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Abstract. Current research in Explainable AI includes post-hoc expla-
nation methods that focus on building transparent explaining agents able
to emulate opaque ones. Such agents are naturally required to be accu-
rate and trustworthy. However, what it means for an explaining agent
to be accurate and trustworthy is far from being clear. We characterize
accuracy and trustworthiness as measures of the distance between the
formal properties of a given opaque system and those of its transpar-
ent explanantes. To this aim, we extend Probabilistic Computation Tree
Logic with operators to specify degrees of accuracy and trustworthiness
of explaining agents. We also provide a semantics for this logic, based
on a multi-agent structure and relative model-checking algorithms. The
paper concludes with a simple example of a possible application.
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1 Introduction

Within current research in AI, the alleged opacity of artificial systems based
on machine learning methods (ML) has been widely discussed [5]. The inner
structure of these systems is complex and providing useful explanations for them
is a di�cult task. Making ML systems more transparent, easier to survey and
to check for correctness is the current aim of the field of Explainable AI (XAI).

In XAI, there is a common distinction between opaque but comprehensible

systems and full black box systems [10]. The former include systems whose design
is di�cult to interpret, but implemented by algorithms whose inner structure is
known. Among opaque but comprehensible systems we find many popular tools
such as Bayesian nets and deep neural networks [2]. On the contrary, full black
boxes are those systems implemented by algorithms whose inner strucuture is
completely unknown or not a-priori available.

With respect to both levels of opacity, among the methods proposed in the
literature to make ML systems more transparent, post-hoc explanations consist
of building ad-hoc transparent explaining agents able to emulate, either locally
or globally, the behaviour of a given opaque system. However, such agents are
almost never able to provide exact explanations, because they usually require
more computational resources than the opaque systems they explain [7]. Such
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limitation is replaced by granting a certain degree of accuracy, i.e. conceding that
the behaviour and the properties of the explaining agent should not be too far,
according to some metric, from those of the system to be explained. Additionally,
emulations conveyed by the explaining agents should be trustworthy, i.e. one
should be able to explain the behaviour of explaining agents as well [5].

Despite the relevance of accuracy and trustworthiness to the task of o↵ering
useful post-hoc explanations, it is far from clear how to define, measure and
evaluate these two properties. A common methodology relies on fidelity, i.e.,
measuring specific di↵erences between the outputs of the explaining agent and
of the system to be explained [7,5]. This is useful, albeit limited to explaining
the observable behaviours of opaque systems and less appropriate to survey
and check abstract properties. A di↵erent way to define, measure and evaluate
degrees of accuracy and trustworthiness is therefore necessary for verification
purposes.

In the present work, we propose alternative definitions of trustworthiness
and accuracy, together with a framework to compute and approximate such
measures. In particular, the behaviour of the explaining agents and the sys-
tem to be explained is described in terms of discrete-time Markov chains [9,1]
(DTMC, for short). At the same time, the properties to be verified are specified
in the language of Probabilistic Computation Tree Logic (PCTL) [6] extended
with weighted operators for accuracy and trustworthiness. Formulas of this new
language called ATCTL (Computational Tree Logic for Accuracy and Trustwor-
thiness) are evaluated in a multi-agent system semantics including a compact
description of the behaviour of the system to be explained, which we call the
target-system; as well as the behaviour of several explaining agents, which we
call the explanantes, both in terms of DTMCs. In such a structure, the degree of
accuracy for a given explaining agent against a certain property of the opaque
system to be explained is defined as a measure of the distance between the set
of states satisfying the property of interest reachable by either. In particular, we
adopt the Jaccard index as our similarity measure. The degree of trustworthiness
of an explaining agent against a certain property of the system to be explained,
instead, is defined as a measure of the probability that eventually the system
will reach a state satisfying the property of interest, provided that the explain-
ing agent surely reaches such a state. Such probability is computed through the
counting worlds technique, widely adopted in the model checking of multi-agent
systems (see [3,8]). Such measures are easily extended to group operators for
common and distributed degree of accuracy, respectively, trustworthiness, de-
fined by analogy with the well-known notions of common and distributed knowl-
edge in the logic of Interpreted Systems [3]. Finally, algorithms to model-check
the degree of accuracy, respectively trustworthiness, of a given explaining agent,
respectively a group of explaining agents, are introduced and evaluated through
a small example of a possible application.

Notice that, to check degrees of accuracy and trustworthiness through the
formalism here proposed requires that a compact description of the behaviour
of both the opaque system to be explained and the explaining agents in terms
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of a DTMC can be provided. Depending how such a compact description is ob-
tained, we consider the problem of explanation with respect to di↵erent levels of
opacity. A compact specification of the behaviour across time of these models in
terms of DTMCs can be obtained by abstraction on the inner strucuture of the
algorithm implementing them when this is known, i.e. for opaque but compre-
hensible models. Di↵erently, for full black box models, an approximate matrix
describing their behaviour across time can be inferred, in practice, through a
su�ciently large number of observations of their input-output behaviour (see
[4]).

The paper is structured as follows. In Section 2 we recall some background
notions about Markov chains. In Section 3.1 we introduce the ATCTL language
and present its syntax. In Section 3.2 we present the multi-agent structure over
which we define the ATCTL semantics and introduce satisfiability conditions
for formulas. In Section 4 we present e�cient algorithms to check accuracy and
trustworthiness. In Section 5 we demonstrate the checking algorithm on a small
example. Finally, in Section 6, we point out some conclusive remarks about
further developments of the formalism here introduced.

2 Background

In the following, we consider a multi-agent structure composed by agents that
behave as stochastic, time-homogeneous and memory-less state-transition sys-
tems. To this aim we use discrete-time Markov chains (DTMC). In this section
we recall some background notions about them, including a specific inference
relation which is particularly relevant for model-checking purposes.

2.1 Markov Chains

Given a finite non-empty set of states S, at each discrete time-step t 2 N, we
describe an agent that shifts from a state s 2 S to another, not necessarily
di↵erent, state s0 2 S. The probabilistic transitions s, s0 are time-homogeneous,
meaning that the probability of a transition s, s0 is independent from the time
t 2 N at which it occurs.

A path is a function ⇡ : N 7! S whose values are the states reached by an
agent at the various time-steps t 2 N. For simplicity, in the following we use
⇡ directly to denote the set of values of the function ⇡, and we denote by ⇡(t)
the state of the path ⇡ at time t 2 N. We collect all the possible paths ⇡ for
an agent in a set ⇧ that is endowed with a �-algebra �(⇧)1 and augmented
to a probability space (⇧,�(⇧), P ). Over this probability space we define a
family {St}t2N of categorical stochastic variables such that St : ⇡ 7! ⇡(t) for
each t 2 N. This family of variables describes the evolution across time of an
agent. For each St 2 {St}t2N, P (St+1|St) denotes a probability distribution

1 In particular, �(⇧) is usually the �-algebra generated by the cylinder sets of ⇧ that
allows �(⇧) to be always a measurable space (see [9,1]).
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that assigns to each pair of states s, s0 2 S ⇥ S the probability of an agent to
reach state s0 2 S at time t + 1 2 N given that it is in state s 2 S at time
t 2 N. The time-homogeneous behaviour of the agent corresponds to assuming
P (St+1|St) to be the same for each t 2 N. Its memory-less condition corresponds
to assuming the Markov property, i.e., P (St+1|St, . . . , S0) = P (St+1|St).

Given the time-homogeneity and the Markov property, a compact specifi-
cation of the stochastic behaviour of our agent across time can be achieved
by means of an initial probability distribution P (S0) and a transition matrix
T : S ⇥ S 7! [0, 1] whose elements are the values of P (St+1|St) computed for
each s, s0 2 S ⇥ S and the choice of t is arbitrary because of time-homogeneity.
The tuple DTMC:=hS, P (S0), T i composed by the set of states S, the initial
probability distribution P (S0) and the transition matrix T is called a discrete-

time Markov chain. Since here we are interested in studying the properties of
agents, we refer to so-called labelled DTMCs, that are obtained by extending
standard ones with a finite non-empty set of labels AP used to represent ele-
mentary properties and a labelling function l : S 7! 2AP . From now on, when
referring to DTMCs we always mean their labelled version.

2.2 Hitting Probability in Markov Chains

Given a DTMC:=hS, P (S0), T i, a state s 2 S, and an event A ✓ S, the hitting
probability of an event A with respect to s, denoted hA(s), is the probability of
the agent described by the DTMC to reach eventually in the future at least one
state s0 2 A from s. Given a finite time-horizon t 2 N, the bounded-time hitting
probability of A is the probability of reaching until time-step t 2 N at least one
s0 2 A from s. It is possible to show that hA(s) = limt!1 ht

A . The existence of

this limit is proved and its values correspond to the fixed point of ht
A (s) (see

[9]).
To e�ciently compute ht

A (s), let T denote the transition matrix obtained
from T making all the states s0 2 A absorbing. A state s 2 S is called absorbing

if and only if 8s0 6= s, T (s, s0) = 0. Hence ht
A (s) can be obtained as:

ht
A (s) :=

X

s02A

Tt(s, s0) (1)

The computational complexity of (1) is linear in t (see [1]). To compute the
(unbounded) hitting probability hA(s), instead, we need to find the minimal
solution to the following system of linear equations:

hA(s) :=

(
1 if s 2 A ,
P

s02S T (s, s0) · hA(s0)
(2)

A minimal solution hA of (2) satisfies the following conditions: (i) values of
hA(s) for s 2 S are a solution of the linear system (2), and (ii) any solution h0

A
of the linear system (2) distinct from hA satisfies h0

A(s) � hA(s) for all s 2 S. In
practice, a minimal solution of (2) can be computed by solving a simple linear
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programming task (see [1]) for each s 2 S. Since the complexity of each linear
programming task to solve is linear with respect to |S|, the overall computational
complexity of computing a minimal solution of (2) is polynomial in |S|.

3 ATCTL

3.1 Syntax

Definition 1 (ATCTL Syntax).

� := > | p | ¬� | �1 ^ �2 | Prb 

 := �� | �1
[
�2 | �1

t[
�2

✏ := Ae
rh� | CA�

rh | DA�
rh | T e

rh� | CT�
rh� | DT�

rh�

The � and  fragments include usual PCTL formulae with their standard reading
(see [1]). They specify characteristic properties of both the target-system M
and the explanantes e 2 E, i.e., the agents emulating the behaviours of the
target-system. We use r as a meta-variable for <,,=,�, >, b and h to denote
real numbers in the interval [0, 1]. Notice that, the probabilistic operator Prb

expresses the weighted-probability of a path-formula  to hold quantified with
respect to all the paths originating in a given state s 2 S 2

The ✏ fragment includes several weighted accuracy and trustworthiness op-
erators either for an explanans e 2 E or a group of explanantes � ✓ E. They
express degrees of accuracy and trustworthiness of an explanans (resp., a group
of explanantes) when they explain a certain property of the target-system, where
this property is specified by the formula � nested within the operators. The ✏
formulas have the following informal reading:

– Ae
rh�: agent e 2 � has a degree of accuracy less/equal/greater than h in

explaining �;
– CA�

rh�: the group of agents � has a common degree of accuracy
less/equal/greater than h in explaining �;

– DA�
rh�: the group of agents � has a distributed degree of accuracy

less/equal/greater than h in explaining �
– T e

rh�: agent e 2 � has a degree of trustworthiness less/equal/greater than
h in explaining �;

– CT�
rh�: the group of agents � has a common degree of trustworthiness

less/equal/greater than h in explaining �;
– DT�

rh�: the group of agents � has a distributed degree of trustworthiness
less/equal/greater than h in explaining �.

2 As in standard PCTL, the CTL existential and universal quantifiers, expressing
quantification over paths satisfying a given formula  , here are omitted. It is easy
to prove that they correspond to special cases of probabilistic quantification. In
particular, 9 () P>0 and 8 () P=1 . For the details, see [1].



6 A. Termine et al.

3.2 ATCTL Semantics

In this section we present the ATCTL semantics, providing the multi-agent struc-
ture over which we define satisfiability conditions for the ATCTL formulas in-
troduced above.

We consider a multi-agent structure including a finite set of agents A :=
{M} [ E where M /2 E. We denote generic elements of A by i. The agents
are abstract models of both the opaque target-system to be explained and the
transparent systems used to explain it. In particular, we use M to denote the
model of the target-system, while we use E := {e1, . . . , en} to denote a finite
non-empty set of agents e, each one modelling a given explaining transparent
system and that we call an explanans. With slight abuse of terminology, we will
sometimes call the model M simply the target-system. We further model each
agent i 2 A as a DTMC i := hS, T i, P i(S0), AP i, lii. Note that all the agents
share the same state space S, while the transition matrix, the initial probability
distribution, the set of labels and the labelling function are local to each agent
i 2 A.

Definition 2 (Target-Explanans System (TES)). The overall multi-agent

system is a structure

MTES := hS,A, {T i}i2A, {P i(S0)}i2A,
[

i2A
AP i, {li}i2Ai

that includes a finite non-empty set of states S, a finite non-empty set of agents

A, a family {T i}i2A of transition matrices T i : S ⇥ S 7! [0, 1], one for each

agent i 2 A, a family {P i(S0)}i2A of initial probability distributions S 7! [0, 1],
one for each agent i 2 A, a set of labels

S
i2A AP i

obtained as the union set of

all the sets of labels AP i
of each agent i 2 A and, finally, a family {li}i2A of

labelling functions li : S 7! 2AP i

, one for each agent i 2 A.

Definition 3 (Satisfiability of � and  formulae). Given an agent i 2 A
and a state s 2 S the following conditions hold:

i, s |= >, 8s 2 S
i, s |= p i↵ p 2 li(s)
i, s |= �1 ^ �2 i↵ i, s |=i �1 and i, s |= �2
i, s |= ¬� i↵ i, s 6|= �
i,⇡ |= �� i↵ i,⇡(1) |= �

i,⇡ |= �1
St �2 i↵ 9⌧  t : i,⇡(⌧) |= �2 and 8⌧ 0 : 0  ⌧ 0 < ⌧, i,⇡(⌧ 0) |= �1

i,⇡ |= �1
S
�2 i↵ 9⌧ � 0 : i,⇡(⌧) |= �2 and 8⌧ 0 : 0  ⌧ 0 < ⌧, i,⇡(⌧ 0) |= �1

i, s |= Prb i↵ P (i, s |=  )rb ,

where P (i, s |=  ) denotes the probability that a path ⇡ originating in s (i.e.,
such that ⇡(0) = s) satisfies  according to the agent i 2 A. Di↵erent methods
to compute this probability are presented in Section 4.
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We interpret the degree of accuracy as the Jaccard index computed over two
specific set of states. Given two sets A and B, the Jaccard index of A and B,
denoted by J(A,B), is defined as:

J(A,B) :=
| A \B |
| A [B | (3)

Notice that, whenever both A = ; and B = ;, J(A,B) is undefined. In such
cases, we assume J(A,B) = 1. Given a TES MTES , we define Sati(�) as the set
of states s0 2 S such that i, s0 |= �. Given a state s 2 S, we denote by Reachi(s)
the set of all the states s0 2 S that are surely reachable from s for agent i 2 A.
A state s0 2 S is surely reachable from another state s 2 S according to an agent
i 2 A if and only if

(h)i{s0}(s) = 1 (4)

where (h)i{s0}(s) is the hitting probability of the event {s0} computed through

the transition matrix T i, i.e., the transition matrix describing the stochastic
behaviour of the agent i 2 A, as by Equation (2).

To define the degree of accuracy with respect to a given property � and a
state s 2 S, we define

�i(s) := Sati(�) \Reachi(s) (5)

i.e., the set of states that satisfy property � and are surely reachable from s 2
S, respectively, according to agent i 2 A. These sets generalize to a group of
explanantes � ✓ A as follows:

�C
� (s) :=

[

e2�

�e(s) (6)

�D
� (s) :=

\

e2�

�e(s) (7)

Definition 4 (Satisfiability of Accuracy formulae).

MTES , s |= Ae
rh� i↵ J(�M (s),�e(s)) rh

MTES , s |= CA�
rh� i↵ J(�M (s),�C

� (s))) rh

MTES , s |= DA�
rh� i↵ J(�M (s),�D

� (s))) rh .

where J(�M (s),�e(s)) is the Jaccard index computed over the sets �M (s) and,
respectively, �e(s), �C

� (s) and �
D
� (s).

While accuracy is defined as a distance, trustworthiness is defined as a prob-
ability. In particular, the degree of trustworthiness of an explanans e 2 E in
explaining a property � of a target-system M is defined as the probability that
eventually the target system will reach a state satisfying �, provided that the
explaining agent surely reaches such a state. Given a set of explanantes � ✓ E,
analogous definitions are provided for common and distributed trustworthiness
referring to the union, respectively the intersection set, of all explanantes e 2 � .
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Definition 5 (Satisfiability of Trustworthiness formulae).

MTES , s |= T e
rh� i↵ P (�M (s) | �e(s))rh

MTES , s |= CT�
rh i↵ P (�M (s) |

S
e2� �e(s))rh

MTES , s |= DT�
rh i↵ P (�M (s) |

T
e2� �e(s))rh

where: P (�M (s) | �e(s)) is the probability of the event �M (s) given the event
�e(s). We compute this probability through the well-known counting-worlds

technique (see [3]) and by adopting a classical interpretation of probability, as
follows:

P (�M (s) | �e(s)) :=
| �M (s) \ �e(s) |

| �e(s) |
. (8)

Respectively for groups of agents:

P (�M (s) |
[

e2�

�e(s)) :=
| �M (s) \

S
e2� �e(s) |

|
S

e2� �e(s) |
, (9)

P (�M (s) |
[

e2�

�e(s)) :=
| �M (s) \

T
e2� �e(s) |

|
T

e2� �e(s) |
. (10)

Notice that, whenever �e(s),
S

e2� �e(s) or
T

e2� �e(s) are the empty-set the
above probability is undefined. In such cases, we assume it to be equal to 0.

4 Model-Checking

In this section we describe feasible procedures to model-check a given MTES

against properties specified in the ATCTL language. Let ⇤ := � | ✏ denote a
generic ATCTL state formula. Given a TES MTES , a formula ⇤ and a state
s 2 S our task is to check whether s satisfies ⇤. Let Sat(⇤) denotes the set of all
the states s 2 S such that MTES , s |= ⇤ and let � denotes a generic sub-formula
of ⇤. The main algorithm works as follows3:

1. Generate the parse tree of ⇤, decomposing ⇤ in its sub-formulas �.
2. Traverse the parse tree of ⇤ visiting all the sub-formulas �, starting from

the leaves and working backwards to the roots,
3. At each sub-formula �, calculate Sat(�),
4. Calculate Sat(⇤) by composition of the various Sat(�) ,
5. Check whether s 2 Sat(⇤).

To this aim, we define a procedure to compute Sat(�) for all kinds of ATCTL
state formulas (i.e., � and ✏).

3 Notice that path-formulas  are usually not considered in a typical probabilistic
model-checking workflow. For the details of the procedure, see [1].
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4.1 � fragment

When � := �, we compute Sati(�) by an iterative application of the following
recursive schema:

Definition 6 (Sati).

Sati(>) := S
Sati(p) := {s 2 S : p 2 li(s)}
Sati(�1 ^ �2) := Sati(�1) \ Sati(�2)
Sati(¬�) := S \ Sat(�)
Sati(Prb ) := {s 2 S : P (i, s |=  )rb}

The only non-trivial step is the computation of P (i, s |=  ). The procedure to
compute P (i, s |=  ) varies depending on  :

– When  := ��, this probability is computed as

P (i, s |= ��) :=
X

s02Sati(�)

T i(s, s0) (11)

– When  := �1
St �2, this probability corresponds to the the bounded-time

hitting probability (hi)t
Sat(�2)

(s) computed through a modified transition

matrix Ti that is obtained from T i making all the states s0 2 S absorbing,
excluding those in Sati(�1) \ Sati(�2). The algorithm computes (hi)t

Sati(�2)

by generating the modified transition matrix Ti and then computing

(hi)t
Sati(�2)

(s) :=
X

s02Sati(�2)

(Ti)t(s, s0) (12)

– When  := �1
S
�2, this probability corresponds to hi

Sati(�2)|Sati(�1)
(s) 4 ,

i.e. the (unbounded) hitting probability of the event Sati(�2) with the addi-
tional condition that all the states visited before reaching an s0 2 Sati(�2)
are in Sati(�1). This can be obtained by computing the minimal5 solutions
of the following system of linear equations:

hi
Sati(�2)|Sati(�1)

(s) :=

8
><

>:

1 if s 2 Sati(�2) ,

0 if s 62 Sati(�1) ,P
s02Sati(�1)

T (s, s0) · hi
Sati(�2)|Sati(�1)

(s0) otherwise .

(13)

In practice, it is possible to compute the minimal solutions of the above system
by solving a simple optimization task for each s 2 S through linear programming
(see [1]).

4 Notice that, this must not be intended as a conditional probability.
5 Here, minimality is defined as for Equation (2).
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4.2 ✏ fragment

In this section, we define and comment an algorithm to compute Sat(✏).
Algorithm 1 takes in input a TES MTES and a formula ✏ (line 1). Given an

s 2 S, it computes �M (s) by checking for each s0 2 SatM (�) whether hM
{s0}(s) =

1, i.e., whether s0 is reachable from s according to the target-system M (line
4). Notice that, computing hM

{s0}(s) through Equation (2) at line 5 requires an

amount of time polynomial in |S| for each s0 2 SatM (�) (see Section 2). Since
SatM (s) ✓ S, the time complexity of the overall procedure described in line 4 is
polynomial in |S|. Then the algorithm for each e 2 � computes �e(s) by checking
for each s0 2 Sate(�) whether he

{s0}(s) again through the procedure described

in Equation (2) (lines 9-11). The time complexity of computing he
{s0}(s) for

each s0 2 Sate(�) is therefore polynomial in |S|. Since the procedure has to be
iterated for each e 2 � , the final time complexity of the overall procedure is
polynomial in |S| and linear in |� |. Then the algorithm checks whether s |= ✏
(line 17) as follows: (i) switch on the proper satisfiability condition depending
on the nature of ✏, (ii) perform a simple sequence of algebraic operations on sets
and, (iii) check whether the obtained result respects the threshold rh specified
in the formula. Since this procedure consists of a very small number of simple
algebraic operations on sets, it does not increase the time complexity of the
overall procedure that remains polynomial in |S| and linear in |� |. Finally, to
compute Sat(✏) the above described procedure has to be iterated for each s 2 S.
Consequently, the overall time complexity of computing Sat(✏) is polynomial in
|S| and polynomial in |� |.

5 Example

Let us consider as target-system a probabilistic decision-tree classifier 6 whose
task is to predict whether a given patient might develop schizophrenia based on
the following Boolean parameters: gender, genetic disposition, and presence of

correlated psychiatric disorders. We use labels m for “male”, g for “presence of
genetic disposition”, d for “presence of psychiatric disorders” and p for “being
schizophrenic”.

The behaviour of the classifier can be described by a DTMC M defined over
S and provided with: (i) a set of labels APM := {m, g, d, p}, (ii) a labelling
function lM and, (iii) a transition matrix TM described in Figure 1. There are
sixteen di↵erent reachable states, i.e., S := {s0, s1, . . . , s15} stating the di↵erent
profiles of the patients predictable given the analysis of the above parameters.
We further assume that, according to the labelling lM the only state that satisfies
property m is s12. Let P be a patient whose actual profile is hm, g, d,¬(p)i that
corresponds to the labels of s0 2 S, i.e., lM (s0) = {m, g, d,¬(p)}. We see from the
matrix TM that, whenever the model receives the input {m, g, d,¬(p)} it returns

6 This represents a typical example of a stochastic machine learning model. According
to the classification we propose in the introduction, it can be classified as an opaque

but comprehensible model. For more details, see [2].
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Algorithm 1: Sat(✏)

Input: MTES , ✏
Output: Sat(✏)

1 Sat(✏) {};
2 foreach s 2 S do
3 �M (s) {};
4 foreach s0 2 SatM (�) do
5 if hM

{s0}(s) = 1 then

6 �M (s) �M (s) [ {s0}
7 end

8 end
9 foreach e 2 � do

10 �e(s) {};
11 foreach s0 2 Sate(�) do
12 if he

{s0}(s) = 1 then

13 �e(s) �e(s) [ {s0}
14 end

15 end

16 end
17 switch ✏ do
18 case Ae

rh do
19 if J(�M (s),�e(s))rh then
20 Sat(✏) Sat(✏) [ {s}
21 end

22 end

23 case CA�
rh do

24 if J(�M (s),
S

e2� �e(s))rh then
25 Sat(✏) Sat(✏) [ {s}
26 end

27 end

28 case DA�
rh do

29 if J(�M (s),
T

e2� �e(s))rh then
30 Sat(✏) Sat(✏) [ {s}
31 end

32 end
33 case T e

rh do
34 if P (�M (s) | �e(s))rh then
35 Sat(✏) Sat(✏) [ {s}
36 end

37 end

38 case CT�
rh do

39 if P (�M (s) |
S

e2� �e(s))rh then
40 Sat(✏) Sat(✏) [ {s}
41 end

42 end

43 case DT�
rh do

44 if P (�M (s) |
T

e2� �e(s))rh then
45 Sat(✏) Sat(✏) [ {s}
46 end

47 end

48 end

49 end
50 return Sat(✏)
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Table 1. TM

0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0.25 0 0 0.25 0.25 0.25 0 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5

the output p. In our framework, this corresponds to saying that the model M
and the state s0 2 S satify the property � := P=1>

S
(p). Now, suppose that

one is interested in explaining the behaviour of M on input {m, g, d,¬(p)}, i.e.,
in understanding why M, s0 |= �. To this aim, she builds an explanans e (e.g. a
rule-based system) 7 able to emulate the behaviour of the classifier locally on s0.
The behaviour of e can be modelled by another DTMC defined over S, provided
with the same set of labels and the same labelling function of M but described
by a di↵erent transition matrix T e that is reported in Figure 2. We are interested
in evaluating whether the explanation of M ’s behaviour against property � is
more accurate than a desirable threshold, for instance � 0.75. First, we build a
TES MTES that includes the model M of the classifier and the model of the
explanans e. Hence, we check whether MTES and s0 2 S satify the following
formula:

✏ := Ae
�0.75P=1>

[
(p) (14)

expressing our desirable requirement on accuracy. To evaluate whether
MTES , s0 |= ✏, we compute Sat(✏) through algorithm 1 and check whether
s0 2 Sat(✏). Since this is the case, we can conclude that e is su�ciently accu-
rate.8

6 Conclusion

In this paper we presented a framework to model and check accuracy and trust-
worthiness of explaining agents. Among further possible developments we men-
tion: the extension of the language with operators to specify degrees of trans-
parency of systems with respect to their stakeholders and extensions of the se-
mantics to model systems whose behaviour cannot be described through DTMCs

7 Remeber that an explanans is an agent able to (locally) emulate the behaviour of
the target-system and usually consider more transparent than this one.

8 A Python implementation of Algorithm 1 is available at https://github.com/

dasaro/ATCTL together with details on how to reproduce the results from the exam-
ple.

https://github.com/dasaro/ATCTL
https://github.com/dasaro/ATCTL
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Table 2. T e

0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0 0
0 0 0 0.25 0 0 0.25 0.25 0.25 0 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0
0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5

but requires, for instance, continuous-time Markov chains, Markov decision pro-
cesses or hidden Markov models.
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