 
twenty-page historical synopsis of the Jewish invasion of the fields of mathematics 
and physics after they were granted legal equality in 1869, claimed that Klein was 
half-Jewish, had filled Göttingen with Jews and foreigners and intended to re-make 
German mathematics along Jewish lines.

11   For an explanation of this error, see Segal 2003, p. 372, n.149.

10   Rowe quotes the example that Steckel gave: ‘To subtract 3/4 from 7 1/4, for example, the Germans 
would first reduce each by 1/4, and then calculate 7-1/2 = 6 1/2. The Jews, on the other hand, would 
convert 7 1/4 into 29/4, and then subtract to obtain 26/4.’ Rowe adds that ‘This example was, no doubt, 
meant to illustrate the usual stereotype: that Jews excelled in logical thinking, whereas Germans thought 
intuitively’. He also recalls that ‘in another meeting, Felix Bernstein stressed that environment and train-
ing, even at an advanced level, play a more important role than heredity in determining a mathemati-
cian’s outlook and style’. (Rowe 1986 p. 441).
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A quarter of a century after writing his thesis under Klein, Ludwig Bieberbach (a 
Nazi mathematician who will be examined later), intervened to defend Klein12 and 
transformed13 this one in a pure German mathematician inside his own classification 
of mathematical types. Thus Bieberbach attributed his own views concerning Ger-
man mathematics to Klein himself.

2.2 � Poincaré

Henri Poincaré identified two types of mathematicians: so-called ‘analysts’ and so-
called ‘geometers’, also referring to them to as ‘logicians’ and ‘intuitives’ respectively. 
His definitions of intuition vary from text to text. In the psychological reconstruction he 
gave of the process of mathematical creation,14 that is, of finding proof, he stated that 
man has two selves, one unconscious and one conscious. Then he proceeded by meta-
phor seeing concepts (‘mathematical facts’) as atoms which stand still when the mind 
is resting, attached to one of its ‘walls’. Then, during unconscious work, carried out on 
the basis of what had been reflected consciously, some atoms will detach themselves 
from the wall and thus be able to meet (and hook up in combination) with others set in 
motion or still hooked to the wall.15 “The mobilized atoms are therefore not any atoms 
whatsoever; they are those from which we might reasonably expect the desired solu-
tion. The mobilized atoms, are those from which the solution sought can reasonably be 
expected”. (Poincaré, 2014, p. 393) “All goes on as if the inventor were an examiner for 
the second degree who would only have to question the candidates who had passed a 
previous examination”. (Poincaré, 2014, p. 386–387). The combinations whose beauty, 
elegance and harmony have the greatest impact on us, and are capable of arousing in us 
an intense aesthetic emotion, emerge into consciousness. The sensitivity to such emo-
tions (typical of mathematicians) “once aroused, will call our attention  to them, and 
thus give them occasion to become conscious”. (Poincaré, 2014, p. 392) Beauty, ele-
gance and harmony emerge from that specific combination, because “the mind without 
effort can embrace their totality while realizing the details”. (Poincaré, 2014, p. 391).

This is (one of) Poincare’s definitions of intuition: the ability to grasp the unity of 
a demonstration, its being ordered in a certain way, at a glance.

A mathematical demonstration is not a simple juxtaposition of syllogisms, it 
is syllogisms placed in a certain order, and the order in which these elements 
are placed is much more important than the elements themselves. If I have the 
feeling, the intuition, so to speak, of this order, so as to perceive at a glance the 
reasoning as a whole, I need no longer fear lest I forget one of the elements, for 

12   A student of Bieberbach’s, Eva Manger, also defended Klein with the article “Felix Klein in Semi-
Kürschner” (see Manger 1934), where Semi-Kürschner was a well-known appellation for the encyclope-
dia Sigilla Veri. On this topic, see Segal 2003, pp. 371–373.
13   See Bieberbach 1934.
14   Poincaré’s description of creativity and its Darwinian explanation inspired much thinking. For a criti-
cal overview of the literature, see Kronfeldner (2011: esp. 64–65). For a comparison between Poincaré’s 
description and that made by other scientists, see Miller (1984, 1992, 1996, 1997).
15   Marie-Louise von Franz, at the end of the book Man and His Symbols, referred to this quote as an 
example of the fact that ‘Our representations are ‘ordered’ before we become aware of them.’ (von Franz 
1964, p. 306).
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each of them will take its allotted place in the array, and that without any effort 
of memory on my part […] this intuition of mathematical order, that makes 
us divine hidden harmonies and relations, can not be possessed by every one. 
(Poincaré, 2014, p. 385)

The author affirms that people can be divided into the following three categories: 
1) those lacking in ‘this delicate and difficult to define sensibility’ and above average 
mnemonic and concentration strength – i.e. the majority; 2) those who possess this 
sensibility to a limited extent but have an extraordinary memory; 3) those whose sen-
sibility is prodigious and accompanied by a non-significant memory advantage. The 
former are seen as incapable of understanding or creating mathematics, the second 
group can only understand it and the latter can also create it and will be its ‘inven-
tors’. With the data obtained from the unconscious (or ‘subliminal’) self, the inventor 
proceeds to make calculations, because these are made at the conscious level.

Poincaré repeatedly emphasized that, for man, the beautiful and the useful (i.e. 
what is mathematically fruitful) coincide, and muses about the origin of this. He cau-
tiously ventures the hypothesis that this is the result of human evolution and selection: 
those who prevail by nature have a greater appreciation of what is intellectually beauti-
ful (rather than what is beautiful to the senses, such as flashy colours and deafening 
sounds). After all, “this disinterested quest of the true for its own beauty is sane also and 
able to make man better”. (Poincaré, 2014, p. 368) Without intuition there be no inven-
tion, mathematical novelty, and without a (minimal) intuition one cannot understand 
the mathematical demonstrations of others. Therefore, even ‘logicians’, in the inventive 
stage, must appeal to intuition. “Pure logic could never lead us to anything but tautolo-
gies” (Poincaré, 2014, p. 214). “This shows us that logic is not enough; that the science 
of demonstration is not all science and that intuition must retain its role as complement, 
I was about to say as counterpoise or as antidote of logic.” (Poincaré, 2014, p. 217).

But what apparent differences are there between logicians and geometers? The 
battle seems to be played out around the acceptance of the reference to imagination, 
to the vision of the mathematical object as a sure basis for demonstration. Logi-
cians do not accept it. Poincaré listed three types of intuition: “first, the appeal to the 
senses and the imagination; next generalization by induction, copied, so to speak, 
from the procedures of the experimental sciences; finally, we have the intuition of 
pure number, whence arose the second of the axioms just enunciated, which is able 
to create the real mathematical reasoning”. 16 (Poincaré, 2014, pp. 215–216) Geom-
eters’ rely on the first type of intuition, ‘analysts’ on the third. “The analysts, […] 

16   Poincaré’s trust in intuition led him naturally to oppose Russell and Frege’s newborn foundational 
school (later called ‘logicism’). Still, Detlefsen stresses that Poincaré criticised ‘not just logicism but, 
rather, the ’logicization’ of mathematical proof—by which we mean the reduction of all inferences 
occurring within a mathematical proof to logical inferences. He believed that there are distinctively 
mathematical forms of inference, of which perhaps the clearest and most important is mathematical 
induction’ (Detlefsen 1992, p.356). Namely, Detlefsen (1992), like Heinzmann later (1995), claimed 
that Poincaré had pointed out an epistemological difference between the mathematical prover and his/
her logician counterpart. He replied to the Boutroux and Goldfarb viewpoint, i.e. Poincaré’s argument 
against the ‘logical’ point of view was that it did not provide psychological conviction (Boutroux 1914 p. 
39; Goldfarb 1985 p. 64). Heinzmann-Stump (2017) add that in any case ‘It would be false to believe that 
he thus conflates logic and psychology’.
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in order to be inventors, must, without the aid of the senses and imagination, have a 
direct sense of what constitutes the unity of a piece of reasoning, of what makes, so 
to speak, its soul and inmost life.” (Poincaré, 2014, p.220).

Such intuitions, though very different, nevertheless see intuition as a unified 
vision. Namely, reasoning by recurrence (i.e. mathematical induction17), ‘contains, 
as it were, condensed into a single formula, an infinity of hypothetical syllogisms’ 
arranged in cascade: the theorem is true for the number 1; if it is true for 1, then it is 
also true for 2; therefore it is true for number 2; if it is true for 2, it is also true for 3, 
and so on. The conclusion of each syllogism is the premise of the next syllogism. In 
mathematical induction, we simply lay down the minor premise of the first syllogism 
(i.e. ‘the theorem holds for number 1’) and the general formula that contains all the 
major ones as special cases (i.e. ‘if the theorem holds for n-1, then it holds for n’). 
Thus a unitary look at a sequence that would be infinite is provided. This rule cannot 
be proved over others, because in the end we will end up with utterances equivalent 
to it, so it is ‘irreducible to the principle of contradiction’. (Poincaré, 2014, p. 37) 
Nor can it come from experience, because it would have to be an experience of infi-
nite utterances and is thus impossible for human beings. Nor can it be understood 
as a convention, analogous to some geometrical postulates.18 Therefore, the only 

17   On the purpose of pure number intuition, Heinzmann-Stump (2017) pointed out the differences 
between this and Kant’s: ‘Poincaré’s is intellectual in character and does not in the least solve the prob-
lem of the unity of spontaneity and receptivity by the introduction of a pure sensibility.’ Another differ-
ence between Poincaré and Kant consists of the fact that Poincaré did not share Kant’s opinion that space 
was an apriori form of our sensibility. As Boutroux explained (1914, p. 8), the philosophical discussion 
which the Euclidean postulate gave rise  excludes this hypothesis ipso facto: the postulate is not an a 
priori judgment; for if it were a priori, it would have a character of necessity. Nor is the postulate an 
empirical judgment; for if Euclidean geometry is true for the physicist, non-Euclidean geometry cannot 
be less true. Finally, Poincaré thought he had proved against Russell that the properties of space cannot 
be analytically deduced from our belief in the possibility of experience. It remained for him to explain 
in turn the genesis of geometric space via introspection. He analyzed our sensations in detail and sought 
an explanation as to how man can gradually form this notion in his mind. The experiments that legiti-
mize this geometry are above all physiological experiments. It is observing the order in which our sensa-
tions follow one another that ultimately gives rise to the notion of space. However the various spaces, 
visual, tactile or motor, are not yet geometrical, and they can have more than three dimensions. We give 
three dimensions to space not by necessity but because it is convenient for us. Therefore, in Kantian type 
judgements, conventional judgements are to be added.
18   Dunlop 2016 recalls that some commentators have suggested that the intuition that grounds the use 
of induction in arithmetic also underlies the conception of a continuum whilst stating that this was not 
Poincaré’s view. Poincaré, he argues, meant that ‘we need arithmetic and further things in order to work 
in geometry. We still need to add, subtract, multiply, and divide when we are doing geometry, but we 
will be doing more than what we do in arithmetic’. (Dunlop 2016 p. 274) Folina specifies that Poincaré’s 
continuum was guaranteed by geometric intuition: it was knowable ‘via the form of ‘outer’ experience’, 
that enables us to link our sense experience and to possess a concept of enduring object. (Folina 1992, 
p. 190) Therefore, ‘although with the platonist he accepts the existence of classical continuum, that is, 
the determinacy of domain of all real numbers, in opposition to the platonism, the continuum is not a 
fundamentally ‘arithmetical’ object. […]’ That is, it is neither an ordinary set (it cannot be obtained only 
by applying set-theoretic axioms) nor an object upon which further set-theoretic operations can automati-
cally be performed. (Folina 1992, p. 191) Boutroux recalled that Poincaré had defined the continuum as 
follows:’ l’esprit a la faculté de créer des symboles, et c’est ainsi qu’il a construit le continu mathéma-
tique qui n’est qu’un système de symboles. Sa puissance n’est limitée que par la nécessité d’éviter toute 
contradiction; mais l’esprit n’en use que si l’experience lui en fournit une raison’. (Boutroux 1914, p. 17)
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option thus remains that it is (using Kantian terminology) a synthetic a priori judg-
ment, which asserts itself with irresistible evidence as an affirmation of the power of 
human intelligence: intelligence ‘knows’, it directly intuits its power when experi-
ence provides it with an occasion to become aware of it. Therefore, mathematical 
induction differs from scientific induction, which is based on the belief in something 
outside us: a general order of the universe. The two share the fact that they proceed 
from the particular to the universal and, therefore, mathematics is a science, too.

Poincaré added that the two types of mathematicians are not such on the basis 
of the subject they study: one is not an analyst because one studies analysis, but 
because one has an approach that privileges pure number intuition.

It is the very nature of their mind which makes them logicians or intuitional-
ists, and they can not lay it aside when they approach a new subject. Nor is 
it education which has developed in them one of the two tendencies and sti-
fled the other. The mathematician is born, not made, and it seems he is born a 
geometer or an analyst. (Poincaré, 2014, p. 210).

He specified further: “The two sorts of minds are equally necessary for the progress 
of science; both the logicians and the intuitionalists have achieved great things that oth-
ers could not have done. Who would venture to say whether he preferred that Weierstrass 
had never written or that there had never been a Riemann? (Poincaré, 2014, p. 212).

Poincaré, who classified himself a ‘geometer’, expressed admiration for analysts 
who work without the aid of the imagination: “The majority of us, if we wished 
to see afar by pure intuition alone, would soon feel ourselves seized with vertigo”. 
(Poincaré, 2014, p. 221).

He named two Germans with different mentalities and two Frenchmen with 
equally different mentalities. The Frenchmen were Bertrand and Hermite:

They were scholars of the same school at the same time; they had the same edu-
cation, were under the same influences; and yet what a difference! […] M. Ber-
trand is always in motion; now he seems in combat with some outside enemy, 
now he outlines with a gesture of the hand the figures he studies. Plainly he sees 
and he is eager to paint, this is why he calls gesture to his aid. With M. Her-
mite,19 it is just the opposite; his eyes seem to shun contact with the world; it is 
not without, it is within he seeks the vision of truth. (Poincaré, 2014, p. 211).

For the Germans, he offered us the analytical Weierstrass (“you may turn through 
all his books without finding a figure” (Poincaré, 2014, p. 212)) and the geometer 
Riemann “each of his conceptions is an image that no one can forget, once he has 
caught its meaning” (ibid.).

At school, intuition and concrete examples are always the necessary starting 
point before moving on to the rigour of logic, otherwise students will not under-
stand the content of what is being discussed, feel motivated, understand the genesis 
of the theories nor their applicability. Logic teaches us that certain specific paths 

19   Still, at the end of the paper, Poincaré reconsidered Hermite and stated that Hermite cannot be 
entirely classified as one of the geometers using primarily sensible intuition, nor can he be considered a 
logician due to his repulsion for deductive arguments.



	 Philosophia

1 3

are viable, i.e. free from contradictions. Poincaré appreciated this aspect, which is a 
guarantee of the existence of mathematical entities, and shared J. Stuart Mill’s view: 
every definition implicitly contains the axiom that establishes the existence of the 
objects described. Poincaré noted that this can happen because their definition is 
non-contradictory, but he also pointed out that logic does not tell us which of the 
paths allows us to reach the goal. For this reason, intuition is needed: “Without it the 
geometer would be like a writer who should be versed in grammar but had no ideas. 
Now how could this faculty develop if, as soon as it showed itself, we chase it away 
and proscribe it, if we learn to set it at naught before knowing the good of it.” (Poin-
caré, 2014, p. 438).

Some similarities between Klein’s and Poincaré’s reflections on intuition are vis-
ible. Both insist on the importance of intuition to mathematical invention and are 
sensitive to the psychological aspects present in education (and thus insist on pre-
senting mathematical entities first intuitively and only then formally). However, for 
Klein intuition is strictly visual-concrete, while in Poincaré intuition’s most essen-
tial characteristic is that it is a unitary view of a demonstration, and for this reason, 
somehow present even in analysts, who proceed after formalization, because their 
reasoning by recurrence (i.e. mathematical induction), ‘contains, as it was, con-
densed into a single formula, an infinity of hypothetical syllogisms’ and therefore 
is a kind of unitary view. In addition, Klein ventured a racial classification, while 
Poincaré believed that there are various skills involved in doing mathematics which 
vary from individual to individual. Poincaré’s reference to the word ‘race’ is in the 
context of ‘coarse space’, the space of superior animals, the space relative to one’s 
own body (designed to control one’s territory, defend oneself from enemies which 
Poincaré calls ‘distribution table’), with ‘race’ meaning our ancestors20 common to 
all of today’s human race:

We have selected the most convenient space, but experience has guided our 
choice; as this choice has been unconscious, we think it has been imposed upon 
us […] In this progressive education whose outcome has been the construction 
of space, it is very difficult to determine what is the terms of use, part of the 
individual, what the part of the race. How far could one of us, transported from 
birth to an entirely different world, where were dominant, for instance, bodies 
moving in conformity to the laws of motion of non-Euclidean solids, renounce 
the ancestral space to build a space completely new? (Poincaré, 2014, p. 429)

2.3 � Brouwer

Brouwer’s first particularly significant comments regarding intuition can be identi-
fied in his 1907 doctoral thesis Grondslagen der wiskunde (Foundations of Math-
ematics): ‘to exist in mathematics means: to be constructed by intuition’ (Brouwer, 
1975: from now on CW I, p. 96) and ‘Mathematics is created by a free action inde-
pendent of experience: it develops from a single aprioristic basic intuition, which 

20   He distinguished this space from the geometric space, rigorous, born from the first, but fertilized ‘by 
the faculty that we have of constructing mathematical concepts, such as that of group; it was necessary to 
search among the pure concepts for the one that best suited this coarse space.’ (CW I, p. 81).
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may be called invariance in change as well as unity in multitude’ (CW I, p. 97). 
This, then, is a first understanding of intuition as a means of construction whose 
action is described (in the case of a theorem asserting a property of some mathemat-
ical objects) in the following terms:

Usually mathematics is expressed […] by means of a chain of syllogisms. But 
the conceptions which are evoked by the words used in such an explanation, 
consist in the following: Where mathematical objects are given by their rela-
tions to the basic or complex parts of a mathematical structure [this means 
that the object in question is built in connection with the components to which 
it is said to be related], we transform these given relations by a sequences of 
tautologies [i.e. by fixing one’s attention to different substructures of the math-
ematical system] and thus gradually proceed to the relations of the object to 
other component of the structure. (CW I, p. 72)

In the case of an ‘affirmative’ theorem which seems to start from a structure 
defined via certain relations embedded within another structure whose construction 
is not immediately clear (i.e. it seems to start from mere hypotheses) it happens that:

One starts by setting up a structure which fulfills part of the required relations, 
thereupon one tries to deduce from these relations, by means of tautologies, 
other relations, in such a way that the new relations, combined with those that 
have not yet been used, yield a system of conditions, suitable as a starting-
point for the construction of the required structure. (ibidem)

In the case of a theorem denying that a property belongs to a mathematical 
entity, the construction comes to an end: “I simply perceive that the construction 
no longer goes, that the required structure cannot be imbedded in the given basic 
structure.”(CW I, p. 73).21

It should be noted here that for Brouwer mathematics is made up of construc-
tions, that is, it is alinguistic, and based on attempts at constructions, which may 
succeed or fail. They are ‘creative’ attempts, i.e. they do not follow any fixed rule. 
So mathematics does not follow logic, it does not use logic. Logic records the regu-
larities present in expressions of mathematical constructions, which are carried out 
to support memory and communicate one’s results, with an awareness that there are 
no guarantees of success in another person’s same mathematical construction, and 
that the emotions accompanying the mathematical experience are inevitably linked 
to the subject (and hence not repeatable).

The second meaning of intuition is the one that originates basic mathematical 
entities, first of all natural numbers. Brouwer describes this meaning of intuition as 
the basic phenomenon, the ‘simple intuition of time, in which repetition is possible 
in the form: ’thing in time and thing again’, as a consequence of which moments 
of life break up into sequences of things which differ qualitatively.’ (CW I, p. 53) 

21   Here Brouwer criticises Poincaré’s definition of mathematical existence as non-contradictory, on the 
grounds that this latter is a linguistic characteristic which does not guarantee the constructability of the 
object.
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In a note he calls this intuition ‘intuition of two-ity’. (CW I, p. 97) It is a priori in 
that it is independent of experience, while it is not a necessary condition for experi-
ence (CW I, p. 70), because mathematics and experience exist independently of each 
other; but it is a necessary condition of the ‘mathematical receptacle of experience’. 
Consequently, synthetic a priori judgments are “the very possibility of mathematical 
synthesis, of thinking many-one-ness, and the repetition thereof in a new many-one-
ness; the possibility of intercalation; the possibility of infinite continuation (axiom 
of complete induction)”. (CW I, p. 70).

In the inaugural address to his chair, "Intuitionisme en formalisme", besides 
defining his foundational school as ‘neo-intuitionism’ in order to link it and, at the 
same time, distinguish it from the intuitionism of Kant and Poincaré,22 Brouwer 
attempted a more precise description of temporal intuition:

This neo-intuitionism considers the falling apart of moments of life into quali-
tatively different parts, to be reunited only while remaining separated by time 
as the fundamental phenomenon of the human intellect, passing by abstracting 
from its emotional content into the fundamental phenomenon of mathematical 
thinking, the fundamental phenomenon of the human intellect. (CW I, p. 127)

Brouwer traced his idea of basing the natural number on the intuition of time 
back to Kant, and his Doktorvater Korteweg doubted this. In fact, for Kant the num-
ber was the scheme of temporal intuition i.e. it was the medium between concept 
and imagination. Brouwer, on the contrary, described the intuition of time without 
referring to the notion of schematism. For him, temporal intuition was abstraction 
from inner experience. It was the intuition of two and one together, and this also 
constituted a difference from Kant: “The first act of construction has two discrete 
things thought together […] F. Meyer says that one thing is sufficient, […] this is 
false, for exactly this adding (i.e. setting [one thing] while the former is retained) 
presupposes the intuition of two-ity; only afterwards this simplest mathematical 

22   As Heinzmann-Nabonnand 2008  have stressed, the main difference between Brouwer’s and Poin-
caré’s arithmetical intuition is the role played by experience, which was meaningful only for Poincaré. 
Namely, according to the latter, experience provides the innate capacities of our minds with an occasion 
to express themselves both in arithmetic and in geometry, grounded on two different intuitions. If we are 
obliged to make use of such capacities, we obtain the recursion principle; if we have a choice regarding 
them, ‘experience helps us choose and the result is a convention’, as in the case of geometrical intui-
tion. According to Brouwer, mathematics develops out of an inner intuition (that is time intuition, not 
mentioned by Poincaré) and must remain inward to avoid causing pain. The continuum is also grounded 
on inner intuition. For further details, see Heinzmann-Nabonnand 2008. Regarding pre-intuitionism, see 
Michel 2007. Already in his dissertation, Brouwer (CW I, p. 96) noted that, in 1905, Poincaré had stated: 
‘En mathématiques le mot exister ne peut avoir qu’un sens, il signifie exempt de contradiction’ (Poincaré 
1905, p. 819), and remarked that, in this sense, Poincaré’s views were very similar to those of Russell 
criticised. If we look at Poincaré in 1905 and read a few lines after the above quotation, Poincaré consid-
ers the logicistic search for consistency in axiomatic systems to point out that, in the real world where a 
model for these is not at hand, the search presupposes the principle of induction, that is a mathematical 
(and not a purely logical) principle (Poincaré 1905, pp. 819–820). Heinzmann-Nabonnand 2008 stress 
that, in any case, Poincaré’s appeal to the non-contradictoriness of axiom systems must be seen in a non-
Hilbertian light: ‘Poincaré rejects the idea of ensuring mathematical reliability with a Hilbert-style con-
sistency proof’.
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system is projected on the first thing and the ego which thinks the thin”. (CW I, p. 
97) Kant, as we have seen above, spoke of the successive addition of equal things.

In his doctoral thesis, in a summary table comparing his mathematical system 
with Kant’s  Transcendental Aesthetics and Russell’s Foundations of Geometry, 
Brouwer stressed the fact that only his mathematics was independent of experience 
outside the intellect. In fact, for both Kant and Russell three-dimensional Euclid-
ean space is "inseparably linked up with external experience", whereas for himself 
"nothing is inseparably linked up with external experience". (CW I, p. 71) In 1912, 
Brouwer placed Kant among the precursors of his intuitionism, since he had theo-
rised temporal intuition, but described his own intuitionism as "neo-intuitionism" 
(CW I, p. 127), underlining his abandonment of spatial intuition as apriori. Thereaf-
ter, all reference to Kant disappeared.

In 1918, Brouwer expanded the mathematical content of this intuition, highlight-
ing the way it is foundational to the concept of species (‘Unter einer Spezies erster 
Ordnung verstehen wir eine Eigenschaft welche nur eine mathematische Entitaet 
besitzen kann […] Unter einer Spezies zweiter Ordnung verstehen wir eine Eigen-
schaft welche nur eine mathematische Entitaet oder Spezies erster Ordnung besitzen 
kann […] In analoger Weise definieren wir Spezies n- ter Ordnung’—CW I, p. 151) 
and that of ‘spread’ (spreiding). This is initially described with reference to the uni-
versal tree (thought of as a growing structure), i.e. a tree with all possible branches: 
at each branching point—called ‘node’—one assigns either sterilization or a term or 
nothing. The possibility of assigning a sterilization, which causes the sterilization 
of the entire branch, is introduced to model the tree, by cutting out the branch; the 
possibility of assigning nothing, generating finite successions, was used to homolo-
gate their construction to that of infinite successions. Later (after Griss’s criticism of 
his definition of negation23), from his Cambridge lectures on, Brouwer replaced the 
sterilization procedure with a direct indication to prosecute only certain nodes, i.e. 
describing the construction of the tree without passing through the universal tree by 
saying that it has:

1)	 for initial nodes (of order 1) either all natural numbers or only those not exceeding 
a certain given m;

2)	 for nodes of order n + 1 (for each n) or all immediate descendants of the node p 
of order n or only those whose (n + 1)-th constituent joined to the constituents of 
p does not exceed a certain number mp.

To achieve a spread, to each node either objects or nothing are attached.
Within the production of the spread, during the construction of the tree, Brouwer 

contemplated freedom of choice in the continuation (and intended each branch as 
a succession of free choices). Still, ‘freedom’ encompasses everything and, there-
fore, can also allow for its progressive restriction and even restriction of restriction. 
Brouwer had numerous second thoughts on the subject, but from 1946 onwards he 
maintained a definitive opinion, saying: “In  some former publications of the author  
restrictions of freedom of future restrictions of freedom, restrictions of freedom of 

23   See Franchella 1994a, 1994b and 1995.
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future restrictions of freedom of future restrictions of freedom, and so on were also 
admitted. But at present the author is inclined to think  this admission superfluous 
and perhaps leading to unnecessary complications.” (Brouwer, 1981, p. 13)

Finally, Brouwer rethought his definition of temporal intuition, contextualising 
it with the original Weltanschauung context that he had not been allowed to make 
explicit in his 1907 thesis24: man can find serenity only in the interiority of his own 
consciousness. He is compelled by karma to go out, but it is appropriate for him to 
do so only minimally. In particular, scientific work must avoid being applicative and 
take place inward form: for mathematics, the perfect starting point is the intuition 
of time. It was at the 1948 conference (“Consciousness, Philosophy, and Mathemat-
ics”) that Brouwer set out the steps from the inner self to the sciences in greater 
depth. On that occasion, Brouwer explained temporal intuition within the descrip-
tion of the path of man’s consciousness (an unquestionable starting point for him) 
towards externality: consciousness oscillates between sensation and tranquillity, fol-
lowed by another sensation and therefore distinguishes between present and past; 
then it distinguishes itself from both (becoming ‘mind’); it identifies complexes of 
sensations that repeat themselves (if the order never changes, they are called ‘things’, 
among which there are human bodies) driven by ‘causal attention’, i.e. the desire to 
know and obtain objects.

Mathematics comes into being, when the two-ity created by a move of time is 
divested of all quality by the subject, and when the remaining empty form of 
the common substratum of all two-ities, as basing intuition of mathematics, 
is left to the unlimited unfolding, creating new mathematical entities in the 
shape of predeterminately or more or less freely proceeding infinite sequences 
of mathematical entities previously acquired, and in the shape of mathematical 
species. (CW I, p. 482)

Thus, his intuitionist proposal achieved a gnoseological framework. The reference 
to intuition in his later writings was always according to his first meaning; he did not 
explicitly take up again the second meaning of intuition that he had proposed in his 
thesis, i.e. as a control on the mental path leading to a construction, but in 1937 he 
mentioned an analogy with the accountant whose accounts are correct in order to 
describe what inwardly guarantees something to be true: “For the bookkeeper this 
connection is then dissolved into a general feeling that he has conscientiously per-
formed his duty, a feeling that is positively akin to the sentiment that constitutes for 
the mathematicians the notion of truth”. (CW I, pp. 551–552).

Brouwer (far from setting up questions of race) tried to impose this type of foun-
dation on the European, and even world, mathematical scene (leading to periods of 
suspension from research activity due to serious disputes with colleagues), for gen-
eral well-being, despite the fact that, at the conference of 1948, he came to sup-
port the impossibility of a plurality of minds (while a plurality of bodies can be 
observed):

24   Regarding the reasons for this fact, see van Stigt 1990a, pp. 35–44 and 405–415 (where he includes 
the rejected parts of Brouwer’s 1907 thesis).
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It is not unreasonable to derive this behaviour [the behaviour of individu-
als in general] from ‘reason’. But unreasonable to derive it from ‘mind’. For 
by the choice of this term the subject in its scientific thinking is induced to 
place in each individual a mind with free-will dependent on this individual, 
thus elevating itself to a mind of second order experiencing incognizable alien 
consciousness as sensations. Quod non est. And which moreover would have 
the consequence that the mind of second order would causally think about the 
pluralified mind of first order, then cooperatively study the science of the plu-
ralified mind, and in consequence of this study assign a mind of second order 
with sensation of alien consciousness to other individuals, thus once more 
elevating itself, this time to a mind of third order. And so on. Usque ad infini-
tum. […] In default of a plurality of mind, there is no exchange of thought 
either. Thoughts are inseparably bound up with the subject. […] By so-called 
exchange of thought with another being the subject only touches the outer wall 
of an automaton. This can hardly be called mutual understanding. […] Only 
through the sensation of the other’s soul sometimes a deeper approach is expe-
rienced. (CW I, p. 485)

The problem remains open as to how it is possible to be certain that in every 
human being there is a conscience in which she/he can rest peacefully, but Brouwer 
mentioned neither the problem nor a possible answer.

2.4 � Bieberbach

As a full professor in Basel, in 1914 Ludwig Bieberbach gave an ‘inaugural address 
entitled Ȕber die Grundlagen der Modernen Mathematik, in which he expressed 
doubts about the feasibility of Hilbert’s program, while defining mathematical exist-
ence (in the manner of Cantor and Hilbert) as non-contradictoriness, and lamented 
that intuitionism refused to recognize promising areas of mathematical research, 
while praising Brouwer for his article "Intuitionism and Formalism" (Segal, 2003, 
p. 348). In 1926, after he had moved to Berlin, Bierberbach shifted sharply in the 
direction of Brouwer’s intuitionism,25 as is clear in the (never published) lecture 
entitled "Concerning the Scientific Ideal of the Mathematics", which ‘ended with the 
total rejection of Weierstrass/Hilbert-style formalism as a transitory period between 
Klein’s view of mathematics and the coming (in Bieberbach’s view) ascendancy of 
Brouwer’s intuitionism.’ (Segal, 2003, p. 346). In it, Bieberbach criticised Hilbert’s 
formalism, arguing that ‘Hilbert’s scientific deal is directly inimical to the needs of 
applications. Under the aegis of Formalism, applied mathematics have, so to say, 
died out, and this just a short time after Klein’s initiative had inaugurated a new 

25   Various scholars have been puzzled by Biebarbach’s motivations (Mehrtens 1987, 217–218; Bier-
mann 1988, p. 198; Segal 2003, p. 356). Segal suggests that Bieberbach was ‘a person of no truly fixed 
or well-thought-out philosophical or political ideas […] that seems to have sought the main chance for 
himself.’ (Segal 2003, pp. 356–357) He may have become an intuitionist because, for him, being a Ber-
liner meant opposition to Goettingen, and hence to Formalism. ‘When Hitler came to power, Bieberbach 
[…] may be aspired to no less than becoming a czar (or a Führer) of mathematics.’ (Segal 2003, pp. 
356–357).
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blooming of applied mathematics, a short time after Klein had succeeded in rescu-
ing it from the assaults of the Weierstrass school.’ Bieberbach’s discourse appears 
confused, however, because the Klein intuition praised is (correctly) geometric intu-
ition, in which ‘every conclusion that appears has an immediately visible, concretely 
serviceable meaning,’ but it is difficult to see Brouwerian pure intuition in continuity 
with it. Moreover, Bieberbach condemns the ‘French encyclopedists’ as ’opportun-
ists,’ while Brouwer interprets his own intuitionism as relating to French intuition-
ism. In 1926, however, there is still no racial connotation in Bieberbach’s identifica-
tion of types of mathematicians.

In 1928 Bieberbach and Brouwer held the same position26 on the occasion of 
the International Congress of Mathematics organized in Bologna in 1928 under the 
aegis of the Union Mathématique Internationale (which had expressly excluded Ger-
mans and their allies from belonging to the Union and which, during the previous 
conferences, had forbidden even the participation of German mathematicians). The 
Society of German Mathematicians (Deutsche Mathematiker Vereinigung), repre-
sented by Erhard Schmidt, invited members to attend only on an individual basis, 
only in cases of scientific necessity and avoiding large numbers. According to Brou-
wer and Bieberbach, German mathematicians should have boycotted the conference 
altogether, in response to their exclusion from the two previous ones and from the 
Union. For Brouwer it was (according to Dirk van Dalen, 2005, p. 598) a matter of 
obtaining a true union of all the mathematicians of the world, without politically 
motivated preclusions while Bieberbach’s stance, on the other hand, was part of his 
pro-Nazi nationalism. For his part, Hilbert, pragmatically urged everyone to take 
the opportunity to reactivate the international exchange in a progressive way. At the 
same time he saw Brouwer as having inspired Bieberbach’s attitude both towards 
the Bologna congress and from a foundational point of view. Brouwer’s aim would 
have been to divide German mathematicians, in order to set himself up as a point of 
reference. This fear was supported by the fact that Berlin, where Bieberbach taught, 
Göttingen’s only mathematical excellence rival, was still overwhelmed by enthusi-
asm for the lectures given by Brouwer in the 1926/1927 academic year and Hilbert’s 
student Hermann Weyl had also approached intuitionism.

Ultimately 76 German mathematicians attended the conference (22% of the non-
Italian participants), a good number,27 but Hilbert was irritated and also exhausted 
by the pernicious anaemia that had caused him a heart attack shortly before the con-
gress. In October 1928 he tried to parry Brouwer’s (hypothetical) blows by imme-
diately expelling him from the prestigious Mathematische Annalen journal.28 Brou-
wer tried to recover from the blow, in 1933, by founding a new journal, Compositio 
matematica. On this occasion he included Bieberbach in the editorial board, but the 

26   Van Dalen points out, quoting a letter from Bieberbach to Courant, that ‘Brouwer’s disposition had 
not been of decisive influence on him. It had not exercised any influence at all’. (Van Dalen 2005, p. 595) 
For Brouwer ‘it was a fight between good and evil, between a closed shop of Conseil-connected schol-
ars and institutions, and the free world of science’ (p. 598). Furthermore, Van Dalen 2005 specifies that 
‘Brouwer’s actions in Italy were his own; Bieberbach only learned about them from von Mises’ (p. 593), 
but Hilbert was convinced that there was a ‘huge conspiracy’ from Brouwer, von Mises and Bieberbach.
27   See Segal 2003, pp. 354.
28   See van Dalen 2005, pp. 599–636.
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latter later asked him to remove his name given the inclusion of Jews and immi-
grants on it, at a time in which the international Jewish community was plotting 
war against Germany: ‘I feel obliged to make the disappearance of the Jews from 
the editorial board a condition for my presence in the editorial board.’ (van Dalen, 
2005, p. 707) He also stressed that such a composition of the board would cause 
difficulties for the distribution of the journal in Germany. Brouwer created a pro-
tected atmosphere for Bieberbach inside the board by sending a circular to all editors 
to advise them that ‘any editor’s public participation in manifestations which could 
harm the mutual esteem of people and nations was incompatible with his function’ 
(van Dalen, 2005, p. 708) Still, Bieberbach resigned and pressed the other Ger-
man editors to follow him. In March 1936 all the German editors resigned from the 
editorial board. In any case, ‘things ran smoothly for the journal. The relationship 
between Brouwer and Bieberbach ended and, at the same time, this was, for Brou-
wer, a period of only sporadic scientific interventions.’ (Ibid.)

In 1934 Bieberbach gave a racial orientation to his mathematician classifications, 
writing two articles on the subject: "Persoenlichkeitsstruktur und mathematisches 
Schaffen" ["The Structure of Personality and Mathematical Creation"], and  "Stilarten 
mathematischen Schaffens" ["Styles of Mathematical Creation"]. He was inspired by 
the racist work of Erich Jaensch, in particular by what the psychologist from Marburg 
(a convinced Nazi) had written in 1931 in Grundlagen der menschlichen Erkenntnis 
[Foundations of Human Knowledge]. Jaensch did not simply compare29 ‘Germans’ and 
‘not Germans /Jews’, using the two capital letters I and S, with I standing for Integra-
tionstypus and S for Strahltypus, but he also analysed a number of possible nuances 
within them (types I1, I2, I3, I2/I3 etc.) to enable him to reconcile his scheme with 
historical reality, returning on various occasions in his writings to his classifications 
to change them. Bieberbach introduced his distinction between S-types and I-types by 
recalling Poincaré’s remark about the difficulties, as a Frenchman, of reading James 
Maxwell (Segal, 2003, p.362), He then defined the Germanic ‘I-types’ (Integration-
stypus), which ‘let the influence of experience stream into them’ (Segal, 2003, pp. 
362–363) and the S-types (Strahltypus—radiating type), which ‘only value those 
things in Reality which their intellect infers in it’. In the latter group he included (like 
Jaensch) the French and the Jews—in particular Jacobi, Poincaré, Minkowski and 

29   Jaensch went into further detail in his analysis together with his student Althoff, with whom he wrote 
Mathematisches Denken und Seelenform [Mathematical Thought and the Shape of the Soul] in 1939. 
Jaensch considered himself a failed mathematician. In fact, he turned to the humanities following his 
participation in the team that designed the philosophical and pedagogical volume of the Enzyklopaedie 
in 1909–1910. However mathematics remained one of his interests. He also added the following remark: 
“Mathematical thinking and knowing is dependent on its material far less than any other kind of thought. 
Its various forms are therefore many fewer than is the case in other branches of knowing which are deter-
mined through the varied forms of the material to which the epistemological process applies itself. In 
mathematics the forms of knowledge receive much more the impress of the psychic organism itself " 
(Jaensch and Althoff 1939, p. 71). It justified his and Althoff’s opinion that mathematical thought lent 
itself better than any other to being analysed in relation to the personality that generated it: ‘We obtain in 
this way, though we look at thinking from the viewpoint of mathematics, an insight into the varied forms 
of any sort of thought, the way such thought is embedded in the whole person and in the forms of person-
ality and their corresponding forms of thought.’ (Ibid.).
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Lejeune-Dirichlet; in the former group he placed Klein with Weierstrass,30 Gauss, Euler 
and even Dedekind and Hilbert (who ‘do show a certain preference for thinking over 
intuition, but this is distinct from the S-type, who denies the connection to an outer real-
ity that is not mentally constructed’). (Segal, 2003 p. 365). Ultimately he proclaimed: 
‘I am of the opinion that the whole dispute over the foundations of mathematics is a 
dispute of contrary psychological types, therefore in the first place a dispute between 
races. The rise of intuitionism seems to me only a corroboration of this interpretation.’ 
(Segal, 2003, p. 365) Bieberbach realised that putting Brouwer and Hilbert on the same 
side of the boat was very strange, but he justified his choice by stating that the differ-
ence between the two ‘is quite compatible with the fact that both Hilbert and Brouwer 
should be classified under the psychological type I3/I2. The fact that two men approach 
their science with an ideal norm, does not necessarily imply that it has to be the same 
norm in both case’ (Mehrtens, 1987, pp. 228 and van Dalen, 2005 p. 702).

The distinction between abstract mathematics, which is typically Jewish, and concrete 
mathematics, which is typically Aryan, had positive consequences: it advocated saving 
the teaching of mathematics in a Germany where the Nazi call for irrationality certainly 
did not facilitate its retention in schools, on condition that it be taught and practiced with a 
strong applicative attitude.31

In 1940, in Die voelkische Verwurzelung der Wissenschaft (The Rootedness of Sci-
ence in the People) Bieberbach resumes his previous classification,32 but expresses 
himself in a milder way: ‘In the face of such different types of mathematical thought, 
one notices that the content of mathematics, despite that, largely seems to be independ-
ent of the thought-type. In fact, it would be hard to give a correct mathematical theo-
rem that not every mathematician recognized as correct. As soon, however, as the ques-
tion arises whether the theorem concerned might be important […] opinions about it 
depends largely upon the [Jaenschian] type of the judge.’ (Quote in Segal, 2003, p. 384) 
There are manifold potential reasons for this tempering of his argument: there were no 
more Jewish mathematicians to purge, Brouwer had withdrawn from the foundational 
scene, a more moderate tone could favour the acceptance of racial types abroad too and 
with them the Deutsche Mathematik journal newly founded by Bieberbach in 1936.33

Bieberbach was dismissed from his teaching post war in 1945 and the Aryan 
‘intuition’ disappeared. His racial mathematical approach connotation must be 

30   He justified his inclusion of Weierstrass for ‘the unity, which, however at least still existed in his 
[Weierstrass] inner person’. (Segal 2003, 363),
31   It is useful to stress that ‘Although mathematicians like Bieberbach, Tornier, and Vahlen, and per-
haps Blaschke, cared deeply about promoting Nazi ideology, there were others, like Knopp, Behnke, and 
Hecke, who thought differently and the latter were always in the majority in the mathematical commu-
nity. ‘ (Segal 1986, p. 132).
32   ‘In short, I-types are inwardly conceptual, S-types outwardly computational. The key descriptive 
word for I-types is anschaulich, indicating the intuitive understanding of true Germanic types’ (Segal 
2003, p. 363).
33   He was helped by Theodor Vahlen who was, at the time, head of the Prussian Scientific Office. Hav-
ing graduated in mathematics, become full professor, served in the First World War and had been rector 
of the University at Greifswald in 1923 when Hitler’s failed Putsch of that year convinced him to become 
a National Socialist. He visited Hitler in Landsburg prison and, in 1924, became a Nazi member of the 
Reichstag. He took down the Weimar flag from his university and was thus dismissed. Shortly after Hit-
ler’s accession to power, he rose rapidly through the ranks as an educational bureaucrat in the Prussian 
ministry of education.
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remembered in order to keep the memory of what happened alive. From a concep-
tual point of view it had, and has, no theoretical credibility, as is made clear by the 
many obvious falsifications that Bieberbach (and, before him, Jaensch and Althoff) 
were obliged to enact in his attempt to reconcile them with a historical reality that 
contradicted their classification. Brouwer will suffice as an example. He was classi-
fied as an ‘intuitionist’ (according to Bieberbach’s definition), but intuition was not 
geometric but temporal for Brouwer and he advocated pure mathematics.

2.5 � Heyting

In the thirties, Brouwer’s student Arend Heyting came onto the mathematical scene. 
His first approach was one he would never abandon: building bridges for the sake 
of understanding and cooperation among mathematicians. He wrote a series of arti-
cles on the formal presentation of arithmetic and intuitionistic logic, despite shar-
ing with Brouwer34 the idea that mathematics is a mental construction and that in it 
language serves solely expressive, not demonstrative, purposes. Moreover, he took 
part at the mathematicians meeting in Koenigsberg, the round table on foundational 
currents, where John von Neumann represented formalism and Rudolf Carnap rep-
resented logicism. The atmosphere was one of co-operation (to the extent that indi-
vidual speakers expressly sought meeting points with the thought of the others) and 
Heyting entered the stage effortlessly, as a representative of intuitionism, avoiding 
propaganda.

In his volume Beweistheorie. Intuitionismus of 1934, in which he also contex-
tualised intuitionism and formalism from a historical point of view, Heyting took 
care to separate intuitionist mathematics from Brouwer’s mystical Weltanschauung, 
because he feared that it might also keep people away from their mathematics. He 
asserted that, according to Brouwer, mathematics is the exact part of our thinking 
and, therefore, the basis for all other sciences (including logic) and has no presup-
positions, with its only source being ‘an intuition which sets before our eyes its con-
cepts and conclusions as immediately clear.’ (Heyting, 1934, p. 14) It is, Heyting 
points out, no more than the faculty of considering concepts and conclusions that 
habitually occur in our thinking separately. It is a faculty that one must train one-
self to exercise, ‘a peculiar mental aptitude’ that allows mathematics to develop in 
full autonomy from any philosophical presupposition. By which he meant that, an 
existence ‘seen’ intellectually requires no other ontological reference, while exist-
ence according to Hilbert’s formalism, that is existence within an axiomatic system, 
must be granted from outside, because internally there is only logical consequence.

Heyting described intuition in his 1956 Intuitionism: an Introduction as follows: 
‘A mathematical construction ought to be so immediate to the mind and its result 

34   Heyting prepared the original version of his formalisation for a Mathematical Society competition 
organized by Gerrit Mannoury. When Brouwer received this manuscript he asked his pupil to prepare a 
German version of it for publication in Mathematische Annalen. Due to the quarrel between Brouwer and 
Hilbert the paper was published in the Sitzungsberichte der preuszischen Akademie von Wissenschaften. 
In any case, Brouwer praised the work and accepted it as an adequate representation of ‘his own’ intui-
tionism (see van Stigt 1990, pp. 288–294).
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so clear that it needs no foundation whatsoever. One may very well know whether 
a reasoning is sound without using any logic; a clear scientific conscience suffices.’ 
(Heyting, 1956, p. 6).

He also supported the belief in the commonality of mathematical thoughts as 
follows:

‘My mathematical thoughts belong to my individual intellectual life and are 
confined to my personal mind, as in the case for other thoughts as well. We are 
generally convinced that other people have thoughts analogous to our own and 
that they can understand us when we express our thoughts in words, but we 
also know that we are never quite sure of being faultlessly understood’. (Heyt-
ing, 1956, p. 8).

Here Heyting expressed his consciousness of the fact that neither Brouwer nor 
himself had provided proof for the belief in a common mathematical though but 
such belief is part of our common beliefs.

Then he specified, in the course of various writings, the entities that intuition can 
attest to. Regarding two-oneness, he wrote:

‘We know how to build up the sequence of natural numbers in such a way 
that we begin to think in terms of a unity, in the same spiritually construc-
tive way that had to be done in forming the observation "a pencil". Then we 
think "another unit", and finally we think that this last step is repeated again 
and again. The three concepts "one", "another one" and "again and again one" 
are sufficient to explain the theory of natural numbers.’35 (Heyting, 1980, from 
now on CP, pp. 278-279)

Referring to the formation of two-oneness, Heyting also wrote (Heyting, 1956, p. 13):

Class: Are these considerations not metaphysical in nature?
Int: They become so if one tries to build up a theory about them, e.g. to answer 
the question whether we form the notion of an entity by abstraction from actual 
perceptions of objects, or if, on the contrary, the notion of entity must be pre-
sent in our mind in order to enable us to perceive an object apart from the rest 
of the world. But such questions have nothing to do with mathematics. We 
simply state the fact that the concepts of an abstract entity and of a sequence of 
such entities are clear to every normal human being, even to young children.

Heyting constructed the same mathematical entities as his teacher but he felt the 
need to specify, with respect to alternative label "choice sequences" for them, that 
he preferred ‘infinitely proceeding sequences’ because ‘to arrive at the notion of 
infinitely proceeding sequences, we need not introduce new ideas, in particular the 
notion of choice’ (Heyting, 1956, p. 33), which seemed to him overly linked to the 

35   “Wij kunnen de rij der naturlijke getallen op deze wijzen opbouwen, dat wij beginnen, een eenheid te 
denken, dit is dezelfde geestelijken bouwdaad, die ook bij de vorming van de waarneming "een potlood" 
verricht moest worden. Daarna denken wij ons "nog een eenheid", en ten slotte denken wij ons, dat deze 
laatste stap telkens weer herhaald wordt. De drie begrippen "een", "nog een" en "telkens weer een" zijn 
voldoende, om de theorie van de natuurlijke."
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psychology of the subject. In particular, when Brouwer died, he stated that he had 
glimpsed in the latter’s 1948 writing a solipsistic turning point (with a pronounced 
role accorded individual psychology) that he could not share. That is, in 1948 Brou-
wer had introduced the expression ‘creative subject’ in a very short article written in 
response to the criticism levelled by Dutch mathematician George François Cornelis 
Griss36 (as an intuitionist) against his definition of negation.

Griss had arrived to intuitionism from his own Weltanschauung that he had out-
lined in his 1946 book Idealistische filosofie. There, he had based his Weltanschau-
ung on the original datum that consciousness grasps by attaining its own fullness: 
the subject distinguishes himself from the object, but the one has no meaning with-
out the other. Mathematics is the specific way to analyse the original datum that 
focuses on the subject-object link. For this reason, mathematical objects cannot be 
thought of independently of a mathematician that produces them: a platonic exist-
ence for them is excluded. Griss’ Weltanschauung had led him to intuitionism. This 
did not imply a total acceptance of Brouwer’s system. In particular, he criticized 
Brouwer’s definition of negation as a reasoning that ends in a contradiction, i.e. that 
cannot be carried out, by explaining that: “Faire la supposition qu’un preuve soit 
donnée, tandis que cette preuve parait être impossible, est incompatible avec le point 
de départ constructive et evidente, car l’existence d’une preuve est identique au fait 
qu’elle a été donnée”. (Griss, 1948, 71) Griss criticised the Brouwerian definition of 
negation, because an intuitionist demonstration must start with something evident 
and end with something evident. Brouwerian negation had been described as arriv-
ing at proof of the impossibility of a construction. The point at which the proof stops 
can be considered as evident, because one sees that, metaphorically, one hits a wall, 
but no status of evidence can be attached to the starting point of the proof, otherwise 
there would be an evidence that is then disproved: which would remove all founda-
tion for intuitionist mathematics. Hence, Brouwer’s definition of negation cannot be 
considered acceptable within mathematics: it can only be kept at a pre-mathematical 
stage. A new definition of negation within mathematics is needed. Griss suggested a 
comparison between two already constructed entities and the realisation that one has 
more properties than the other.37

Brouwer responded by constructing a real number which was certainly not zero 
(i.e. regarding which a negative property was known) but which could not be said to 
be greater than or less than zero (positive properties), to show that it is not always 
possible to find a positive substitute for a property defined through disputed nega-
tion: he responded to Griss’s criticism by arguing that it would be a loss for intui-
tionist mathematics if the properties defined through the disputed negation were to 
be eliminated, because some properties would be irretrievably lost.

Heyting did not follow or comment on Brouwer’s continuous second thoughts 
regarding limiting freedom of choice, while he took seriously the doubts that, 
even from the intuitionist side, one could ever arrive at some of the constructions 

36   Brouwer had supported the publication of Griss’s papers by presenting them to the Academy of Sci-
ences (see van Atten’s entry "The Development of Intuitionistic Logic" in the Sitography). Still, in his 
1948 paper, Brouwer did not expressly mention Griss’s name.
37  Griss could give only a few details of both mathematics and logic built according to his new definition 
of negation because he died in 1953. Still, for further details about his thought see Franchella 1994a.
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presented by Brouwer. In particular, reflecting on Griss’s critique, he realized that 
its core was directed against hypothetical constructions which fail, and he grouped 
together the various types of ‘bedingte Konstruktionen’ present in intuitionist con-
cepts. He began drawing up a list of these in 1949 (CP, pp. 459–460), refining it in 
1958 (CP, pp. 560–564, pp. 103–104), and providing a detailed and final version of 
it in 1962 (CP, p. 641) within a scale of degrees of evidence:

the highest grade is that of such assertions as 2 + 2 =4. 1002 + 2 = 1004 
belongs to a lower grade; we show this not by actual counting, but by a reason-
ing which shows that in general (n+2) + 2 = n + 4. Such general statements 
about natural numbers belong to a next grade. They have already the character 
of an implication [...] This level is formalized in  the free variable calculus. I 
shall not try to arrange the other levels in a linear order; it will suffice to men-
tion some notions which by their introduction lower the grade of evidence.

1)	 The notion of the order type ω, as it occurs in the definition of construct-
ible ordinals.

2)	 The notion of negation, which involves a hypothetical construction which 
is shown afterwards to be impossible.

3)	 The theory of quantification. The interpretation of the quantifiers them-
selves is not problematical, but the use of quantified expressions in logical 
formulas is.

4)	 The introduction of infinitely proceeding sequences.
5)	 The notion of a species

reiterating that individual intuitionists’ willingness to accept hypothetical con-
structions varies. The starting point is strictly finite mathematics and then one 
decides how far the arc of mathematical entities acceptable as evident can be 
stretched. Accepting the existence of entities of which we only know the impossibil-
ity of non-existence would be very different: that would not be stretching the arc, but 
going in a completely different direction from the others on the scale. It would be a 
leap into metaphysical darkness.

However, this does not mean that Heyting showed a peaceful and benevolent 
attitude only within intuitionism, accepting the various shades of constructability, 
because Heyting emphasises – in both mathematical (as early as his 1956 handbook) 
and philosophical contexts (traceable in his unpublished manuscripts38) – that views 
of what is accepted as existing vary. Along the ascending scale of abstraction, rang-
ing from one’s consciousness to real numbers and beyond to God, some stop early 
on and do not accept even very large natural numbers (truly unconstructable by the 
human mind), and there are those who believe that there are also Platonic ideas of 
number or notion-limits for human reason, such as God.

One of his considerations thus contains, as an aphorism, the possibility of a 
whole range of meanings of the word ‘exist’ in different situations:

38   For a survey of these, see Franchella 1994b.



1 3

Philosophia	

1)	 the immediate environment, 2) representations of the environment; 3) memo-
ries of the environment; 4) communication with other people; 5) space-relations 
among represented environments; 6) systematizations of these relations by means 
of maps and globes, 7) the fitting of all structures into a spatial generalisation 
stretching out to infinity; 8) astronomy; 9) microscopically small objects; 10) 
theoretical physics. (F11.5)

We also find a question mark at the end of the following quote39:

Each of our abstract concepts starts with something simple. So does "exist-
ence". First it is the objects from my immediate surroundings that exist; after 
all, they are stars and mesons. How many stairs lie between them and how 
does the concept change during its journey along them? God, real numbers 
and cardinal numbers are at the top of such stairs. On which stairs do the logi-
cal rules for the existential quantifier apply? (F5 20-21)

Heyting did not feel up to taking the last step to the top but he understood that 
others might, on conscience grounds, and he let them do so, without feeling the 
need to convince them forcibly and, at the same time, declaring that he could not be 
convinced.

In 1956 he had already shown great openness towards other approaches, which he 
saw as constantly intertwined (often unconsciously) throughout the history of mathe-
matics. He proposed to maintain pluralism within mathematics, and, in parallel, within 
logic, with the idea that different fields of exploration demanded different mathemat-
ics. In particular, intuitionism explored the limits of what can be constructed through 
the human mind. One might approximate this approach to Carnap’s principle of tol-
erance: ‘[…] das Toleranzprinzip: wir wollen nicht Verbote aufstellen, sondern Fest-
setzungen treffen. […] In der Logik gibt es keine Moral. Jeder mag seine Logik, d.h. 
seine Sprachform aufbauen wie er will’ (Carnap, 1934, pp. 44–45). Carnap referred 
to logic, but we know that logic, according to intuitionism, is the expression of math-
ematics: therefore, tolerance in mathematics implies tolerance in logic. However, it 
should be noted, from a historical point of view, that Heyting mentioned the principle 
of tolerance in the fictitious debate at the beginning of this 1956 volume, putting it 
into the mouth of the representative of the ‘formalists’ (Heyting, 1956, 2), but did not 
cite it as the source of his own pluralism. In addition, we must remember a warning 
that comes to us from Elio Franzini’s reflections in the context of the Enlightenment 
legacy40: ‘The Enlightenment taught, with all its limitations, tolerance (a necessary 
value, and certainly not sufficient, which is nevertheless the basis for its dialogical 
evolution) […]’ (Franzini, 2009, p.38) ‘[…] with all the limits of tolerance, while still 
convinced of possessing a superior point of view’ (Franzini, 2009, p. 41). Tolerance 

39   „Ieder van onze abstracte begrippen begint met iets eenvoudigs aanschouwelijks. Zo ook "bestaan". 
Eerst zijn het de voorwerpen uit mijn direkte omgeving, die bestaan; tenslotte zijn het sterren en mesons. 
Hoeveel trappen liggen daartussen en hoe verandert het begrip bij zijn tocht daarlangs? God, reele getal-
len en hoge kardinaalgetallen staan bovenaan zulke trappen. Op welke trap gelden de logische regels 
voor de existentiekwantor? “
40   He was inspired by Todorov 1992 The Conquest of America. The problem of the Other, in particular 
from the Epilogue. (pp. 297–303)
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simply means marking out one’s own territory and those of others in order that each 
can cultivate their own garden separately and in isolation: of course, it is a recogni-
tion of the legitimacy of one’s own existence and that of the other(s), and it implies a 
peaceful attitude, which can still be arrogant and which is not yet interested in others, a 
desire to know others: it is the premise for, but not yet the definitive step towards, dia-
logue. Therefore, the word ‘tolerance’ does not fully express Heyting’s attitude: he did 
not draw furrows in the mathematical ground in order to barricade himself inside his 
own territory and carry out his work in blissful isolation but encouraged methodologi-
cal self-awareness during mathematicians’ research and suggested that each identify 
the most suitable ground for the growth of their seeds, showing an ever lively desire 
to make their own seeds known to those near and far. This comes across throughout 
his search for a symbolic expression of intuitionist logic and arithmetic carried out in 
order to make his theory more understandable to his formalist counterparts, as well as 
in all the efforts he made to divulge the intuitionist perspective in clear, straightfor-
ward language, an effort rewarded by his happy admission in his 1962 paper “After 
Thirty Years”:

Let me compare the situation of 1930 with that of today. The spirit of peaceful 
cooperation has gained the victory over the ruthless contest. No direction of 
research has any longer the pretension to represent the only true mathematics 
[…] we know at every moment whether we work on an intuitive basis or not, 
which part of the work is purely formal, and which platonistic assumption we 
make (CP, p. 640).

2.6 � Final considerations

We have seen that it was only in the Evanston lectures that Klein distinguished 
between ‘naïve ‘ and ‘refined’ intuition, of which the first, visual-spatial, seemed to 
him more Teutonic, while the more logical latter appeared more linked to the Latin 
and Jewish lineage. He did not, however, resume this racial classification in later 
writings.

Poincaré cited two types of approach to mathematics: intuitive and analytical, but 
did not relate these to nationality or ethnicity. He saw them as on a par with hair 
colour: his opinion might be summed up by stating that your mathematical approach 
is in your DNA. These are flip sides of the same coin, however: the overall view of 
proof. There are people who see this abstractly and those who see it graphically, but 
it is, in any case, an overall view. Poincaré considers this overview unteachable, and 
thus condemns those without it to understanding mathematics but not creating it – if 
they have sufficient memory – or even to an inability to understand it at all in addi-
tion to not creating it if they do not have a powerful memory.

Bieberbach distinguished between Germanic ‘I-types’ (Integrationstypus), who 
‘let the influence of experience stream into them’ (Segal, 2003, pp. 362–363) and 
‘S-types’ (radiating typus), who ‘only value those things in Reality which their intel-
lect infers in it’. His teaching of mathematics was oriented towards the concreteness 
of its applications, in order to educate German youth with the type of mathematics 
suitable to the Aryan race. It was, therefore, a racial not DNA distinction (unlike 
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Poincaré’s non-racial DNA concept) which did not, in any case, square well with 
historical reality, to the point of requiring continuous revisions and the addition of 
internal nuances in order to reconcile his descriptions of mathematicians with those 
who really existed.

The presentation Brouwer gave of intuitionism contained no reference to race. 
Nonetheless, in the Stanford Encyclopedia entry "Brouwer", we find the following 
statement about Brouwer’s mathematical and philosophical nine notebooks towards 
his dissertation: “Some remarks betray a form of anti-semitism that, unfortunately, 
often appeared in language at the time, as codification of a common prejudice; an 
occasional remark goes further and contrasts Jewish people unfavourably to Ger-
manic ones.” Therefore, Brouwer’s juvenile remarks on the Jews deserve here a 
further analysis to point out their link with his Weltanschauung. They have been 
transcribed and studied41 by John Kuiper in his 2004 Ph.D. Thesis Ideas and Explo-
rations: Brouwer’s Road to Intuitionism. They are basically notes that appear as 
aphorisms rari nantes in gurgite magno. Over and over he blames the Jews for hav-
ing constructed a mathematics aimed at controlling the external world, separated 
from the Self:

“How the Jews, through mathematics, control the farmers and the farmers, 
through mathematics, control the cows. Mathematics is a part of cultural engi-
neering, which has been commercialised.”42

“Life has no special needs; only the Jews can see the world as a mechanism 
[i.e., a part of the world as a partial aspect of a mechanism], and then also 
see you as a mechanism, and thus pull the soil under your feet, because they 
saw the bottom in you as necessarily acting in the mechanism (seeing you as 
a mechanism is only possible for them, because they see the world as some-
thing outside themselves, i.e. they are divided in the head); for you then appear 
in your world the `evil’, which you have to suffer. […] A human being feels 
looser from the world than an animal, can live higher, but as a flip side is more 
susceptible to Jewishness.”43

“All these investigations thus lead to the result that mathematics in life is the 
first stage of sin. (You can only tampering with it as a `hindrance’); it can only 
be defended as the frivolous entertainment of building, but it is a trick of the 
Jews to place this in the full movement of life. Now a wise man does not par-
ticipate in frivolities and even less in the tricks of the Jews. But then again,  

41  Each notebook and the thesis are available at: https://​www.​cs.​ru.​nl/​~freek/​brouw​er/​index.​html.
42  Hoe de joden door wiskunde de boeren, en de boeren door wiskunde de koeien beheerschen. 
Wiskunde een deel der cultuurtechniek, die in den handel is gebracht. (I-22).
43  Het leven heeft geen speciale behoeften; alleen de joden kunnen de wereld zien als een mecha-
nisme [d.w.z. een deel van de wereld als deel-aspect van een mechanisme], en dan ook jou zien als een 
mechanisme, en zoo jou een bodem onder de voeten wegtrekken, omdat ze die bodem bij jou zagen als 
noodzakelijk optredend in het mechanisme (jou zien als mechanisme kunnen ze alleen, doordat ze de 
wereld aanschouwen als iets buiten zich, d.w.z. gepartieerd zijn in ’t hoofd); voor jou verschijnt dan in 
jou(w?) wereld het `kwaad’, dat je lijdelijk hebt te dulden; want doe je dat niet, dan zit er niets voor je op, 
dan met de joden mee te leven in de partieering, om je daar te kunnen verdedigen, d.w.z. ook de wereld 
te gaan aanschouwen. Een jood heeft alleen vat op je, als je je aan de wereld gebonden hebt. Een mensch 
voelt zich losser van de wereld dan een dier, kan hooger leven, maar als keerzijde is meer vatbaar voor 
jodigheid. (II-39).

https://www.cs.ru.nl/~freek/brouwer/index.html
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he feels that as long as the gates to worlds are not opened for him, he has to 
learn to participate in all earthly misery, grateful for his weakness and incapac-
ity in that business, and without in that company, and without bondage”.44

Here appears the core of his Weltanschauung, according to which the kingdom of 
serenity lies for man in being enclosed within himself in contact with his soul, but 
destiny obliges him, during this journey that is our life, to leave his interiority, let-
ting reason put a demarcation between him and the world, and then trying to domi-
nate the latter through mathematics, reducing the nature to a mechanism. This core 
had also appeared in Life, Art, and Mysticism (Brouwer, 1905, p. 400) and it would 
re-appear at the 1948 conference “Consciousness, Philosophy, and Mathematics” 
(CW I, pp. 485–486): what was not and would not be present in these two works is 
the apostrophising of the demarcation between Self and world and of this mathemat-
ics in general as "Jewish". The fact that he was able to present his thought without 
these references makes it clear that they did not form the basis of his thought, that 
they did not constitute it.

Furthermore, we can stop and feel the tone in which he expressed the opposition 
between “We Germans”and the Jews:

“The reason made the world ready to be attacked by the Jews in the partition 
of the 3 dimensions, and thus to be forced to live in three dimensions. [And for 
ourselves - free Germans - the 3 dimensions make sense only as frivolity]”.45

“A German does not do mathematics of his own accord, but is forced to go 
along with the fools and Jews who brought it into the world”.46

It is the same haughty, over-the-top tone that had appeared in his letters of those 
years to his friend Carel Adama van Scheltema in 1904, in which he called himself 
and his friend ’kings’ (van Dalen, 2011, p. 18), disavowed his socialist inclinations 
(van Dalen, 2011, p. 19) and recommended him: ’’Take care that an overhasty ambi-
tion will not lead us, out of yearning for quick success, to assimilation and to con-
sorting with low company” (van Dalen, 2011, p. 19).

The anti-semitical framework that van Atten in his entry defines as a common 
prejudice of the period was better suited than socialism to the ambitious impulses 
that the young Brouwer felt within himself, but it did not forge his mathematics, as 

44  Al deze onderzoekingen voeren dus tot het resultaat, dat de wiskunde in het leven optreedt als eerste 
fase van zonde. (je kunt er de natuur alleen mee knoeien als `hindernis’); dat ze alleen nog te verdedigen 
is als het lichtzinnig vertier van bouwen, maar dat het een jodenstreek is, om dat in het volle beweeg van 
het leven te plaatsen. Aan lichtzinnigheden hen puzzlesi doet nu een wijs mensch niet mee, en aan joden-
streeken nog minder. Maar dan weer voelt hij, dat zoolang de poorten naar betere werelden niet voor hem 
worden opengezet, hij te leeren heeft, aan al het aardsche ellendig bedrijf mee te doen, dankbaar voor zijn 
zwakte en onvermogen in dat bedrijf, en zonder gebondenheid. (VIII-5).
45  De verstandhouding maakte de wereld rijp, om in de partieering der 3 afm. te worden aangevallen 
door de joden, en zoo te worden gedwongen, ook in 3 afmetingen te gaan leven. [En van onszelf—vrije 
Germanen—hebben de 3 afm. alleen zin als lichtzinnigheid]. (II-12).
46  Wiskunde doet een Germaan niet uit zichzelf, maar uit gedwongen-zijn-tot meegaan met de knoeiers 
en joden, die het in de wereld hebben gebracht. (II-11).
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evidenced by the fact that the stereotypical counterposition between Jew and Ger-
man would never be re-proposed by Brouwer, not even in the period of the Nazi 
occupation of Holland.

Also van Atten’s entry concludes: “No such utterances are known from other 
periods in his life […]. There is no meaningful connection between this fleeting anti-
semitism and the philosophical views on mathematics, language, and society he set 
out in his dissertation and developed over the rest of his life.”

Regarding Brouwer’s personal stance on Nazi ideology, we know that at the end 
of World War II he was tried by the Committee of Restoration, which found him 
guilty of the following actions47:

1.	 the posting of the advice that students could sign the loyalty declaration ’without 
essential scruple’ and re-posting it after the statement of the exiled government 
in London,

2.	 the opposition in the Senate to the resistance movements of the professors and of 
the students,

3.	 the financial assistance to the Nederlandse Volksdienst. (van Dalen, 2005, p. 791)

When the Minister received the statement, he sent a reprimand to Brouwer but 
left the university free to reinstate him. Eventually Brouwer was reinstated. Never-
theless, it is interesting to understand the motivations that led Brouwer to each of the 
above actions, in order to realize how involved he was in Nazi ideology.

The first two actions refer to the strong request put by the Secretary for Educa-
tion on 10/03/1943: each student had to sign a declaration of loyalty to the German 
commands in force in the Netherlands if he/she wanted to follow courses or take 
parts in examinations. Two meetings of the Senate took place in March and April. 
A first draft of Senate statement concluded that if the ordinance were carried out 
in the given form, "the members of the Senate had no choice but to resign". (van 
Dalen, 2005, p. 762) Brouwer presented an alternative statement with the deletion 
of the final passage:  this represented his action nr. 2. Furthermore, he encouraged 
the students to sign the loyalty declaration (required to attend the courses) even after 
the exiled government had expressed a negative opinion (action 1). Both action 1 
and action 2 aimed to keep the university running in order to allow students to take 
their exams. Finally, as for action nr.  3, Nederlandse Volksdienst  was a German 
association which had been set up by the occupiers in order to replace all existing 
charities in the Netherlands. Brouwer made his contribution, because his hope that 
the funds would actually go to the needy Dutch people, regardless of their ideolo-
gies, had been strengthened by seeing a fellow communist receive a grant from the 
association. 

We have seen that Brouwer did not link intuitionism to race, but made it an obli-
gation for all men in order to practice mathematics without excessively compromis-
ing their mystical inner serenity: the purpose of his foundational vision might be 
said to have been for the sake of good, taking for granted that all men have the same 
inner lives (while, at the same time, failing to demonstrate the possibility of other 

47  About this subject see van Dalen 2005 ch. 17 and 18.
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minds). Gradually, over the course of his inner considerations on the intuition of 
time, he discovered the faculty to construct natural numbers, species and free choice 
sequences, from which he then proceeded to construct all mathematics in a creative 
way. He followed no specific rules, but rather checked the evidence, the intuitiveness 
of each step, by experiencing the sense of correctness that also an accountant has 
when the results "come to him".

While to Brouwer all his notions generated by the intuition of time appeared 
equally evident, some intuitionists cast doubt on these. Of these, it was G.F.C Griss 
who challenged Brouwer’s notion of negation as contradicting an initial sketch of a 
construction. Namely, intuitionist constructions should be evident at every step, but 
what evidence can there be of the initial step in a construction that is never built?

Brouwer responded to this by showing that the non-acceptance of this notion of 
negation would impoverish mathematics. However, such an answer would seem to 
be limited by the fact that it could backfire on the whole of intuitionism, subjecting 
classical mathematics to considerable mutilation.

Heyting, on the other hand, addressed this issue along with other criticisms of 
the intuitiveness of Brouwerian concepts (e.g., the notion of free-choice sequence), 
organized the various notions along a scale of degrees of evidence, and admitted 
(without specifically labelling it) a kind of pluralism within intuitionism, underlin-
ing, however, that the distinction between those who call themselves intuitionists 
(while disagreeing with each other on the admissible mathematical entities) and 
those who do not remains clearly visible, because intuitionists limit their accept-
ance of the existence of the mathematical entities proposed by ‘classical’ mathema-
ticians. Unlike Brouwer, moreover, Heyting did not claim that intuitionism was the 
mathematics to convince others of, but stated that it was possible for some people 
to believe in the existence of entities (and not only mathematical ones) that were 
unacceptable for others. This was not a problem: logics would be generated (i.e. lin-
guistic-symbolic transcriptions of the two mathematics), which would differ because 
they originate from different mathematics. This is the crux of Heyting’s logical plu-
ralism (derived from his “mathematical pluralism”) and his adherence to the prin-
ciple of tolerance. ‘Tolerance’, however, might not be the most appropriate expres-
sion, because it does not necessarily involve dialogue between the parties, whereas 
Heyting desired and sought dialogue. In particular, he wanted to be able to make the 
other side understand what ‘his’ mathematics consisted of as well. Hence, the most 
appropriate expression is ‘dialogue’. Heyting proposed logical pluralism and tire-
lessly sought dialogue.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.
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