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1 Introduction

The production in hadronic collisions of a pair of leptons, each with large transverse
momentum, is known as Drell-Yan (DY) process and it plays a fundamental role for
our understanding of Quantum Chromodynamics (QCD) as the theory of the strong
interactions. The lepton pair acts as a probe of the initial-state proton structure. It allows
for the measurement of the proton collinear parton density functions (PDFs) and for the
study of the QCD dynamics from the analysis of the lepton-pair transverse momentum
distribution. The kinematical distributions of the final-state leptons allow for precision
tests of the electroweak (EW) Standard Model (SM), with the determination of the weak
mixing angle [1, 2], and of the masses mW,Z [3, 4] of the W and Z bosons.
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The production of an on-shell Z boson represents an approximation of the full neutral-
current (NC) DY process, in that special kinematical configuration dominated by the
Z-boson resonance. The total cross section of this process is an important theoretical
benchmark constraining the proton PDFs, so that its prediction is a cornerstone in the
precision physics program at hadron colliders. This process is described in lowest order
(LO) by quark-antiquark annihilation into a Z boson via EW interaction. The evaluation
of the next-to-leading order (NLO) [5], next-to-next-to-leading order (NNLO) [6–9], and
next-to-next-to-next-to-leading order (N3LO) [10–14] QCD corrections to the production of
an on-shell gauge boson, supplemented by the resummation of the logarithmically enhanced
terms due to soft gluon emission [15–22], allows for the accurate estimate of the total cross
section, the reduction of the impact of QCD uncertainty and the precise assessment of its
actual size (cfr. also ref. [23]).

The best available QCD prediction for the inclusive production of a virtual gauge
boson includes up to N3LO QCD corrections [12–14], in the γ∗, W , and in the complete
NC DY cases respectively. It shows a dependence on the QCD renormalisation (µR) and
factorisation (µF ) scale choices at the sub-percent level for virtualities Q > 70GeV and
at the percent level for smaller Q values, with a stronger sensitivity to the choice of the
factorisation scale.

In this high-precision QCD framework, the inclusion of EW effects becomes mandatory.
The NLO-EW corrections to the DY process have been computed in [24–28] and are
comparable in size to the NNLO-QCD effects. The theoretical uncertainty associated with
missing higher-order EW corrections is formally at the NNLO-EW level and it is significantly
reduced compared to the leading order (LO) case. Using different input parameters as a
mean to estimate the size of missing higher-order EW effects, one finds that the LO variation
is at the O(3.5%) level, whereas the NLO-EW one is reduced down to the O(0.5%) level.
Despite of these significant progresses, it is possible to observe the presence of some residual
sources of uncertainty in the results listed above. The higher-order QCD predictions are
only LO accurate from the point of view of the EW interaction, and thus they suffer from
the uncertainty associated with the different choices of input parameters. If we consider the
NNLO-QCD prediction, supplemented with the NLO-EW one, we find a scheme uncertainty
at the O(0.88%) level. This value is significant for any precision test, it is comparable to the
residual QCD uncertainty, and in any case is slightly larger than the corresponding estimate
based only on the LO+ NLO-EW results. A specular discussion applies to the NLO-EW
corrections, which are only LO from the point of view of the strong interaction. They
suffer from large uncertainties under variations of the factorisation scale. The canonical µF
variation by a factor 2 about its central value yields a change of the LO cross section by
±18% and, in turn, a change of the NLO-EW correction at the O(0.5%) level. In order
to increase the control on the theoretical error, it is therefore mandatory to include in the
analysis the full mixed QCD-EW corrections, since they stabilize both the dependence on
the QCD scales of the higher-order EW corrections and the dependence on the EW input
parameters of the higher-order QCD corrections.

The mixed corrections to the DY process in the resonance region have been studied in
the so-called pole approximation in refs. [29, 30], where QCD and EW effects are factorised
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between production and decay of the vector boson. As far as the production of an on-shell
Z boson is concerned, the exact QCD-QED corrections have been considered in refs. [31–33],
while in [34–36] we have computed the mixed QCD-EW effects fully analytically for the
inclusive production. In ref. [37], the fully differential QCD×EW effects have been presented,
using a combination of analytical and numerical techniques. As for the full neutral-current
DY, the QCD×QED corrections to the production of a pair of neutrinos have been discussed
in ref. [38], and the complete NNLO QCD-EW corrections for a charged lepton pair in
the final state have been presented in [39, 40]. Considering pole-approximation only for
the virtual contributions, the QCD-EW corrections to the charged current DY has been
obtained in [41].

In this paper, we explicitly present the analytical expressions and all the computational
details to obtain the O(ααs)mixed QCD-EW corrections to on-shell Z boson inclusive
production cross section at hadron colliders. The results have been fully computed in
analytical form and expressed in terms of polylogarithmic functions and elliptic integrals,
requiring the evaluation of new two-loop master integrals (MIs) that were not available
in the literature. The inclusion of the O(ααs) corrections increases the accuracy of the
prediction and it reduces the impact of the residual theoretical uncertainties. The evaluation
of the hadron-level cross section requires the convolution of the partonic results with proton
PDFs. For consistency, the latter must satisfy DGLAP equations with also a QCD+QED
evolution kernel. We comment on the accuracy of our predictions, compared to a standard
analysis that includes only QCD corrections.

2 The Z boson production cross section

In this section, we discuss the theoretical framework, providing the details of perturbative
contributions from various partonic channels which constitute the mixed QCD-EW cor-
rections to the inclusive production cross section of the Z boson at hadron colliders. We
also discuss here the necessary steps to perform ultraviolet (UV) renormalisation and mass
factorisation.

2.1 The hadron-level cross section

We organize the hadron-level inclusive Z production cross section as a double perturbative
expansion in the QCD and EW couplings, αs and α, respectively:

σH ≡ σ(h1h2 → Z +X) =
∞∑
m=0

∞∑
n=0

αms α
n σ(m,n) . (2.1)

The first term of this expansion, σ(0,0) is called Born cross section. All the contribu-
tions of O(αs)with respect to the Born form the NLO-QCD corrections σ(1,0), those of
O(α) are the NLO-EW corrections σ(0,1). At the second orders, the O(α2

s) , O(α2) and
O(ααs) contributions are called the NNLO-QCD (σ(2,0)), NNLO QCD-EW (σ(1,1)) and
NNLO EW (σ(0,2)) corrections, respectively. In this paper we describe in detail the complete
computation of σ(1,1).
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The hadron-level cross section for the inclusive production of an on-shell Z boson can
be written, according to the factorisation theorem, as

σH =
∑

i,j=q,q̄,g,γ

∫ 1

0
dx1

∫ 1

0
dx2 f̃

h1
i (x1)f̃h2

j (x2) σ̃ij . (2.2)

The bare PDFs, f̃hi (x), describe the partonic content of the hadron h, where i can be a quark
(q), anti-quark (q̄), gluon (g) or photon (γ). The partonic cross section σ̃ij ≡ σ̃(ij → Z+X),
describes the inclusive production of a Z boson in the scattering of partons i and j.

In the evaluation of the radiative corrections, the presence of UV and IR divergences
is handled in dimensional regularisation, with d = 4− 2ε being the number of space-time
dimensions. The individual matrix elements contain in general poles in ε. The cancellation of
the UV singularities takes place via UV renormalisation. The combination of virtual and soft
real emission corrections to the same underlying process leads to a cancellation of the IR soft
poles. According to the Kinoshita-Lee-Nauenberg (KLN) theorem [42, 43], the combination
of the different partonic cross sections contains only singularities due to the emission of
collinear partons from the initial state. The latter are universal, they can be factorised
and reabsorbed in the definition of the physical proton PDFs, fi(x, µF ) = Γik(µF )f̃k(x),
by means of the mass factorisation kernel Γ , defined at the factorisation scale µF . As a
consequence, eq. (2.2) can be written as follows with the convolution represented by the
symbol ⊗,

σH =
∑

i,j=q,q̄,g,γ

∫ 1

0
dx1

∫ 1

0
dx2 f

h1
i (x1, µF )fh2

j (x2, µF )Γ−1
ik (µF )Γ−1

jl (µF ) σ̃kl(x1, x2) ,

≡ σ0
∑

i,j=q,q̄,g,γ
fh1
i (µF )⊗ fh2

j (µF )⊗ ∆ij(µF ) . (2.3)

The constant σ0 is defined through the Born cross section σ(0,0),

σ(0,0) ≡ σ0c
(0)
q δ(1− z) = 4

√
2π

NC
Gµc

(0)
q δ(1− z) . (2.4)

In the latter, z ≡ m2
Z/ŝ,

√
ŝ is the partonic center of mass energy, NC is the number of

colors, and c(0)
q = (C2

v,q +C2
a,q) is the combination of charges of the coupling of the Z boson

to a quark q. Cv,q and Ca,q are given by

Cv,q =
(
I

(q)
W

2 − sin θWQq

)
, Ca,q =

(
I

(q)
W

2

)
, (2.5)

with I(q)
W and Qq the third component of the weak isospin and the electric charge in units

of the positron charge, respectively. θW is the weak mixing angle.
∆ij is the UV- and IR-finite partonic cross section for the partonic channel ij, expressed

in units σ0. In perturbation theory, ∆ij is expanded in series of αs and α as

∆ij =
∞∑
m=0

∞∑
n=0

αms α
n∆

(m,n)
ij . (2.6)
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(a)

Z

q

q̄

(b)

Z
g

q

q̄

(c)

Z

g

q

q̄

(d)

Z

g

q (q̄)

q (q̄)

Figure 1. Feynman Diagrams contributing to the Born (a) and to the O(αS) corrections (b)–(d)
to the production of a Z boson in hadronic collisions. Crossed diagrams are not shown.

The main results of this paper are the expressions of the corrections ∆(1,1)
ij with i, j = q, q̄, g, γ.

In the study of the NNLO QCD-EW corrections, we encounter different gauge invariant
subsets, characterised by the exchange of additional photons or massive weak bosons W s or
Zs. We reorganize accordingly the total O(ααs) correction, introducing

ααsσ
(1,1) = σ0

α

4π
αs
4π

(
∆(1,1)
γ + 1

s2
W c

2
W

∆
(1,1)
Z + 1

s2
W

∆
(1,1)
W

)
. (2.7)

We present in section 4 the expressions of ∆(1,1)
γ , ∆(1,1)

Z , and ∆(1,1)
W .

2.2 The partonic subprocesses

The inclusive production cross section receives, order by order in perturbation theory, virtual
as well as real emission corrections. The additional final-state partons present in the latter
are completely integrated over their respective phase space. The first term of the expansion
σ(0,0) in eq. (2.1), receives contributions from the single partonic process (see figure 1 (a))

q + q̄ → Z . (2.8)

σ(1,0) in eq. (2.1) receives contributions from the partonic processes

q + q̄ → Z , q + q̄ → Z + g , q + g → Z + q . (2.9)

The first process receives NLO-QCD virtual corrections (figure 1 (b)), while the other two
are evaluated at tree level, with the phase-space of the emitted parton (g/q) integrated out
(figure 1 (c),(d)). In case of σ(0,1), the processes are (see figure 2)

q + q̄ → Z , q + q̄ → Z + γ , q + γ → Z + q , (2.10)

where the first process receives NLO-EW virtual corrections (figure 2 (a)). At O(ααs)we
have double-virtual, real-virtual and double-real contributions. Double-virtual corrections
are two-loop contributions, with one gluon and one/two EW gauge bosons in the loop, to
the partonic process (see figure 3)

q + q̄ → Z . (2.11)

In the real-virtual contributions we find one virtual loop and one real-emitted particle. The
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(a)

Z
γ, Z,W

q

q̄(q̄′)

(b)

Z

γ

q

q̄

(c)

Z

γ

q (q̄)

q (q̄)

Figure 2. Feynman Diagrams contributing to the O(α) corrections to the production of a Z boson
in hadronic collisions. Crossed diagrams are not shown.

(a)

Z
g

γ, Z,W

q

q̄

(b)

Z
g

γ, Z,W

q

q̄

(c)

Z

g

γ, Z,W

q

q̄

(d)

Z
g

γ, Z,W
q

q̄

(e)

Z

g

γ, Z,W

q

q̄

(f)

Z
g

γ, Z,W
q

q̄

(g)

Z

γ, Z,W

g
q

q̄

(h)

Z
g

W

W

q

q̄

(i)

Z
g

W

W

q

q̄

(j)

Z
g

W

W

q

q̄

Figure 3. Two-loop Feynman Diagrams contributing to the O(ααS) corrections to the production
of a Z boson in hadronic collisions, eq. (2.11). Symmetric diagrams are not shown.

processes which contribute to this group are (see figure 4)

q + q̄ → Z + g , q + g → Z + q , q + q̄ → Z + γ , q + γ → Z + q . (2.12)

For the first two processes, the loop integral is of O(α) (figure 4 (a)–(h)), while for the others
it is of O(αs) (figure 4 (i)–(p)). At O(ααs) , the double-real contributions are with two
real-emitted partons. Their amplitudes are evaluated at tree level. In the cases with two
(anti)quarks in the initial and two (anti)quarks in the final state, in addition to the Z, the
scattering is mediated by either a gluon or an EW boson, so that the respective contributions
have a different proportionality in terms of α and αs. The interference between the two
groups of contributions is of O(ααs)with respect to the Born process and is relevant for
the calculation of σ(1,1). The complete list of processes is (see figure 5)

q + q̄ → Z + g + γ , q + q̄ → Z + q + q̄ , q + q → Z + q + q ,

q + g → Z + q + γ , q + γ → Z + g + q , g + γ → Z + q + q̄ ,

q + q′ → Z + q + q′ , q + q̄ → Z + q′ + q̄′ , q + q̄′ → Z + q + q̄′ . (2.13)

We denote with q′ a different quark flavour.
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(a)
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q

q̄

(b)

Z

g

γ, Z,W

q

q̄

(c)

Z

g

W

W
q′

q

q̄

(d)

Z

g

γ, Z,W

q

q̄

(e)

Z

q (q̄)

γ, Z,W

q (q̄)

g

(f)

Z

q (q̄)

γ, Z,W

q (q̄)

g

(g)

Z

q (q̄)

γ, Z,W

q (q̄)

g

(h)

Z

q (q̄)

γ, Z,W

q (q̄)

g

(i)

Z

γ

g

q

q̄

(j)

Z

γ

g

q

q̄

(k)

Z

γ

g

q

q̄

(l)

Z

γ

g

q

q̄

(m)

Z

q (q̄)

g

q (q̄)

γ

(n)

Z

q (q̄)

g

q (q̄)

γ

(o)

Z

q (q̄)

g

q (q̄)

γ

(p)

Z

q (q̄)

g

q (q̄)

γ

Figure 4. Examples of Feynman Diagrams contributing to the real-virtual corrections to the
production of a Z boson in hadronic collisions, eqs. (2.12).

We analytically compute the contribution at O(ααs) to the total cross section of
each of the above listed processes, which can be presented as a Laurent expansion in ε.
After the combination of all the degenerate states and mass factorisation, the singularities
cancel and the remaining non-vanishing finite contributions are the factors ∆(1,1)

ij . We
present in section 4 their analytical expressions, and provide them also in a Mathematica
supplementary file attached to this paper.
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q

(e)

q

q
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q

q

(f)

Z

q (q̄)

γ

q (q̄)

g

(g)

Z

q (q̄)

g

q (q̄)

γ

(h)

Z

q

γ q̄

g

(i)

q′

q

ZW

q

q′

(j)

q

q′

Zg

q

q′

(k)

q′

Z
γ, Z

q̄′

q

q̄

(l)

q′

Z
g

q̄′

q

q̄

(m)

q

q̄′

Zg

q

q̄′

(n)

q

Z
W

q̄′

q

q̄′

Figure 5. Examples of Feynman Diagrams contributing to the double real corrections to the
production of a Z boson in hadronic collisions, eqs. (2.13).

2.2.1 Classification of the radiative corrections

The O(α) and O(ααs) corrections can be organised in a gauge invariant way into a photonic
and two weak subsets. The photonic subset (∆γ) contains all contributions involving a
photon i.e. a virtual photon in the loop or a real-emitted photon or a photon-initiated
channel; at O(ααs) these are dubbed QCD-QED corrections. The first weak subset (∆Z)
contains contributions from an additional Z boson, either in the loop or as the intermediate
propagator in the tree diagrams of double-real contributions. The other weak subset (∆W )
contains contributions from one or two W bosons and includes Feynman diagrams with a
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non-abelian trilinear gauge boson vertex. This subdivision makes the computation, especially
the mass factorisation, more organised and is useful for several intermediate checks.

2.2.2 Ultraviolet renormalisation
The prediction of the hadron-level cross section requires to express the bare couplings and
masses in terms of physical parameters via renormalisation. The choice of the background
field gauge (BFG) [44] allows to restore the validity of U(1)em-like Ward identities between
the vertex corrections and the external quark wave function corrections in the full EW
model. We explicitly verify these Ward identities at O(α) and O(ααs) . We observe at
O(α) that the sum of the photonic correction in the vertex and external quark wave function
corrections is UV finite. The same holds for the corrections with the exchange of one virtual
Z boson and, separately, for those with one or two W bosons. An identical pattern takes
place at O(ααs) . We are thus left with the discussion of the charge and external gauge
boson wave function renormalisation.

If we choose to express (g, g′, v), the SU(2)L and U(1)Y couplings and the Higgs field
vacuum expectation value, in terms of (Gµ,mW ,mZ) (dubbed Gµ-scheme), where Gµ is the
Fermi constant, then the weak charge renormalisation is achieved by the replacement

g0
c0
Z

1/2
ZZ →

√
4
√

2Gµm2
Z

(
1− 1

2∆r + 1
2δgZ

)
. (2.14)

We denote with a 0 subscript all the bare quantities.
We abbreviate with cW = mW/mZ the cosine of the weak mixing angle (s2

W = 1− c2
W ),

and we define

δe = e0 − e, δm2
W,Z = m2

W,Z 0 −m2
W,Z

δs2
W = c2

W

(
δm2

Z/m
2
Z − δm2

W/m
2
W

)
δgZ ≡ δZZZ + δe2/e2 + (s2

W − c2
W )/(c2

W )(δs2
W/s

2
W )

where ZZZ = 1 + δZZZ is the ZZ wave function renormalisation constant, δe and δmW,Z

are the electric charge and gauge boson mass counterterms, respectively. The symbol δs2
W

is introduced for convenience, but it does not represent an independent counterterm. ∆r is
a finite correction [45] expressing the relation between the Fermi constant and the muon
decay amplitude. The δgZ factor is, in the BFG, an UV finite correction and this fact
yields a considerable simplification in the study of the impact of different input schemes.
The ∆r parameter and the counterterms can be evaluated in perturbation theory and
we keep terms of O(α) and O(ααs) [46, 47]. For consistency, they have to be expressed
in terms of (Gµ,mW ,mZ). In addition to the redefinition of the overall weak coupling, a
second renormalisation correction modifies the vector coupling vq of the Z boson to the
quarks: vq = T

(q)
3 − 2Qqs2

W → T
(q)
3 − 2Qq(s2

W + δs2
W + (cW sW/2) δZAZ), with δZAZ the

renormalisation constant of the γ − Z mixing. In the BFG also this shift of vq is UV finite.
If we instead choose to relate (g, g′, v) to the (α,mW ,mZ) set of inputs (dubbed α(0)-

scheme), the replacement of the overall coupling is g0/c0 Z
1/2
ZZ →

√
4πα/(sW cW )

(
1 + 1

2δgZ
)
,

while the redefinition of the vector coupling remains the same as in the other scheme.1
1An alternative input scheme, convenient to parameterise the Z resonance, has been discussed in ref. [48].
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The α(0)-scheme choice is historically [45, 49] one of the simplest EW renormalisa-
tion input schemes, but the low scale at which the fine structure constant is measured
yields in turn the appearance of large logarithmic corrections in the perturbative expan-
sion. The results depend on the value of the light-quark masses or, alternatively, on an
experimental input ∆αhad(mZ) = 4π

(
Π

(5)
γγ (m2

Z)−Π(5)
γγ (0)

)
[50–53] needed to evaluate the

hadronic contribution to the running of the electromagnetic coupling at low scales, where
Π

(5)
γγ (q2) indicates the contribution of the first five light quark flavors to the photon vacuum

polarisation at a scale q2 (cfr. ref. [47]).

2.2.3 Infrared singularities and mass factorisation

Each UV-renormalised process, eqs. (2.11)–(2.13), is in general IR divergent, because of
the exchange of a soft and/or collinear gluon or photon. Thanks to the KLN theorem,
after combining all the partonic subprocesses and summing over all degenerate states, only
initial-state collinear singularities are left. The latter are absorbed in the definition of
the physical proton PDFs, by means of the mass factorisation kernel Γ . The subtraction
kernels at O(ααs) are based on the splitting functions computed in ref. [54]. The photonic
initial-state collinear singularities are reabsorbed in the definition of the physical proton
PDFs and are resummed to all orders via the DGLAP evolution of the parton densities
with a QED kernel. The consistent evaluation at O(ααs) of the hadron-level cross section
requires a proton PDF set featuring DGLAP QED evolution, and, as already presented in
eq. (2.3), the inclusion of photon-induced subprocesses.

3 Computational details

In this section we present the details of the calculation. We first introduce our general
strategy, which is based on the conversion of all the phase-space integrals into loop integrals,
using the so-called reverse unitarity approach. We then discuss in detail the challenges
posed by some new MIs with internal massive lines. We eventually provide a detailed
account of how we deal with the appearing elliptic integrals.

3.1 General strategy

The evaluation of the partonic cross-sections beyond LO requires the computation of
Feynman loop integrals from virtual diagrams as well as two- and three-particle phase-space
integrals arising from real emissions. In the very beginning of inclusive NNLO calculations,
the phase-space integrals were performed using parametric and angular integration. However,
to benefit from state-of-the-art techniques, developed for virtual integrals, we use the method
of reverse unitarity [55, 56] to convert the phase-space integrals into loop integrals. The
reverse unitarity technique relies on the fact that the following replacement, Cutkosky rule,

δ(p2 −m2)→ 1
2πi

( 1
p2 −m2 + i0+

− 1
p2 −m2 − i0+

)
(3.1)

allows to convert the Dirac delta function in the phase-space measure of each final state
particle into the difference of two propagators with opposite prescriptions for their imaginary
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part, where 0+ is an infinitesimal positive real number. The resulting integrals can then be
studied with the help of standard techniques for virtual integrals, like integration-by-parts
(IBP) identities and the method of differential equations. The latter require the knowledge
of the boundary condition (BC) values to fix the general solution of the problem, and the
BCs in turn must be computed as regular phase-space integrals. We comment at the end of
the section about the different techniques adopted to compute the BCs.

The amplitudes that one needs to calculate can be classified as follows: two-loop
2→ 1 virtual amplitudes and two-loop 2→ 2 forward-scattering amplitudes with two- or
three-particle cuts, stemming from the real-virtual and double-real corrections, respectively.
There are up to two internal masses, which are in general complex valued. Once the
Feynman diagrams contributing to these processes are generated using tools like Qgraf [57]
or FeynArts [58], we compute the interference with the corresponding tree-level. We use
in-house Form [59] or Mathematica codes for this algebraic part of the computation.
The interference term is expressed in terms of a large number of scalar integrals, that are
not all independent, evaluated in d space-time dimensions. Dimensionally regularised scalar
integrals satisfy IBP identities [60–62]. These identities link different scalar integrals with
each other and make possible the reduction of a large number of terms to a small set of
independent quantities, called the MIs. For the IBP reduction process, we have used the
public programs Kira [63], LiteRed [64, 65] and Reduze2 [66, 67].

The EW corrections entail the presence of masses in the loop propagators, specifically
mZ and mW . Accordingly, the integrals that have to be evaluated depend, in general, on
three scales (or two dimensionless ratios). The fact that the two masses are numerically
very close to each other can be used to reduce, effectively, the number of scales in the
loop integrals, minimising the complexity of the calculation of the MIs. In fact, we can
conveniently express the W boson squared mass as

m2
W = m2

Z (1− ξ) , with ξ = 1− m2
W

m2
Z

' 0.2 . (3.2)

This makes it possible to expand the loop integrands, which contain m2
W , as a Taylor series

in the parameter ξ. Thus, loop integrals will only depend on ŝ and m2
Z , hence z, and the

dependence on m2
W is formally confined into the coefficients of those integrals. The Taylor

expansion in ξ will generate loop propagators with higher powers, the so-called dotted
propagators, without affecting the topology of the diagrams. Therefore, the set of MIs will
not change. The number of terms of such power expansion that have to be retained depends
on the phenomenological accuracy we need for the evaluation of the corrections. After IBP
reduction, the generic structure of the squared matrix element integrated over the inclusive
phase space will then be

∫
dΦ|M|2 =

N∑
k=1

n∑
j=0

ξjck,j(z, d)Ik(z, d) , (3.3)

where the ck,j are rational functions of the kinematical invariant z and the number d of
space-time dimensions, while the Ik(z, d) are the N MIs of the process. In this work, we
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have considered only up to the n = 2 order in the ξ expansion2 and we will discuss the
impact of this truncation in section 5.

The following step is to evaluate the MIs as a function of z and d. We use the method
of differential equations [68–75] to solve the MIs. We differentiate one MI with respect to z
and we use the IBP identities on the differentiated output to express it as a combination of
the MI itself and of other MIs. Applying this procedure on all the MIs of an integral family,
we obtain a system of first-order linear differential equations, which can be solved given a
set of BCs. In the current calculation the differential equations for most of the MIs, can
be solved expressing the solution in terms of harmonic polylogarithms (HPLs), generalised
harmonic polylogarithms3 (GPLs) [76–79] and cyclotomic HPLs [80]. Three MIs in the
evaluation of the double-real corrections, need elliptic extensions of such functions, known
as elliptic polylogarithms.

3.2 Evaluation of the full set of master integrals

The MIs which appear in the reduction of the squared matrix element of the different
partonic subprocesses can be classified in three groups associated to the two-loop virtual
corrections, the two-particle phase-space integrals of the real-virtual corrections and the
three-particle phase-space integrals of the double-real processes. All the two-loop virtual
MIs were already available in the literature [81–88]. We recompute them using the method
of differential equations, starting with a generic off-shell value of the Z boson virtuality and
then taking the on-shell limit of the results. The latter are expressed in terms of multiple
zeta values and cyclotomic constants [80], which can be reduced to a set of independent
constants as introduced in [89]. The off-shell virtual integrals and most of their on-shell
limits have been independently checked using Fiesta [90].

In the real-virtual and double-real corrections, the MIs with only massless internal
lines were available from ref. [56]. The new MIs with internal massive lines in real-virtual
and double-real contributions are solved by employing again the differential equations
technique. In these systems of differential equations, square root letters appear, making a
direct solution cumbersome. To solve this problem, it is customary to perform a change
of variables and to rationalize the square root factors. The presence, in some of the MIs
under study, of multiple square roots makes it impossible to rationalize all the letters with
one single variable transformation. In these cases, we exploit the linearity property of the
integral operator and divide the MI into two (or more) subsystems. At this stage, we can
choose for each subsystem a different transformation rule which rationalizes its specific
letters. We trade the explicit dependence on z of the full solution with the one on several
new kinematical variables, but we obtain a simpler representation of the solution in terms
of a compact alphabet as presented later in eq. (4.2).

2While for the evaluation of the MIs involved in the real-virtual and double real corrections such an
expansion is indeed needed, the virtual corrections can be evaluated keeping the full dependence on mZ and
mW , as discussed in section 4.2.

3Note that our definition of HPL with a positive letter is the GPL with a change of sign e.g. H1(z) =
−G1(z) , Hi1 (z) = −Gi1 (z).
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J1 J2

Figure 6. Two MIs, J1 and J2, for the real-virtual corrections. Thin plain lines represent massless
particles, while thick plain lines represent massive particles.

Some of the MIs of the present study satisfy coupled differential equations and the
problems of rationalising the letters and decoupling the equations are intertwined. We
describe in the following example how the two issues can be simultaneously handled.

3.2.1 Example: a subsystem of two real-virtual master integrals

We consider two integrals J1 ≡ J1(z) and J2 ≡ J2(z) (see figure 6), which satisfy the
following system of differential equations:

J ′1 = 4(d− 3)z2 − d+ 6
z(1 + 4z2) J1 + r1(d, z) ,

J ′2 = 2
z
J2 + (2d− 9)(2z + 1)

4z2 + 1 J1 + r2(d, z) . (3.4)

The functions r1,2 are the inhomogeneous part of the equations and contain rational functions
and GPLs. With the transformation rule

z → w

1− w2 (3.5)

and the relations

H0(z) = H0(w) +H1(w)−H−1(w),
H1(z) = Hi1(w)−H−i2(w)−H1(w) +H−1(w) (3.6)

the first differential equation of eq. (3.4) can be rationalised and, with appropriate boundary
conditions, can be solved to obtain up to O(ε−1) as

J
(−2)
1 = 0 ,

J
(−1)
1 = w2

1− w4

(
iπ
(
3H0(w) +H1(w) +H−1(w)

)
− 7H0,0(w)− 4H0,1(w) + 3H0,−i2(w)

− 3H0,i1(w) + 4H0,−1(w)−H1,0(w)−H1,i1(w)−H−1,0(w)−H−1,i1(w) + 3ζ2

+H1,−i2(w) +H−1,−i2(w)
)
.

This allows us to readily obtain the solution for J (−2)
2 . However, the differential equation

for J (−1)
2 has contributions to its non-homogeneous part from r

(−2)
2 , r

(−1)
2 , J

(−2)
2 as well as
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J
(−1)
1 . The transformation rule in eq. (3.5) does not rationalize the former contributions,

but it rather converts the linear kernels to much more involved polynomials. At this point
the difficulty of solving the system for J1,2 is evident, as cumbersome letters would appear
in the GPLs, making the next integrations impossible. We reorganize the problem with the
working hypothesis that, at two-loop level, all the coefficients of the poles in ε are expressible
in terms of simple GPLs. In other words we expect to be able to find a combination of J (n)

1
and J (n)

2 such that their single pole can still be determined with elementary integrations.
With this goal, we define a new integral J0

J
(n)
0 =

(
z − 1

2

)
J

(n)
1 + J

(n)
2 (3.7)

and we observe that J (−1)
0 satisfies a linear differential equation independent of both J (−1)

1
and J (−1)

2 . We solve it and obtain

J
(−2)
0 = z2(H0(z) +H1(z)− iπ

)
,

J
(−1)
0 = −z

2

2
(
2H 1

2 ,0
(z) + 2H 1

2 ,1
(z)− 7H0,0(z)− 7H0,1(z)− 10H1,0(z)− 10H1,1(z)

+ iπ
(
2 ln(2) + 3H0(z) + 4H1(z)

))
. (3.8)

Consistently replacing each J (n)
2 using eq. (3.7), both in the system of differential equations

and in the matrix elements, we also remove the dependence of J (0)
1 . However, the contribution

from J
(−1)
1 , can not be eliminated, as expected. Hence, the issue of rationalisation remains

in the full non-homogeneous part of J (0)
0 . The non-homogeneous part of J (0)

0 can be split in
the sum of two terms, with or without a relation with the square root letter: we use the
change of variables to w to linearise only for the former, while we keep the variable z for the
latter. When we solve the non-homogeneous equation, we consider two separate integrals,
with the integrand functions depending only on w or only on z, with straightforward results
in terms of GPLs, in the following form

J
(0)
0 = z2(− 9ζ3 + · · · − 2H 1

2 ,
1
2 ,0

(z)− 2H 1
2 ,

1
2 ,1

(z)− 5H 1
2 ,0,0

(z)− 6H 1
2 ,0,1

(z)

+ 19H1,1,1(z) + · · ·
)

+ w2

(1− w2)2
(
− 3H−1(w)ζ2 + · · ·+H1,−1,0(w) + 3H1,0,i1(w)

− 3H1,0,−i2(w) + · · ·
)
. (3.9)

The absence of the square root in the letters allows a smooth numerical evaluation. In
the previous example, we find that a certain combination of MIs can be helpful to avoid
the appearance of “complicated” GPLs in the intermediate steps of the solution of the
system, under the assumption that they are not expected in the coefficients of the poles in
ε. This remark simplifies in turn the solution of the system for the finite part of the MIs.
For example, the contributions from J

(0)
1 and J (0)

2 do individually contain the problematic
GPLs, which however would eventually cancel in the final result. Our direct evaluation of
J

(0)
0 instead avoids these GPLs from the very beginning.
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I1 I2 I3

Figure 7. The three elliptic MIs, I1, I2 and I3, contributing to the real-virtual corrections. Thin
plain lines represent massless particles, while thick plain lines represent massive particles. A dot on
a line represents the squared propagator.

Apart from the square root letters, we also find three MIs in the double-real corrections
for which the coupled sub-system of differential equations can not be factorised to first
order, indicating that the MIs contain elliptic polylogarithms. In the next sub-section we
present the details of the computation of these MIs.

3.2.2 Solving the master integrals with elliptic kernels

The double real corrections receive contributions from scattering processes with quark and
anti-quark both in the initial and final state, whose matrix elements include contributions
with the exchange of either an EW boson or a gluon. The interference of these two terms is
of O(ααs) and is relevant to our calculation. In these interferences, a non-trivial topology
gives rise to three MIs {I1, I2, I3} (see figure 7) which are of elliptic kind. The 3× 3 system
of differential equations is not first-order factorizable. The homogeneous part of the system
is given in each order of ε as

dz


I

(n)
1
I

(n)
2
I

(n)
3

 =


4
3z − 2

3z
2
3

1
z2

4
3(1+8z)

−3−31z+16z2

3(−1+z)z(1+8z)
2(5+4z)

3(−1+z)z(1+8z)
− 2

3(1+8z)
5+4z

3(−1+z)(1+8z)
−11−46z+48z2

3(−1+z)z(1+8z)



I

(n)
1
I

(n)
2
I

(n)
3

+


R

(n)
1

R
(n)
2

R
(n)
3

 .

The homogeneous part of this system of equations is the same as the one studied for the
corresponding virtual diagrams in refs. [86, 91]. In those papers, the results are obtained in
terms of elliptic integrals of the first kind and eMPLs, respectively. The current system can
be solved order-by-order in ε, and we expect to find only standard HPLs in the poles, while
eMPLs will appear in the finite parts and higher orders in ε.

Formally, since the IBP reduction introduces a 1/ε factor in the coefficient of these
integrals in the matrix elements, then we would need to evaluate I1,2,3 up to O(ε), in order
to compute all the finite corrections. For the same argument, we expect that individual
contributions to the coefficient of the single pole of the matrix elements are expressed via
eMPL. We formulate a physical Ansatz as in the previous section, imposing the simpler
polylogarithmic structure of the single pole of the matrix element, i.e. the absence of eMPLs
in its final expression. We thus find the following combination of the elliptic MIs,

I
(n)
0 = z(1 + 2z)I(n)

1 + z(1− 4z)I(n)
2 − (1 + 5z)I(n)

3 . (3.10)
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The differential equation of I(−1)
0 and I(0)

0 turns out to be linear and independent of I(0)
1 , I

(0)
2

and I(0)
3 . We solve it to obtain the following solution:

I
(−1)
0 = 1

2z
2(−1 + 4z)H0(z) ,

I
(0)
0 =

(
−5z2

2 + 6z4

−1 + z

)
H0,0(z) + 2z2(−1 + 4z)H0,1(z) + 2(1− 4z)z2ζ2 . (3.11)

This new combination of MIs explicitly exhibits the absence of eMPL in their single pole
and allows in turn a straightforward check of the pole cancellations in the cross section.
Clearly, since the combination I(1)

0 does not remain independent of I(0)
2 , I

(0)
3 we find eMPLs

contributing to the finite part of the matrix elements. For the numerical evaluation, a series
representation of the integrals is equivalent to the formal solution via eMPLs. Hence, we solve
I

(0)
2 and I(0)

3 in Taylor series expansion around z = 0, 1/2, 1. (See for instance [86, 92–97]).
I

(0)
2 and I(0)

3 are regular in the whole range of z, while I(1)
0 instead contains logarithmically

enhanced terms. The latter yield a singular behaviour at a point which does not correspond
to any physical threshold. These logarithms are thus expected to cancel against analogous
terms stemming from other MIs. In order to achieve an exact analytical cancellation, we
further elaborate the solution of I(1)

0 ≡ I(0,1)
ell = I

(1.HPL)
0 + δ

(0,1)
ell , by splitting its expression

in two parts: one with the closed form of the logarithmic dependence and one regular
remainder given via a Taylor expansion. We obtain

I
(0,1)
ell = −35z3H− 1

2 ,0,0
(z)− 60z3H− 1

2 ,0,1
(z) + 1

2z
2(− 3 + 86z − 24z2z̄

)
H0,0,0(z)− 2z2(5

− 35z + 42z2)z̄H0,0,1(z)− 2z2(2− 12z + 7z2)z̄H0,1,0(z)− 8(1− 4z)z2H0,1,1(z)
− 4z2(1 + z)(2 + z)z̄H0,−1,0(z)− 2z2(1− 3z + 8z2)z̄H1,0,0(z) + 60z3H− 1

2
(z)ζ2

+ 6z2(1− 12z + 14z2)z̄H0(z)ζ2 + 2z3(−43 + 49z)z̄ζ3 + δ
(0,1)
ell . (3.12)

δ
(0,1)
ell has been obtained in Taylor series expansion. In the following, we present δ(0,1)

ell for
the expansion around y = 1− z = 0 and z = 0.

δ
(0,1)
ell = z3

(
35H− 1

2 ,0,0
(1) + 60H− 1

2 ,0,1
(1)− 60H− 1

2
(1)ζ2

− 20y2 − 1205y3

54 − 1535y4

72 +
(

10y2 + 130y3

9 + 295y4

18

)
H0(y) +O(y5)

)
,

= 90z4 − 360z5 + 21745z6

9 − 10z4(− 3− 6z + 29z2)H0(z)− 30z4(7− 29z

+ 198z2)H0,0(z)− 45z3(− 1− 12z2 + 72z3)H0,0,0(z) +
(
60z4 − 510z5 + 3860z6

+ 360z5(−1 + 6z)H0(z)
)
ζ2 + 20z3(− 1− 27z2 + 162z3)ζ3 +O(z7) . (3.13)
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-0.5

0.0

0.5

1.0

1.5

Figure 8. The ε0 coefficient of the elliptic MIs i.e. I(0)
1 , I(0)

2 and I(0)
3 are presented in blue, yellow

and green, respectively. The I(1)
0 10−1 is shown in red.

I
(0)
2 ≡ I(2,0)

ell and I(0)
3 ≡ I(3,0)

ell are obtained in the two series expansions as follows

I
(2,0)
ell = 3y − 9y2

4 −
13y3

36 −
7y4

72 +
(
− 2y + y2 + y3

3 + y4

6

)
H0(y) +O(y5) ,

= 3
4zH0(z)2 − 2z2(− 2 + 3H0(z)

)
+ z3

(
− 2

(
4 + 12ζ2 + 9ζ3

)
− 3

(
− 5 + 4ζ2

)
H0(z)

+ 18H0(z)2 + 3H0(z)3
)

+ z4
(8

9
(
122 + 243ζ2 + 162ζ3

)
+ 2

(
− 55 + 48ζ2

)
H0(z)

− 162H0(z)2 − 24H0(z)3
)

+ z5
(1

4
(
− 3671− 7416ζ2 − 5184ζ3

)
− 24

(
− 35 + 36ζ2

)
H0(z) + 2781

2 H0(z)2 + 216H0(z)3
)

+O(z6) . (3.14)

I
(3,0)
ell = y2

2 −
y3

4 −
5y4

48 +O(y5) ,

= z2(2H0(z)2 − 2ζ2
)

+ z3(6 + 18ζ2 + 18ζ3 +
(
− 6 + 12ζ2

)
H0(z)− 13H0(z)2

− 3H0(z)3)+ z4
(
− 3

2
(
53 + 100ζ2 + 72ζ3

)
− 3

(
− 17 + 24ζ2

)
H0(z) + 113H0(z)2

+ 18H0(z)3
)

+ z5
( 1

12
(
7379 + 14256ζ2 + 10368ζ3

)
+ 1

2
(
− 859 + 1152ζ2

)
H0(z)

− 1781
2 H0(z)2 − 144H0(z)3

)
+O(z6) . (3.15)

The series expanded δ(0,1)
ell , I(0)

2 and I(0)
3 , are all regular and admit a Taylor expansion with

fast convergence. This procedure provides a series representation of the elliptic functions
present in the calculation. In figure 8, we present the numerical evaluation of the elliptic
MIs for the whole range of z.

One of the important steps in solving the differential equations of the MIs, is to obtain
the BCs. In the case of the two-loop virtual integrals, we obtain the BCs in two ways: by
demanding regular behaviour in the limit z → −1 for the one-mass integrals or s→ 0 for
the two-mass integrals; alternatively, by an exact computation in one of these limits. In
the case of the phase-space integrals, we have performed the exact phase-space integration
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for the MIs which contain only massless internal lines4 in the soft limit (z → 1), and
found perfect agreement with the literature [55, 56]. For the double-real emissions, we
have followed the parameterisation presented in [56], which has also allowed us to drop the
contributions from the massive line/s in the soft limit; we have in turn obtained the BCs
of the MIs involving a massive line in terms of the BCs of [55, 56]. For the real-virtual
integrals, we have anticipated a few approaches to obtain the BCs. For the simpler MIs, we
have computed the one-loop integrals in exact form in z and d, have taken the soft limit
(z → 1), and performed the phase-space integration. For some MIs, we have studied the
IBP reduction rules for a “harder” integral, which has provided us the BCs for the MIs
under consideration in terms of other, already known, MIs.

4 Analytical results

In this section we present our results. First, we introduce all the variables which appear in
our calculation and several other necessary definitions. We then present the analytic finite
partonic coefficients ∆(1,1)

γ , ∆(1,1)
Z and ∆(1,1)

W .

4.1 Preliminaries: variables, functions and abbreviations

The partonic cross-section for the production of a Z boson, integrated over the phase-space
of the additional emitted partons, depends on the variables s, mZ and mW and on the top
quark and Higgs boson masses mt and mH respectively only through UV renormalisation.
As described in section 3.1, we expand the virtual EW amplitudes containing W bosons
according to eq. (3.2). For the purpose of clarity and compactness, we present here only
results for the n = 0 term in the ξ expansion, i.e. m2

W = m2
Z .

The Feynman integrals have a rich structure due to the presence of different internal
thresholds. When the solution is given in terms of polylogarithmic functions, the internal
structure of the integrals is displayed by the values of the weights and of the independent
variable of the polylogarithms. The singular or branching points of the solutions are expressed
in terms of a set of monomials, the letters, forming an alphabet. The presence in the letters
of square-roots, also at multiple levels, can be avoided by appropriate transformations which
rationalise the initial expressions. In the current calculation we adopt the following changes
of variables:

z = t

(1 + t)2 = ρ

(1− ρ+ ρ2) = w

1− w2 . (4.1)

After these manipulations, the resulting alphabet of the problem is given by:{
− 1,−1

2 , 0,
1
2 , 1, {3, 0}, {3, 1}, {4, 1}, {6, 0}, {6, 1}, i1,−i2

}
. (4.2)

The set {−1, 0, 1} is the well-known alphabet for HPLs. {{3, 0}, {3, 1}, {4, 1}, {6, 0}, {6, 1}}
denotes the third-, fourth- and sixth-root of unity, which defines the cyclotomic HPLs. The

4Apart from the produced Z boson.
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set {{4, 1}, i1, i2} appears in a group of diagrams expressed in terms of GPLs, where i1 and
i2 are given by

i1 =
√

5− 1
2 ≡ 0.618034 . . . , i2 =

√
5 + 1
2 ≡ 1.618034 . . . (4.3)

We enlist all our definitions below

H−1(z) =
∫ z

0

dx

1 + x
, H0(z) =

∫ z

0

dx

x
, H1(z) =

∫ z

0

dx

1− x ,

H− 1
2
(z) =

∫ z

0

dx
1
2 + x

, H 1
2
(z) =

∫ z

0

dx
1
2 − x

,

H{3,0}(z) =
∫ z

0

dx

1 + x+ x2 , H{3,1}(z) =
∫ z

0

x dx

1 + x+ x2 ,

H{6,0}(z) =
∫ z

0

dx

1− x+ x2 , H{6,1}(z) =
∫ z

0

x dx

1− x+ x2 ,

H{4,1}(z) =
∫ z

0

x dx

1 + x2 , Hi1(z) =
∫ z

0

dx

i1 − x
, H−i2(z) =

∫ z

0

dx

i2 + x
. (4.4)

In order to present the results in compact form, we introduce the following abbreviations
for all the polynomials which appear in the denominator of the expressions:

z̄≡ 1
1−z ,

¯̄z≡ 1
1−2z ,

ˆ̄z≡ 1
1−4z , z̃≡ 1

1+z ,
˜̃z≡ 1

1+2z ,
ˆ̃z≡ 1

1+4z , (4.5)

t̄≡ 1
1−t , t̃≡ 1

1+t ,
ˆ̃t≡ 1

1+t2 , ť≡ 1
1+t+t2 , (4.6)

w̄≡ 1
(1−w2)2 , w̃≡ 1

(1−w4) , (4.7)

ρ̄≡ 1
(1−ρ) , ρ̂≡ 1

(1−ρ+ρ2) . (4.8)

The soft-collinear (plus) distributions are defined as

Dn =
[ logn(1− z)

(1− z)

]
+
. (4.9)

4.2 The virtual corrections

In this section we present the results for the sole virtual corrections. The two-loop Feynman
diagrams contributing to the renormalised qq̄Z vertex are shown in figure 3. We consider
the interference with the tree-level and we express it in perturbative expansion of α and αs
as follows

F = 1 + αs
4πF

(1,0) + α

4π

(
F (0,1)
γ + 1

s2
W c

2
W

F
(0,1)
Z + 1

s2
W

F
(0,1)
W

)
+ α

4π
αs
4π
(
F (1,1)
γ + 1

s2
W c

2
W

F
(1,1)
Z + 1

s2
W

F
(1,1)
W

)
+ . . . . (4.10)

The photonic contributions are denoted by F (m,n)
γ and they have been presented in [31, 98].

Below, we present the renormalised contributions with one Z boson or one/two W boson/s
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in the loop, denoted by F (m,n)
Z and F (m,n)

W , respectively. We present here the results for the
zeroth order in ξ. We have also computed the completely general case with different masses
and compared it against the results available in the literature in [88], finding agreement. We
have performed the calculation in the background field gauge. Therefore, we have included
the sole wave function renormalisation, which is sufficient to obtain UV finiteness. In our
expressions, the following constant c1 [99] appears

c1 = 12ζ2 ln2(2) + ln4(2) + 24Li4
(1

2

)
. (4.11)

We express the on-shell two-loop virtual integrals through the constants as presented in [89],
where GR and GI are introduced as

G(a1, . . . , aw, 1) = GR(a1, . . . , aw) + iGI(a1, . . . , aw) . (4.12)

G denotes GPLs. r2 and r4 are given by

r2 = 1
2 − i

√
3

2 , r4 = −1
2 − i

√
3

2 . (4.13)

The one- and two-loop results for F (m,n)
Z and F (m,n)

W , in the case of u-quark initial state,
are in order:

F
(0,1)
Z = c(4)

u

[
− 11

2 +4ζ2−iπ
(
5−8ln(2)

)]
, (4.14)

F
(1,1)
Z =CF c

(4)
u

[ 1
ε2

{
11−8ζ2+iπ(10−16ln(2))

}
+ 1
ε

{
52−114ζ2−38ζ3+168ζ2 ln(2)

+iπ
(
50−24ζ2−28ln(2)+8ln2(2)

)}
+195− 26c1

3 −436ζ2+ 904
5 ζ2

2−
229
2 ζ3

+366ζ2 ln(2)−24ζ2 ln2(2)+iπ
(

261−118ζ2−210ζ3−38ln(2)+168ζ2 ln(2)

+38ln2(2)− 40
3 ln3(2)

)]
, (4.15)

F
(0,1)
W = c2

u

(
− 7

8 + 5
4
π√
3
−ζ2

)
+cucd

(
− 1

2−
5
4
π√
3

+2ζ2−iπ
(5

4−2ln(2)
))

, (4.16)

F
(1,1)
W =CF c

2
u

[ 1
ε2

{7
4−

5
2
π√
3

+2ζ2

}
+ 1
ε

{19
2 −

35
4

π√
3

+ 5
2 ln(3) π√

3
+3ζ2−

2
3ζ3

− 4
3πGI(0, r2)+10 1√

3
GI(0, r2)+iπ

(7
4−

5
2
π√
3

+2ζ2

)}
+
{143

4 −
97
4

π√
3

+67
6 ζ2

+ 55
9

π√
3
ζ2−

145
9 ζ2

2−
1
3ζ3−

4
3πGI(0, r2)+ 91

2
1√
3
GI(0, r2)+ 44

3 GI(0, r2)2

+2π GI(0,1, r4)+5
√

3 GI(0,1, r4)+ 35
4

π√
3

ln(3)+ 2
3π GI(0, r2) ln(3)

−5 1√
3
GI(0, r2) ln(3)− 5

4
π√
3

ln2(3)+iπ
(75

2 −
35
4

π√
3

+3ζ2−
74
3 ζ3

− 4
3πGI(0, r2)+10 1√

3
GI(0, r2)+ 5

2
π√
3

ln(3)
)}]

+CF cucd
[ 1
ε2

{
1+ 5

2
π√
3
−4ζ2
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+iπ
(5

2−4log(2)
)}

+ 1
ε

{7
2 + 35

4
π√
3
− 63

2 ζ2−
53
6 ζ3+ 4

3πGI(0, r2)

−10 1√
3
GI(0, r2)+42ζ2 log(2)− 5

2
π√
3

log(3)+iπ
(43

4 + 5
2
π√
3
−8ζ2−7log(2)

+2log2(2)
)}

+
{

13− 13
6 c1+ 97

4
π√
3
− 721

6 ζ2−
55
9 π

ζ2√
3

+ 2759
45 ζ2

2−
679
24 ζ3

+ 4
3πGI(0, r2)− 91

2
1√
3
GI(0, r2)− 44

3 GI(0, r2)2−2πGI(0,1, r4)−5
√

3GI(0,1, r4)

+ 183
2 ζ2 ln(2)−6ζ2 ln2(2)− 35

4 π
1√
3

ln(3)− 2
3πGI(0, r2) ln(3)

+5 1√
3
GI(0, r2) ln(3)+ 5

4
π√
3

ln2(3)+iπ
(111

4 + 35
4

π√
3
− 65

2 ζ2−
167
6 ζ3

+ 4
3πGI(0, r2)−10 1√

3
GI(0, r2)− 19ln(2)

2 +42ζ2 ln(2)+ 19
2 ln2(2)− 10

3 ln3(2)

− 5
2
π√
3

log(3)
)}]

, (4.17)

where we defined the following combinations of vector and axial-vector couplings:

c(4)
q = C4

v,q + 6C2
v,qC

2
a,q + C4

a,q , (4.18)
cq = Cv,q + Ca,q , (4.19)

with Cv,q and Ca,q defined in eq. (2.5) and q ∈ (u, d).

4.3 The partonic coefficients for QED

The photonic part (∆(1,1)
γ ) of the total hadronic cross-section has been defined in eq. (2.7)

and receives contributions from several partonic channels which are convoluted with the
physical proton PDFs as follows

∆(1,1)
γ =

∑
q∈Q,Q̄

fq ⊗ fq̄ ⊗∆(1,1)
qq̄ +

∑
q∈Q,Q̄

fq ⊗ fq ⊗∆(1,1)
qq

+
∑
q∈Q,Q̄

(fq ⊗ fg + fg ⊗ fq)⊗∆(1,1)
qg +

∑
q∈Q,Q̄

(fq ⊗ fγ + fγ ⊗ fq)⊗∆(1,1)
qγ

+ (fg ⊗ fγ + fγ ⊗ fg)⊗∆(1,1)
gγ . (4.20)

The sums run over all flavours of quarks (q) and antiquarks (q̄). The following combination
of vector and axial-vector couplings, along with electric charge, appear in all these partonic
channels with a photonic correction:

c(2)
q = Q2

q (C2
v,q + C2

a,q) . (4.21)
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In eq. (4.21) q can be an up- or a down-type quark. The partonic cross-section for all the chan-
nels are given below. We have set the factorisation scale µF = mZ in presenting these results.

∆
(1,1)
qq̄ = c(2)

q CF

{
δ(1−z)

(511
2 −140ζ2+ 16

5 ζ
2
2−120ζ3

)
+512ζ3D0−D1

(
512+256ζ2

)
+256D3+ζ2

(
192− 48

1−z−176z−96z2+
(

16+ 64
1−z+176z+96z2

)
H0(z)

+
(
−80− 64

1−z−80z
)
H1(z)−96(1+z)2H−1(z)

)
+16ζ3

(
−3− 20

1−z

+13z+8z2
)

+448−328z−104z2+
(

64+ 320
1−z+152z

)
H0(z)−8(32

+31z)H1(z)+
(

96+ 120
1−z−240z2

)
H0,0(z)−

(
64− 96

1−z−288z
)
H0,1(z)

+
(
−48+ 48

1−z+144z−144z2
)
H1,0(z)+256(−1+z)H1,1(z)

+96(1+z)2H−1,0(z)+
(

184− 160
1−z+280z+32z2

)
H0,0,0(z)+

(
320− 448

1−z

+320z
)
H0,0,1(z)+

(
496− 640

1−z+624z+64z2
)
H0,1,0(z)+

(
624− 992

1−z

+624z
)
H0,1,1(z)+64(1+z)2H0,−1,0(z)+

(
304− 416

1−z+304z
)
H1,0,0(z)

+
(

512− 960
1−z+512z

)
H1,0,1(z)+

(
560− 1024

1−z +560z
)
H1,1,0(z)

+768(1+z)H1,1,1(z)+160(1+z)2H−1,0,0(z)−192(1+z)2H−1,−1,0(z)
}
. (4.22)

∆(1,1)
qg = c(2)

q

{
ζ2
(
1−20z+16z2+2

(
7−14z+24z2)H0(z)+16

(
1−2z+2z2)H1(z)

)
+ζ3

(
26−52z+68z2

)
− 1

4
(
157−442z+305z2

)
− 1

2
(
31−201z+174z2)H0(z)

+
(
−26+135z−88z2)H1(z)+ 1

2
(
−11+60z−4z2)H0,0(z)−2

(
7−48z

+48z2)H0,1(z)+
(
−23+72z−56z2)H1,0(z)−2

(
23−80z+63z2)H1,1(z)

−8(1+z)(−1+3z)H−1,0(z)+
(
−17+34z−52z2)H0,0,0(z)−8

(
3−6z

+10z2)H0,0,1(z)−2
(
11−22z+40z2)H0,1,0(z)−6

(
7−14z+22z2)H0,1,1(z)

+8
(
1−2z+2z2)H0,−1,0(z)−2

(
−1+2z+6z2)H1,0,0(z)−4

(
9−18z

+20z2)H1,0,1(z)−4
(
7−14z+16z2)H1,1,0(z)−70

(
1−2z+2z2)H1,1,1(z)

}
(4.23)

∆(1,1)
qγ = 2CACF∆(1,1)

qg (4.24)

∆(1,1)
qq = c(2)

q CF

{
ζ2

(
64+144z−48z2+

(
−160+192z−32z2+ 288

1+z

)
H0(z)

−32(1−z)2H1(z)+
(

192−192z− 448
1+z

)
H−1(z)

)
−16ζ3

(
11−11z− 26

1+z

)
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−196+248z−52z2+8(−16+13z)H0(z)+128(−1+z)H1(z)
−16

(
5+3z2)H0,0(z)−64(1+z)H0,1(z)+16(1−z)(−1+3z)H1,0(z)

+32(1+z)H−1,0(z)+
(

16+16z−32z2− 128
1+z

)
H0,0,0(z)

+
(

64−64z− 128
1+z

)
H0,0,1(z)−

(
64−96z+32z2− 64

1+z

)
H0,1,0(z)

−
(

+64−64z− 192
1+z

)
H0,−1,0(z)−32(1−z)2H1,0,0(z)−32(1−z)2H1,1,0(z)

−
(

192−192z− 448
1+z

)
H−1,0,0(z)−

(
128−128z− 256

1+z

)
H−1,0,1(z)

+
(

128−128z− 384
1+z

)
H−1,−1,0(z)

}
. (4.25)

∆(1,1)
gγ =CA

(∑
q

c(2)
q

){
ζ2
(
40z+16z2+16

(
1+3z+3z2)H0(z)−16(1+z)2H−1(z)

)
+ζ3

(
8−48z+32z2

)
−64−132z+196z2+2

(
−23−64z+105z2)H0(z)

+4(−1+z)(7+67z)H1(z)−8(1+z)(3+4z)H0,0(z)−8
(
1+8z−4z2)H0,1(z)

+48(−1+z)(1+3z)H1,0(z)+64(−1+z)(1+3z)H1,1(z)+16(1+z)H−1,0(z)
−8
(
3+8z+8z2)H0,0,0(z)−16(1+2z)2H0,0,1(z)−24(1+2z)2H0,1,0(z)

−32(1+2z)2H0,1,1(z)+16
(
1+2z+2z2)H0,−1,0(z)−16(−1+z)2H1,0,0(z)

+48(1+z)2H−1,0,0(z)−32(1+z)2H−1,−1,0(z)
}
. (4.26)

For completeness, we report the one-loop results.

∆
(0,1)
qq̄ = c(2)

q

{
δ(1− z)

(
− 16 + 8ζ2

)
+ 16D1 −

4(1 + z2)
(1− z) H0(z) + 8(1 + z)H0(z)

}
. (4.27)

∆(0,1)
qγ = c(2)

q CA
{

(1− z)(1 + 7z)− 2
(
1− 2z + 2z2)(H0(z) + 2H1(z)

)}
. (4.28)

4.4 The partonic coefficients for Z

∆
(1,1)
Z represents the contribution to the total hadronic cross-section with a single internal

Z boson. ∆(1,1)
Z has the following dependency on the partonic cross-sections convoluted

with PDFs

∆
(1,1)
Z =

∑
q∈Q,Q̄

fq ⊗ fq̄ ⊗∆(1,1)
qq̄,Z +

∑
q∈Q,Q̄

(fq ⊗ fg + fg ⊗ fq)⊗∆(1,1)
qg,Z

+
∑
q∈Q,Q̄

fq ⊗ fq ⊗∆(1,1)
qq,Z . (4.29)

Below we present the partonic cross-sections. To renormalize UV divergences, only the
quark wave function renormalisation has been performed in these results. The qq̄ initiated
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partonic cross-section is given by

∆
(1,1)
qq̄,Z = c(4)

q CF

{
δ(1− z)

(
204− 256Li4

(1
2

)
− 32 ln4(2)

3 − 172ζ2 + 144 ln(2)ζ2

− 128 ln2(2)ζ2 + 384
5 ζ2

2 − 56ζ3

)
+D1

(
− 176 + 128ζ2

)
− 16 + 4z − 8z̄ +

(
− 28

− 68z + 80z̄ − 8z̄2)H0(z)−
(
88 + 88z − (32 + 32z)ζ2

)
H1(z) + 8

(
5 + 15z + 4z2

+ 2z3)H0,0(z) + 8
(
− 2 + 8z + 3z2 + z3)H1,0(z)− 8(1 + z)

(
7 + z2)H−1,0(z)

− (224 + 160z − 256z̄)H0,0,0(z)− (112 + 80z − 128z̄)H0,1,0(z) + (112 + 80z

− 128z̄)H0,−1,0(z)− 16(5− z)H1,0,0(z)− 16(3 + z)H1,1,0(z) + 32(1− z)H1,−1,0(z)

+ (192 + 64z − 256z̄)H−1,0,0(z) + (96 + 32z − 128z̄)H−1,1,0(z) + (−96− 32z

+ 128z̄)H−1,−1,0(z)−
(
64− 32z − 40z2 − 8z3 + ln(2)(96 + 96z − 192z̄)

)
ζ2

+ (48 + 16z − 64z̄)H−1(z)ζ2 + 16(−1 + 7z̄)ζ3 + δqq̄,Z
z

}
, (4.30)

where we used the combination of vector and axial-vector couplings c(4)
q defined in eq. (4.18),

and where δqq̄,Z stems from the double-real channel qq̄ → qq̄Z, which does not produce any
singularities. It is given as

δqq̄,Z = 8(1 + 2z)2

3z2 I
(0,1)
ell + 8˜̃z

3z2
(
7 + 77z + 264z2 + 362z3 + 136z4)I(3,0)

ell + 8˜̃z
3z
(
− 7− 32z

+ 6z2 + 232z3 + 224z4)I(2,0)
ell + 2zz̄ ˆ̄z

(
281− 1537z + 1829z2 − 553z3 − 36z4 − 32z5)

− 4zz̄2 ˆ̄z2(− 91 + 803z − 2037z2 + 890z3 + 987z4 − 612z5 − 112z6 + 64z7)H0(z)

− 4
3 z̄

2 ¯̄z ˆ̄z2 ˜̃z
(
35− 459z + 1687z2 + 434z3 − 10524z4 − 248z5 + 41084z6 − 14160z7

− 59984z8 + 40320z9 + 3840z10)H0,0(z) + 16˜̃z
3
(
− 7− 32z + 6z2 + 232z3

+ 224z4)H0,1(z) + 8zz̄2 ¯̄z ˆ̄z2(16− 174z + 661z2 − 988z3 + 395z4 + 334z5 − 376z6

+ 96z7) H1,0(z)− 32zz̄2(8 + 9z − 20z2 − 13z3 + 15z4 + 3z5)H−1,0(z)

− 32z ¯̄zH 1
2 ,0,0

(z)− 32z ¯̄zH 1
2 ,1,0

(z) + 4z̄3 ¯̄z
3
(
3 + 91z − 7z2 − 691z3 + 264z4 + 976z5

− 500z6 − 388z7 + 60z8 + 120z9)H0,0,0(z) + 16
3 (1 + 2z)2(5− 5z + 12z2)z̄H0,0,1(z)

− 8z̄3 ¯̄z
3
(
− 4 + 9z − 7z2 + 85z3 − 253z4 + 310z5 − 144z6 + 16z7)H0,1,0(z)

+ 64
3 (1− 4z)(1 + 2z)2H0,1,1(z) + 32z̄3

3
(
2− 2z − 8z2 − 12z3 + 44z4 − 25z5 − 23z6

+ 9z7 + 9z8)H0,−1,0(z)− 16z̄ ¯̄z
3
(
− 1 + 5z − 6z2 − 32z3 + 64z4 + 24z5)H1,0,0(z)

+ 32z(1 + 3z)H1,−1,0(z) + 16z(1 + z)2(− 12 + 11z + 5z2 + 5z3)z̄H−1,0,0(z)
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− 32z(1 + z)2(3− 4z)z̄H−1,1,0(z) + 32z(1 + z)2(3− z − 3z2 − 3z3)z̄H−1,−1,0(z)

− 192ln2z
(
− 1− z + 2z2 + z3)z̄ζ2 +

(
− 8

3 z̄
¯̄z ˆ̄z2 ˜̃z

(
− 14 + 96z + 170z2 − 2141z3

+ 735z4 + 15194z5 − 17924 z6 − 17544z7 + 21248z8 + 1152z9)+ 224z ¯̄zH 1
2
(z)

− 8z̄ ¯̄z
(
2 + z − 19z2 + 66z3 − 36z4 − 90z5 + 30z6 + 12z7)H0(z)

− 16z
(
11− z + 6z2)¯̄zH1(z)− 16z(1 + z)2(3− 7z + 3z2 + 3z3)z̄H−1(z)

)
ζ2

+ 16
3 zz̄

3 ¯̄z
(
14− 17z − 209z2 + 546z3 − 241z4 − 385z5 + 352z6 − 18z7 − 36z8)ζ3

+ 48tˆ̃tt̃4H−1,0,0(t)P2 − 8t(−1 + 2t)t̄4t̃3ťH0(t)P4 + 8tt̄4t̃2ťH−1(t)P4

− 64tt̄5t̃5H0,0,−1(t)P5 − 24tt̄5t̃5H0,{3,0},0(t)P5 + 48tt̄5t̃5H0,{3,0},−1(t)P5

− 48tt̄5t̃5H0,{3,1},0(t)P5 + 96tt̄5t̃5H0,{3,1},−1(t)P5 − 16tt̄5t̃5H0,−1,0(t)P5

+ 32tt̄5t̃5H0,−1,−1(t)P5 − 64tˆ̃tt̄5t̃5ζ3P6 + 8tˆ̃tt̄5t̃5H0,0,0(t)P9 + 12tˆ̃tt̄4t̃4ť2H0,0(t)P11

+ iπ
(
16tˆ̃tt̃4ζ2P1 + 32tˆ̃tt̃4H−1,0(t)P2 + 8tt̄3t̃3ťP4 + 16tˆ̃tt̄5t̃5H0,0(t)P7

+ 8tˆ̃tt̄4t̃4ť2H0(t)P11 − 96tˆ̃tH{3,0},0(t)− 192tˆ̃tH{3,1},0(t) + 256tˆ̃tH{4,1},0(t)
)

− 144tˆ̃tH{3,0},0,0(t)− 288tˆ̃tH{3,1},0,0(t) + 384tˆ̃tH{4,1},0,0(t)−
(
64tˆ̃tt̃4H−1(t)P3

+ 8tˆ̃tt̄5t̃5H0(t)P8 + 16tˆ̃tt̄4t̃4ť2P10
)
ζ2 . (4.31)

The above polynomials Pi are defined as follows:

P1 = t4 + 4t3 + 10t2 + 4t+ 1.

P2 = 3t4 + 12t3 + 22t2 + 12t+ 3.

P3 = 5t4 + 20t3 + 34t2 + 20t+ 5.

P4 = 8t6 − 23t5 + 32t4 + 2t3 + 32t2 − 23t+ 8.

P5 = 3t8 − 10t6 + 38t4 − 10t2 + 3.

P6 = 2t10 − 5t8 − 4t7 + 24t6 + 4t4 + 4t3 − 2t2 + 1.

P7 = 11t10 − 35t8 − 16t7 + 126t6 − 14t4 + 16t3 + 7t2 + 1.

P8 = 35t10 − 119t8 − 64t7 + 420t6 − 140t4 + 64t3 + 49t2 − 5.

P9 = 45t10 − 133t8 − 48t7 + 490t6 + 70t4 + 48t3 − 7t2 + 15.

P10 = 4t12 + 10t11 + 14t10 + 12t9 + 57t8 + 198t7 + 274t6 + 198t5 + 57t4 + 12t3

+ 14t2 + 10t+ 4.

P11 = 5t12 + 10t11 + 16t10 + 4t9 + 59t8 + 194t7 + 288t6 + 194t5 + 59t4 + 4t3

+ 16t2 + 10t+ 5.

– 25 –



J
H
E
P
0
2
(
2
0
2
2
)
0
9
5

The partonic cross-section from qg initiated channels is given by

∆
(1,1)
qg,Z = c(4)

q

{
− z̄

2
(
25 + 11z − 105z2+ 57z3+ 8z4)− (1 + 24z − 91z2+ 92z3− 16z4− 16z5

+ 4z6)z̄2H0(z) +
(
16− 50z + 58z2 + 8z3 − 4z4)H1(z)− 2z̄2(3− 20z + 52z2

− 68z3+ 36z4)H 1
2 ,0

(z)− 2z̄2(3− 20z + 52z2− 68z3+ 36z4)H 1
2 ,1

(z)− 2z̄2(5− 58z

+ 121z2 − 112z3 + 50z4)H0,0(z)− 4z̄2(2− 13z + 23z2 − 27z3 + 18z4)H0,1(z)

− 2
(
4− 22z + 19z2)H1,0(z)− 2(1 + z)(3 + 5z)H−1,0(z) + 8(1− 2z)2H 1

2 ,
1
2 ,0

(z)

+ 8(1− 2z)2H 1
2 ,

1
2 ,1

(z) + 24(1− 2z)2H 1
2 ,0,0

(z) + 24(1− 2z)2H 1
2 ,0,1

(z)

− 6
(
1−4z+ 8z2)H0,0,0(z)− 2

(
1−4z+ 8z2)H0,0,1(z) + 4

(
1− 4z + 8z2)H0,−1,0(z)

− 24(1− 2z)2H1, 1
2 ,0

(z)− 24(1− 2z)2H1, 1
2 ,1

(z)− 16
(
5− 16z + 16z2)H1,0,0(z)

− 48(1− 2z)2H1,0,1(z)− 16
(
1− 2z + 2z2)H1,1,0(z) + 16

(
1− 2z + 2z2)H1,−1,0(z)

+
(
24 ln(2)

(
1− 2z + 2z2)+

(
− 34 + 200z − 490z2 + 540z3 − 222z4)z̄2

+ 2
(
1− 4z + 8z2)H0(z)− 48

(
1− 3z + 3z2)H1(z)

)
ζ2 + 2

(
19− 54z + 70z2

− 9
(
1− 4z + 8z2))ζ3 + P12

(
− 2w2w̃

(
7H0,0(w) + 4H0,1(w)− 3H0,−i2(w)

+ 3H0,i1(w)− 4H0,−1(w)−H1,−i2(w)−H−1,−i2(w) +H1,0(w) +H1,i1(w)

+H−1,0(w) +H−1,i1(w)
)

+ 6w2w̃ζ2
)

+ P13
(
2w2w̄

(
7H0,0,0(w) + 4H0,0,1(w)

− 3H0,0,−i2(w) + 3H0,0,i1(w)− 4H0,0,−1(w)−H0,1,−i2(w)−H0,−1,−i2(w)

+ 7H1,0,0(w)+4H1,0,1(w)−3H1,0,−i2(w)+3H1,0,i1(w)−4H1,0,−1(w)−H1,1,−i2(w)

−H1,−1,−i2(w) + 7H−1,0,0(w) + 4H−1,0,1(w)− 3H−1,0,−i2(w) + 3H−1,0,i1(w)

− 4H−1,0,−1(w)−H−1,1,−i2(w)−H−1,−1,−i2(w) +H0,1,0(w) +H0,1,i1(w)

+H0,−1,0(w) +H0,−1,i1(w) +H1,1,0(w) +H1,1,i1(w) +H1,−1,0(w) +H1,−1,i1(w)

+H−1,1,0(w) +H−1,1,i1(w) +H−1,−1,0(w) +H−1,−1,i1(w)
)

− 6w2w̄
(
H0(w) +H1(w) +H−1(w)

)
ζ2
)}

(4.32)

where the polynomials P12 and P13 are defined as

P12 = (−1 + 6z − 4z2 + 24z3)/z2 and P13 = (1− 4z + 8z2)/z2 . (4.33)

The partonic cross-section from qq initiated channel, only with double real emission, is also
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free of any divergences and is given by

∆
(1,1)
qq,Z = c(4)

q CF

{
− 4

3z3 (−1 + 2z)I(0,1)
ell + 2(1− z)

(
− 103− 172z − 83z2 + 4z3)z̃2

− 4
3z2

(
13− 28z + 44z2 + 16z3)˜̃zI(2,0)

ell − 4
3z3

(
− 13− 65z + 52z2 + 116z3)˜̃zI(3,0)

ell

− 8z̃3(23 + 56z + 64z2 + 27z3 + 6z4 + z5)H0(z) + 2z̄z̃2 ˜̃z
3z

(
− 65− 185z − 455z2

− 551z3 + 376z4 + 1444z5 + 336z6 − 252z7 + 72z8)H0,0(z)− 8
3z
(
13− 28z + 44z2

+ 16z3)˜̃zH0,1(z) + 8(1− z)z̃2(8 + 18z + 5z2 − 2z3 + z4)H1,0(z) + 16z̃2(7 + 17z

+ 17z2 + z3 − 3z4 + z5)H−1,0(z)− 96(1− 2z)H− 1
2 ,0,0

(z) + 96(1− 2z)H− 1
2 ,−1,0(z)

− 2
3z z̄z̃

3 ˜̃z
(
− 3− 82z − 212z2 − 122z3 + 211z4 + 124z5 + 388z6 + 272z7)H0,0,0(z)

− 8
3z (−1 + 2z)

(
5− 5z + 12z2)z̄H0,0,1(z)− 8

3z z̄z̃
3 ˜̃z
(
− 2 + 6z + 19z2 − 83z3

− 173z4 − 47z5 + 132z6 + 76z7)H0,1,0(z) + 32
3z (−1 + 2z)(−1 + 4z)H0,1,1(z)

+ 16
3z z̄z̃

3(2− z − 2z2 + 18z3 − 22z4 − 35z5 − 8z6)H0,−1,0(z) + 8
3z z̄z̃

(
1 + 25z

− 73z2 + 65z3 − 30z4)H1,0,0(z)− 64(1− z)2z̃H1,−1,0(z) + 16
(
21 + 45z − 4z2

− 44z3)z̃ ˜̃zH−1,0,0(z) + 64
(
1 + 4z + z2 − 4z3)z̃ ˜̃zH−1,1,0(z)− 32

(
9 + 15z − 2z2

− 12z3)z̃ ˜̃zH−1,−1,0(z) + 192 ln(2)
(
− 1− 2z + z2 + z3)z̃ ˜̃zζ2

+
( 8

3z z̃
2 ˜̃z
(
13 + 43z + 172z2 + 250z3 + 82z4 − 20z5)+ 48(1− 2z)H− 1

2
(z)

− 8
z
z̄z̃3 ˜̃z

(
1 + 3z − 3z2 − 33z3 − 42z4 − 12z5 + 10z6 + 4z7)H0(z)

− 32(1− z)2z̃H1(z)− 16
(
5− z − 6z2 + 4z3)z̃ ˜̃zH−1(z)

)
ζ2

− 16
3 z̄z̃

3 ˜̃z
(
5 + 22z + 7z2 − 50z3 − 62z4 − 5z5 + 11z6)ζ3

}
. (4.34)

4.5 The partonic coefficients for W

In this section, we provide the total partonic cross-sections stemming from all the channels
with Feynman diagrams where one or two internal W bosons are exchanged. Like before, the
hadronic cross-section receives contributions from several partonic cross-sections convoluted
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with the PDFs as:

∆
(1,1)
W =

∑
q∈Q,Q̄

fq ⊗ fq̄ ⊗∆(1,1)
qq̄,W +

∑
q∈Q,Q̄

fq ⊗ fg ⊗∆(1,1)
qg,W +

∑
q∈Q,Q̄

fg ⊗ fq ⊗∆(1,1)
qg,W

+
∑
q∈Q,Q̄

fq ⊗ fq ⊗∆(1,1)
qq,W

+
∑
q∈Q,Q̄

fq ⊗ fq̄ ⊗
((
−δs∆r(1,1) + δg

(1,1)
Z

)
∆

(0,0)
qq̄ + 2δs2

W
(1,1)

∆̄
(0,0)
qq̄

)

+
∑
q∈Q,Q̄

fq ⊗ fq̄ ⊗
((
−δs∆r(0,1) + δg

(0,1)
Z

)
∆

(1,0)
qq̄ + 2δs2

W
(0,1)

∆̄
(1,0)
qq̄

)

+
∑
q∈Q,Q̄

fq ⊗ fg ⊗
((
−δs∆r(0,1) + δg

(0,1)
Z

)
∆(1,0)
qg + 2δs2

W
(0,1)

∆̄(1,0)
qg

)
, (4.35)

where ∆r(1,1), δg(1,1)
Z and δs2

W
(1,1) (∆r(0,1), δg(0,1)

Z and δs2
W

(0,1)) are finite renormalisation
constants introduced in section 2.2.2 and evaluated at O(ααs) (at O(α) ). The flag δs is
introduced to shorten the notation: its value is 1 in the Gµ input scheme and 0 in the α(0)
scheme. ∆̄(m,n)

ij are the finite partonic cross sections, defined as:

∆̄
(m,n)
ij = −QqCv,q

C2
v,q + C2

a,q

∆
(m,n)
ij , (for (0, 0) and (1, 1)) . (4.36)

We present here the results for u-type quark only. One can easily obtain the results for
d-type quarks through appropriate transformations. For example, ∆(1,1)

dd̄,W
can be obtained

from ∆
(1,1)
uū,W through {u ↔ d}. Below we present the NNLO partonic contributions. In

these results, as earlier, only the quark wave function renormalisation has been performed.
The uū initiated partonic cross-section is given by

∆
(1,1)
uū,W = c2

uCF

{
δ(1− z)

(
51− 64Li4

(
1/2

)
− 8 ln4(2)

3 − 43ζ2 + 36 ln(2)ζ2 − 32 ln2(2)ζ2

+ 96
5 ζ

2
2 − 14ζ3

)
+D1

(
− 44 + 32ζ2

)
− (−3 + z)(−2 + z)z̄ +

(
11− 23z + 27z2

− 17z3)z̄2H0(z)− 22(1 + z)H1(z) + 2
(
5 + 15z + 4z2 + 2z3)H0,0(z)− 2

(
2− 8z

− 3z2 − z3)H1,0(z)− 2(1 + z)
(
7 + z2)H−1,0(z) + 8

(
1 + 2z + 5z2)z̄H0,0,0(z)

+ 4
(
1 + 2z + 5z2)z̄H0,1,0(z)− 4

(
1 + 2z + 5z2)z̄H0,−1,0(z)− 4(5− z)H1,0,0(z)

− 4(3 + z)H1,1,0(z) + 8(1− z)H1,−1,0(z)− 16(1 + z)2z̄H−1,0,0(z)

− 8(1 + z)2z̄H−1,1,0(z) + 8(1 + z)2z̄H−1,−1,0(z) +
(
2
(
− 8 + 4z + 5z2 + z3)

+ 24 ln(2)
(
1 + z2)z̄ + 8(1 + z)H1(z)− 4(1 + z)2z̄H−1(z)

)
ζ2 + 4(6 + z)z̄ζ3

}

+ cu(cu − cd)CF

{
δ(1− z)

(
− 20 + 64Li4

(
1/2

)
+ 8 ln4(2)

3 + 467
6 ζ2 − 36 ln(2)ζ2
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+ 32 ln2(2)ζ2 −
278
5 ζ2

2 + 46
3 ζ3 + 67

2
√

3GI(r2)− 20
√

3ζ2GI(r2) + 7
√

3GI(0, r2)

− 4GI(r2)GI(0, r2) + 24GI(0, r2)2
)

+D1
(
16− 64ζ2 − 40

√
3GI(r2)

)
+ 20− 16z

− 4
(
− 2 + z + 2z2)z̄H0(z) + 8(1 + z)H1(z)− 2

(
4 + 16z + 9z2 + 3z3)H0,0(z)

− 4(2− z)zH1,0(z)− 2(1 + z)
(
− 9 + 4z + z2)H{6,0},0(z)− 2(1 + z)

(
3− 8z

− 2z2)H{6,1},0(z) + 2(1 + z)
(
7 + z2)H−1,0(z)− 4

(
2 + 3z + 11z2)z̄H0,0,0(z)

− 4
(
1 + 3z + 4z2)z̄H0,1,0(z) + 4zH0,{6,0},0(z)− 8zH0,{6,1},0(z)

+ 4
(
1 + 2z + 5z2)z̄H0,−1,0(z) + 28H1,0,0(z) + 4H1,1,0(z) + 4(2 + z)H1,{6,0},0(z)

− 8(2 + z)H1,{6,1},0(z)− 8(1− z)H1,−1,0(z) + 16(1 + z)2z̄H−1,0,0(z)

+ 8(1 + z)2z̄H−1,1,0(z)− 8(1 + z)2z̄H−1,−1,0(z) +
(
− 24 ln(2)

(
1 + z2)z̄

+ 1
3
(
63− 13z − 70z2 − 14z3)+ 8

3(1 + z)(1 + 2z)z̄H0(z)− 8
3(7 + 8z)H1(z)

+ 4(1 + z)2z̄H−1(z)
)
ζ2 −

4
3
(
24 + 11z + 22z2)z̄ζ3 +

(
2(1− z)(−3 + z)

√
3

+ 20z2z̄
√

3H0(z)− 20(1 + z)
√

3H1(z)− 2(1 + z)
(
1 + 4z + z2)√3H{6,0}(z)

+ 10(1 + z)
√

3H{6,1}(z) + 4z
√

3H0,{6,0}(z) + 4(2 + z)
√

3H1,{6,0}(z)

− 16GI(0, r2)
)
GI(r2)− 10(1 + z)

√
3GI(0, r2)

+ 12ρ̂(1− ρ)(1 + ρ)
(
H0,0(ρ) +H0,{6,0}(ρ)− 2H0,{6,1}(ρ)

)
+ 12ρ̄2ρ̂

(
1− ρ+ 6ρ2 − ρ3 + ρ4)(H0,0,0(ρ) +H0,0,{6,0}(ρ)− 2H0,0,{6,1}(ρ)

)
−
(
4ρ̂(1− ρ)(1 + ρ) + 4ρ̄2ρ̂

(
1− ρ+ 6ρ2 − ρ3 + ρ4)H0(ρ)

)
ζ2

}

+ δ
(1)
uū,W + δ

(2)
uū,W , (4.37)

where cq, with q ∈ (u, d), was defined in eq. (4.19) and where δ(1)
uū,W and δ(2)

uū,W denote the
contributions from the double-real channel uū→ dd̄Z with one and two internal W boson,
respectively. They are given in the following.

δ
(1)
uū,W = c2

uCF
{(

44−65z+29z2)z̄+
(
47−61z+26z2)z̄2H0(z)+6

(
7−3z−z2

+z3)z̄2H0,0(z)−2
(
−7+7z−7z2+3z3)z̄2H1,0(z)−4(1+z)

(
7−8z

+3z2)z̄2H−1,0(z)+24z̄3(1−z+3z2−3z3+z4)H0,0,0(z)+8z̄3(1−z+3z2

−3z3+z4)H0,1,0(z)−16z̄3(1−z+3z2−3z3+z4)H0,−1,0(z)−12zζ2

−8z̄3(1−z+3z2−3z3+z4)ζ3
}

+c2
dCF

{1
2(1−z)

(
−21+27z+8z2)

−z
(
−14+3z+4z2)H0(z)+2

(
5+28z+35z2+10z3)H0,0(z)−4

(
4+18z+21z2

+6z3)H−1,0(z)+4
(
3+20z+30z2+20z3+5z4)H0,0,0(z)−8

(
2+12z+18z2

+12z3+3z4)H0,−1,0(z)−20(1+z)4H−1,0,0(z)+24(1+z)4H−1,−1,0(z)
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+
(
−2
(
4+18z+21z2+6z3)−4

(
2+12z+18z2+12z3+3z4)H0(z)

+12(1+z)4H−1(z)
)
ζ2−12

(
1+8z+12z2+8z3+2z4)ζ3

}
+cucdCF

{ 2
3z3 (1+2z)2I

(0,1)
ell + 2

3z3
˜̃z
(
7+77z+264z2+362z3+136z4)I(3,0)

ell

+ 2
3z2

˜̃z
(
−7−32z+6z2+232z3+224z4)I(2,0)

ell +6(1−2z)(1+z)z̄H0(z)

−4(−7+10z)− 1
3z z̄

˜̃z
(
35+163z+12z2−392z3+734z4+1140z5)H0,0(z)

+ 4
3z

˜̃z
(
−7−32z+6z2+232z3+224z4)H0,1(z)−2

(
5+3z2)H1,0(z)

−4
(
8+28z+21z2)H−1,0(z)− z̄

3z
(
−3−25z−108z2−48z3+16z4)H0,0,0(z)

+ 4
3z (1+2z)2(5−5z+12z2)z̄H0,0,1(z)+ 4

3z z̄
(
2−z−9z2−35z3+4z4)H0,1,0(z)

− 16
3z (1+2z)2(−1+4z)H0,1,1(z)+ 8

3z z̄
(
2+11z+24z2+13z3+4z4)H0,−1,0(z)

+ 4
3z z̄

(
1+3z2+38z3+12z4)H1,0,0(z)+8(1+3z)H1,−1,0(z)+16(1+z)2(−3

+4z)z̄H−1,0,0(z)+8(1+z)2(−3+4z)z̄H−1,1,0(z)−8(1+z)2(−3+4z)z̄H−1,−1,0(z)

−48ln(2)
(
−1−z+2z2+z3)z̄ζ2+

(
− 2

3z
˜̃z
(
−14−25z+174z2+704z3+592z4)

− 4
z
z̄
(
1+z−9z2+14z3+24z4)H0(z)+4(1+3z)H1(z)

+4(1+z)2(−3+4z)z̄H−1(z)
)
ζ2−

4
3
(
−17−72z+63z2+113z3)z̄ζ3

}
. (4.38)

δ
(2)
uū,W = cu(cu−cd)CF

{
− 2

3
(
35−11z+30z

√
3GI(0, r2)

)
+ 2

3
(
−33+7z+2z2)z̄H0(z)

− 2
3
(
6+30z+60z2+5z3)H0,0(z)− 2

3
(
2−3z+12z2+z3)H1,0(z)+2

(
−4+27z

+12z2+z3)H{3,0},0(z)+2
(
−8+9z+24z2+2z3)H{3,1},0(z)− 4

3(1+z)
(
−14

+11z+z2)H−1,0(z)+4(1+2z)(1+5z)z̄H0,0,0(z)+4z(2+z)z̄H0,1,0(z)
−6
(
1+z+7z2)z̄H0,{3,0},0(z)−12

(
1+z+7z2)z̄H0,{3,1},0(z)

+8
(
1−z+6z2)z̄H0,−1,0(z)+ 2

3(4+15z)ζ2+ 4
3
(
7+z+28z2)z̄ζ3

−12ρ̂(1−ρ)(1+ρ)
(
H0,0(ρ)+H0,{6,0}(ρ)−2H0,{6,1}(ρ)

)
−12ρ̄2ρ̂

(
1−ρ+6ρ2−ρ3+ρ4)(H0,0,0(ρ)+H0,0,{6,0}(ρ)−2H0,0,{6,1}(ρ)

)
+
(
4ρ̂(1−ρ)(1+ρ)+4ρ̄2ρ̂

(
1−ρ+6ρ2−ρ3+ρ4)H0(ρ)

)
ζ2

}
+cd(cu−cd)CF

{
2
(
−7+7z+10

√
3GI(0, r2)+12z

√
3GI(0, r2)

)
−2(6+z)H0(z)

+2
(
−1+14z+10z2)H0,0(z)−6

(
9+16z+5z2)H{3,0},0(z)−6

(
3+14z
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+10z2)H{3,1},0(z)+4
(
5+14z+10z2)H−1,0(z)+4

(
1+11z+9z2)H0,0,0(z)

−6
(
1+3z+3z2)H0,{3,0},0(z)−12

(
1+3z+3z2)H0,{3,1},0(z)−8(−1+z)H0,−1,0(z)

−48(1+z)2H−1,0,0(z)+36(1+z)2H−1,{3,0},0(z)+72(1+z)2H−1,{3,1},0(z)

−24(1+z)2H−1,−1,0(z)+
(
4−4z(4+3z)H0(z)+12(1+z)2H−1(z)

)
ζ2

+ 20
3 (5+3z)ζ3

}
. (4.39)

We note that once we combine eq. (4.39) with eq. (4.37), the total ρ dependence vanishes.
The partonic cross-section from ug initiated channels is given by

∆
(1,1)
ug,W = c2

u

{
− z̄8

(
1+31z−73z2+29z3+8z4)− z̄2

4
(
−1+24z−81z2+78z3−10z4

−16z5+4z6)H0(z)+ 1
2
(
5−20z+22z2+4z3−2z4)H1(z)+ z̄2

2
(
1−21z+38z2

−33z3+19z4)H0,0(z)+ 1
2P15z̄

2H0,1(z)+ 1
2
(
1+8z−10z2)H1,0(z)+ z̄2

2
(
7−39z

+61z2−45z3+19z4)H{6,0},0(z)+ 1
2P15z̄

2H{6,0},1(z)− z̄
2

2
(
−1−30z+71z2

−72z3+38z4)H{6,1},0(z)−P15z̄
2H{6,1},1(z)+3P14H0,0,0(z)+P14H0,0,1(z)

+2P14H0,{6,0},0(z)+P14H0,{6,0},1(z)−4P14H0,{6,1},0(z)−2P14H0,{6,1},1(z)

+
(
7−18z+30z2)H1,0,0(z)+2P14H1,0,1(z)−3

(
1−2z+2z2)H1,1,0(z)

+3
(
2−5z+8z2)H1,{6,0},0(z)+2P14H1,{6,0},1(z)−6

(
2−5z+8z2)H1,{6,1},0(z)

−4P14H1,{6,1},1(z)+
(
z̄2

12
(
45−214z+381z2−260z3+38z4)+ 2

3P14H0(z)

+ 1
3
(
13−21z+6z2)H1(z)

)
ζ2+

(
−1+3z−6z2)ζ3+

(
− 1

4
(
−4+32z−61z2

+35z3)z̄√3+z(−2+5z)
√

3H0(z)+5
(
1−2z+2z2)√3H1(z)+ z̄2

2
(
−1−z

+11z2−11z3+z4)√3H{6,0}(z)− 1
2(−5+6z)

√
3H{6,1}(z)+(2−3z)

√
3H1,{6,0}(z)

+2(−2+3z)GI(0, r2)
)
GI(r2)+ 1

2(−5+6z)
√

3GI(0, r2)
}

+cucd
{1

2(−1+z)(6+7z)− 1
2
(
1+z−4z2+3z3)z̄H0(z)+ 1

2
(
3−5z+7z2)H1(z)

+ z̄2

2
(
−3+20z−52z2+68z3−36z4)H 1

2 ,0
(z)+ z̄2

2
(
−3+20z−52z2+68z3

−36z4)H 1
2 ,1

(z)+ z̄2

2
(
−6+79z−159z2+145z3−69z4)H0,0(z)+ z̄2

2
(
−3+29z

−54z2+65z3−45z4)H0,1(z)− 1
2(1−z)(5−9z)H1,0(z)+ z̄2

2
(
−7+39z−61z2

+45z3−19z4)H{6,0},0(z)+ z̄2

2
(
1+3z−8z2+11z3−9z4)H{6,0},1(z)
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+ z̄2

2
(
−1−30z+71z2−72z3+38z4)H{6,1},0(z)+P15z̄

2H{6,1},1(z)

− 1
2(1+z)(3+5z)H−1,0(z)+2(1−2z)2H 1

2 ,
1
2 ,0

(z)+2(1−2z)2H 1
2 ,

1
2 ,1

(z)

+6(1−2z)2H 1
2 ,0,0

(z)+6(1−2z)2H 1
2 ,0,1

(z)− 3
2
(
3−10z+20z2)H0,0,0(z)

+ 1
2
(
−3+10z−20z2)H0,0,1(z)−2

(
1−3z+6z2)H0,{6,0},0(z)

+
(
−1+3z−6z2)H0,{6,0},1(z)+4P14H0,{6,1},0(z)+2

(
1−3z+6z2)H0,{6,1},1(z)

+P13z
2H0,−1,0(z)−6(1−2z)2H1, 1

2 ,0
(z)−6(1−2z)2H1, 1

2 ,1
(z)+

(
−27+82z

−94z2)H1,0,0(z)−2
(
7−27z+30z2)H1,0,1(z)+

(
−1+2z−2z2)H1,1,0(z)

−3
(
2−5z+8z2)H1,{6,0},0(z)−2

(
1−3z+6z2)H1,{6,0},1(z)+6

(
2−5z

+8z2)H1,{6,1},0(z)+4P14H1,{6,1},1(z)+4
(
1−2z+2z2)H1,−1,0(z)+6ln(2)

(
1

−2z+2z2)ζ2+
(
z̄2

12
(
−147+814z−1851z2+1880z3−704z4)− 1

6H0(z)

+ 1
3
(
−49+129z−114z2)H1(z)

)
ζ2+

(
6−12z+5z2)ζ3+

(
− 1

4
(
4−32z+61z2

−35z3)z̄√3+(2−5z)z
√

3H0(z)−5
(
1−2z+2z2)√3H1(z)+ z̄2

2
(
1+z−11z2

+11z3−z4)√3H{6,0}(z)+ 1
2(−5+6z)

√
3H{6,1}(z)+(−2+3z)

√
3H1,{6,0}(z)

−2(−2+3z)GI(0, r2)
)
GI(r2)+ 1

2(5−6z)
√

3GI(0, r2)+P12

(
−w

2w̃

2
(
7H0,0(w)

+4H0,1(w)+3H0,i1(w)−3H0,−i2(w)−4H0,−1(w)−H1,−i2(w)−H−1,−i2(w)

+H1,0(w)+H1,i1(w)+H−1,0(w)+H−1,i1(w)
)
+ 3

2w
2w̃ζ2

)
+P13

(
w2w̄

2
(
7H0,0,0(w)

+4H0,0,1(w)+3H0,0,i1(w)−3H0,0,−i2(w)−4H0,0,−1(w)−H0,1,−i2(w)

−H0,−1,−i2(w)+7H1,0,0(w)+4H1,0,1(w)+3H1,0,i1(w)−3H1,0,−i2(w)

−4H1,0,−1(w)−H1,1,−i2(w)−H1,−1,−i2(w)+7H−1,0,0(w)+4H−1,0,1(w)

+3H−1,0,i1(w)−3H−1,0,−i2(w)−4H−1,0,−1(w)−H−1,1,−i2(w)−H−1,−1,−i2(w)

+H0,1,0(w)+H0,1,i1(w)+H0,−1,0(w)+H0,−1,i1(w)+H1,1,0(w)+H1,1,i1(w)

+H1,−1,0(w)+H1,−1,i1(w)+H−1,1,0(w)+H−1,1,i1(w)+H−1,−1,0(w)

+H−1,−1,i1(w)
)
− 3

2w
2w̄
(
H0(w)+H1(w)+H−1(w)

)
ζ2

)}
. (4.40)

P12 and P13 are given in eq. (4.33) and new polynomials are defined as

P14 = (1− 3z + 6z2) and P15 = (−1− 3z + 8z2 − 11z3 + 9z4) . (4.41)

The partonic cross-section from ud initiated channel, contributing to the double-real
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corrections, is also free of any divergences and is given by

∆
(1,1)
ud,W = (c2

u+c2
d)CF

{
− 1

6z3 (−1+2z)I(0,1)
ell −

1
6z2

(
13−28z+44z2+16z3)˜̃zI(2,0)

ell

− 1
6z3

(
−13−65z+52z2+116z3)˜̃zI(3,0)

ell −
1
4(1−z)

(
123+200z+95z2)z̃2

−z̃3(27+63z+76z2+37z3+6z4)H0(z)+ 1
12z z̄z̃

2 ˜̃z
(
−65−245z−287z2

+325z3+544z4+376z5+72z6)H0,0(z)− 1
3z
(
13−28z+44z2+16z3)˜̃zH0,1(z)

+(1−z)
(
−3+z2)z̃2H1,0(z)+2(3+z)z̃2H−1,0(z)− 1

12z z̄z̃
3(−3+44z−204z2

−2z3+167z4+150z5+40z6)H0,0,0(z)− 1
3z (−1+2z)

(
5−5z+12z2)z̄H0,0,1(z)

− z̄z̃
3

3z
(
−2+22z−z2−33z3−35z4+11z5+14z6)H0,1,0(z)+ 4

3z (−1+2z)(−1

+4z)H0,1,1(z)− 2
3z z̄z̃

3(−2−5z+20z2+18z3+10z4+5z5+2z6)H0,−1,0(z)

− 1
3z (−1+2z)

(
1+2z+3z2)z̄H1,0,0(z)+

( 1
3z z̃

2 ˜̃z
(
13−2z+13z2+103z3+79z4

+10z5)+ z̄z̃3

z

(
−1−3z−z2−5z3+8z4+18z5+8z6)H0(z)

)
ζ2

+ 2
3 z̄z̃

3(−8−18z−19z2+19z3+36z4+14z5)ζ3

}
+cucdCF

{
2(1−z)

(
5+2z+z2)z̃−2z̃2(−4−3z−9z2−z3+z4)H0(z)

−2z̃
(
−5+24z+20z2−12z3+3z4)H0,0(z)+2(1−z)

(
11−4z+z2)H1,0(z)

+4z̃
(
4+12z+5z2−4z3+z4)H−1,0(z)−24(1−2z)H− 1

2 ,0,0
(z)

+24(1−2z)H− 1
2 ,−1,0(z)+4

(
5−z−6z2+8z3)z̃ ˜̃zH0,0,0(z)+8

(
1+4z2)˜̃zH0,1,0(z)

+8
(
−1+4z+z2)z̃H0,−1,0(z)+16(1−z)2z̃H1,0,0(z)−16(1−z)2z̃H1,−1,0(z)

−4
(
−21−45z+4z2+44z3)z̃ ˜̃zH−1,0,0(z)−16

(
−1−4z−z2+4z3)z̃ ˜̃zH−1,1,0(z)

+8
(
−9−15z+2z2+12z3)z̃ ˜̃zH−1,−1,0(z)+48ln(2)

(
−1−2z+z2+z3)z̃ ˜̃zζ2

+
(
−2
(
−15−8z+5z2)z̃+12(1−2z)H− 1

2
(z)+4

(
1+4z+17z2+10z3)z̃ ˜̃zH0(z)

−8(1−z)2z̃H1(z)−4
(
5−z−6z2+4z3)z̃ ˜̃zH−1(z)

)
ζ2

+4
(
1+3z+14z2+13z3)z̃ ˜̃zζ3

}
+δud,W . (4.42)

δud,W = (cu−cd)2CF

{1
3(1−z)

(
53+44z+3z2)z̃

− z̃
2

3
(
−30−77z−85z2−11z3+3z4)H0(z)

+ 1
3
(
15+27z−90z2+11z3)H0,0(z)− 1

3(1−z)
(
−2−11z+z2)H1,0(z)

+
(
−29+42z+27z2−4z3)H{3,0},0(z)+

(
−13−6z+54z2−8z3)H{3,1},0(z)
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+ 2
3
(
13−42z2+7z3)H−1,0(z)+6(1−2z)(1−z)z̃H0,0,0(z)+2

(
1−z

+4z2)z̃H0,1,0(z)−6(1−2z)z̃H0,{3,0},0(z)−12(1−2z)z̃H0,{3,1},0(z)−4
(
−2+2z

+z2)z̃H0,−1,0(z)+8
(
−2−z+4z2)z̃H−1,0,0(z)−6

(
−2−z+4z2)z̃H−1,{3,0},0(z)

−12
(
−2−z+4z2)z̃H−1,{3,1},0(z)+4

(
−2−z+4z2)z̃H−1,−1,0(z)+

(1
3(2+3z)

+2z̃
(

3z2+ 1
z̃

)
H0(z)−2

(
−2−z+4z2)z̃H−1(z)

)
ζ2−

2
3
(
−24−16z+17z2)z̃ζ3

+10(1−2z)
√

3GI(0, r2)
}
. (4.43)

The contribution δud,W in eq. (4.42) stems solely from the non-abelian WWZ vertex. The
partonic cross-section from ud̄ initiated channel is also only with double real emission and
given by

∆
(1,1)
ud̄,W

= (c2
u+c2

d)CF
{
−
(
−39+323z−682z2+74z3)ˆ̄z2−z̄ ˆ̄z2(−26+187z−265z2

−296z3+76z4)H0(z)+
(
11−78z+129z2+46z3)ˆ̄z2H0,0(z)+

(
11−78z+129z2

+46z3)ˆ̄z2H1,0(z)+3(1+3z)z̄H0,0,0(z)+3(1+3z)z̄H0,1,0(z)+
((

11−78z+129z2

+46z3)ˆ̄z2+3(1+3z)z̄H0(z)
)
ζ2+6(1+3z)z̄ζ3+ 1

z

(
− 1

2 t(−1+2t)t̄4t̃3H0(t)P16

+ 1
2 tt̄

4t̃2H−1(t)P16−2tt̄4t̃4H0,−1(t)P17−2tt̄4t̃4H−1,0(t)P17+4tt̄4t̃4H−1,−1(t)P17

+tt̄4t̃4H0,0(t)P19−8tt̄5t̃5H0,0,−1(t)P20−3tt̄5t̃5H0,{3,0},0(t)P20

+6tt̄5t̃5H0,{3,0},−1(t)P20−6tt̄5t̃5H0,{3,1},0(t)P20+12tt̄5t̃5H0,{3,1},−1(t)P20

−2tt̄5t̃5H0,−1,0(t)P20+4tt̄5t̃5H0,−1,−1(t)P20−2tt̄5t̃5ζ3P21+tt̄5t̃5H0,0,0(t)P23

+ 1
2 t
(
1+t+t2

)
t̄4t̃4P16+iπ

(1
2 tt̄

3t̃3P16+2tt̄4t̃4H0(t)P18+2tt̄5t̃5H0,0(t)P21

+4t
(
1+t2

)
t̃4H−1,0(t)+2t

(
1+t2

)
t̃4ζ2

)
+6t

(
1+t2

)
t̃4H−1,0,0(t)+

(
−4tt̄4t̃4P18

−tt̄5t̃5H0(t)P22−8t
(
1+t2

)
t̃4H−1(t)

)
ζ2
)}

+cucdCF
{
−
(
15−127z+236z2+164z3)ˆ̄z2−2z̄ ˆ̄z2(7−46z+42z2+104z3

+28z4)H0(z)+2z̄ ¯̄z ˆ̄z2(−2+12z−12z2+31z3−256z4+380z5)H0,0(z)
+2¯̄z ˆ̄z2(1−9z+z2+132z3−188z4)H1,0(z)+12(1+z)2z̄H−1,0(z)+16¯̄zH0,0,0(z)
+16¯̄zH0,0,1(z)−4

(
−2+z+3z2+2z3)z̄ ¯̄zH0,1,0(z)+8(1+z)2z̄H0,−1,0(z)

+20¯̄zH1,0,0(z)+16¯̄zH1,0,1(z)+8¯̄zH1,1,0(z)+20(1+z)2z̄H−1,0,0(z)

−24(1+z)2z̄H−1,−1,0(z)+
(
2z̄ ¯̄z ˆ̄z2(4−34z+49z2+197z3−416z4+92z5)

−4
(
1−3z+6z2+4z3)z̄ ¯̄zH0(z)−8¯̄zH1(z)−12(1+z)2z̄H−1(z)

)
ζ2−4

(
−1−z

+6z2+4z3)z̄ ¯̄zζ3+ 1
z

(
4tˆ̃tt̃4H1,0(z)P25−32tˆ̃tt̄5t̃5H0,0,−1(t)P27

−4tˆ̃tt̄5t̃5H0,{3,0},0(t)P28+8tˆ̃tt̄5t̃5H0,{3,0},−1(t)P28−8tˆ̃tt̄5t̃5H0,{3,1},0(t)P28
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+16tˆ̃tt̄5t̃5H0,{3,1},−1(t)P28−4tˆ̃tt̄5t̃5ζ3P29−8tˆ̃tt̄5t̃5H0,−1,0(t)P30

+16tˆ̃tt̄5t̃5H0,−1,−1(t)P30+8tˆ̃tt̄5t̃5H0,0,0(t)P31+2tˆ̃tt̄4t̃4ť2H0,0(t)P34

−2tˆ̃tt̄4t̃4ť2H0,−1(t)P36−2tˆ̃tt̄4t̃4ť2H−1,0(t)P36+4tˆ̃tt̄4t̃4ť2H−1,−1(t)P36

−3t
(
1+4t+t2

)
t̄4t̃4P24+iπ

(
16t2ˆ̃tt̄5t̃5H0,0(t)P26−2tˆ̃tt̄4t̃4ť2H0(t)P33

−3t
(
1+4t+t2

)
t̄3t̃3ťP24−24tˆ̃tH{3,0},0(t)−48tˆ̃tH{3,1},0(t)+64tˆ̃tH{4,1},0(t)

+16t
(
1+4t+t2

)ˆ̃tt̃2H−1,0(t)+16t2ˆ̃tt̃2ζ2
)

+3t(−1+2t)
(
1+4t+t2

)
t̄4t̃3ťP24H0(t)

−3t
(
1+4t+t2

)
t̄4t̃2ťP24H−1(t)−16tˆ̃tH0,0,1(z)−8tˆ̃tH0,1,0(z)−24tˆ̃tH1,0,0(z)

−16tˆ̃tH1,0,1(z)−8tˆ̃tH1,1,0(z)−36tˆ̃tH{3,0},0,0(t)−72tˆ̃tH{3,1},0,0(t)

+112tˆ̃tH{4,1},0,0(t)−32tˆ̃tH{4,1},0,−1(t)−16tˆ̃tH{4,1},{3,0},0(t)+32tˆ̃tH{4,1},{3,0},−1(t)

−32tˆ̃tH{4,1},{3,1},0(t)+64tˆ̃tH{4,1},{3,1},−1(t)+24t
(
3+8t+3t2

)ˆ̃tt̃2H−1,0,0(t)

−96tˆ̃tH−1,0,−1(t)−96tˆ̃tH−1,−1,0(t)+192tˆ̃tH−1,−1,−1(t)+
(
−4tˆ̃tt̄5t̃5H0(t)P32

+4tˆ̃tt̄4t̃4ť2P35−40tˆ̃tH1(z)−112tˆ̃tH{4,1}(t)+16t
(
3+2t+3t2

)ˆ̃tt̃2H−1(t)
)
ζ2
)}

+δud̄,W . (4.44)

The polynomials here are defined as

P16 = 19t4 − 56t3 + 86t2 − 56t+ 19.
P17 = 2t6 − 2t5 + t4 + 4t3 + t2 − 2t+ 2.
P18 = 3t6 − 2t5 + 3t4 + 4t3 + 3t2 − 2t+ 3.
P19 = 11t6 − 8t5 + 10t4 + 16t3 + 10t2 − 8t+ 11.
P20 = t8 + 2t6 + 6t4 + 2t2 + 1.
P21 = 3t8 − 4t7 + 10t6 − 4t5 + 12t4 + 4t3 − 2t2 + 4t+ 1.
P22 = 9t8 − 16t7 + 34t6 − 16t5 + 30t4 + 16t3 − 14t2 + 16t+ 1.
P23 = 13t8 − 12t7 + 38t6 − 12t5 + 60t4 + 12t3 + 2t2 + 12t+ 7.
P24 = t4 − t3 − 2t2 − t+ 1.
P25 = t4 + 2t3 + 5t2 + 2t+ 1.
P26 = 2t9 + t8 − 12t7 − 2t6 + 26t5 − 6t3 + 2t2 + 2t− 1.
P27 = 3t10 − 15t8 + 30t6 − 10t4 + 5t2 − 1.
P28 = 5t10 − 25t8 + 50t6 + 10t4 − 5t2 + 1.
P29 = 5t10 + 4t9 − 33t8 − 8t7 + 74t6 + 6t4 + 8t3 − 7t2 − 4t+ 3.
P30 = 7t10 − 35t8 + 70t6 − 50t4 + 25t2 − 5.
P31 = 12t10 + 3t9 − 66t8 − 6t7 + 138t6 − 38t4 + 6t3 + 16t2 − 3t− 2.
P32 = 13t10 + 8t9 − 81t8 − 16t7 + 178t6 − 78t4 + 16t3 + 31t2 − 8t− 3.
P33 = t12 − 2t11 + 6t10 + 24t9 − 5t8 − 134t7 − 212t6 − 134t5 − 5t4 + 24t3

+ 6t2 − 2t+ 1.
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P34 = t12 + 2t11 − 10t10 − 56t9 + 26t8 + 222t7 + 386t6 + 222t5 + 26t4 − 56t3

− 10t2 + 2t+ 1.
P35 = 2t12 − 2t11 + 8t10 + 16t9 − 3t8 − 138t7 − 198t6 − 138t5 − 3t4 + 16t3

+ 8t2 − 2t+ 2.
P36 = 5t12 − 2t11 − 2t10 − 40t9 + 37t8 + 42t7 + 136t6 + 42t5 + 37t4 − 40t3

− 2t2 − 2t+ 5.

δud̄,W also stems solely from the non-abelian WWZ vertex and is given by

δud̄,W = (cu−cd)2CF

{
−6− 13z

2 +iπ
(
− 1

2(1−t)t̃(3+4z)z̄−z̄H0(t)−4z(2+z)z̄H0,0(t)

+8z(2+z)z̄H−1,0(t)+4z(2+z)z̄ζ2

)
+ 1

2(−1+2t)t̃(3+4z)z̄H0(t)

− 1
2(1+z)(4+5z)z̄H0(z)− 1

2(3+4z)z̄H−1(t)−z̄H0,0(t)−z̄H0,−1(t)−z̄H−1,0(t)

+2z̄H−1,−1(t)−6z(2+z)z̄H0,0,0(t)+12z(2+z)z̄H−1,0,0(t)

+
(
2z̄+8z(2+z)z̄H0(t)−16z(2+z)z̄H−1(t)

)
ζ2+4z(2+z)z̄ζ3

}
. (4.45)

4.6 Checks

In the soft-collinear (threshold) limit, the photonic part (∆(1,1)
γ ) behaves like NNLO QCD,

as the massless photon can be soft and mimic the threshold behavior of massless gluon.
Hence, we find presence of up to third order (D3) threshold logarithmic contributions. On
the other hand, since the Z and W are massive, they do not contribute to the threshold
behavior; this fact is also reflected by the presence of only D1 in their contribution, similar
to the NLO QCD case.

As mentioned earlier, we have cross-checked our results at several stages of our cal-
culation. The form factors have been checked with [31, 88, 98]. We have found complete
agreement analytically to [31] by comparing the mixed NNLO QCD×QED results. In
ref. [37] the on-shell Z production and its subsequent decay have been studied at fully
differential level, and the total cross-section have been extracted via a Monte Carlo inte-
grator. We have had the possibility to perform detailed checks of these two completely
independent methodologies in the evaluation of the total cross section. We have found
very good agreement and perfectly compatible results, within the uncertainty bands of the
numerical results of ref. [37], when comparing our predictions based on a fully analytical
expression with those based on the numerical integration of the real-virtual and double-real
contributions. The different gauge choices have been checked to be exactly equivalent. The
mass expansion adopted in the present paper turns out to be accurate.

5 Phenomenology

In this section we present the numerical results for the inclusive total cross section for
the production of an on-shell Z boson in proton-antiproton collisions at the Tevatron,
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with a collider center-of-mass energy
√
S = 1.96TeV, and in proton-proton collisions

at the LHC, with different energies (
√
S = 7, 8, 13, 14, 100TeV). They are computed

using the following values of the input parameters: mH = 125.0 GeV, mW = 80.358 GeV,
mZ = 91.1535 GeV, mt = 173.2 GeV, α−1 = 137.035999074, Gµ = 1.1663781 10−5 GeV−2

and ∆αhad(mZ) = 0.027572, where mt and mH are the top quark and Higgs boson masses.5

We consider 5 active flavours in the proton. In the bb̄ channel, at NLO-EW, we include
the exact dependence on mt. At NNLO QCD-EW, we instead use the same amplitudes
computed for a generic massless quark doublet, for the dd̄-initiated channel. We consider
this approximation acceptable from a phenomenological point of view, based on the estimate
done at NLO-EW for the size of the mt effect, compared to the massless limit. We choose
different parametrisations of the proton structure and for each set of parton density functions
(PDFs) we consider two variants: one determination uses only QCD matrix elements and
DGLAP QCD evolution, while the other relies on the same data set but adopts QCD+EW
matrix elements and DGLAP QCD+QED evolution. We considered three pairs of PDF
sets: NNPDF31_nnlo_as_0118 and NNPDF31_nnlo_as_0118_luxqed [101], MMHT2015_nnlo
and MMHT2015qed_nnlo [102], and CT18NNLO [103] and CT18qed [104]. We have used the
packages GiNaC [79, 105], handyG [106] and HarmonicSums [107–109], for manipulation
and numerical evaluation of all the polylogarithmic functions which appear in the final
expressions of our results.

To present the results, we consider three different approximations of the total cross
section: one that includes only QCD radiative corrections σQCD ≡ σ(0,0) +αsσ(1,0) +α2

sσ
(2,0),

a second one where we add to the QCD prediction the NLO-EW effects σQCD+EW,add ≡
σQCD + ασ(0,1), and eventually the one that represents our complete prediction with EW
and mixed QCD-EW corrections σQCD×EW ≡ σ(0,0) +αsσ(1,0) +ασ(0,1) +ααsσ(1,1) +α2

sσ
(2,0)

where σ(i,j) indicates the sole contribution from the relative perturbative order O(αisαj)
with respect to the Born. In the σQCD prediction the PDFs encode the effect of the EW
corrections in their parameterisation, while their perturbative evolution is driven only by
the QCD kernel. On the other hand, in σQCD×EW the PDFs should be extracted including
NLO-EW corrections in the matrix elements used to fit the data6 and are evolved with
QCD+QED DGLAP kernels. The main component available in all the considered sets is
the photon density, which fulfils the constraints imposed by the so called LUX-qed model.
In the latter, the photon density is connected by an exact relation to the hadronic tensor
and the proton structure functions [110].

The two models, the one with only QCD radiative corrections and the one with a
complete QCD and EW analysis, consistently yield a possible description of the proton-
proton scattering. For this reason, we then consider the two predictions σQCD and σQCD×EW
as possible alternatives for the best predictions of the on-shell Z production cross section, a
classical benchmark used to compare different proton parameterisations. The σQCD×EW is
preferred, for its richer perturbative content. The difference between the two cross sections
can thus be taken as an estimate of the impact of the NLO-EW and of the NNLO mixed

5The mW and mZ values are chosen considering a constant decay width definition in the gauge boson
propagators and are consistent with those reported in the PDG [100], determined with a running width.

6A complete systematic analysis including all the NLO-EW corrections is in progress.
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collider PDF set σQCD σQCD×EW δQCD×EW ∆env δPDF

pp̄ 1.96TeV NNPDF3.1 7710.0 7649.5 −0.8 0.3% +1.7%
−1.7%

CT18 7683.8 7640.7 −0.6 +1.6%
−2.3%

MMHT2015 7701.1 7625.8 −1.0 +2.4%
−2.4%

LHC 7TeV NNPDF3.1 29356.2 29120.4 −0.8 1.8% +0.9%
−0.9%

CT18 28836.9 28702.4 −0.5 +1.5%
−2.4%

MMHT2015 29023.0 28709.1 −1.1 +2.0%
−2.1%

LHC 8TeV NNPDF3.1 34116.0 33840.2 −0.8 1.6% +0.8%
−0.8%

CT18 33562.2 33407.5 −0.5 +1.6%
−2.4%

MMHT2015 33792.4 33420.8 −1.1 +2.0%
−2.1%

LHC 13TeV NNPDF3.1 57769.1 57287.6 −0.8 1.1% +0.8%
−0.8%

CT18 57152.1 56898.9 −0.4 +1.9%
−2.5%

MMHT2015 57564.8 56899.3 −1.2 +2.1%
−2.1%

LHC 14TeV NNPDF3.1 62454.4 61931.2 −0.8 1.0% +0.8%
−0.8%

CT18 61840.8 61568.1 −0.4 +2.0%
−2.5%

MMHT2015 62278.6 61553.7 −1.2 +2.2%
−2.2%

LHC 100TeV NNPDF3.1 418617 412815 −1.4 2.4% +3.1%
−3.1%

CT18 420218 418344 −0.4 +5.5%
−3.8%

MMHT2015 410367 405238 −1.2 +6.4%
−4.4%

Table 1. Cross sections for on-shell Z production, expressed in picobarns and computed with
different PDF sets at different collider types and energies. The two columns show the results
obtained with PDF parameterisations determined with a QCD-only analysis or including also EW
effects. We define δQCD×EW = 100 (σQCD×EW/σQCD− 1), while ∆env is the percentage width of the
envelope of the three PDF sets predictions in the QCD model, with respect to their mean value.
The experimental PDF uncertainty δPDF in the QCD model is computed according to the definitions
of each group.

QCD-EW corrections on this observable.7 We observe in table 1 that different PDF choices
lead to a spread in the central value prediction; comparing the width of their envelope with
the mean value of the three predictions, in the QCD-only case, we observe a dispersion of
the results ∆env ranging between the O(1%) and the O(2%) level at the LHC energies, while
a smaller value is observed at the Tevatron. This spread is compatible with the estimate of
the PDF uncertainty evaluated according to the Monte Carlo or Hessian recipes used by
each PDF collaboration. We remark that the PDF uncertainties range between the O(1%)

7The inclusion in the future of N3LO results with the (today still missing) appropriate N3LO PDFs
might partially interfere with our discussion, inducing a different mixture of the various partonic channels.
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and the O(±2.5%) level, depending on the energy, collider and PDF fitting group; larger
values are instead obtained for a collider with

√
S = 100TeV.

For each PDF set, the shift induced by the inclusion of the NLO-EW and NNLO
QCD-EW corrections is almost independent of collider and energy and ranges between
-0.4% and -1.4%. The size of this shift of the central value is significant if compared with
the residual subpercent QCD scale uncertainty reported in refs. [12, 13] at N3LO QCD, but
also with the corresponding estimate made at NNLO-QCD.

Since the parameterisation of the proton must fulfil the sum rules expressing charge and
momentum conservation, then the presence of the photon density in the proton implies a
reduction of the total momentum fraction carried by quarks and gluons. In turn, we observe
a reduction of the cross section of the partonic channels induced by quarks and gluons,
which in general should be compensated by the positive cross section of the additional
photon-induced channels. We remark that a similar O(1%) reduction of the quark- and
gluon-induced DY cross section for the production of a lepton pair is balanced by the
contribution of the γγ → `+`− process, of comparable size [25, 27, 111]. In the specific case
of on-shell Z production, the γγ initial state does not contribute at O(ααs) , but only at
O(α2) ; its absence explains, at technical level, the size and sign of the observed effects.

The relevance of the total on-shell Z production cross section as a standard candle
for benchmarking purposes is well established. In the present study, it allows to observe
how different PDF collaborations have implemented the QCDxQED evolution and the
photon-density, with a different impact with respect to the corresponding pure QCD analysis.

The high-precision determination of the input parameters of the SM lagrangian is
performed at hadron colliders with a template fit approach. The experimental kinematical
distributions are compared with the corresponding theoretical predictions, keeping the
lagrangian inputs as fitting parameters. The theoretical uncertainties contribute to the
theoretical systematic error on the result of the fits [112, 113]. In this perspective, the
inclusion of higher-order corrections, like the ones presented in this paper, reduces the
perturbative uncertainty, leaving the PDF uncertainty as one of the main sources in the
final error budget.

An important remark is related to the correlation between the SM parameter under
study and the proton parameterisation in terms of replicas; a well known example is offered
by the effective weak mixing angle determination from the study in the NC DY process of
the invariant mass distribution of the forward-backward asymmetry. The region outside
the Z resonance is weakly sensitive to the weak mixing angle but can help profiling the
PDF replicas. In this spirit, the availability of higher-order radiative corrections to all the
possible partonic channels contributing to a given final state puts severe constraints on
their mutual interplay, yielding in turn a more effective profiling action. The corrections
presented in this paper are part of the complete set necessary to describe at O(ααs) the
NC DY process, illustrated in refs. [39, 40].

In table 2 we present the width of the QCD scale uncertainty band, evaluated considering
independent variations of the renormalisation scale µR = ξRmZ and factorisation scale
µF = ξFmZ . We consider 9 combinations obtained varying ξR,F ∈ [1

2 , 1, 2] and we discard
the two cases ξR = 1

2 , ξF = 2 and ξR = 2, ξF = 1
2 . The percentage correction is computed
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collider σQCD δ7pts σQCD+EW,add δ7pts σQCD×EW δ7pts

pp̄ 1.96TeV 7710.0 +0.48%
−0.66% 7654.0 +0.49%

−0.67% 7649.5 +0.47%
−0.66%

LHC 7TeV 29356.2 +0.52%
−0.26% 29135.7 +0.52%

−0.24% 29120.4 +0.54%
−0.27%

LHC 8TeV 34116.0 +0.58%
−0.30% 33858.7 +0.58%

−0.28% 33840.2 +0.60%
−0.31%

LHC 13TeV 57769.1 +0.78%
−0.45% 57325.0 +0.77%

−0.42% 57287.6 +0.80%
−0.45%

LHC 14TeV 62454.4 +0.80%
−0.47% 61972.6 +0.80%

−0.44% 61931.2 +0.82%
−0.47%

LHC 100TeV 418617 +1.26%
−1.16% 413294 +1.24%

−1.12% 412815 +1.28%
−1.16%

Table 2. Dependence of the cross sections for on-shell Z production, in picobarns, on the renormal-
isation and factorisation scale choices. The upper and lower percentage variations, compared to the
central scales choice, is computed among 7 scales combinations (cfr. text). The results have been com-
puted with the central replica of the NNPDF31_nnlo_as_0118 and NNPDF31_nnlo_as_0118_luxqed
PDF sets.

collider σQCD δQCD σQCD+EW,add δQCD+EW,add σQCD×EW δQCD×EW

pp̄ 1.96TeV 7710.0 3.5 7654.0 1.1 7649.5 0.3
LHC 7TeV 29356.2 3.5 29135.6 0.9 29120.4 0.2
LHC 8TeV 34116.0 3.5 33858.7 0.9 33840.2 0.2
LHC 13TeV 57769.1 3.5 57324.9 0.8 57287.7 0.2
LHC 14TeV 62454.4 3.5 61972.6 0.8 61931.2 0.2
LHC 100TeV 418616 3.5 413294 0.7 412815 0.1

Table 3. Cross sections computed in the Gµ and α(0) input schemes and expressed in picobarn.
The percentage spread δ ≡ 100

(
σGµ/σα(0) − 1

)
between the two schemes is presented next to each

perturbative approximation.

with respect to the central scales choice ξR = ξF = 1. In the table we compare the
three approximations σQCD, σQCD+EW,add, σQCD×EW. We observe that the percentage
uncertainty is almost constant, with variations at the 0.01% level, and we understand this
feature because in the Gµ input scheme the size of the EW corrections is tiny, and so are
the related uncertainties.

A source of theoretical uncertainty is given by the choice of the experimental values
used to express the renormalised lagrangian parameters. The comparison between the Gµ
and α(0) schemes provides a conservative assessment of the size of the missing higher-order
corrections. In table 3 we illustrate the impact of the mixed QCD-EW corrections in the
reduction of the spread between the predictions computed in the two input schemes. We
observe that the results including only QCD corrections are only LO from the EW point of
view and suffer of a large, 3.5%, input-scheme uncertainty. The inclusion of the NLO-EW
corrections stabilises down to the O(1%) level the uncertainty stemming from the LO term,
but not the one due to the NLO-QCD corrections. The latter is compensated by the mixed
NNLO QCD-EW corrections, bringing the residual discrepancy at the O(0.2%) level.
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6 Conclusions

We have presented the analytical expression of the total cross section for the production
of an on-shell Z boson at hadron colliders. The result has been expressed in terms of
generalised polylogarithmic functions. The three elliptic functions which appear in the
double-real contributions have been represented via a series expansion.

These corrections stabilise the prediction of this standard candle process, by reducing
the size of the uncertainty due to missing higher orders [36]. The introduction of EW
and mixed QCD-EW radiative corrections requires the consistent usage of proton PDFs
determined in the same theoretical framework. The comparison with the best prediction
obtained in a pure QCD-based model shows that QCD-EW effects up to O(−1%) have to
be taken into account and are relevant for the precision determination of this cross section.
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