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Abstract

Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present
a unigue opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high

genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially
effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism
spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the
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therapeutic targets.

disorders (ASD)

level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced

Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the
genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised
patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the
patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future
research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or
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Background

Autism spectrum disorders (ASD) are a complex and het-
erogeneous group within the wider spectrum of neurode-
velopmental disorders (NDD), which in its entirety also
encompass intellectual disability (ID), attention-deficit/
hyperactivity disorders (ADHD) and schizophrenia. ASD
in particular are characterised by deficits in social inter-
action, communication difficulty and the presence of re-
stricted, repetitive and stereotyped patterns of behaviour
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[1]. However, individual autistic patients often have fea-
tures of other NDD, as well as comorbidities, such as epi-
lepsy and anxiety [2]. As a consequence, their study
therefore can provide insights across a range of common
psychiatric disorders.

As seen with other NDD, the underlying biological ori-
gins of ASD begin during brain development and neural
maturation; however, the clinical symptoms only emerge
progressively during infancy, and as a consequence it is
often difficult to diagnose at early post-natal stages. In
addition, the spectrum of symptoms and phenotypes
vary considerably from one individual to the next, pre-
senting a challenge to identify those changes that dir-
ectly arise from early developmental deficits and those
that accumulate either indirectly or due to the effects of
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external factors. These complications hinder identifica-
tion of the basic pathophysiological mechanisms that
lead to ASD and hence hamper development of effective
therapies.

Molecular and cellular analysis of human patients is
generally prospective with data mostly derived from
post-mortem tissue. As mentioned above, such studies
are subject to the confounds of secondary effects and
record the outcomes of underlying disease mechanism
rather than directly probe the causative mechanisms.
Animal models can be highly informative for the study
of a basic mechanism; however, it is difficult to directly
translate between observed patient phenotype and ani-
mal models. A particular weakness is the ability to cap-
ture the phenotypic variation across the patient
population.

Human stem cell models offer an opportunity to directly
study the molecular and cellular mechanisms of diseases.
Key to this approach is the generation of human-induced
pluripotent stem cells (iPSCs) derived from patient cells.
These are generated by reprogramming of somatic cells
into pluripotent stem cells from which many cell types
can be differentiated, including neurons and glial cells. Im-
portantly, they can be easily obtained in the clinic from fi-
broblasts (skin biopsies), keratinocytes (hair roots) [3], T
lymphocytes (peripheral blood) [4, 5] and exfoliated renal
epithelial cells from urine samples [6, 7]. Importantly, pa-
tient iPSCs enable the in vitro study of different cells types
in isolation or co-culture in order to investigate cell func-
tion. Uniquely they can track the development profile of
patient cell differentiation. More recently the capacity of
iPSCs to form 3D organoids has opened up the possibility
to investigate the interaction of multiple cell types in a
more brain-like microenvironment. Methods for increas-
ing reproducibility of brain organoid differentiation are
improving substantially [8, 9] and being exploited to
mechanistically dissect the effect of genetic lesions causing
ASD and ID [10-12], as well as the role of specific genes
and molecular modules key to human-specific neuronal
differentiation trajectories and pathophysiology [13].

The major question is how to identify the relevant
cellular phenotypes that converge on the common
pathophysiological mechanisms underlying patient
aetiology. Recent technical advances, particularly the
advent of microarray technologies and whole-genome
sequencing (WGS), have heralded a new era for de-
tection of genetic risk loci for ASD [14, 15]. Unfortu-
nately, most genetic risk for ASD is due to variations
on 100’s of loci dispersed across the genome, each
contributing only a small component to the overall
level of genetic risk. Over the last decade, an accumu-
lation of genetic evidence has pointed to three broad
aspects of neuronal cell biology associated with ele-
vated risk: synapse biology, gene regulation and
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neuro-inflammatory pathways. Emerging studies indi-
cate that this dysregulated cell physiology contributes
to circuit dysfunction, cortical layer malformation and
white matter alteration seen within the patient brain.
All of these biological processes and functional path-
ways can be investigated in patient iPSCs, offering
capabilities beyond studies of post-mortem tissue or
preclinical rodent models.

The dispersed nature of common genetic risk cre-
ates difficulties for cell modelling with most patient
iPSCs. Although common genetic risk can be calcu-
lated as an overall polygenic risk score (PRS), this
does not provide a direct concordance between spe-
cific changes at a genetic locus and the symptoms as-
sociated with ASD. In contrast, single nucleotide
variants (SNVs) and copy number variants (CNVs)
have much higher genetic penetrance for risk of de-
veloping ASD and other NDD [16] and hence
changes at single or a few loci may make a major
contribution to the clinical phenotype. Both SNVs
and CNVs are a lot less common within the general
patient population, but at present common clinical
availability of array comparative genomic hybridisation
(aCGH) technology makes CNVs more likely to be
identified by cytogenomic screening. Accordingly, pa-
tients harbouring pathogenic CNVs present a power-
ful opportunity to relate genetic risk to patient
clinical presentation. Here, we examine how iPSC-
based studies using CNV patients can provide insights
into the relationship of risk genetics to biological out-
comes and can be utilised for the elucidation of dis-
ease mechanism.

Main text

An estimated 5-10% of all ASD cases carry CNVs [14],
compared to 1.4-2.5% of all schizophrenia cases [15,
17]. Often CNVs arise spontaneously or de novo, al-
though they can also be inherited in families, and at least
90 pathogenic CNVs have been reported for ASD [18].
There is however a core of CNVs associated with strong
evidence of association with ASD and prevalent amongst
people referred for genetic testing (Table 1) [19-22]. It
is clear that despite having high genetic penetrance,
CNVs present with considerable clinical variation in se-
verity, phenotypic profile and co-morbidity, even be-
tween individuals with CNVs at the same chromosomal
locus. For example, it is well established that a deletion
at the 22q11.2 locus (22q11.2DS) is associated with
ASD, but when children were identified first by genetic
screening as few as 16% had ASD using stringent assess-
ment criteria, although more than 80% showed diagnos-
tic criteria for at least one psychiatric disorder and
approximately 60% exhibited characteristics of ADHD
[23]. In adults, 25% of patients with 22q11.2DS develop
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Table 1 Frequent CNVs associated with risk for neurodevelopmental disorders (NDDs)
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Locus Syndrome Rearrangements Position of ~ Key genes % in People with Autism
critical
region
1921.1 1921.1; del and  chr1:146,527, HYDIN2, PRKAB2, Del 0.039%, Dup 0.157% (Pinto et
dup 987-147,394, CHDIL, BCLY, GJAS, al, 2014) [19]
444 GJA8, GPR89B
2p16.3 del chr2: NRXNT Del 0.316% (Pinto et al., 2014) [19]
50145643~
51259674
3929 del chr3:195,720, DLGI Del 0.005% (Malhotra et al, 2012)
167-197,354, [20]
826
7911.23  Williams-Beuren syndrome (WBS) del and dup chr7:72,744,  CLDN3, CLDN4, GTF2, Del .024%, Dup 0.097% (Pinto et al,,
915-74,142,  ELN, LIMK1, KCTD?, 2014) [19]
892 CLIP2, STX1A,
9934 Kleefstra syndrome del chr9:140,513, EHMT1 Del 0.049% (Pinto et al, 2014) [19]
444-140,730,
578
15911.2 BP1-BP2; del chr15:22,805, CYFIPT Del 0.09% (Malhotra et al,, 2012)
and dup 313-23,094, [20], Dup 0.94% (van der Zwaag et
530 al, 2010) [21]
15g11-  Prader-Willi and Angleman’s syndromes BP2-BP3 chr15:29,161, UBE3A, ATP10A, Del 0.192% (Depienne et al., 2009)
ql3 368- GABARB3, GABARAS, [22], Dup 0.255% (Pinto et al,, 2014)
32462776 GABARG3 [19]
150133 BP4-BP5; del chr15:32,017, CHRNA7 Del 0.157%, Dup 0.039% (Pinto et
and dup 070-32,453, al, 2014) [19]
068
16p13.11 del and dup chr16:15,511, NDEI, MYHI11 Del 0.137%, Dup 0.268% (Pinto et
655-16,293, al, 2014) [19]
689
16p11.2 proximal (593 chr16:29,650, KCTD13, ALDOA, Del 0.42%, Dup 0.39% (Malhotra et
kb) del and dup 840-30,200, COROTA, MAPK3, TAOK2 al, 2012) [20]
773
17912 Renal cysts and diabetes syndrome (RCAD)  del and dup chr17:34,815, NF1 Del 0.039%, Dup 0.020% (Pinto et
904-36,217, al, 2014) [19]
432
22q11.2  Deletion known as DiGeorge syndrome, del and dup chr22:19,037, TBX1, COMT, PI4KA, Del 0.059%, Dup 0.157% (Pinto et
Velocardiofacial syndrome and 22q11.2 332-21,466, SEPT6 al, 2014) [19]
deletion syndrome 726
22913 Phelan-McDermid syndrome (PMDS) del chr22: SHANK3 Del 0 .097% (Pinto et al,, 2014) [19]
51113070-
51171640

schizophrenia, 70% of the individuals possessing the
same size deletion at the 22q11.2 locus exhibit congeni-
tal heart conditions [24—26].

These observations define the key questions of both
genetics and biology that CNV patient iPSCs can address
by the development of cell modelling of ASD and other
NDD. In this review, we will discuss how these studies
help understand the mechanisms underlying the
genotype-to-phenotype relationship for ASD risk; what
aspects of ASD can be meaningfully modelled in iPSC-
derived neurons, and what limitations these studies pos-
sess. Finally, we will consider what methodological ap-
proaches are required to advance these studies.

Genotype-to-phenotype relationship in NDD

patients harbouring pathogenic CNVs

The possible reasons for variation in the relationship be-
tween genotype and phenotype for different patients are
still uncertain; however, they present an important con-
sideration when choosing which patients to select for
further study. What additional genetic factors and gen-
omic mechanisms might increase phenotypic variation
of patients with apparent similar risk loci?

First, the size, and hence number of genes affected at
individual loci can vary considerably, with many of the
larger CNVs having a number of different break points.
The 22q11.2 locus for example can occur between two
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of four different breakpoints (A-D) with five different
forms of deletion reported in the patient population
[24]. In addition, break point regions can have complex
local sequence changes, such as short sequence inver-
sions or insertions and deletions (indels) that vary from
one individual to the next but are not detected by the
commonly used sequencing technologies and arrays
[27]. With the advent of a new generation of single-
molecule real-time (SMRT) sequence technologies that
are capable of very long reads in each run, this level of
variation is likely to be resolved in the future. Further-
more, it is also becoming very clear that the 3D chroma-
tin structure, such as chromosome loops (topological
associated domains, TADs) and long-range chromatin
interactions, also play an important role in gene regula-
tion. CNVs may influence or even disrupt gene regula-
tion beyond the specific sequences contained within
them [28]. Again, techniques are becoming available to ac-
curately map these changes. Although these sources of gen-
ome variation are still a major challenge for CNV analysis,
they also present a considerable opportunity for iPSC-based
studies due to their ability to draw together genomics, tran-
scriptomics and quantitative cell phenotyping.

A second major source of genomic variation arises due
to patient diagnosis. As in the great majority of pub-
lished studies patients are initially selected on the basis
of their clinical presentation, for example congenital ab-
normality or developmental delay, which leads to then
being referred for genetic testing. As a consequence,
there is likely to be acquisition bias and under-
representation of those individuals who have little or no
pathology associated with their CNV. This bias may
select for patients who possess additional background
variation in their genome that enhances the effect of a
CNV but is not detected by standard clinical screening.
Studies on the impact of carrying several “pathogenic”
CNVs indicate that children who carried two large
CNVs of unknown clinical significance were eight times
as likely to have developmental delay than patients with
a single CNV [29]. Observations of the 16p12.1 deletion
suggest a two-hit model for severity of its associated im-
pact on developmental delay [30]. Possession of com-
mon risk variants in an individual background genome
may also influence severity and clinical presentation. A
study on schizophrenia patients showed higher PRS in
individuals with low-penetrant CNVs in comparison to
those with high-penetrant CNVs [31] and children with
ADHD showed lower PRS when carrying large, rare
CNVs in comparison to children with ADHD without
such CNVs [32]. These results support the proposition
that CNVs exert the same genetic pressure on risk as
common variants but in general are more penetrant.

Finally, when using patient iPSCs for modelling it is
important to take into account that for some CNVs,
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ASD is 4-fold less prevalent in females than males, yet
there is an excess of deleterious CNVs in the female
population, suggesting the existence of a protective ef-
fect [33]. It is currently unclear whether this protection
extends in cells derived from female patients after repro-
gramming and/or during in vitro neuro-differentiation
but needs to be considered as a possible confound when
comparing between cell lines from different patients and
non-patient controls.

Appropriate controls for patient iPSC studies

The genetic observations above underlie the need for
careful selection of controls for iPSC studies. In an ideal
situation, iPSCs derived from parents and siblings should
be used to generate control cells alongside patient cells.
In addition, genome editing techniques address the need
for controls by standardising genetic backgrounds via
generation of isogenic cell lines. Here, CRISPR/Cas9-me-
diated genome editing can be used to target a single
gene within a CNV, so that the edited iPSC lines will
have an identical genetic background to the parental
line, minimising heterogeneity and phenotypic variability
arising due to the genetic differences in the genomic
background [34]. Multiple rounds of CRISPR can be
used to sequentially disrupt more than one gene to
model aspects of larger CNVs, or pairs of gRNA used to
generate large genomic deletions and other rearrange-
ments to create cell models with up to 1Mbp deletions
[35] or reciprocal CNVs in human iPSCs [36]. In all
cases, care should be taken to avoid introduction of off-
target mutations leading to the small indels or even
CNVs elsewhere in the genome. As a minimum, it is ad-
visable to study multiple, independent engineered cells
lines and genotype each using array screening. In future,
availability and prevalence of WGS technologies may
allow for more in-depth analysis. Finally, ideally engi-
neered cells lines can be “rescued” by further engineer-
ing or reversible transgenesis using a piggyBac
transposon system [37] to the original gene copy
number.

What aspects of ASD can be modelled in iPSCs
derived from CNV patients?

Although not without the challenges described above,
a high degree of genetic penetrance makes a strong
biological case for use of iPSCs from patients har-
bouring pathogenic CNVs as the basis for creation of
disease-relevant cell assays. However, beyond a simple
justification of providing access to human cell physi-
ology, patient iPSC studies need to be tailored to
align with the underlying biology observed for ASD
and other NDD. Table 2 (and Supplementary Tables
2a and 2b) list those iPSC lines and their analysis that
have been reported to date.
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All NDD conditions are characterised by aberrant
brain and cognitive function that arises during pre-natal
or early post-natal life stages. Ultimately, these changes
result in altered neuronal function and are strongly asso-
ciated with synapse function and neuronal activity. How-
ever, genetic risk does not necessarily arise directly from
mutation of synaptic protein-encoding genes and may
also arise from deficits that occur in early neurodevelop-
ment leading to abnormal neurogenesis or synaptogene-
sis. In the following section, we relate the aspects of
ASD biology to the different modes of study available
for patient iPSCs.

Synapse biology and neuronal activity

Accumulating evidence indicates altered brain con-
nectivity as a common feature across all psychiatric
disorders, implying underlying abnormalities of the
brain circuitry [61]. Analysis of neuronal connectivity
via synapses in cultured neurons can be performed
using immunocytochemistry of synaptic proteins to
examine synaptic density, rabies virus techniques to
identify which neurons are connected via synapses,
and a range of electrophysiological techniques that
allow the detection of postsynaptic currents and po-
tentials [62].

Studies on the glutamatergic excitatory neuronal syn-
apse from ASD patient iPSCs with a 22q13.3 deletion or
de novo mutations of the synaptic protein Shank3,
which is located within the CNV, showed that these
neurons have significantly reduced numbers of synapses
and a corresponding decrease in synaptic transmission.
These deficits can be reversed by treatment with the
insulin-related hormone IGF-1 [55, 63]. Consistent with
synaptic transmission deficits, iPSC-derived neurons
from 15q11-q13 duplication syndrome were shown to be
associated with delayed action potential maturation and
increased synaptic event frequency. iPSC-derived neu-
rons from 16pl1.2 deletion and duplication were again
associated with a decreased number of synapses. How-
ever, in contrast to other reports, the amplitude of exci-
tatory postsynaptic currents of 16p11.2-derived neurons
was significantly higher suggesting that they have in-
creased synaptic strength [52]. Investigation of patient
iPSCs with the 9q34 del (Kleefstra Syndrome) indicated
a network disruption that correlates with increased ex-
pression of the NMDA subunit GluN1 that can be re-
versed by the NMDA blocker MK-801 [44].

These observations suggest that altered brain activity
associated with CNVs can be captured in vitro in iPSC
culture, offering an excellent platform for pharmacology
of human neuronal systems. However, they are not the
only differences that can be observed using patient
iPSCs.

Page 11 of 18

Gene regulation and neurodevelopment

iPSCs uniquely offer the means to follow neurodevelop-
ment in vitro at the cellular level, providing a direct way
to follow timing and fate during cell differentiation. This
can be readily investigated by monitoring gene expres-
sion by RNA profiling techniques, such as RNA-seq, and
assayed in conjunction with immunocytochemistry and
cellomic approaches to localise changes to specific cells.

Studies of iPSCs derived from idiopathic ASD patients
with no genetic or clinical stratification identified gene
modules (sets of co-expressed genes), which are mis-
regulated in the patient lines [64]. Affected modules,
included those involved in synaptic transmission, corre-
lated with altered neuronal network activity, as mea-
sured by multi-electrode array (MEA) and calcium
signalling. A recent iPSC study focused on ASD patients
who exhibit macrocephaly identified heterochronic
disease-associated changes of gene expression and chro-
matin accessibility during their neuronal differentiation
that could be reversed via expression of the neurogenic
transcription factor NGN2 [65].

Direct examples of a gene regulatory change due to a
CNV are Kleefstra syndrome and 7q11.23 (WBS). Loci
of both CNVs contain epigenetic regulators that repress
transcription to ultimately lead to synaptic dysfunction,
either through loss of the EHMTI gene, which generates
the suppressive histone methylation H3K9me2 [66] in
the case of Kleefstra syndrome or GTF21 in WBS [68].
GTF21 dosage imbalance is responsible for a large pro-
portion of the transcriptional deregulation in WBS act-
ing mainly as a transcriptional activator or cooperating
with the H3K4 demethylase LSD1 in mediating tran-
scriptional repression [43, 67]. The CNV 1q21.1 also
contains a remodeller but its gene regulatory function
has yet to be investigated. In addition to direct changes
where CNV result in loss of a gene regulator, indirect
changes can also lead to altered expression, for example
the transcriptional profile changes associated with loss
of Shank3 [68]. RNA profiling methods and cell localisa-
tion approaches can be combined together using single-
cell RNA-seq to observe altered expression as cells di-
verge into different cell states, as reported from WBS
and NRXN-1 CNVs [40, 67].

Neuro-inflammatory pathways

A third major biological pathway identified from GWAS
is neuro-inflammation. Although this seems quite dis-
tinct from synaptic biology and neurodevelopment, in
the context of the nervous system immunological path-
ways play a major part in shaping neuronal interactions
and function. Elevated levels of TNF-«, IL-1pB, IL-6 and
IL-17 in the brains of ASD patients support the notion
that dysregulated immunomodulatory pathways contrib-
ute towards pathology [69].
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Post-mortem brain tissue from ASD patient has shown
an increased microglial activation in the prefrontal cor-
tex and microglia-specific gene expression has been
found to be altered. Deficits in microglial activity were
shown to reduce synaptic pruning leading to altered
brain connectivity due to an accumulation of immature
synapses [70]. It is not yet clear whether the increase in
peripheral inflammation reported for 22q11, 16p11.2, 3q
and 7q11.23 CNVs are reflected in microglial dysfunc-
tion, but loss of the Cyfipl gene present within the
15q11.2 CNV in mice leads to increased neurogenesis
due to a failure of microglial-induced neuronal apoptosis
[71]. Protocols for differentiation of microglia from
iPSCs have been developed, and these microglia were
shown to secrete pro-inflammatory cytokines upon
stimulation. However, their effect on synaptic pruning
and brain development has not been yet reported.

Although neuronal dysfunction receives most atten-
tion, iPSC-based studies have indicated dysfunction of
glial cells. In neuron-astrocyte co-cultures, it was
shown that ASD patient astrocytes can interfere with
neuronal development, while control astrocytes could
rescue changes in neuronal morphology and synapto-
genesis in non-syndromic ASD cultures [72]. In-
creased levels of IL-6 in the ASD astrocytes were
suggested to underlie astrocyte actions, in line with
earlier studies showing involvement of immune sys-
tem dysregulation in ASD [73]. Recent single-cell
expression studies on iPSC-derived neural stem cell
cultures also revealed that NRXNI-a deletions shift
neural cell development into higher proportions of
astroglial cells [40], thereby affecting functional mat-
uration of neurons. In addition to astroglia, a recent
study also indicated involvement of oligodendroglia in
neuronal phenotypes associated with ASD, as shown
by neuron-oligodendrocytes co-cultures generated
from tuberous sclerosis complex (TSC) patient cells
[74]. Whether the cellular changes in morphology are
also linked to the ASD phenotypes is so far unclear
but will continue to be an expanding area for CNV
patient iPSC studies.

Cortical abnormalities

It has been widely reported that brains of children with
ASD have accelerated growth compared to non-patient
controls of similar age, known as macrocephaly [75-78].
Magnetic resonance imaging (MRI) studies indicate
wide-reaching phenotypic impact in some rare CNVs
leading to substantial size and shape changes in the
brain, e.g. 22q11 [79, 80], 7q11.23 deletion [81, 82],
15q11.2 [83-85] and 16p11.2 proximal [86—88] and dis-
tal CNVs [89], potentially underlining a neurodevelop-
mental component to the disorders. As such, a recent
study using iPSCs from ASD patients with macrocephaly
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identified disease-associated changes at transcriptome
and cellular levels that are present in a very early stage
of neural stem cells and established an ASD specific
gene signature. More importantly, overexpression of
module-specific gene signatures in healthy cells was
enough to recapitulate ASD disease-specific cellular phe-
notypes [65]. These findings demonstrate that there are
key nodes within dysregulated gene networks that are
related to ASD and may represent promising targets for
therapeutic intervention.

The presence of additional numbers of neurons in the
prefrontal cortex of the post-mortem brain from ASD
patients complements clinical observations [75]. Further-
more, changes in neuronal density, neurogenesis and
increased cortical thickness were found in subjects diag-
nosed with ASD [90, 91]. Using iPSCs, Deshpande et al.
[52] assessed changes in brain growth phenotypes, such
as cellular morphology in iPSC-based cortical cultures
derived from 16p11.2 deletion and duplication patients.
In line with clinical changes, neuronal cultures devel-
oped from 16p11.2 deletion iPSCs possessed increased
soma size and dendritic length, while those from the du-
plication had reduced cell size and dendritic length. A
further correlation between brain size and increased pro-
liferation of neuronal progenitors has also been shown
in iPSC-based cultures of individuals with idiopathic
ASD [92].

Use of 3D brain organoid cultures have shown that
changes in even a single gene, such as FOXG1 [46] and
CHDS8 [12], can lead to dysregulation of the cortical
layer formation, cell migration and cell division and po-
tentially increased differentiation GABAergic neurons.
Organoid modelling 17p13.3 deletion (Miller-Dieker
syndrome) demonstrated mitotic defects in the outer ra-
dial glia, cell migration and also an overproduction of
GABAergic neurons [10, 54]. However, although the
17p13.3 deletion is associated with both ID and unpro-
voked seizures, it is the duplication that is associated
with risk of ASD, and this has not been reported to have
a deficit in GABAergic neuronal number. Furthermore,
there is no consensus on whether ASD is associated with
decrease or increased GABAergic neurons, even whether
it is an excitatory/inhibitory imbalance per se, not its
direction, that increase risk [93]. Organoids derived from
CNV-associated patient offer good potential to resolve
this question in future.

White matter alterations

Emerging studies suggest that white matter pathology
also contributes towards the pathogenesis of ASD. Pa-
tients show regional decrease of white matter and in-
crease of the grey matter [94-96]. The presence of
supernumerary neurons within the white matter of the
subcortical region is a commonly observed anomaly of
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ASD. Additionally, white matter integrity as measured
by fractional anisotropy seems to be altered in 22q11.2
deletion patients [97] and 16p11.2 deletion is also associ-
ated with decreased myelination in the subcortical re-
gion of the brain [98]. A recent animal study of Cyfipl
function in the corpus callosum showed that its deletion
decreases the myelinating potential of oligodendrocytes
[99]. Although it is still not understood what induces
hypomyelination in the ASD, this may arise from deficits
in oligodendrocyte progenitor cell differentiation or dys-
regulated apoptosis of mature oligodendrocytes leading
to decreased neuronal myelination. This interaction can
be modelled with patient iPSCs, and cells from ASD pa-
tients with loss of function TSC-1 or -2 mutations ex-
hibit oligodendrocyte-neuronal signalling and altered
cell differentiation [74]. Given the evidence from brain
imaging and animal studies, future in vitro cell studies of
iPSCs derived from patients harbouring pathogenic
CNVs are likely to be very informative.

Limitations

While the “What aspects of ASD can be modelled in
iPSCs derived from CNV patients?” section outlines how
in vitro cell cultures of iPSCs derived from patients har-
bouring pathogenic CNVs can capture disease-relevant
features seen in the patient brain, we have to recognise a
number of limitations and potential confounds.

1. Cellular reprograming can contribute to formation
of de novo CNVs in pluripotent stem cells during
early cell passage, although both the size and total
number seems to decrease with subsequent
passages possibly due to negative selection [100].
Such genomic instability presents a potential
serious confound for studies of iPSCs derived from
patients harbouring pathogenic CNVs and has been
shown to have adverse effect on pluripotency, cell
proliferation and differentiation [101-104], all
features of the patient cell phenotype. Careful
monitoring of the cell karyotype and regular array-
based or WGS genotyping is required to eliminate
any cell lines that have accumulated artefactual
CNVs during their generation. It is also recom-
mended that newly generated lines should be grown
for a minimum of 10 passages to ensure genetic sta-
bility, coupled with genotyping and differentiation.

2. Gene expression analyses indicate that iPSC-derived
neurons appear to be in a pre-natal state [105, 106]
and several ageing-associated changes are erased
during the reprogramming process [107]. This is a
useful feature when using iPSCs for studying neuro-
developmental deficits. It does however mean that
genome imprinting and other epigenetic changes
associated with parental and environment
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interactions may be lost [108]. Future studies mod-
elling ASD may benefit from monitoring changes in
chromatin modification at imprinted and other loci.

3. Differentiation of human iPSCs extends over long
culture times, taking up to 100 days or more to fully
form functionally mature neurons, and even then,
they often show characteristics of foetal embryonic
neurons [109]. This prolonged process affords
plenty of opportunities for small variations in
culture conditions to introduce differences from
one culture to the next. Direct comparisons of gene
expression, by use of RT-qPCR or RNA-seq, and
cell electrophysiology need to be made to ensure
that cultures have reached the same level of matur-
ity. Currently, whole-cell recordings of iPSC-
derived neurons are routinely performed and pro-
vide accurate measurements of the intrinsic proper-
ties of these cells. Relevant parameters to study the
degree of neuronal differentiation (such as stable
resting membrane potential, input resistance, mem-
brane capacitance and action potential characteris-
tics) can be determined by measuring the voltage
response of the cell to injected hyperpolarizing or
depolarizing current pulses. Where fine compari-
sons are needed between patient and non-patient
controls for different cell types, single-cell RNA-seq
or even Patch-seq for neurons, which combines
patch-clamp and RNA-seq [110], may be beneficial.

4. Finally, the in vitro culture conditions, whether
2D or 3D, employed for iPSC studies rely on the
self-assembly of cell-cell contacts and synapto-
genesis. Although this may model the dynamics
of neurogenesis in the brain, it does not recapitu-
late the higher order organisation and circuitry
seen in the human brain. This does currently
limit the scope of iPSC work, but solutions are
now in development, such as MEA analysis of
3D brain organoids [111].

Future development
Current usage of iPSCs from ASD and other NDD pa-
tients with associated CNV is improving our under-
standing of disease mechanism at the neural cell level.
Importantly as discussed in the “What aspects of ASD
can be modelled in iPSCs derived from CNV patients?”
section, the cell phenotypic data that can be gained from
these studies do align with observations from patients
and in the clinic. This demonstrates the utility of iPSCs
derived from patients harbouring pathogenic CNVs. But
how can this be developed further to enhance their fu-
ture role for study of the origins of ASD and ultimately
for development of new therapeutics?

We propose that the next generation of iPSC studies
need to expand in three domains: genomic complexity,
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cell assay complexity and scale (Fig. 1). In combination,
all three will build an enhanced cell-based platform for
the study of ASD and other NDD in vitro and at the cel-
lular level with increasing construct validity.

Genomic complexity

In the simplest cases, CNV patients, in which only a sin-
gle gene is deleted or duplicated and also exhibits high
genetic penetrance, can approximate to a monogenic
disorder. Such cases are seen for 9p34 (Kleefstra syn-
drome) and NRXNI-a, and a case can be made for
SHANK3 where individual gene mutations share the
same clinical phenotype as the patient with 22q13.2
CNV. However, for most CNVs multiple candidate
genes lie within the affected chromosome locus. To pro-
gress these cases, we need to establish the mechanism of
disease on an individual CNV basis. In principle, this
can be achieved by gene transcriptional analysis of the
genes within the CNV and cross-reference to GWAS
data across the range of NDDs and associated comorbid-
ities. In practice, this can be challenging as multiple
genes can often be expressed with patterns that vary
from one cell type to another or developmental state;
comparison of deletions and duplications at the same
loci often do not show “mirror”, or reciprocal expression
patterns and GWAS data for NDD is still not saturated
for all possible loci.

A further confound is the suspicion that many large
CNV clinical phenotypes may arise due to the effects of
multiple genes within the locus. Here, patient iPSCs
studies may help, as CRISPR-generated isogenic human
iPSCs may be directly compared to patient-derived
iPSCs. Current genome editing methodologies are
already available to allow with the generation of multiple
gene manipulations to model these possibilities [112].

Such comparisons can also address patient genetic
complexity due to the presence of either multiple CNVs
or possession of common variants that elevate the

Genomic
complexity
Single CNV Multiple CNV CNV

+high PRS

Assay

complexity

3D culture
& organoids

Single cell type Co-culture

in 2D culture

High-content
Screening (HCS)

Size and "

Scale
>1000

patients

<10 patients ~100 patients
Fig. 1 Three domains for future expansion of iPSC studies. Increases
in the number of patient iPSCs within a study (from low to high);
assay complexity (from single parameter of 2D cultures to complex,
multi-parameteric, high content assays on co-cultures or in 3D
structured and organoid conditions) and increases in cell genetic
complexity (from single CNV (monogenic) to multiple CNV and
increasing polygenic (PRS) genomic background)
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polygenic risk in the genome background. The key to
these approaches however will be to have a complete
analysis of genomes of patients harbouring pathogenic
CNVs, especially if these can be combined with family
studies. The most complex genetic scenario is if the
structural variation at a CNV alters gene regulation via
long-range changes in nuclear architecture or trans-
acting regulatory RNA molecules. Again, this would
synergise well with patient iPSC approaches via multi-
omic methodologies to combine cell phenotyping with
genome-wide transcriptional profiling, including miR-
NAs and IncRNAs, and chromatin interaction studies.
Given that GWAS studies indicate that for NDDs 80%
of disease-associated SNPs are not within protein-coding
genes, such patient iPSC studies may prove a powerful
stepping-stone to understanding the impact of the ma-
jority of SNPs on inherited ASD risk.

Assay complexity

Although progress has been made, there is still much
further work required to improve construct validity of
iPSC-based NDD assays. Many neuronal and glial cell
types can be generated using available in vitro differenti-
ation protocols. However, cell type diversity is still miss-
ing, particularly for the GABAergic interneuron
populations, such as the rapid firing PV+ interneurons,
which play an important regulatory function and exhibit
abnormal behaviour in NDD. Expression of certain com-
binations of transcription factors can rapidly induce
homogeneous populations of glutamatergic, excitatory
neurons in the case of NGN2, and GABAergic, inhibi-
tory neurons by expression of Asc/1 and Dix2 [113]. The
expectation is that more transcription factor combina-
tions will be established to enable a greater range of cell
type to be generated. However, this approach is not
without issues. Given the evidence that the neuronal de-
velopmental programme may be disrupted in ASD pa-
tient cells, accelerating their neural cell differentiation
may bypass some aspects of the cell phenotype. Further
work remains to compare iPSC-derived neurons using
classical and induced methods to ensure that they accur-
ately reflect those found in the human brain.

In addition to increased assay complexity through gen-
eration and co-culture of multiple neuronal and glial cell
types, a second element is to create more structured cul-
tures beyond simple growth and development on 2D
surfaces. Any increase in cell culture complexity needs
to be standardised and deliver robust readouts. The de-
velopment of 3D brain organoids aims to address this
need; however, individual organoids vary considerably in
structure and standardised methods of comparison still
need to be developed and adopted. A compromise pos-
ition that has a high degree of controllability, and hence
potential for standardisation, is to use 2D cultured cells
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presented in a layered configuration. Simple examples of
this are “sandwich” cultures where neurons and astro-
cytes are grown on coverslips and dishes as 2D mono-
layers and then placed together [114]. More
sophisticated structured culturing methods are also be-
ing developed using 3D bioprinting [115] to build lay-
ered cultures where different cells types are set in layers
of matrix creating flat interfaces between different cell
types.

Finally, complexity can be increased via high content,
multiparametric data collection. This can be achieved
through increasing the number of parameters recorded
for individual assay modalities, such as cellomic ap-
proaches with automated cell microscopy, or collection
of MEA functional data, all of which are compatible with
multi-well formats. Alternatively, it is possible to com-
bine modalities together, so that electrophysiological
techniques can be combined with imaging of cell and
neuronal gene expression profiles in iPSCs to pinpoint
exactly how patient cells differ from non-patient con-
trols. This also requires creation of comparative data-
bases that bring together morphological, genetic, gene
expression, biophysical and electrophysiological proper-
ties across the neuro-differentiation time course. An ex-
emplar is the Neuroelectro project that aims to compile
and organise published data about electrical properties
of neurons [116]. This is currently oriented to improve
neuronal classification for animal models but could form
the basis for a human iPSC platform.

Size and scale
The third dimension is to expand the number of patient
iPSCs within experiments, increasing the size of studies
from less than 10 patients to many 100s if not 1000s of pa-
tients. New automation technologies, such as a fully auto-
mated robotic cell reprogramming system [117], are
needed to allow the generation of large cohorts of patient-
specific iPSCs. These need to be differentiated in parallel
with robust and standardised protocols, which would in-
clude internal monitoring of the differentiation state.
Many of these issues can be solved by developing
higher throughput and analysis culture techniques; how-
ever, the greatest limitation is the identification of suffi-
cient numbers of CNV patients. The need to establish
large patient cohorts and share data from these rare in-
dividuals in the population will be a strong driver for fu-
ture international collaboration. Research networks,
such as the MINDDS COST Action (CA16210) [118],
are currently aiming to open up access to larger scale
patient-based studies, including those based on iPSCs.
As this endeavour grows, there will be the necessity to
analyse, collate and share data across multiple sites. The
solutions to these problems are already being developed,
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and projects such as RD-connect [119] may produce the
platforms for effective data and resource sharing.

Conclusions

Here, we have considered the need, current state and fu-
ture of the utility of iPSC-based models of ASD derived
from patients with associated CNVs. We have demon-
strated that current evidence is accumulating for construct
validity between the biological processes that can be stud-
ied at the cellular level and clinical observations on pa-
tients. We have also discussed the necessity to probe
background genetics for iPSC studies of CNV patients,
and the opportunity that their cell phenotyping offers for
future research to resolve the biological effects of common
variants on increased disease risk. Finally, we have consid-
ered the future of CNV patient-based cell platforms ex-
panded into the three domains of increased genomic
complexity, cell assay complexity and patient population
size. While challenging, the expansion of CNV-focused
iPSC investigations is feasible and the need to create larger
patient iPSC panels will be a driver for future research.
This global enterprise will create a unique cell interface to
connect ASD risk genetics and clinical phenotype that ac-
celerates the development of personalised medicine.
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