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Abstract: The response to the COVID-19 pandemic has been highly variable. Governments have
applied different mitigation policies with varying effect on social and economic measures, over
time. This article presents a methodology for examining the effect of mobility restriction measures
and the association between health and population activity data. As case studies, we refer to the
pre-vaccination experience in Italy and Israel. Facing the pandemic, Israel and Italy implemented
different policy measures and experienced different population behavioral patterns. Data from these
countries are used to demonstrate the proposed methodology. The analysis we introduce in this paper
is a staged approach using Bayesian Networks and Structural Equations Models. The goal is to assess
the impact of pandemic management and mitigation policies on pandemic spread and population
activity. The proposed methodology models data from health registries and Google mobility data and
then shows how decision makers can conduct scenario analyses to help design adequate pandemic
management policies.

Keywords: Bayesian Networks; SEM; COVID-19 pandemic; integrated models

1. Introduction

The COVID-19 pandemic has far-reaching consequences for global, national and
local economies. National non-pharmaceutical interventions (NPI) and policies to control
the pandemic spread, such as lockdowns (local or general), movement restrictions, and
massive testing to detect outbreaks, have been widely applied. However, given the human-
to-human transmission of the SARS-CoV-2, the population’s behaviour, which includes
compliance with official instructions as well as active protective measures, is a critical factor
in pandemic management. The public’s adherence to the instructions, such as wearing face
masks, social distancing and hygiene practices, requires a public behavioural change which
cannot be taken for granted. Strictly enforcing such changes, on a national level, is almost
impossible. Furthermore, disruptive pandemic management policies, such as national and
local lockdowns, with frequent closures of air traffic, education institutions, and economic
sectors, have severe economic and social consequences. These include increasing rates
of domestic violence [1], unemployment [2], mental distress [3,4], and non-normative or
addictive behaviours such as alcohol drinking and drugs use [5,6].

Governments’ policies of lockdowns and re-openings are determined according to
a perceived “acceptable loss” that aims to minimize economic and social damage while
saving lives [7]. Therefore, it has become clear that pandemic management must take in
consideration social, public health, behavioural and economic factors, as well as monitoring
of the population’s ability to maintain restrictions over time.
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Given the critical role played by human behaviour in the pandemic, research studies
have examined how policy and NPIs affect population morbidity, death rates and spreading
of the disease. These include policies such as “stay at home” instructions, social distancing
and closures of businesses and air traffic [8–12], as well as guidelines on taking protective
actions such as using face masks [13]. Overall, research has indicated that NPIs’ effective-
ness increases when applied in different ways. For example, Brauner et al. [14] found that
prevention of social contacts at social places such as education institutions and restaurants,
as well as small gatherings, were more effective in lowering transmission than lockdowns.
Block et al. [15] show that reduced contact between people improves the effectiveness of
social-distancing strategies. Changes over time in the effectiveness of the applied mobility
restriction policies have also been studied [16].

In addition to official policies and regulations, population behaviour was found to be
an important factor in disease transmission. Citizens voluntarily decreased their mobility,
without official instructions to stay at home [17–19], and some groups even objected to
the removal of restrictions [20]. Citizens’ compliance with stay-at-home policies [21]
was associated with perceived risks [22]), trust in science and scientists [23], trust in
the authorities [24], social capital [25] and political orientation [26]. Additionally, social
responsibility in caring for relatives and community [27], future economic status [28] and
messages of pro-social advantages of adhering to the instructions [29] were linked to higher
levels of adherence to lockdown instructions. Taken together, these findings suggest that a
range of factors, both at the individual and the social level, affect citizens’ compliance with
protection instructions. This emphasizes the importance of integrating behavioural and
policy measures in pandemic management. The public plays a critical role in pandemic
management, as both a “client” who receives and consumes health services from the
government, and therefore is susceptible to its instructions and regulations, and as the
“pandemic management target” to the behaviour of which all pandemic management steps
are subordinated, capacities, compliance and resilience. The current study examines these
mutual interactions, to assess their effects and consequences on both the public and the
heath indicators.

In this paper, we present a methodology for the analysis of data on population be-
haviour and health, such as the number of deaths and patients in intensive care units (ICU)
in the COVID-19 pandemic. Specifically, we consider the impact of lockdowns and mobility
restrictions, as reflected by public behaviour mobility data. The challenge we address
here is combining these sources of data into a unified system that provides support and
information to decision makers. Our goal is to identify links between population behaviour
(activity), COVID-19 health data and policy decisions to find what are the effects, over time,
and when applying various NPIs. The data analysis requires calibration since a simple tem-
poral consideration is not adequate. Additionally, our analysis shows the mutual effects of
human behaviour and the health data to explore the complexity of pandemic management
and discover the most effective ways to reduce hospitalisation rates and death rates.

We consider here a multivariate exploratory approach in an “ensemble” fashion,
combining outcomes from Bayesian Networks (BN) and structural equation models (SEM).
We first apply our ensemble approach to pre-vaccination pandemic data from Italy. Then,
as a confirmatory step, we apply it to pandemic data from Israel. This generalizes the
methodology to a context with a different pandemic history and health infrastructure and
in terms of timing and health policy. This allows us to validate our approach by considering
changes in data structure and application context. We compare the results from such an
integrated analysis in Israel and Italy, pointing out the differences found in these two
countries. The combination of BN and SEM tools highlights the different policies adopted
by the two countries and suggests that these tools are sufficiently flexible to be applied
in different contexts. Finally, in order to provide the capability to evaluate alternative
scenarios, we update the BNs, following discretisation of the original data using country-
specific thresholds applied both in Italy and Israel. The thresholds on health indicators
were set to safeguard hospitalisation capacity in the two countries.
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2. Pandemic Management Policies in Italy

The first COVID-19 cases reported in Italy—two Chinese tourists travelling across
Italy—were discovered on 9 January 2020. These cases did not trigger any outbreak as the
infected persons were immediately isolated and hospitalised. The first real outbreak was
reported in the village of Codogno in Northern Italy at the end of February 2020. This was
the first serious hot-spot of the COVID-19 pandemic outside China which spread in Europe
and other Western countries, including the US. On 4 March 2020 all schools and universities
were closed in Italy, and on 11 March 2020, a national lockdown was introduced. On 3 June
2020, the national lockdown was eased and free movement between regions was allowed
and schools and shops reopened.

Following the summer, when reopening of night clubs, gyms and free movements
for touristic reasons was allowed, in September 2020, a second wave of the pandemic
started, and new restrictions were introduced in October 2020. On 6 November 2020, a
regional “traffic light system” was introduced in Italy according to the current pandemic
severity level: (i) “yellow” areas where all shopping malls and supermarkets are closed
during weekends. Culture and recreation places (museums and cinemas) are closed, and
restaurants are open until 6 p.m. Only elementary and primary schools are open, while
universities are open with 50% of the students allowed to attend classes, a curfew from
10 p.m. to 6 a.m. is also set; (ii) “orange” areas where all restaurants are closed all day, public
transport is open on a 50% filling capacity level, universities are closed, only elementary and
primary schools are open, malls are closed during the weekends, gyms, cinemas theatres
and museums are closed; curfew is still in place and movements are allowed only locally;
(iii) “red” areas where no movements are allowed apart from emergency and special cases,
all shops, school, universities, restaurants, cinemas, theatres, museums, gyms are closed,
with the exception of essential services; curfew from 10 p.m. to 6 a.m. is still in place.
In mid-December 2020, the third wave of pandemic started, leading in March 2021 to a
situation where almost all Italian regions were under “red area” alert.

On 27 December 2020, the first inoculation was administered in Italy. The govern-
ment’s vaccination plan was to administer the vaccine first to healthcare personnel, then to
the elderly, then to school and university staff, and ultimately to the rest of the population.
However, as the Italian health system is region-based, the vaccination plan was affected by
a lack of coordination between the central government and the regional administrations.
In addition, the shortage of vaccine doses generated stress in respecting the clauses of the
contracts with the EU regarding the planned deliveries. The vaccination plan was lagging
behind the initial scheduled timeline and, in March 2021, only 9% of the Italian population
received the first vaccine dose.

3. Methods
3.1. Analysis Strategy

We modelled the multivariate structure in the daily health indicators and the popula-
tion activity data, referring to major policy decisions (local/national lockdown, reopening).
The analysis is focused on Italy which was first in experiencing the pandemic as a national
threat to its healthcare system. The period we are considering precedes the start of the vac-
cination program in Italy. The statistical analysis we conducted includes modelling based
on methods designed to enhance information quality, including Bayesian Networks (BN)
and Structural Equation Models (SEM). Each modelling approach provides complementary
features. The idea is to conduct an ensemble type analysis combining outcomes from
various models [30]. The analysis flows through three sequential steps starting from an
initial descriptive BN analysis, aiming at finding the most important relationships with the
highest arc strengths between variables. This, in turn, is the basis for a SEM analysis where
relationships with the most important latent variables are found. The third stage is a “what-
if scenario” evaluation using BN analysis where assumptions of multiple configurations
are considered. This is described in Figure 1. In the final phase, when various scenarios
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are investigated, the data are discretised using local thresholds in order to enhance the
intelligibility of the scenarios.

Figure 1. Flow chart describing the ensemble analysis.

3.2. Italian Case Study

The method applied in this work combines official COVID-19 daily health data from
the Italian Ministry of Health, starting from 24 February 2020 until 21 January 2021. The data
was downloaded on 12 November 2021. All the graphs, tables and links that are presented
in this work refer to that date. Variables included in the study are: number of COVID-19
hospitalised patients, number of severe condition patients (in ICUs), and number of COVID-
19-attributed deaths per day. We also use Google Mobility data (https://www.google.com/
covid19/mobility/ (accessed on 26 February 2022)) for Italy for the same dates. Variables
included mobility indicators for retail and recreation, grocery and pharmacy, parks, transit
stations, workplaces, and residential buildings. Mobility variables show the percent change
from pre-pandemic baseline. We also include restriction variables from the University
of Oxford’s COVID-19 government response tracker research group (https://www.bsg.
ox.ac.uk/research/research-projects/covid-19-government-response-tracker (accessed on
26 February 2022)).

We use BN analysis to map the relationships between epidemiological and behavioural
variables. Death statistics are used to assess the impact of the pandemic and the num-
ber of infected people, as reported on a daily basis. Our analysis proceeds through the
following steps:

• First, we performed an initial exploratory BN for both Israel and Italy in order to
describe the relationships among variables. In this step, we also performed a between-
node strength analysis to derive a hierarchy of the most important variables affecting
ICU, deaths and hospitalisation;

• Then, we identified from the previous BN the most significant nodes and used these
nodes in a SEM to study the significance of the relations among nodes;

• Finally, we built up a “what-if scenario” BN analysis to model the most epidemiologi-
cal variables, i.e., ICU, death and hospitalisation, in order to analyse the dynamics of
the pandemic with respect to behavioural variables in the two countries.

To conduct the analyses, we used the package R (www.R-project.org/ (accessed on
26 February 2022)), and its libraries bnlearn and bnviewer for BNs, and JMP Pro 16 (www.
jmp.com (accessed on 26 February 2022)) for SEM. We provide below a brief introduction
to BN and SEM pointing to references for more details.

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
www.R-project.org/
www.jmp.com
www.jmp.com
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3.3. Bayesian Networks (BNs)

Formally, BNs are direct acyclic graphs (DAG) whose nodes represent random vari-
ables in the Bayesian sense: they can be observable quantities, latent variables, unknown
parameters or hypotheses [31]. The arcs represent conditions of dependence; the nodes that
are not connected represent variables that are conditionally independent of each other. Each
node is associated with a probability function which takes as input a particular set of values
for the variables of the parent node and returns the probability of the variable represented
by the node. There are efficient algorithms that perform inference and learning starting
from BNs. A BN enables the effective representation and computation of a joint probability
distribution (JPD) over a set of random variables. The DAG’s structure is defined by a
set of nodes, representing random variables and plotted by labelled circles, as well as a
set of arcs representing direct dependencies among the variables and plotted by arrows.
Although the arrows represent direct causal connections between the variables, under
some conditions, the reasoning process can operate on a BN by propagating information in
any direction. A BN reflects a simple conditional independence statement, namely, that
each variable, given the state of its parents, is independent of its non-descendants in the
graph. This property is used to reduce, sometimes significantly, the number of parameters
that are required to characterize the JPD. This reduction provides an efficient method to
compute the posterior probabilities given the evidence in the data [32]. It is even possible
to extract more conditional independencies from the DAG’s structure using the d-separation
procedure. Suppose, for example, that we have to check whether P(A|BCD) = P(A|CD),
i.e., to see if A and B are independent given C and D. Then, the following d-separation
procedure can be applied:

1. Obtain the ancestral graph, i.e., a reduced version of the graph pertaining to all the the
variables in the above probability expression;

2. “Moralized” the graph obtained in 1. by “marring” the parents. This will result in an
undirected edge between each pair of variables that have a common child;

3. “Disorient” the graph by using undirected edges instead of directed edges;
4. If the independence question had any “given variables”, erase those variables from

the graph and all their connections;
5. If the variables become disconnected, they are independent. Alternatively, if the

variables result are connected, they are not guaranteed to be independent. Finally, if
one or both of the variables are missing, they are independent.

In this way, independence relations are determined in a more insightful fashion. For
example, it can be easily established if two variables having no common ancestors in the
graph and therefore appearing marginally independent can become dependent given their
common child node [33].

3.4. Structural Equation Models (SEM)

SEM is a set of statistical techniques used to measure and analyse the relationships of
observed and latent variables [34]. It examines linear causal relationships among variables,
while simultaneously accounting for measurement error. SEM is widely used in the social
sciences and psychology. It provides a flexible framework for developing and analysing
complex relationships among multiple variables that allow researchers to test the validity
of a theory using empirical models. A discussion about SEM and its connection with causal
models is reported in [35].

Structural equation modelling involves the specification of an underpinning linear
regression model incorporating the structural relationships between unobserved and latent
variables, together with a number of observed or measured indicator variables. Structural
equation models assume a structure among a set of latent variables and observed variables.
The latent variables appear as linear combinations of observed variables. As latent variables
are, by definition, unobserved, their measurement must be obtained indirectly. This is
achieved by linking one or more observed variables to each unobserved variable. A fully
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specified structural equation model involves presenting an interplay between a large
number of observed and unobserved variables, and residual and error terms.

3.5. Combining BN and SEM

Gupta and Kim [36] propose linking BN to SEM, which presents an advantage in
testing causal relationships between factors. The capability of SEM in empirical validation,
combined with the prediction and diagnosis capabilities of Bayesian modelling, facilitates
effective decision making from identification of causal relationships to decision support.
An interesting application that combines SEM and BN is in [37].

In this study, as illustrated in the flow chart of Figure 1, we use SEM and BN in
a combined way. First, we used BN to define how late to consider the health variables
through the strength analysis. Then, we estimate a SEM model that considers the previously
identified variables. On the basis of the significance emerged in the SEM model we
establish the variables to be included in the discrete networks and the whitelists to make
the what-if scenarios.

3.6. Study Variables

The integrated analysis considers three groups of variables collected daily in Italy
from 24 February 2020 to 1 January 2021. These are: (i) mobility variables from Google
Community mobility reports; (ii) Pandemic management NPI variables from the University
of Oxford’s COVID-19 government response tracker; and (iii) health variables from the
Italian Ministry of Health.

1. Mobility variables.
Mobility variables are reported as changes in mobility with respect to a pre-COVID-19
baseline. We include mobility changes in retail and recreation, grocery and pharmacy,
parks, transit stations, workplaces, and residential buildings. Restriction variables are
ordinal variables (from 0 = “no measures at all” to a maximum of 3 = “required closing
of all events”) expressing the intensity of governmental measures to tackle the spread
of the virus. These were related to school closing, workplace closing, gathering restric-
tions, transport closing, stay-at-home restrictions, international movement restrictions,
internal movement restrictions. We also consider a stringency index variable ranging
from 0 to 100, as a weighted average of the restriction variables.

2. Health variables.
These include the number of daily COVID-19-related deaths, the number of daily
hospitalisations due to COVID-19 symptoms and the number of daily COVID-19
ICU admissions [38]. We also consider a variable labelled “wave” to detect different
behaviour observed in subperiods of different intensity levels in each country within
the period of observation.

3. Pandemic management NPI variables.
We consider the following subperiods: (i) Italy’s subperiod 1, from 24 February 2020
to 15 June 2020, corresponding to the “Italian first pandemic wave” lasting from the
very first case detected in Italy to the end of the first lockdown; (ii) Italy’s subperiod 2,
from 16 June 2020 to 15 September 2020, corresponding to the first period of pandemic
ease, lasting from the end of the first lockdown to the initial new curbs introduced for
the “Italian second pandemic wave”; (iii) Italy’s subperiod 3, from 16 September 2020 to
8 October 2020, corresponding to the beginning of the “Italian second pandemic wave”,
lasting from the introduction of new measures until the introduction of the so-called
“colour system”, i.e., a four-level system for regional restrictions from “white” = “no
restrictions” to “red” = “full lockdown”; (iv) Italy’s subperiod 4, from 9 October 2020
to 11 November 2020, corresponding to the most acute pre-vaccination period of
pandemic in Italy; (v) Italy’s subperiod 5, from 12 November 2021 to 21 January 2021,
from the ease of the second pandemic wave to the initial vaccination campaign in Italy,
which started in late December 2020 but had an effect on protecting the population at
the end of January 2021.
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4. Results
4.1. Bayesian Network Analysis

The main group of variables of interest is one of health variables. First, in the BN, we
blacklist the arcs between variables within each group. Then, we create structures using
Hill-climbing BNs, focusing on variables (nodes) with a link to the health variables.

Maximum Likelihood parameter estimation is used for mixed-type data and Bayesian
parameter estimation is used for discrete data.

Hill-climbing algorithms are particularly popular because of their good trade-off
between computational demands and the quality of the models learned. It is important
to verify whether the chosen structure and, therefore, its edges, are robust and do not
depend on the chosen algorithm. The choice of a robust BN is a complex problem without
an easily derivable analytical solution. In [39], different algorithms are presented and
discussed and no method emerges absolutely better than another. For complex data,
it can be shown that score-based algorithms produce large networks, in which higher-
order dependencies are profoundly represented. This is an interesting aspect for our
scopes. In order not to risk obtaining a network with a non-robust structure, following [40],
we have in any case applied all the algorithms present in the bnlearn R library. Here
https://unimibox.unimi.it/index.php/s/LLeGPsmeSdxeimb (accessed on 26 February
2022), it is possible to see that the selected arcs are present in at least four algorithms out of
a dozen present in the library.

Since the effect of mobility and restrictions are observed with delay, after investigating
several possible lags, we decided to use 10-day lags for the hospitalisations, 15 days for
the number of people in ICUs and 20 days for the number of deaths with respect to the
time where measures were implemented. This followed an arc strength analysis of arcs
pointing towards the health nodes, looking for the highest average strength among different
lags. Figure 2 presents arc strength levels between (respectively) restriction and mobility
nodes vs. the hospitalisation node, according to different lags. The same plots have been
obtained for ICU numbers and deaths, where the more reasonable lags were 15 days and
20 days, respectively.

(a)

(b)
Figure 2. Strength analysis for Italy. Arc strengths according to different lags. Restriction nodes vs.
hospitalisation node (a). Mobility nodes vs. hospitalisations node (b).

https://unimibox.unimi.it/index.php/s/LLeGPsmeSdxeimb
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Figure 3 reports the derived BNs for Italy. Measuring the degree of confidence in a
graphical structure of a BN is a key problem in inference. Figure 4 reports the same network,
but with the arc strength analysis obtained by applying non-parametric bootstrap to the data
and estimating the relative frequency of the feature of interest [41]. In particular, Figure 4b
displays the node ‘deaths ’ highlighted together with its parent nodes and the relative
arcs with the estimated strength for the network. All graphs in Figures 3 and 4 can be
downloaded in html format from the repository at the link https://tinyurl.com/rbexhtww
(accessed on 26 February 2022) where it is also possible to browse and explore them
interactively.

Figure 3. BN structure for Italy. The figure is downloadable at https://tinyurl.com/rbexhtww
(accessed on 26 February 2022).

(a)
Figure 4. Cont.

https://tinyurl.com/rbexhtww
https://tinyurl.com/rbexhtww
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(b)
Figure 4. Network for Italy obtained using the bootstrap. (a) Overall network for Italy; (b) connections
to the node “deaths” in the network. The figures are downloadable at https://tinyurl.com/rbexhtww
(accessed on 26 February 2022).

In addition to the ICU node, the node “deaths” has three strong direct arcs pointing to
it. Hospitalisation can lead strongly and directly to death in Italy (0.99 strength). Among
nodes representing restrictions gathering restrictions, workplace restrictions and internal
movement restrictions have a huge direct effect on deaths. Moreover, there is a direct link
from hospitalisation to the death node. This could be explained by the low structural level
of the healthcare system in Italy and the lack of ICU beds. Moreover, the node “wave”
seems to be quite important. This could mean that in Italy there has been a huge change in
citizens’ behaviour over time, in terms of complying with the instructions across the waves.

We will explore again the BN originated after a SEM analysis and a discretization of
the variables to see whether or not these initial considerations will be confirmed through a
“what-if” analysis.

4.2. Structural Equation Modelling

After identifying the arcs between nodes with the BN, we use SEM to understand
which arcs were significant and also to check the robustness of the bootstrap approach to
BNs. In the discrete networks that we used for the scenarios, we set white-lists based on
the significant arcs in the SEM model. White-lists are arcs manually imposed on the BN.

In applying SEM, we introduce two latent variables: behave, representing the be-
havioural data and health, driving the health-related data (number of death cases with a lag
of 20 days, number of hospitalized in ICU with lag 15 days, and number of hospitalized
patients (with a lag of 10 days). Figure 5 presents the SEM path diagram for Italy. Table 1
presents the loadings, regressions and covariances for the Italian data. Table 2 presents the
summary of model fit indices. We find an acceptable goodness of fit of the model and a CFI
of 0.77. The results show that the population behaviour was found to be significantly pre-
dicted by wave. However, over time, the effect of the “wave” is reduced, as attendance at
public places, such as workplaces, transit stations, groceries and pharmacies, and retail and
recreation, is not reduced. Moreover, hospitalisation decreased death cases. Restrictions,
such as internal lockdowns, international border closings and gathering restrictions led to
an increase in health measures. The latent variables, health and behave were significantly

https://tinyurl.com/rbexhtww
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and negatively correlated—when health measures increase, the public reacts by decreasing
behavioural activities and vice versa.

Figure 5. Path diagram for the Italian data.

Table 1. Loadings, regressions and covariances for the Italian data (JMP Pro Version 16). * < 0.05.

Regressions Estimate SE Prob>|Z|
Workplaces→ [hospitalisation_lag10] 0.0051733 0.0013351 0.0001 *

Workplaces→ [death_lag20] −0.001852 0.0012394 0.1350

Workplace closing→ [icu_lag15] −0.030367 0.0278552 0.2756

Workplace closing→ [hospitalizations _lag10] 0.0667816 0.0270191 0.0134 *

wave→ workplaces 3.19686 0.5874759 <0.0001 *

wave→ workplace closing 0.0754524 0.0217294 0.0005 *

wave→ transportation closing 0.0837236 0.0126287 <0.0001 *

wave→ transit stations 2.9688032 0.4265175 <0.0001 *

wave→ [icu_lag15] 0.1807456 0.0274846 <0.0001 *

wave→ [hospitalisation_lag10] 0.2486583 0.0245819 <0.0001 *

wave→ [death_lag20] 0.4204896 0.1221507 0.0006 *

wave→ school closing −0.316598 0.0169194 <0.0001 *

wave→ retail and recreation 3.7666174 0.59323 <0.0001 *

wave→ residential −1.129711 0.2063731 <0.0001 *

wave→ international movement restrictions 0.0842087 0.0199013 <0.0001 *

wave→ internal movement restrictions 0.0676107 0.0158063 <0.0001 *

wave→ grocery and pharmacy 5.10812 0.5543045 <0.0001 *

wave→ gathering restrictions 0.3068871 0.0409729 <0.0001 *

Transport closing→ [icu_lag15] 0.1455176 0.0273859 <0.0001 *
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Table 1. Cont.

Regressions Estimate SE Prob>|Z|
Stringency index→ [icu_lag15] 0.0067435 0.0038163 0.0772

Stay home restrictions → [hospitalisations
_lag10]

0.0472529 0.022111 0.0326 *

[icu_lag15]→ [death_lag20] 1.1659765 0.2939227 <0.0001 *

[hospitalisation _lag10]→ [death_lag20] −2.089182 0.410195 <0.0001 *

Retail and recreation → [hospitalisations
_lag10]

−0.005147 0.0014207 0.0003 *

residential→ [hospitalisations_lag10] 0.013011 0.004218 0.0020 *

parks→ [hospitalisations_lag10] 0.0019993 0.0004296 <0.0001 *

International movement restrictions →
[icu_lag15]

0.0630446 0.018092 0.0005 *

Internal movement restrictions→ [icu_lag15] 0.1338373 0.0667171 0.0449 *

Internal movement restrictions→ [hospitalisa-
tions _lag10]

0.230179 0.0574105 <0.0001 *

Internal movement restrictions →
[death_lag20]

0.5626452 0.1869919 0.0026 *

Grocery and pharmacy → [hospitalisation
_lag10]

0.000544 0.0008651 0.5294

Gatherings restrictions→ [icu_lag15] −0.063505 0.0407235 0.1189

Gatherings restrictions → [hospitalisations
_lag10]

−0.061278 0.035522 0.0845

Gatherings restrictions→ [death_lag20] −0.141549 0.0740964 0.0561

Covariances Estimate SE Prob>|Z|
behave↔ health −24.47497 8.5668423 0.0043 *

Grocery and pharmacy↔ retail and recreation 87.867134 9.2979598 <0.0001 *

residential↔ workplaces −10.21344 1.4937324 <0.0001 *

Stay home restrictions ↔ internal movement
restrictions

0.7703725 0.0643261 <0.0001 *

Stringency index↔ internal movement restric-
tions

8.9560929 0.7747634 <0.0001 *

Stringency index↔ stay-home restrictions 8.8102202 0.7537571 <0.0001 *

Stringency index↔ transport closing 3.708656 0.3479073 <0.0001 *

workplaces↔ parks −275.3571 24.166104 <0.0001 *

4.3. “What-If” Scenario BN Analysis and Strength Analysis

We now present a “what-if” scenario-based BN analysis where we discretise the health
variables and obtain results by setting the categories of some mobility or restriction variables
to specific values which are of interest. Moreover, inverse inference can be achieved by
fixing the levels of the health variables and seeing what happens to the parent nodes.
Discrete network white-lists were set up based on the SEM results reported in Table 1.
This conditioning provides decision makers with a powerful decision support tool used in
policy-making discussions.
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Table 2. Summary of fit for the Italian data (JMP Pro version 16).

Sample Size 333

Iterations 77

−2 Log Likelihood 22,928.544

AIC 23,165.042

BIC 23,433.852

χ2 3148.5972

DF 102

Prob> χ2 0

CFI 0.7122846

TLI 0.5684269

NFI 0.7068871

Revised GFI 0.4951449

Revised AGFI 0.0645332

RMSEA 0.2994921

Lower 90% 0.2905408

Upper 90% 0.3085381

RMR 70.587903

SRMR 0.3716811

Health variables are discretised according to the cut-offs reported in Figure 6. Cut-
off threshold values were chosen to represent the healthcare system and the size of the
country. Figure 7 shows the distribution of daily deaths in Italy in terms of number of days
distributions in the three classes formed by the cut-off points. The restriction variables are
ordinal, so they are not discretised. For the behaviour and activity variables, Hartemink’s
algorithm [42] is used with a number of cut-off values equal to 3.

Figure 6. Cut-off points for health variables.

Figures 8 and 9 show two scenarios for Italy. In the first scenario, we set evidence as
the lowest level of the international movement restriction variable. In the second scenario, we
set evidence as the highest level of the international movement restriction variable.
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Figure 7. Discretisation results for COVID-19 death variables in Italy. Class limits are reported on the
x-axis.

The distribution of the variable deaths changes in the following conditions. When
restrictions are present, the number of days when the number of daily deaths is low (less
than 100 cases) is 40%. It is 32% when restrictions are not present.

In Figures 10 and 11, conditional inference is applied to the case of Italy. With daily
deaths level remained fixed, we observe what happens in the parent nodes. In Figure 10,
the scenario is one where the number of daily deaths is always less than 100. In Figure 11,
the scenario is one where the number of daily deaths is always larger than 500. In this
latter case, we observe, for example, that the lowest level in the stay-home restriction is
present only in 7.5% of the days. In contrast, when daily deaths are always lower than 100
(Figure 10), the lowest level in the stay-home restriction is present on 44.1% of the days. We
also note that residential mobility was high (level 3) in 26.3% of the days when daily deaths
were more than 500 and only 12.5% of days when daily deaths were less than 100.

Figure 8. Scenario for Italy when international movements restriction is set to 0. International movement
restriction node is highlighted in grey.
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Figure 9. Scenario for Italy when international movements restriction is set to 3. International movement
restriction node is highlighted in grey

Some restriction measure variables behave in unexpected directions. For example,
mobility behaviour changes with no direct reference to deaths, and the internal movement
restriction variable changed from 23.8% at the maximum rate (=2) when deaths were
minimum (=1) to 83.3% when deaths were maximum (=3), meaning that fewer deaths
imply less movement. This could be explained by the fact that in Italy restriction measures
have been in places for long periods, even when deaths increased or decreased. Therefore,
movements remained low even with a low number of deaths or high with a large number
of deaths.

Figure 10. Scenario for Italy when daily deaths are less than 100 (level 1). Deaths node is highlighted
in grey.
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Figure 11. Scenario for Italy when daily deaths are larger than 500 (level 3). The deaths node is
highlighted in grey.

5. Validating the Ensemble Approach

In this section, we validate the proposed ensemble method by applying it to another
country, Israel. This provides a context similar to Italy with respect to the pandemic
from the point of view of policy decisions, but different in terms of hospitalisations, ICU
occupancy and COVID-19 deaths.

The first case of COVID-19 in Israel was discovered on 28 February 2020. The Jewish
holiday Purim was observed on 10–11 March 2020, and it involves mass gatherings and
public celebrations. This caused a sharp increase in the number of the positive cases, which
led to drastic movement restrictions in the entire country. On 14 March 2020, the academic
and school systems were closed and gatherings of more than 10 persons were forbidden.
On 25 March 2020, Israel underwent a general lockdown. In 9 April 2020, due to a decrease
in the number of ICU patients and those hospitalised in severe condition, a first easing of
the lockdown allowed for sport activities to be practised more than 500 m from one’s home.
In May 2020, schools, public transportation and public places such as restaurants reopened.
In July and August, health measures indicated a new outbreak, and new restrictions were
placed until a second general lockdown, which started on 18 September 2020. On 17 October
2020, public spaces and schools started to reopen against the recommendations of health
professionals. A rising number of daily positive cases, number of deaths and severe patients
led to a third wave (starting at the beginning of December 2020). On 8 January 2021, Israel
was placed under a third national lockdown that lasted one month. From 20 December
2020, a massive vaccination operation was conducted with world-record-breaking records
numbers of vaccinated people. The data considered here reflect the pre-vaccination period.
Figure 12 shows the timing and the main pandemic events in both Italy and Israel over time.

For Israel, we consider the following sub-periods: Israel’s sub-period 1, from 24 February
2020 to 17 March 2020, since the first case was detected until the first lockdown, Israel’s
sub-period 2, from 18 March 2020 to 26 April 2020, corresponding to the so-called first wave
of the pandemic in Israel, in which restrictions were imposed to the population, Israel’s
sub-period 3, from 9 June 2020 to 3 November 2020, corresponding to the second pandemic
wave in Israel, Israel’s sub-period 4, from 4 November 2020 to 21 January 2021, corresponding
to the third pandemic wave in Israel and during which a massive vaccine campaign started.

Figure 13 reports an arc strength analysis for Israel. Apart from the stay-at-home restric-
tion, all other restrictions were in line with those in Italy with respect to hospitalization. For
mobility nodes versus hospitalization, the highest strength peaks are reached after a lag of
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9 days. Similar results are obtained for restrictions and mobility versus ICU patients and
for restrictions and mobility versus deaths. Therefore, for Israel, we also take a 10-day lag
for the hospitalisations, 15-day lag for the number ICUs and a 20-day lag for the number of
deaths with respect to the time when measures were implemented.

Figure 12. Main pandemic events in Italy and Israel.

(a)

(b)
Figure 13. Strength analysis for Israel. Arc strengths according to different lags. Restriction nodes vs.
hospitalisations node (a) and mobility nodes vs. hospitalizations node (b).
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Figure 14 reports the derived BN for Israel. Measuring the degree of confidence in
a graphical structure of a BN is a key problem in inference. Figure 15 reports the same
network, but with the arc strength analysis obtained by applying non-parametric bootstrap
to the data and estimating the relative frequency of the feature of interest, as applied to the
Italian case. Moreover, Figure 15a,b display the node ’deaths’ highlighted together with its
parent nodes and the relative arcs with the estimated strength for the networks for Italy
and Israel, respectively.

Figure 14. BN structure for Israel. The figure is downloadable from https://tinyurl.com/rbexhtww
(accessed on 26 February 2022).

To confirm what we found in the exploratory BNs for both countries, in Figure 16,
we compare the BNs of Italy and Israel. Italy is the target BN, Israel is the current BN.
Green arcs are true-positive arcs, i.e., arcs which are present in both BNs, blue arcs are
false-positive arcs, i.e., arcs present in current BN, but not present in the target BN, and
red arcs are false-negative arcs, i.e., arcs not present in current BN but present in the
target BN. There are six true-positive arcs leading to the hospitalization node, from the
international movement closing node, internal movement closing node, workplaces closing
node, residential mobility node, stay home restriction node, grocery and pharmacy mobility
node. As for the ICU node, there is one true-positive arc from hospitalization (as expected),
one from the transport closing node, one from the internal movement restriction node, one
from the workplace closing node and one from the international movement restriction node.
Finally, there is only one direct true-positive arc from the hospitalisation to the death node
(as expected), and from the gatherings restriction node and one from the internal movement
restriction node. The Hamming distance is calculated, considering each arc as a string. The
classical Hamming distance between two equal-length strings of symbols is the number of
positions at which the corresponding symbols are different. The Hamming index, i.e., the
number of false positive and false negative arcs in this comparison, is equal to 23.

Figure 17 presents the SEM path diagram for Israel, and Table 3 presents the loadings,
regressions and the covariances for the Israeli data. Data from Israel show a direct effect
of restrictions on the health outcomes. International movement restrictions reduced the
number of hospitalised and death cases. However, it was also found that transport closing
decreased ICU cases, but increased hospitalisations. In terms of population behaviour, visits
in transit stations decreased hospitalisations, while visits in grocery stores and pharmacies
increased it. Table 4 presents measures of fit for the Israeli data. The SEM results confirm
the significant arcs of the BN. The SEM comparative fit indices (CFI) are relatively low, but
they need to be considered in the context of the overall analysis workflow and not as a
stand-alone measure.

https://tinyurl.com/rbexhtww
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(a)

(b)
Figure 15. Network for Israel obtained using the bootstrap. (a) overall network; (b) connections to
the node ‘deaths’ in the network. The figures are downloadable at https://tinyurl.com/rbexhtww
(accessed on 26 February 2022).

Figure 16. Comparison of lagged BNs for Italy and Israel, Italy is the target BN, Israel is the current
BN. Green represents true positive, blue represents false positive and dashed red represents false
negative. The resulting Hamming index is 23.

https://tinyurl.com/rbexhtww
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Health variables were discretised according to the cut-offs reported in Figure 18. Cut-
off threshold values were chosen to represent the healthcare system and the population size
in Israel. Figure 19 shows the distribution of daily deaths in Israel in terms of number of
day distributions in the three classes formed by the cut-off points. Restriction variables are
ordinal, so they are again not discretised. As for Italy, for the behaviour/activity variables,
the Hartemink algorithm [42] is used with a number of cut-offs equal to 3. As a result,
cut-off levels are lower in Israel than in Italy because of the different population size.

Figure 17. Path diagram for the Israeli data.

Figure 18. Cut-off points for health variables for Israel.

Figure 19. Discretization results for COVID-19 death variables in in Israel. Class limits are reported
on the x-axis.
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Table 3. Loadings, regressions and covariances for the Israeli data (JMP Pro Version 16). * < 0.05.

Regressions Estimate SE Prob>|Z|
Gathering restrictions→ [death_lag20] 0.0834036 0.0646139 0.1968

Grocery and pharmacy → [hospitalisations
_lag10]

0.0073164 0.0025899 0.0047 *

Internal movement restrictions →
[death_lag20]

0.2133128 0.0448712 <0.0001 *

Internal movement restrictions→ [hospitalisa-
tion _lag10]

−0.070286 0.0681075 0.3021

Internal movement restrictions→ [icu_lag15] 0.2298243 0.0530456 <0.0001 *

International movement restrictions →
[death_lag20]

−0.494448 0.06866 <0.0001 *

International movement restrictions→ [hospi-
talizations_lag10]

−0.550245 0.0422315 <0.0001 *

residential→ [hospitalisation _lag10] −0.029104 0.0083352 0.0005 *

Retail and recreation→ [hospitalisation_lag10] 0.006643 0.0042186 0.1153

[hosp_lag10]→ [death_lag20] 0.3147609 0.0827129 0.0001 *

[hosp_lag10]→ Lag[icu_lag15] 0.4229745 0.0725468 <0.0001 *

Transit stations→ [hospitalisation_lag10] −0.041554 0.0071265 <0.0001 *

Transit stations→ [icu_lag15] −0.003296 0.002778 0.2354

Transport closing→ [hospitalisation_lag10] 0.6199998 0.0924994 <0.0001 *

Transport closing→ [icu_lag15] −0.352726 0.0735336 <0.0001 *

wave→ gathering restrictions 0.2335669 0.026049 <0.0001 *

wave→ international movement restrictions −0.142389 0.0416318 0.0006 *

wave→ parks 1.7042613 1.3502963 0.2069

wave→ [hospitalisation_lag10] 0.2830623 0.0341744 <0.0001 *

wave→ transport closing 0.0786077 0.0205476 0.0001 *

wave→ workplace closing 0.1612515 0.0261237 <0.0001 *

Workplace closing→ [hospitalisation_lag10] 0.3268637 0.1029741 0.0015 *

Workplace closing→ [icu_lag15] 0.0525362 0.0701275 0.4538

Covariances Estimate SE Prob>|Z|
behavior↔ health 1.8928684 0.4624537 <0.0001 *

Gatherings restrictions↔ behaviour −15.63618 1.381421 <0.0001 *

Internal movement restrictions ↔ workplace
closing

0.5582769 0.0497297 <0.0001 *

residential↔ grocery and pharmacy 21.020041 2.8550311 <0.0001 *

[icu_lag15]↔ international movement restric-
tions

−0.285663 0.0450603 <0.0001 *

Transit stations↔ transport closing 0.7953274 0.1034623 <0.0001 *

wave↔ transit stations −2.446618 0.3286085 <0.0001 *
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Table 4. Summary of fit for the Israeli data (JMP Pro version 16).

Sample Size 333

Iterations 77

−2 Log Likelihood 17853.737

AIC 18,018.986

BIC 18,237.075

χ2 1035.5668

DF 53

Prob> χ2 2.93× 10−182

CFI 0.8006927

TLI 0.6577931

NFI 0.7937491

Revised GFI 0.7028438

Revised AGFI 0.3328002

RMSEA 0.2359506

Lower 90% 0.2235195

Upper 90% 0.2486080

RMR 8.5534396

SRMR 0.1926672

Figures 20 and 21 show two scenarios for Israel. As for Italy, in the first scenario,
we set evidence as the lowest level of the international movement restriction variable. In
the second scenario, we set evidence as the highest level of the international movement
restriction variable.

Figure 20. Scenario for Israel when international movements restriction is set to 2. The international
movement restriction node is highlighted in grey.
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Figure 21. Scenario for Israel when international movements restriction is set to 4. The international
movement restriction node is highlighted in grey.

In Israel, the impact of the international movement restriction variable is greater than in
Italy; when restrictions are present, the number of days with a low number of daily deaths
(less than 5) is 40%, compared to 12% when restrictions are not present.

In Figures 22 and 23, for Israel, inverse inference is applied, the daily deaths level
remains fixed, and the model observes what happens in parent nodes. In Figure 22 the
scenario is one where the number of daily deaths is always lower than 5; in Figure 23, the
scenario is one where the number of daily deaths is always larger than 20. We observe, for
example, that when international movement restriction was high (level 3), 70.9% of days,
daily deaths were lower than 5. When daily deaths were more than 20, in only 27.5% of
days international movement restriction was high (level 3).

Figure 22. Scenario for Israel when daily deaths are less than 5 (level 1). Deaths node is highlighted
in grey.
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Figure 23. Scenario for Israel when daily deaths are more than 20 (level 3). The deaths node is
highlighted in grey.

6. Discussion

Given that COVID-19 is a human-to-human-transmitted disease, with high infection
rates, pandemic mitigation policies should limit people’s physical interactions, but at the
same time, allow for maximal continuity of economic activity. As a consequence, managing
and applying movement restrictions should take into consideration three factors: (a) the
type of the restriction (local, national, the activity being restricted); (b) the duration of
the restriction; and (c) the severity of the morbidity. Gaining compliance and adherence
to the restriction policies depends on these three factors. As the results in our analysis
show, over time, the population compliance decreased in both countries, even when health
indicators were not satisfying. This highlights the importance of applying a selective
and differential approach in various public health conditions. For example, restricting
international movement had a larger effect on the number of death cases. At the same
time, other restrictions, such as ones applied to workplaces and transport stations, had a
moderate effect on the number of hospitalised patients. Moreover, behavioural changes,
such as attendance at grocery stores and pharmacies, workplace and transit stations,
had a very small effect on health indicators. This means that people limit attendance at
public places according to their personal risk assessment, while the consequences of such
limitations vary according to the duration of the restrictions and their type. For example,
we found that in Israel, greater numbers of death cases are followed by internal restrictions,
i.e., lockdowns, but also higher attendance at public places, such as retail stores and transit
stations. In Italy, higher death rates are the result of fewer restrictions, and higher levels of
hospitalized patients.

The analysis also highlights the strong effect of internal and international travel
restrictions on COVID-19 death rates. This is in comparison to other restrictions which
have a smaller effect on the number of hospitalised patients. This finding is important
as vaccinations and improved healthcare systems provide effective solutions that permit
lower levels of restrictions and lower levels of population compliance with instructions
and limitations. More importantly, it allows for a country to maintain its economic activity
running with acceptable levels of morbidity and hospitalisations. However, it seems that
international restrictions, such as airport closures, have a strong and direct effect on the
number of deaths. In terms of mitigation policy, closing international borders appears
to be an effective tool for a quick reduction of death cases, when the pandemic exceeds
acceptable limits.
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Although critical in the pandemic spread, population behaviour was found to have
only a moderate direct effect on the health indicators. In fact, both countries have reacted
in an opposite way at early stages of the pandemic. On February 2020, Italy was late in
reacting, with no restrictions and extreme hospitalisations, ICU and death cases. In Israel,
immediately after detecting the first cases, a national total lockdown was applied, which
led to low levels of morbidity for few months. However, later, both countries experienced
higher levels of morbidity with restrictions, but with lower levels of public compliance.
This is important for policy decision-making considerations. Future pandemic management
should assess the public’s ability and willingness to comply with directions. Apparently, the
severity of the health indicators does not guarantee full compliance with the instructions.
The effect of restrictions while the public does not comply is dramatic as reflected by higher
levels of morbidity and death rates.

Dealing with a pandemic such as COVID-19 needs to account for possible multiple
strategies. The continuous relationship over time among the variables involved renders
an approach with BNs and SEM particularly suitable. The reversed conditional analysis
described above is useful to “learn from experience”. Restriction measures can be successful
or not. This is why we model a variable “wave” to temporally and spatially contextualise
the restriction measures following, or preceding, the introduction of restriction measures
and consequently affecting the behaviour of the population. The current analysis has
several limitations. In general, we show the aggregated behaviour of variables with respect
to key healthcare variables (hospitalisation, ICU and deaths).

Direct consequences of a measure put in place, at a certain time t, should be studied
with a time series model. We construct scenarios regarding choices taken to overcome
pandemic problems. These are summarized by counterfactual questions such as: “if in
this situation one would have done this, what would have happened to this quantity?”.
The COVID-19 pandemic is a continuous event that needs to be managed as such. The
definition of a “wave”, in each country, reflects increased levels of health indicators during
a certain period. Health data observatories and surveillance systems, across countries, need
to calibrate the data and provide a multivariate perspective. In this paper, we provide
examples of both by applying a methodology that can be generalised to individual locations.

7. Conclusions

In this article we presented a methodology to examine the mutual effect of national
policy and population behaviour when a huge pandemic such as the COVID-19 one or, more
in general, a global emergency, affects a country. This methodology was first applied on
pandemic data from Italy and then on Israel data for a comparative and confirmatory analysis.

Starting from the multivariate structure in the daily COVID-19 indicators (new cases,
number of hospitalisations, ICU admissions and COVID-19 deaths), the population activity
and restriction data, we introduced a modelling approach based on complementary features
involving an “ensemble-type” analysis combining outcomes from multiple models. We
considered the impact of lockdown measures and mobility restrictions, as reflected by peo-
ple’s behaviour and mobility trends, using a multimethod approach, combining Bayesian
network analysis, structural equation modelling and ’what-if’ Bayesian network scenarios.

This approach might serve as an effective tool for policy makers evaluating antici-
pated restriction policies due to an emergency. Such assessments are dependent on health
conditions, desired outcomes and variables such as population compliance over time and
the national and local health system capacity.
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