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Abstract
One of the most substantial and established environmental risk factors for neurological and psychiatric disorders is stress 
exposure, whose detrimental consequences hinge on several variables including time. In this regard the gestational period 
is known to present an intrinsic vulnerability to environmental insults and thus stressful events during pregnancy can lead 
to severe consequences on the offspring’s brain development with long-term repercussions throughout adulthood. On this 
basis, we investigated the long-lasting impact of prenatal stress exposure on the susceptibility to the experimental autoim-
mune encephalomyelitis (EAE), a well-established murine model of multiple sclerosis. Although stress is considered a trig-
gering factor for this chronic, progressive, autoimmune disease, little is known about the underlying mechanisms. To this 
end, EAE was induced by immunization with MOG35-55/CFA and pertussis toxin administration in adult female C57BL/6 
mice born from control or stressed dams exposed to restraint stress during the last days of gestation. Our results demonstrate 
that gestational stress induces a marked increase in the severity of EAE symptoms in adulthood. Further, we highlight an 
altered maturation of oligodendrocytes in the spinal cord of prenatally stressed EAE mice, as indicated by the higher levels 
of GPR17, a marker of immature oligodendrocyte precursor cells. These behavioral and molecular alterations are paralleled 
by changes in the expression and signaling of the neurotrophin BDNF, an important mediator of neural plasticity that may 
contribute to stress-induced impaired remyelination. Since several already marketed drugs are able to modulate BDNF levels, 
these results pave the way to the possibility of repositioning these drugs in multiple sclerosis.
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Introduction

Stress experience has been consistently established to be a 
major environmental factor in the etiology of several neu-
rological and psychiatric diseases (Gradus 2017). Thus, 
living stressful situations can lead to several molecular 
alterations that can eventually evolve from a normal adap-
tive body reaction to a medical condition (Davis et al. 
2017). This different trajectory may depend on several 
variables such as the genetic background of the subject, 
the socio-economic context, the nature, severity and dura-
tion of the stressful experience and the time at which the 
stress occurs. In particular, the gestational period is con-
sidered a “window of vulnerability” (Briscoe et al. 2016) 
and the exposure to adverse events during pregnancy has 
been shown to impact not only maternal health but also 
to have a deep long-lasting influence on offspring neu-
rodevelopment, leading to an enhanced susceptibility to 
diseases and dysfunctions during adulthood (Zucchi et al. 
2013; Coe and Lubach 2005; Entringer et al. 2015). It has 
been hypothesized that, underlying this effect termed “fetal 
programming” (Barker 1998; Kwon and Kim 2017), pre-
natal stress (PNS) can leave a signature in the progeny by 
affecting neural plasticity. In line with this hypothesis, pre-
natal stress exposure is associated with alterations of the 
neurotrophin Brain-derived neurotrophic factor (BDNF), 
a crucial player in neurodevelopment and neuronal plas-
ticity known to be involved in several neurodegenerative 
and psychiatric diseases (Autry and Monteggia 2012; 
Zuccato and Cattaneo 2009). For example, PNS has been 
found to reduce BDNF gene expression in the amygdala 
and hippocampus of rats at weaning and during adulthood 
(Boersma et al. 2014), to increase BDNF (exon IV) DNA 
methylation in the medial prefrontal cortex of adult male 
rats (Blaze et al. 2017), and to decrease the neurotrophin 
protein levels in the hippocampus of both female and 
male rats (Yeh et al. 2012). Of note, changes in BDNF 
expression were also found in the spinal cord of prena-
tally stressed adult rats (Winston et al. 2014). Even though 
the more robust evidences for BDNF modulation by early 
life stress derive from preclinical studies, it has been also 
reported in humans that maternal experiences of chronic 
stress-such as war trauma- are associated with alterations 
of BDNF methylation in both newborn and maternal tis-
sues (Kertes et al. 2017) and the level of the neurotrophin 
in the amniotic fluid during pregnancy is positively corre-
lated to maternal early adversity exposure (Deuschle et al. 
2018). On these bases, the aim of our study was to investi-
gate the potential long-lasting impact of PNS exposure on 
the susceptibility to pathologies known to be characterized 
by alterations of neural function and plasticity, such as 
multiple sclerosis (MS), an autoimmune disease whose 

incidence is greatly increasing among young individuals, 
beginning in adolescence (GBD 2016 Neurology Collabo-
rators 2019). The contribution of environmental factors 
such as stress in prompting MS or influencing its manifes-
tations and course has not been clearly elucidated (Heesen 
et al. 2007). Specifically, little is known about the mecha-
nisms by which adverse events during—or around—the 
gestation period may increase the susceptibility to MS in 
the progeny. Indeed, to the best of our knowledge, only few 
clinical studies have linked MS risk with features of mater-
nal behavior including breastfeeding duration (Ragnedda 
et al. 2015; Conradi et al. 2013), delivery mode (Maghzi 
et al. 2012; Nielsen et al. 2013) or vitamin D intake (Mir-
zaei et al. 2011). In this regard, only one report indicating 
a possible—but not statistically significant—association 
between stressors, such as late prenatal maternal care 
and maternal illness during pregnancy and MS has been 
published so far (Gardener et al. 2009). At preclinical 
level, most studies using the experimental autoimmune 
encephalomyelitis (EAE) mouse—the most commonly 
model for MS—are focused on the long-term effects of 
neonatal manipulations (Krementsov and Teuscher 2013; 
Teunis et al. 2002; Columba-Cabezas et al. 2009; Case 
et al. 2010) but the influence of stress during gestation on 
EAE has not yet been investigated.

With these premises, the aim of this study has been to 
evaluate the impact of a prenatal stress exposure on EAE 
course at adulthood. Specifically, given that MS affects 
women twice as often as men (Harbo et  al. 2013), we 
induced EAE in the female adult progeny of dams exposed 
to a stressful manipulation during the last days of gesta-
tion and we scored the clinical symptoms in comparison 
with un-stressed cohorts. Moreover, in order to understand 
the molecular mechanisms underlying the stress effect, spe-
cific molecular analyses have been performed in the spinal 
cord. In particular, given the demyelinating nature of the 
encephalomyelitis, we first focused our analyses on markers 
of different stages of oligodendrocyte maturation. Thereaf-
ter, we analyzed the upstream Akt/mTOR signaling pathway, 
relevant for myelination itself, pinpointing the neurotrophin 
BDNF as a potential player in the long-lasting influence of 
PNS on EAE development and MS vulnerability.

Materials and Methods

Subjects

Adult female C57BL/6 (n = 20) pregnant mice at gesta-
tional day (GD) 14 were purchased from a commercial 
breeder (Charles River Laboratories). Upon arrival, the ani-
mals were singly housed with food and water freely avail-
able and were maintained on a 12-h light/dark cycle in a 
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constant temperature (22 ± 2 °C) and humidity (50 ± 5%) 
conditions. All animal experiments were conducted accord-
ing to the authorization from the Italian Health Ministry 
(n.1136/2016PR to RM) in full agreement with the Italian 
legislation on animal experimentation (Italian law DL n. 26, 
4th March 2014) and adherent to EU recommendation (EEC 
Council Directive 2010/63). Accordingly, all the in vivo pro-
cedures were carefully refined to minimize animal suffering 
and to reduce the number of animals used and conducted 
by staff with certified experience in the use and handling of 
laboratory animals and in adequately detect any sign of pos-
sible discomfort or pain in the animals used. Moreover, the 
two procedures that may represent a source of suffering for 
the animals, i.e. the stress exposure and the EAE induction, 
have been carefully refined as subsequently described. Ani-
mal sample size was calculated using the software Piface. 
The power analysis demonstrated that a sample of 12 mice 
per group will provide 80% detection power with a 5% type 
I error. With the inherent variations in mouse behavioral 
outputs (primary endpoint), we estimated to detect a 30% 
difference between groups, a standard deviation of 25% and 
an effect size of f = 1.2. For the molecular analyses (second 
endpoint) we estimated to detect a 15% difference between 
groups, a standard deviation of 10% and thus an effect size 
of f = 1.5.

Experimental Conditions and Stress Procedure

Ten pregnant dams were randomly selected for exposure to 
restraint stress, from GD16 until delivery. Briefly, the ani-
mals were subjected to multiple daily stress sessions dur-
ing the last three days of gestation: two sessions at GD16 
and GD17 (10.00 a.m. and 14.00 p.m.) and three sessions at 
GD18 and GD19 (9.30 a.m., 12.30 p.m. and 15.30 p.m.) dur-
ing which they were placed in plastic cylinders (12 cm long 
and 4 cm diameter) for 45 min under bright light (3000 lx). 
Control pregnant females (n = 10) were left undisturbed in 
their home cages. Witnessing stress was limited by block-
ing any visual and auditory cues, as the stress exposure took 
place in a different area of the colony room with white noise 
generators. It is important to underline that this stress pro-
tocol does not cause physical damage or severe suffering to 
the animal, as demonstrated by the absence of differences 
between the stressed and the control dams regarding the 
number of delivered pups or their aptitude for maternal care 
(see “Results” section). Indeed, the aim of the stress expo-
sure was to reproduce a mild and subthreshold discomfort 
that could represent a vulnerability factor for subsequent 
stimuli. All pregnant females gave birth except for 2 non 
stressed dams. At weaning (post-natal day 21, PND21) 
female pups from control and stressed mothers were sub-
jected to one of four experimental conditions: (i) animals 
born from non-stressed dams NO PNS/CTRL (n = 12), (ii) 

animals born from non-stressed dams and exposed to EAE 
induction NO PNS/EAE (n = 15), (iii) animals born from 
stressed dams PNS/CTRL (n = 15), (iv) animals born from 
stressed dams and exposed to EAE induction PNS/EAE 
(n = 16). All animals were socially housed with non-litter-
mates (n = 4 per cage) under standard laboratory conditions. 
A graphic representation of the experimental paradigm can 
be found in Fig. 1.

Nest Building Test

The nest building test was performed to investigate changes 
in the well-being of the animals. Raw material (nesting 
paper) was provided to all the pregnant females and, the day 
after the birth, the complexity of the nest has been scored 
by four different blind operators according to the follow-
ing scale: 0 = the animal has not manipulated the building 
material; 1 = the material has been manipulated but the 
position of the nest is not clear (sparse paper on the bottom 
of the cage); 2 = flat nest, without vertical walls; 3 = "cup" 
nest with walls less than half the height of a nest with a 
full dome; 4 = nest with incomplete dome; 5 = nest with full 
dome.

Experimental Autoimmune Encephalomyelitis (EAE)

EAE was induced in 8-week-old female by subcutaneous 
immunization in the flanks and at the base of the tail with 
300 μg of myelin oligodendrocyte glycoprotein (MOG35-55, 
Espikem #EPK1) per mouse in Incomplete Freund’s adju-
vant (IFA, Sigma Aldrich #F5506) supplemented with 8 mg/
ml of Mycobacterium tuberculosis (strain H37Ra, Difco 
#231141). Mice immunized received 500 ng of pertussis 
toxin (PTX, Duotech #PT.181) intravenously the day of the 
immunization and 48 h later. Animals were daily (11 a.m.) 
weighted and scored for clinical symptoms of EAE accord-
ing to the standard EAE scoring system: 0 = healthy, 1 = flac-
cid tail, 2 = ataxia and/or paresis of hindlimbs, 3 = paralysis 
of hindlimbs and/or paresis of forelimbs, 4 = tetraparalysis, 
5 = moribund or death (Furlan et al. 2009), by two blind 
operators. Symptoms onset, maximum score (Cs max) and 
cumulative disease score (sum of daily clinical scores of 
each individual mouse, CDS) were analyzed. Non-EAE con-
trols received PTX injections, as well as the initial injections 
of emulsion but without the encephalitogen, to ensure that 
observed effects are due to EAE and not to reactions to the 
ancillary components used to facilitate disease induction. In 
order to avoid suffering related to poor food intake, when the 
first signs of weakness or paralysis of the limbs appear, food 
was made available in the cage and the amount of bedding 
was increased in order to allow animals to reach the water 
dispenser without any difficulty. During the experiment, a 
total of n = 3 (1 NO PNS/EAE and 2 PNS/EAE) mice died 
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due to the severity of the EAE symptoms. At PND 106 (i.e. 
day post injection 50), one animal at a time was moved to a 
separate room to be quickly sacrificed by cervical disloca-
tion, the spinal cord was dissected, frozen on dry ice and 
stored at − 80° until molecular analyses.

RNA Preparation and Gene Expression Analyses

For gene expression analyses, total RNA was isolated from 
the whole cervical portion of the spinal cord by single step 
guanidinium isothiocyanate/phenol extraction using Pur-
eZol RNA isolation reagent (Bio-Rad Laboratories S.r.l., 
#7326880) according to the manufacturer’s instructions 
and quantified by spectrophotometric analysis. The samples 
were then processed for real-time polymerase chain reaction 
(PCR) as previously reported (Rossetti et al. 2018) to assess 
mRNA levels of: BDNF total form, BDNF 3′ UTR long, 
BDNF exon IV and BDNF exon VI. Briefly, an aliquot of 
each sample was treated with DNAse to avoid DNA con-
tamination and subsequently analyzed by TaqMan qRT-PCR 
instrument (CFX384 real-time system, Bio-Rad Laborato-
ries S.r.l.) using the iScript one-step RT-PCR kit for probes 
(Bio-Rad Laboratories S.r.l., #1725141). Samples were run 
in 384-well format in triplicate as multiplexed reactions with 

a normalizing internal control (β-actin). Thermal cycling 
was initiated with incubation at 50 °C for 10 min (RNA 
retrotranscription), and then at 95 °C for 5 min (TaqMan 
polymerase activation). After this initial step, 39 cycles of 
PCR were performed. Each PCR cycle consisted of heating 
the samples at 95 °C for 10 s to enable the melting process, 
and then for 30 s at 60 °C for the annealing and extension 
reactions. A comparative cycle threshold (Ct) method was 
used to calculate the relative target gene expression versus 
the control group. Specifically, fold change for each target 
gene relative to β-actin was determined by the  2− Δ(ΔCT) 
method, where ΔCT = CT target-CT β-actin and Δ(ΔCT) 
= CT exp. group-CT control group and CT is the thresh-
old cycle. For graphical clarity, the obtained data were then 
expressed as percentage versus control group, which has 
been set at 100%.

Protein Extraction and Western Blot Analyses

Whole cervical spinal cord samples were manually homog-
enized using a glass-glass potter in a pH 7.4 cold buffer 
(containing 0.32 M sucrose, 1 mM  MgCl2, 1 mM  NaHCO3, 
10 mM HEPES solution, and 0.1 mM phenylmethylsulfony-
fluoride in presence of a complete set of proteases [Roche, # 

Fig. 1  Experimental design scheme. Pregnant female C57BL/6 mice 
were exposed to daily sessions of physical immobilization stress dur-
ing the last days of gestation (from GD16 until delivery). Experimen-
tal autoimmune encephalomyelitis (EAE) was subsequently induced 
by immunization with MOG35-55/CFA and pertussis toxin (PTX) 

administration in the adult (PND 56, DPI 0) female offspring. The 
effects caused by the previous exposure to prenatal stress (PNS) on 
EAE progression and severity were then analyzed through the scoring 
of the EAE clinical symptoms for 50 days (until PND 106, DPI 50)
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11836145001] and phosphatase [Sigma-Aldrich, # P5726] 
inhibitors) and then sonicated for 10 s at a maximum power 
of 10% to 15% (Bandelin Sonoplus). The homogenate was 
clarified (1000 g; 10 min) obtaining a pellet (P1) enriched 
in nuclear components, which was resuspended in a buffer 
(20 mM HEPES, 0.1 mM dithiothreitol, 0.1 mM EGTA) 
supplemented with protease and phosphatase inhibitors. The 
supernatant (S1) was then centrifuged (13,000×g; 15 min) 
to obtain a clarified fraction of cytosolic proteins (S2). The 
pellet (P2), corresponding to the crude membrane fraction, 
was resuspended in the same buffer used for the nuclear frac-
tion. Total protein content was measured according to the 
Bradford Protein Assay procedure (Bio-Rad Laboratories), 
using bovine serum albumin (BSA) as calibration standard.

Protein analyses were performed in the whole homogen-
ate (targeting mature BDNF, phospho-mTOR at Ser2448, 
mTOR), in the cytosolic fraction (targeting phospho-Akt 
at Ser473 and Akt), and in the crude membrane fraction 
(targeting MAG) of 6 mice/experimental conditions. Equal 
amounts of protein (12 or 16 μg) were run under reducing 
conditions on polyacrylamide gels and then electrophoreti-
cally transferred onto nitrocellulose membranes. Unspecific 
binding sites were blocked with 10% nonfat dry milk; then 
the membranes were incubated overnight with the primary 
antibodies and for 1.5 h at room temperature with a peroxi-
dase-conjugated anti-rabbit or anti-mouse IgG. Specifically, 
the following primary antibody dilutions were used: against 
mature BDNF (Icosagen, cod: 327-100) 1:500 in 3% nonfat 
dry milk; phospho-mTOR/mTOR (Cell Signaling Technol-
ogy, cod: #2971, #2972) 1:1000 in BSA 5%; phospho-Akt/
Akt (Cell Signaling Technology, cod: #9271, #9272) 1:1000 
in BSA 5%; MAG (Cell signaling Technology, cod: #9043) 
1:1000 in 5% non-fat dry milk and β-actin (Sigma-Aldrich, 
#A5316) 1:20,000 in 3% non-fat dry milk. All the primary 
antibodies utilized were validated for western blot by the 
suppliers. Immunocomplexes were visualized by chemilumi-
nescence using the ECL ETA C 2.0 (Cyanagen #XLS070) or 
ECL SUN (Cyanagen, #XLS063). Results were standardized 
using β-actin as the internal control, which was detected by 
evaluating the band density at 43 kDa. Protein levels were 
calculated by measuring the optical density of the immuno-
complexes using chemiluminescence (Chemidoc MP Imag-
ing System, Bio-Rad Laboratories (imagelab)). To ensure 
that autoradiographic bands would be in the linear range of 
intensity, different exposure times were used.

Immunofluorescence Staining and Cell Count

Three animals from each condition that displayed clini-
cal scores representative of their experimental group were 
dedicated to immunofluorescence staining. Mice were anes-
thetized with ketamine (100 mg/kg) and xylazine (10 mg/
kg) and perfused transcardially with 0.1 M EDTA (Sigma 

Aldrich, #03,620) in saline followed by 4% neutral buff-
ered formalin (Sigma Aldrich, #1004960700) in deionized 
water. Spinal cords were collected and post-fixed for 1 h in 
the same solution at 4 °C, cryoprotected in 30% sucrose for 
24 h, embedded in OCT and then frozen at -80 °C. Spinal 
cords were cut transversally into 20 μm-thick sections with 
a cryostat and processed for immunofluorescence. Slides 
were incubated for 45 min at room temperature with a block-
ing solution composed by 10% goat normal serum (Sigma 
Aldrich, #G9023) and 0.1% triton X-100 in phosphate buff-
ered saline (PBS). Then, the sections were incubated with 
rabbit polyclonal anti-GPR17 (1:2500, custom antibody pro-
duced by PRIMM) overnight at 4 °C in PBS with 5% goat 
normal serum and 0.1% Triton X-100. Following primary 
antibody incubation, the sections were washed and incu-
bated with the biotinylated secondary antibody (Vector Labs, 
#BA-1000) for 1 h at room temperature. GPR17 labeling was 
detected with the high sensitivity tyramide signal amplifica-
tion kit (Perkin Elmer, #NEL700001KT) according to the 
manufacturer’s instruction. Hoechst 33,528 was used to visu-
alize cell nuclei. After processing, sections were mounted on 
microscope slides with fluorescent mounting medium (Dako, 
#S3023). The custom anti-GPR17 primary antibody used in 
this publication has been validated (Coppolino et al. 2018) 
and can be obtained by academic researchers upon request.

For each animal 3 sections from the cervical spinal cord 
(C1–C8 range) were entirely reconstructed with Adobe 
Photoshop CC following acquisition of 8–10 images at 10× 
magnification for each section. GPR17 positive cells were 
counted manually with ImageJ software in the whole white 
matter of each section reconstructed and then normalized to 
the relative area.

Study Design and Statistical Analysis

This study was not pre-registered. Mice were randomized 
into the experimental groups (stratified randomization). 
Biochemical assays were performed using blinding codes 
and counterbalancing to ensure that treated and untreated 
conditions appear in adjacent lanes to mitigate regional 
assay variance (e.g. gel edge effects). All the molecular 
analyses were repeated 2/3 times and the results confirmed. 
Analyses of body-weight gain—of the mothers and of the 
pups before and after the EAE induction—and EAE clini-
cal score were performed with Two-way analysis of vari-
ance (ANOVA) with repeated measures (RM). Sphericity 
was not assumed and Geisser-Greenhouse correction was 
used. Comparisons between stressed animals or non-stressed 
mice in nest building assessment test score, number of pups, 
ratio between female and male newborn, EAE cumulative 
disease score (CDS), maximum score (CS max) and day 
of EAE onset were analyzed by two-tailed Unpaired t test. 
The effects of PNS and EAE on the mRNA or protein levels 
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of the molecular targets were conducted with a Two-way 
ANOVA followed—when appropriate—by a Single Con-
trast Post Hoc Test (Fisher’s Protected LSD). Differences 
in the GPR17 positive cell count and MAG protein levels 
were evaluated using two-tailed Unpaired t test. The Shap-
iro–Wilk normality test was performed to analyze the data 
distribution for each group. Homogeneity of variance was 
evaluated using Brown–Forsythe and F test for ANOVA 
and Unpaired t test analyses respectively. All the data pre-
sented in the manuscript passed both tests and were analyzed 
as normally distributed and with equal variances. All the 
molecular analyses were carried out in individual animals 
(independent determinations) and for graphic clarity, data 
are presented as means percent ± standard error (SEM) of 
control group, with significance threshold set at P < 0.05. 
We removed EAE mice that did not show symptoms at day 
post injection 50 from the molecular analyses (NO PNS/
EAE n = 4; PNS/EAE n = 4). Otherwise, outliers that were 

more than two standard deviations away from the mean were 
removed, as they likely resulted from technical errors.

Results

Behavioral Analyses

Impact of Stress Exposure on Dams and Female Offspring

To establish whether restraint stress exposure affected proper 
gestation course, starting from GD17 until the  38th day 
post-partum, we monitored the body weight of control and 
stressed pregnant mice as well as their capability to build a 
nest, using the nest test as an indicator of animal well-fare. 
As shown in Fig. 2, no difference in the body-weight pro-
file (Fig. 2a) or in the nest complexity (Fig. 2b) was found 
between stressed and control dams. Likewise, we did not 

Fig. 2  Impact of stress exposure on dams and female offspring. a 
Bodyweight of pregnant control (NO PNS) and stressed (PNS) dams 
measured during gestational stress and up to 38 days after delivery. 
b Score of the complexity of the nests built by control and stressed 
mothers and assessed the day after delivery. c Total number of 
pups and d number of male and female pups born from control and 

stressed mothers. e Bodyweight of female pups born from control 
and stressed mothers monitored from PND 24 to PND 56. For all 
the analyses the data are expressed as mean of the examined vari-
able ± SEM of n = 10 mice/group. *P < 0.05, ***P < 0.001 vs. NO 
PNS (Two-way RM ANOVA with Fisher’s protected LSD)
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observe significant changes in the number of pups per litter 
or in the sex ratio (Fig. 2c, d).

Subsequently, to establish the lasting effects of prenatal 
stress (PNS) in the offspring after weaning, we monitored 
the weight of female pups from PND 24 to PND 56, finding 
that early stress reduced the body weight of female pups 
born from stressed dams compared to the non-stressed coun-
terpart (Two-way RM ANOVA, PNS effect: F1,56 = 25.78, 
P < 0.0001; Fig. 2e).

Long‑Term Effect of Prenatal Stress Exposure on EAE 
Clinical Signs and Course

To assess whether PNS could affect EAE course and sever-
ity, EAE female pups were daily weighted and scored using 
the 0–5 grading system for clinical assessment (Furlan et al. 
2009) from day post-immunization (DPI) 1 to DPI 50. The 
clinical profile of EAE symptoms is reported in Fig. 3, 
where the body weight changes (Fig. 3a) and disability score 
(Fig. 3b) during the four phases of EAE progression—onset, 
acute phase, recovery and chronic phase—are shown. The 
Two-way RM ANOVA analysis indicated that pups born 
from stressed dams weighed less than their non-stressed 
counterpart in the acute phase of EAE progression (Two-
way RM ANOVA, PNS effect: F1,26 = 4.979, P = 0.0345). 
It is noteworthy that PNS also reduced the body weight of 
non-immunized control mice throughout adulthood (Two-
way RM ANOVA, PNS effect: F1,25 = 15.05 P = 0.0007; 
Fig. 3c). Furthermore, clinical manifestations of EAE in 
prenatally stressed mice were enhanced as compared to 
the control EAE group as displayed by the increased EAE 
score over time, especially during the acute phase (Two-
way RM ANOVA, PNS effect: F1,22 = 4.630, P = 0.0427) 
and the following recovery phase (Two-way RM ANOVA, 
PNS effect: F1,22 = 7.667, P = 0.0112). The cumulative dis-
ease score (CDS) was also greater in the PNS/EAE group 
(Unpaired t test: t22 = 1.933, P = 0.0662, Not Significant; 
Fig. 3d) whereas no difference was observed in the day of 
onset and in the maximum score (CSmax) (Fig. 3e, f). Taken 
together, these behavioral results provide clear evidences 
that PNS enhances the susceptibility to EAE progression in 
the female offspring.

Molecular Analyses

Analyses of GPR17 and MAG in the Spinal Cord

To gain insight into potential molecular alterations under-
lying the exacerbated EAE symptomatology observed in 
mice prenatally exposed to stress, we performed targeted 
molecular analyses in the cervical portion of the spinal cord 
of mice at DPI 50. We first analyzed two markers of different 
stages of oligodendrocytes maturation in the cervical spinal 

cord: GPR17, a receptor expressed by early oligodendrocyte 
precursor cells (OPCs) and a key modulator of OPC matu-
ration and myelination (Fumagalli et al. 2015) and MAG, 
a myelin-associated glycoprotein expressed by mature and 
differentiated oligodendrocytes.

The count of GPR17 positive cells (GPR17 +) in the 
whole white matter of the cervical spinal cord highlighted a 
greater number of OPCs in EAE animals prenatally exposed 
to stress compared to non-stressed EAE mice (Unpaired t 
test: t4 = 11.13; + 57% vs. NO PNS/EAE, P = 0.0004), as 
summarized in Fig. 4, showing reconstructed spinal cord 
sections of NO PNS/EAE and PNS/EAE mice (Fig. 4a and 
b), higher magnification insets of GPR17 + cell morphol-
ogy (Fig. 4a’ and b’) and the numbers of GPR17 positive 
cells per  mm2 (Fig. 4c). Consistently, immunoblot results 
showed a significant decrease of MAG only in stressed 
EAE animals (Unpaired t test: t7 = 2.309; − 40% vs. NO 
PNS/EAE, P = 0.05; Fig. 4d, Supplementary Fig. 1). Nor-
mality and equal variances assumptions were not violated 
(GPR17 + cells count: Shapiro–Wilk test: P > 0.05; F test: 
F2,2 = 3.249, P = 0.4707; MAG immunoblot: Shapiro–Wilk 
test: P > 0.05; F test: F3,5 = 2.094, P = 0.4394). Although 
these data may represent explorative results, given the small 
sample size, they suggest a defect in oligodendrocyte matu-
ration that potentially leads to impaired remyelination.

Analysis of BDNF/Akt/mTOR Signaling

Among the several players involved in the complex process 
of OPCs differentiation into mature oligodendrocytes, the 
Akt/mTOR pathway, which can be activated by growth fac-
tors, is known to promote differentiation and myelination 
(Tyler et al. 2009). Indeed, the mammalian target of rapa-
mycin (mTOR), the major downstream player in this path-
way, has been implicated in oligodendrocyte differentiation, 
myelin protein expression, and myelination (Guardiola-Diaz 
et al. 2012) and is an upstream regulator of GPR17 (Fuma-
galli et al. 2015; Tyler et al. 2009, 2011; Guardiola-Diaz 
et al. 2012). To elucidate the role of this pathway in the exac-
erbated EAE outcome in PNS mice, western blot analyses 
were performed in the spinal cord using antibodies raised 
against total and phosphorylated forms of mTOR and Akt.

The statistical analyses of Ser2448-phosphorylated-
mTOR revealed a significant effect of both PNS (Two-
way ANOVA, F1,12 = 7.758, P = 0.0165) and EAE (Two-
way ANOVA, F1,12 = 12.77, P = 0.0038). More in detail, 
as shown in Fig. 5, we observed a significant decrease of 
phosphorylated-mTOR in EAE mice (− 30% vs. NO PNS/
CTRL, P = 0.0371) that appeared to be exacerbated in mice 
previously exposed to PNS (− 58% vs. NO PNS/CTRL, 
P = 0.0007; − 46% vs. PNS/CTRL, P = 0.019; Fig. 5a, Sup-
plementary Fig. 2). The Two-way ANOVA analysis of the 
total form of mTOR showed a significant effect of EAE 
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Fig. 3  Long-term effect of prenatal stress exposure on EAE clinical 
signs and course. a Body weight and b clinical score of EAE animals 
monitored from DPI 0 to DPI 50 throughout the 4 phases of EAE 
course (onset, acute phase, recovery, chronic phase). c Body weight 
of non-immunized control and stressed animals from DPI 0 to DPI 
44. d Cumulative disease score CDS, e day of EAE symptoms onset 

and f maximum score, CS max in prenatally stressed and non-stressed 
EAE mice. For all the analyses the data are expressed as mean of 
the examined variable ± SEM of n = 12 mice/group. **P < 0.01, 
***P < 0.001 vs. NO PNS/CTRL; @P < 0.05 vs. NO PNS/EAE (Two-
way RM ANOVA with Fisher’s protected LSD)
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Fig. 4  Analyses of GPR17 and MAG in the cervical spinal cord. a, b 
Distribution of GPR17 + cells (in red) in cervical spinal cord sections 
of not stressed mice the developed the encephalomyelitis (NO PNS/
EAE) and prenatally stressed animals that developed the encephalo-
myelitis (PNS/EAE). Cell nuclei were labeled with Hoechst 33258 (in 
blue). a′, b′ Higher magnification insets showing GPR17 + cell den-
sity in the white matter ventral region. c The graph shows the number 
of GPR17 positive cells per  mm2 (GPR17 +) in the 2 groups. Cells 

were counted in the whole white matter of 3 cervical spinal cord sec-
tions for each animal (n = 3 mice/group). d MAG protein levels were 
investigated in the same region using western blot analysis (n = 5/6 
mice/group). GPR17 + counting data are expressed as mean of the 
examined variable ± SEM. MAG protein levels are expressed as a per-
centage of non-stressed EAE mice (NO PNS/EAE, set at 100%) and 
represent the mean ± SEM. @P < 0.05, @@@P < 0.001 vs. NO PNS/
EAE (Unpaired t test)
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(F1,13 = 10.56, P = 0.0063) that results in a broad reduction 
trend in all EAE mice (NO PNS: − 44% vs. NO PNS/CTRL, 
P = 0.0124; PNS: − 48% vs. NO PNS/CTRL, P = 0.0056; 
Fig.  5b, Supplementary Fig.  2). Normality and equal 
variances assumptions were not violated (pmTOR: Shap-
iro–Wilk test: P > 0.05; Brown-Forsythe test: F3,12 = 1.045, 
P = 0.4080; mTOR: Shapiro–Wilk test: P > 0.05; Brown-
Forsythe test: F3,13 = 1.720, P = 0.2121).These explorative 
results suggest that intrauterine stress exposure had a nega-
tive impact on mTOR activation in EAE animals.

Next, we analyzed the levels of the protein kinase Akt 
which is known to stimulate mTOR activity (Dibble and 
Cantley 2015). The statistical analyses of Serine 473 phos-
phorylated form of Akt revealed a significant effect of 
EAE (Two-way ANOVA, F1,19 = 11.62, P = 0.0029). How-
ever, multiple comparisons analyses depicted a significant 
decrease due to PNS exposure alone (− 41% vs. NO PNS/
CTRL, P = 0.0331) and we did not observe any specific mod-
ulation of phospho-Akt in EAE animals compared to NO 
PNS/CTRL mice (Fig. 5d, Supplementary Fig. 3). On the 

contrary, in line with our previous observations, we detected 
a significant effect of EAE (Two-way ANOVA, F1,1 = 5.880, 
P = 0.0261) that resulted in a reduction of the total form of 
the protein only in PNS/EAE animals (− 26% vs. NO PNS/
CTRL, P = 0.025; Fig. 5e, Supplementary Fig. 3). Nor-
mality and equal variances assumptions were not violated 
(pAkt: Shapiro–Wilk test: P > 0.05; Brown-Forsythe test: 
F3,19 = 0.3192, P = 0.8114; Akt: Shapiro–Wilk test: P > 0.05; 
Brown-Forsythe test: F3,18 = 0.4931, P = 0.6915). Overall, 
our results confirm the implication of Akt/mTOR pathway 
in the impaired neurological score of these animals.

Analysis of BDNF Protein Levels

The Akt-mTOR pathway is one of the three main signaling 
cascades triggered by the binding of the neurotrophin BDNF 
to its high-affinity tropomyosin receptor kinase B (TrkB), 
alongside the mitogen-activated protein kinase (MAPK) 
and the phospholipase Cγ (PLCγ) pathways (Numakawa 
et al. 2010). Given the role of BDNF in the maintenance 

Fig. 5  Analysis of BDNF/Akt/mTOR signaling. Protein levels of 
the kinases phosphor-mTOR at Ser2448 (a), mTOR total form (b), 
phospho-AKT at Ser473 (d) and AKT total form (e) measured in the 
cervical spinal cord of control (CTRL) or immunized mice that devel-
oped the encephalomyelitis (EAE), prenatally exposed to stress (PNS) 
or not (NO PNS). Representative western blot bands of pmTOR/

mTOR (c) and pAKT/AKT (f). The data, expressed as a percent-
age of non-stressed CTRL animals (NO PNS/CTRL, set at 100%), 
represent the mean ± SEM of at least n = 4 mice/group. *P < 0.05, 
**P < 0.01 vs. NO PNS/CTRL; #P < 0.05 vs. PNS/CTRL (Two-way 
ANOVA with Fisher’s protected LSD)
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of neural plasticity and stress-related diseases, we assessed 
the protein levels of its mature form in the whole homogen-
ate prepared from the cervical portion of the spinal cord of 
the mice. We found a significant PNS (Two-way ANOVA, 
F1,18 = 12.53, P = 0.0023) and EAE effect (Two-way 
ANOVA, F1,18 = 32.07, P < 0.0001). Indeed, as displayed 
in Fig. 6 (Supplementary Fig. 4), BDNF levels were sig-
nificantly reduced in PNS mice (− 31% vs. NO PNS/CTRL, 
P = 0.0074) as well as in EAE animals (− 47% vs. NO PNS/
CTRL, P = 0.0003). Interestingly, the decrease was exac-
erbated in EAE mice prenatally exposed to stress (− 67% 
vs. NO PNS/CTRL, P < 0.0001, − 52% vs. PNS/CTRL, 
P = 0.0026). Normality and equal variances assumptions 
were not violated (Shapiro–Wilk test: P > 0.05; Brown-
Forsythe test: F3,18 = 0.6694, P = 0.5818).

Analysis of BDNF Gene Expression

Next, we evaluated if our experimental paradigm could 
also affect BDNF gene expression. BDNF gene has a com-
plex structure consisting of eight 5′ untranslated exons 

alternatively spliced to a common 3′ exon (exon IX), which 
contains the protein coding region. Moreover, two alter-
native polyadenylated transcription stop sites are located 
within the common 3′ exon IX, which generate two distinct 
pools of mRNA with either short or long 3′untranslated 
regions (3′-UTRs). It is known that BDNF transcripts 
characterized by short 3′-UTR are restricted to the soma, 
whereas long 3′-UTR mRNAs are mainly localized in den-
drites (An et al. 2008). Accordingly, we assessed by Real 
Time RT-PCR the mRNA levels of total BDNF (transcript 
IX), the mRNA levels of BDNF marked by long 3′-UTR 
as well as two major splice variants, isoforms IV and VI.

We found that the gene expression of total BDNF was 
significantly modulated by EAE (Two-way ANOVA, 
F1,25 = 38.67, P < 0.0001) and by a significant PNS x EAE 
interaction (Two-way ANOVA F1,25 = 11.43, P = 0.0024). As 
a result, the mRNA levels of total BDNF (Fig. 7a) were up-
regulated in animals prenatally exposed to stress (+ 49% vs. 
NO PNS/CTRL, P = 0.0001) and reduced by the encepha-
lomyelitis (− 26% vs. NO PNS/CTRL, P = 0.047) an effect 
even higher in PNS/EAE animals (− 40% vs. NO PNS/
CTRL, P = 0.0093; − 60% vs. PNS/CTRL, P < 0.0001). A 
partially different profile was observed for the gene expres-
sion of the long 3′-UTR pool of transcripts (Fig. 7b). Indeed, 
we found a significant EAE effect (Two-way ANOVA, 
F1,22 = 6.623, P = 0.0172) and PNS x EAE interaction 
(Two-way ANOVA, F1,22 = 12.53, P = 0.0018) displayed 
by a strong reduction of long 3′-UTR BDNF only in PNS/
EAE mice compared to control mice (− 41% vs. NO PNS/
CTRL, P = 0.0095), to prenatally stressed mice (− 50% vs. 
PNS/CTRL, P = 0.0002) and to EAE animals not exposed 
to stress (− 46% vs. NO PNS/EAE, P = 0.0037). The analy-
sis of isoform IV gene expression displayed a significant 
EAE (Two-way ANOVA, F1,24 = 29.27, P < 0.0001) and 
PNS (Two-way ANOVA, F1,24 = 6.925, P = 0.0146) effect. 
Similar to what was observed for the total form of the neu-
rotrophin, we found an increase in PNS mice (+ 35% vs. 
NO PNS/CTRL, P = 0.002) paralleled by a decrease after 
EAE in both non stressed (− 30% vs. NO PNS/CTRL, 
P = 0.0137; − 48% vs. PNS/CTRL, P < 0.0001) and prena-
tally stressed mice (− 22% vs. NO PNS/CTRL, P = 0.07, 
Not Significant; − 42% vs. PNS/CTRL, P < 0.0001; Fig. 7c). 
Conversely, the modulation of isoform VI was similar to 
what was observed for the long 3′ UTR BDNF, with a sig-
nificant effect of EAE (Two-way ANOVA, F1,25 = 5.846, 
P = 0.0232) that resulted in a decrease only in the EAE mice 
prenatally exposed to stress (− 31% vs. NO PNS/CTRL, 
P = 0.0311; − 32% vs. PNS/CTRL, P < 0.0180; Fig. 7d). 
Normality and equal variances assumptions were not vio-
lated (BDNT tot: Shapiro–Wilk test: P > 0.05; Brown-
Forsythe test: F3,25 = 1.056, P = 0.3852; BDNF 3′-UTR 
long: Shapiro–Wilk test: P > 0.05; Brown-Forsythe test: 
F3,22 = 0.9451, P = 0.4358; Isoform IV: Shapiro–Wilk test: 

Fig. 6  Analysis of BDNF protein levels.The protein levels of the 
mature form of the neurotrophin BDNF were measured in the cer-
vical spinal cord of control (CTRL) or immunized mice that devel-
oped the encephalomyelitis (EAE), prenatally exposed to stress 
(PNS) or not (NO PNS). The data, expressed as a percentage of non-
stressed CTRL animals (NO PNS/CTRL, set at 100%), represent the 
mean ± SEM of at least n = 5 mice/group.*P < 0.05, **P < 0.01 vs. 
NO PNS/CTRL; #P < 0.05 vs. PNS/CTRL (Two-way ANOVA with 
Fisher’s protected LSD)
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P > 0.05; Brown-Forsythe test: F3,24 = 1.264, P = 0.3091; 
Isoform VI: Shapiro–Wilk test: P > 0.05; Brown-Forsythe 
test: F3,25 = 1.016, P = 0.4022).

Discussion

It is well known that adverse events in utero can markedly 
affect neurodevelopment and induce profound long-lasting 
alterations in offspring, influencing maturational trajectories 
and leading to long-lasting alterations eventually resulting 
in enhanced susceptibility to several diseases later in life 
(Coe and Lubach 2005). Indeed, this “fetal programming” 
hypothesis, by which an insult occurring in a critical period 
of development has lasting effects (Barker 1998), has been 
found to be relevant for metabolic disorders such as obesity 
and metabolic syndrome (Lau et al. 2011), cardiovascu-
lar diseases (Alexander et al. 2015), neuropsychiatric and 
neurodegenerative disorders (Faa et al. 2016; Modgil et al. 
2014). Among this plethora of diseases characterized by 

susceptibility to fetal programming, little is known about the 
impact of insults happening to the intrauterine life on mul-
tiple sclerosis (MS). While several preclinical studies have 
been carried out on the effects of environmental risk factors 
on MS during adulthood (Krementsov and Teuscher 2013), 
less is known on the influence of developmental stress expo-
sure and only a few studies have addressed this gap by evalu-
ating the impact of earlier post-natal events -such as neonatal 
handling and cross-fostering- in the experimental autoim-
mune encephalomyelitis (EAE) model of MS in rats (Laban 
et al. 1995; Dimitrijević et al. 1994) or in mice (Columba-
Cabezas et al. 2009; Case et al. 2010).To our knowledge, 
the only scientific evidence on insults occurring specifically 
during pregnancy concerns the consequences of maternal 
infection on EAE course in the offspring (Solati et al. 2012; 
Majidi-Zolbanin et al. 2015). The behavioral and molecular 
effects of gestational exposure to stress on EAE course have 
not been investigated, and our work indeed represents the 
first study aiming to address this aspect.

Fig. 7  Analysis of BDNF gene expression. The mRNA levels of 
BDNF total form (a), 3′-UTR long form (b), isoform IV (c) and 
isoform VI (d) were measured in the cervical spinal cord of control 
(CTRL) or immunized mice that developed the encephalomyelitis 
(EAE), prenatally exposed to stress (PNS) or not (NO PNS). The 

data, expressed as a percentage of non-stressed CTRL animals (NO 
PNS/CTRL, set at 100%), represent the mean ± SEM of at least n = 5 
mice/group. P < 0.05, **P < 0.01, ***P < 0.001 vs. NO PNS/CTRL; 
#P < 0.05, ###P < 0.001 vs. PNS/CTRL; @@P < 0.01 vs. NO PNS/EAE 
(Two-way ANOVA with Fisher’s protected LSD)
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Here we demonstrated that maternal stress during the last 
days of gestation worsens EAE outcome in the adult female 
offspring. Although our stress protocol has two potential 
confounding aspects—the potential additional stress load 
due to mice shipment at GD14 and bystander stress expe-
rienced by control dams—that may disguise the impact of 
the restraint stress paradigm, we identified a long-lasting 
phenotype in the female offspring born from stressed dams. 
Specifically, despite no differences in the weight or in nest 
building abilities were found between control and stressed 
mothers, we proved that gestational stress exerts long-lasting 
effects on the offspring by decreasing the body weight of the 
progeny and by increasing susceptibility to EAE as indicated 
by the more severe symptoms scoring of prenatally stressed 
animals, which was statistically significant in both the acute 
and recovery phases of EAE course. While weight reduc-
tion is a well-established effect of prenatal stress exposure 
(Guan et al. 2016; Brunton 2013), to our knowledge this is 
the first evidence concerning the impact of stress in utero 
on EAE outcome. We believe that the EAE exacerbation 
observed in our study could not be attributed only to the 
weight lowering induced by PNS. Indeed, in the present 
work we proposed a potential mechanism that could explain 
the behavioral outcome independently from the weight, as 
our molecular analyses were performed at DPI 50, when the 
body weight of the two groups was no longer statistically 
different. Moreover, our behavioral results are in line with 
other studies reporting stress-related exacerbation of the 
disease at both behavioral and molecular levels. It has been 
demonstrated that chronic restraint stress during adulthood 
enhances demyelination in another MS animal model, the 
Theiler’s murine encephalomyelitis virus (TMEV) infection 
(Young et al. 2013) and that chronic sound stress resulted 
in increased severity of neurological signs and histological 
lesions of the spinal cord in stressed EAE rats compared to 
the non-stressed ones (Núñez-Iglesias et al. 2010). Moreo-
ver, acute immobilization stress in adult animals shortens 
the time to EAE onset (Chandler et al. 2002).

Previous studies have shown that the EAE acute phase is 
characterized by an increased number of GPR17-expressing 
cells blocked at immature stages and therefore no longer 
contributing to remyelination (Chen et al. 2009; Coppolino 
et al. 2018). Our data suggest that PNS exacerbates this 
defect, and that the stress-induced EAE severity may be due, 
at least in part, to an impaired remyelination process in the 
spinal cord, where more GPR17-positive immature oligo-
dendrocytes were found. This effect could have important 
translational relevance since GPR17, a G protein-coupled 
receptor which is physiologically down-regulated after the 
immature oligodendrocyte stage, has been identified as an 
ideal target for new regenerative therapeutic approaches 
for MS and other myelin-associated disorders (Fancy et al. 
2010; Fumagalli et al. 2017; Lu et al. 2018). To further 

investigate the potential mechanisms underlying its modu-
lation by prenatal stress, we focused our analyses on Akt/
mTOR signaling since mTOR has a pivotal role in cell 
growth, differentiation and survival, and has been implicated 
in oligodendrocyte development and myelination as well as 
in GPR17 regulation (Fumagalli et al. 2015; Tyler et al. 
2009). Moreover, preclinical studies indicate that, at cere-
bral level, this pathway is influenced by different stress para-
digms (Chandran et al. 2013; Xia et al. 2016). In line with 
our hypothesis, despite the small sample size, we observed 
a decrease of phosphorylated levels of mTOR as well as of 
the total form of Akt, the protein kinase known to stimulate 
mTOR activation. It is worth mentioning that the modulation 
of GPR17 by mTOR observed here is supported by results 
from a proteomic analysis revealing an increase of GPR17 in 
OPCs cultures treated with the mTOR inhibitor rapamycin 
(Tyler et al. 2011), an effect likely due to reduction of the G 
protein-coupled receptor kinase (GRK2) that could, in turn, 
prevent physiological GPR17 down-regulation via the key 
regulator of cell proliferation and apoptosis Murine Double 
Minute2 (MDM2) (Fumagalli et al. 2015). Interestingly, 
the Akt/mTOR pathway is known to be activated by several 
growth factors, including the neurotrophin Brain-derived 
neurotrophic factor (BDNF) (Yoshii and Constantine-Paton 
2010). The link between stress and BDNF is well-estab-
lished (Molteni et al. 2016; Gray et al. 2013; McEwen et al. 
2015; Calabrese et al. 2014), and different studies show that 
prenatal stress exposure can lead to BDNF alterations later 
in adulthood, both in the brain (Boersma et al. 2014; Blaze 
et al. 2017; Yeh et al. 2012; Luoni et al. 2014a, 2014b) and 
in the spinal cord (Winston et al. 2014). Furthermore, BDNF 
has a crucial role in cell growth and survival (Murray and 
Holmes 2011) and several studies support the hypothesis of 
a neuroprotective function of this neurotrophin in myelina-
tion and myelin repair (Acosta et al. 2013; De Santi et al. 
2009; Linker et al. 2010). Consistently, BDNF treatment 
using transformed bone marrow stem cells reduces inflam-
mation and apoptosis in EAE mice (Makar et al. 2008) and 
delays symptoms onset, reducing the overall EAE clinical 
severity (Makar et al. 2009).

It is important to note that, in our study, the modulation of 
the Akt/mTOR pathway and the consequent increase in the 
number of GPR17-positive OPCs we observed in prenatally 
stressed EAE mice are paralleled by a reduction of BDNF. 
Specifically, the neurotrophin protein levels were reduced in 
the spinal cord of all mice subjected to EAE induction simi-
larly to what was observed for total BDNF mRNA levels, 
while the gene expression of the long 3′ UTR BDNF form 
was down-regulated only in prenatally stressed mice. This 
form of BDNF represents the pool of transcripts localized at 
dendritic level due to the “dendritic targeting” process (Ton-
giorgi 2008), which occurs in an activity-dependent man-
ner and enables the local synthesis of proteins required for 
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neuronal development and plasticity, two features known to 
be altered by stress exposure (Wang et al. 2017). In line with 
this profile, we observed a similar modulation for BDNF 
isoform VI which belongs to this pool of transcripts and is 
localized in the distal dendrites (Baj et al. 2011). On the con-
trary isoform IV, spatially segregated in the soma/proximal 
portion of the dendrite, was broadly decreased in all EAE 
mice, suggesting that PNS may alter the proper dendritic 
targeting of BDNF transcripts, thus leading to a cascade 
of molecular events culminating in impaired maturation of 
OPCs and in more severe EAE symptomatology.

In conclusion, our study demonstrates for the first time 
that stressful events occurring during the intrauterine life 
may exacerbate EAE clinical manifestations in the female 
population, giving new insights in the role of early life 
adversities in the etiopathogenesis of EAE/MS. Our data 
also suggest that PNS affects oligodendrocytes maturation 
in the spinal cord through an impairment of the AKT/mTOR 
pathway associated with a reduction of BDNF levels. Since 
several already marketed drugs are able to modulate BDNF 
levels, the possibility of drug repositioning for multiple scle-
rosis should be addressed in future studies.
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