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Abstract 

 

With the reform of the European Common Agricultural Policy (CAP) in 2013, subsidies to farms are 

now bound to the fulfilment of environmentally friendly measures, such as crop diversification and 

allocation of a share of their farmland to Ecological Focus Areas, the so-called “Greening 

requirements”. Research on the effects of these policy changes so far have focused mainly on land 

use transition; however, a detailed investigation of how CAP greening affects the properties of 

agricultural land is required to assess the actual environmental benefits of the reform. In this study, 

we present a first attempt to assess the impacts of CAP greening on selected soil quality indices in 

Lombardy, a populated region in northern Italy where high-intensity agriculture is widespread. We 

combine high resolution (10/30 m) soil indices from remote sensing based on Landsat-8 and Sentinel-

2 data with a regional administrative database covering all agricultural parcels of the region. We then 

perform a correlation analysis to investigate whether and to what extent greening prescriptions affect 

the soil quality indices from 2014, representing pre-greening conditions, to 2017, representing 

greening conditions after 3 years of implementation. Our analysis indicates a high persistence of soil 

quality indicators and suggests that some crops might have a significant impact on soil quality 

dynamics, along with farm’s compliance with CAP greening. Although we identified some 

uncertainties in the soil indices, by integrating a large volume of data and an efficient processing 

algorithm our method paves the way for ex-post environmental performance assessment of 

agricultural policies. 

 

1. Introduction 
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Soil properties are affected by agricultural activity through farming practices and land use choices. 

Farmer’s decisions on crop allocation and land management may be influenced by various factors 

such as selling prices of agricultural products and cost of inputs (Glenk et al., 2017), pedoclimatic 

conditions (Leteinturier et al., 2006) along with risk preferences of the farmer itself (Latawiec et al., 

2017; Paut et al., 2020). Many of the agricultural drivers that impact, directly or indirectly, on soil 

management and properties depend, in turn, on external factors, such as agricultural policies 

(Kremmydas et al., 2018).  

In Europe, in particular, the Common Agricultural Policy (CAP) has affected and shaped land use 

choices and land management practices (Posthumus and Morris, 2010, Viaggi et al., 2013). In general, 

the CAP has shifted over time from productivity-incentive measures toward a more environmentally-

friendly regulatory framework. Along with this evolution, there has been a growing interest in 

measuring and monitoring its effects on land use, coverage and soil properties (Tóth et al., 2013; 

Orgiazzi et al., 2018; JRC, 2020) and on soil conservation (Borrelli et al., 2016; Borrelli and Panagos, 

2020). Referring to soil quality and management, the recent switch of CAP monitoring and 

assessment, “from compliance to performance”, calls for a stronger integration of available data 

sources. The term “from compliance to performance” refers to a shift in policy tools monitoring. The 

former (compliance) targets the adoption of farming practices or technologies as a proxy for desired 

environmental outcomes, while the latter (performance) targets those outcomes directly (Rossi, 2018; 

Carey, 2019; Ehlers et al., 2021). 

While soil properties can be monitored through field sampling and laboratory analysis (see e.g. Paz-

Kagan et al., 2014; Orgiazzi et al., 2018), this is a laborious, costly and time-consuming process 

(Mulder et al., 2011). A more efficient alternative is to combine field sampling with remote sensing 

to produce spatial maps of soil properties, exploiting the wide area coverage of optical and radar 

sensors and their ability to monitor the topsoil (Shoshany et al., 2013). Usually, the soil properties of 

interest are measured in the laboratory and a prediction model is built to relate field and remote 

sensing data, using multivariate regression (Douaoui et al., 2006; Gholizadeh et al., 2018) or machine 

learning techniques (Bachofer et al., 2015; Castaldi et al., 2019). While this approach can greatly 

extend the scope of traditional soil surveys, it still relies on accurate field data collection (Castaldi et 

al., 2018), and results in a static map of soil properties. Remote sensing has also been used directly 

in the context of CAP monitoring. However, most research has only approached the issue of assessing 

compliance with the CAP requirements, either by investigating different supervised classification 

schemes for the identification of land use types at the parcel scale (Sitokostantinou et al., 2018), or 

by addressing the automatic extraction of satellite data and their integration into a spatiotemporal 
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framework (Rousi et al., 2020). Estimating the effects of the CAP reform however is a more complex 

issue, and one that has been relatively overlooked from a remote sensing perspective. Previous efforts 

have been made particularly in the field of soil erosion monitoring. For instance, Borrelli and Panagos 

(2020) developed an indicator to estimate soil erosion in the EU, which could be used to evaluate the 

effects of policy changes; however, their approach is based on coarse resolution satellite data 

(MODIS, 500 m resolution). In summary, the evolution of soil properties, and the link with 

agricultural policy changes, are seldom investigated using remote sensing at a high level of detail 

(Sheffield and Morse-McNabb, 2015; Dube et al., 2017).  

While in this context the applications of remote sensing have so far been limited, the environmental 

impacts of CAP instruments have been widely investigated from different points of view (Ehlers et 

al., 2021). In some studies, detailed scale assessments of CAP environmental effects have been 

carried out based on field experiments (Kleijn and Sutherland, 2003; Walker et al., 2007; Ansell et 

al., 2016), or ad-hoc surveys on a limited number of farms (Zahm et al., 2008; Paracchini et al., 2015). 

This kind of evaluation suffers from the difficulty of extending the results to wider territorial areas. 

Other studies instead rely on datasets provided by public administrations (Pufahl and Weiss, 2009; 

Chabé-Ferret and Subervie, 2013; Bertoni et al., 2020; Bertoni et al., 2021). In particular, they 

represent ex-post assessments on the effects of participation in the agri-environmental measures of 

the CAP (Pufahl and Weiss, 2009; Chabé-Ferret and Subervie, 2013; Bertoni et al., 2020), or on the 

effect of greening and CAP direct payments on farmland allocation, GHG emissions and use of farm 

inputs (Arata and Sckokai, 2016; Coderoni and Esposti, 2018; Bertoni et al., 2021). In these latter 

studies, the Farm Accountancy Data Network (FADN)1 is usually exploited in the assessments of 

CAP effects (Mary, 2013; Arata and Sckokai, 2016; Coderoni and Esposti, 2018). However, being 

conceived to evaluate the economic performance of farms, it reports a limited amount of information 

on environmental performance, usually limited to the inputs (pesticides and fertilizers) and water 

consumption (Kelly et al., 2018). 

The main bottleneck of such assessment studies is the lack of data having, at the same time, a 

reasonable detail (at least farm level) and full territorial coverage (Primdahl et al., 2010). Indeed, the 

availability of indicators measured at a detailed spatial scale represents one of the main challenges in 

assessing the sustainability of the agricultural sector (Burkhard et al., 2009). A further challenge is 

represented by the extensibility of the results to a larger scale (Kelly et al., 2018). This condition is 

                                                           
1 The FADN is a sample dataset of about 80,000 farms, representing about 5 million EU farms that concentrate 90% of 

EU agricultural production (Kelly et al., 2018) 
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guaranteed when, as in our case, available data cover the universe of observations on a given territory. 

For the above-mentioned reasons, ex-post CAP impact assessments could be usefully complemented 

by using geo-referenced data with wide spatial coverage, deriving from remote sensing. 

In line with the performance-measurement of policy tools, this paper describes a first attempt to assess 

whether and to what extent the crop-mix change induced by the greening measures (Bertoni et al., 

2018; Micheletti et al., 2020; Bertoni et al., 2021) may be associated with a change in soil quality 

indicators. These indicators were obtained from spectral indices obtained from high resolution 

satellite data (Landsat 8 OLI and Sentinel-2, at 30 m and 10 m spatial resolution), in view of their 

simplicity and low sensitivity to atmospheric conditions. Such indicators are chosen as proxies for 

specific soil health policy targets (European Commission, 2021a). Our analysis further seeks to 

demonstrate the feasibility and benefits of integrating administrative and remote sensing data into 

agricultural policy ex-post evaluation processes. Administrative datasets ensure full territorial 

coverage and a high level of detailed information (down to the parcel level). On the other hand, they 

contain a limited amount of information, especially on environmental indicators (often limited to land 

use or participation in voluntary agro-environmental measures), which can be filled by remote 

sensing. 

With our analysis, we aim at testing how different factors, including farmland use type, eligibility 

and compliance with respect to greening policies, contribute to explaining the dynamic variability in 

soil properties derived from remote sensing indices. Our aims are: 1) To develop a methodology to 

combine high resolution remote sensing and administrative agricultural datasets in an efficient 

manner, to provide dynamics maps of soil properties in a wide agricultural region of the EU without 

the need for field surveys; 2) To undertake a preliminary assessment of the evolution of soil properties 

before and after the implementation of greening policies;  3) To perform a correlation analysis to 

evaluate the possible influences on the observed changes in soil properties in the context of CAP 

greening. 

 

2. Common Agricultural Policy and greening elements 

This paragraph describes evolution and functioning of CAP prescriptions (in particular greening 

payments), whose effects are tested in the present article. 

In a first stage, which lasted about 30 years, the CAP was mainly based on interventions aimed at 

supporting selling prices of agricultural products, in order to stimulate farm productivity and ensure 

food self-sufficiency of European Countries. Subsequently, agricultural support moved from selling 
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prices to per-hectare payments decoupled from farmland use choices (Garzon, 2006; Folmer et al., 

2013). Such payments have been tied to the fulfilment by farms of practices respectful of the land 

and the environment. According to the so-called cross-compliance, farms were obliged to keep their 

land in Good Agronomic and Environmental Conditions (GAEC) in order to receive CAP payments 

(Bennett et al., 2006; JRC, 2019a; JRC, 2019b). With the current CAP reform (2015-2020) the 

requirements to obtain farm payments have increased, with the introduction of the so-called greening 

payments (European Commission, 2020). Greening payments represent the main part of decoupled 

payments for farms, provided with the purpose of encouraging farmers to make a sustainable use of 

their land. In order to receive greening payments, farmers are required to respect cross compliance 

(GAEC), to adopt crop diversification and to devote a portion of their farmland to Ecological Focus 

Areas2.  

Although the European Union has been approaching the issue of sustainable soil management for 

some years3, until now this has not been an explicit objective of the CAP. However, many elements 

indicating attention to the issue of soil protection also emerge in the current CAP 2015-2022  

framework, with particular reference to the wide set of policy instruments directly, or indirectly, 

aimed at addressing sustainable soil management. In fact, many of GAECs and voluntary agri-

environmental measures in the second pillar are directly related to soil quality issues. The Reg. (EU) 

1307/2013, establishing the greening payment, states that “the obligations relating to crop 

diversification should be applied in a way that takes into account the difficulty for smaller farms to 

diversify, while continuing to make progress towards enhanced environmental benefit, and in 

particular the improvement of soil quality“ (recital 41, Reg. EU 1307/2013). 

Definitely, the future CAP reform (2023-2027) addresses the issue of soil health more incisively than 

in the past. In fact, efficient soil management is formally stated as a CAP specific objective. The new 

CAP framework addresses soil protection to face threats to the health of European soils, such as 

erosion, organic matter decline, biodiversity loss, soil compaction, and contamination, salinisation, 

and desertification (European Commission, 2021a). New instruments have been put in place to tackle 

sustainable soil management. The main one is the shift from crop diversification (a static concept) to 

crop rotation, as a mandatory requirement to receive farm payments. Soil cover, tillage management, 

                                                           
2 Some examples of Ecological Focus Areas are: land lying fallow, landscape features, buffer strips, agroforestry, areas 

with short rotation coppice, areas with catch crops and green cover, and areas with nitrogen-fixing crops. 
3 Since 2006 the EU, by the Soil Thematic Strategy [COM(2006) 231], set for the first time its general objectives to 

preserve soil functions . This should have been followed by a soil framework directive, which has never been approved 

because of the high implementation costs and excessive difference in national legislation (European Commission, 2021b).  

More recently, the 7th Environmental Action Programme of the EU [Decision 1386/2013/EU] stated that the general 

objective is to ‘promote a sustainable use of soil’, establishing potential causes of degradation and suggesting actions to 

contrast them (Ronchi et al., 2019). 
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and precision farming are indicated as best practices to protect the soil (European Commission, 

2021a), potentially incentivised by voluntary eco-schemes and agri-environmental measures. 

While so far CAP subsidies have been linked to the compliance to certain practices (GAEC, greening) 

the reform process binds them to the attainment of certain evidence-based targets, defined in the CAP 

National Strategic Plans (NPS) presented by each MS. Given the emphasis on soil management, it is 

plausible that such targets will encompass, among others, the effect of sustainable farming practices 

on soil properties. For this reason, our analysis uses one or more soil indices (described in chapter 

3.3) as a proxy for specific soil health policy targets: organic matter decline, salinisation, and 

desertification. It is important to clarify that such proxies represent, for a variety of reasons, a 

simplification of the underlying policy target. 

As mentioned above, the introduction of the greening payment represents one of the main novelties 

of the 2015-2022 CAP programming period. Greening ensures that the allocation of CAP direct 

payments to the farmers is bound by their fulfilment of some ‘agricultural practices beneficial for the 

climate and environment’ (Reg. (EU) No 1307/2013). 

The practices are as follows: 

a)  diversification of arable crops; 

b)  maintaining existing permanent grassland; 

c) having an ecological focus area on the agricultural area. 

In Italy, only the first and the third requirements had to be accomplished at farm level. The second 

practice stated that the national grassland area could not decrease by more than 5% compared to a 

reference area. The consequence, at the level of individual farms, is that an authorisation was required 

if a farmer intended to convert a permanent grassland parcel to another use. However, the Italian 

national register of permanent grassland was established only in 2018, that is out of our period of 

investigation. For this reason, only the two greening practices ‘diversification of arable crops’ and 

‘ecological focus area’ are relevant to our analysis. 

‘Diversification of arable crops’ mandates that farms having more than 10 (30) hectares of arable land 

should cultivate at least 2 (3) arable crops, allocating a minimum share of cropland to the less 

represented crop(s). The third rule establishes that in farms with above 15 hectares of arable land, at 

least 5% of such surface should be devoted to Ecological Focus Areas (for instance nitrogen-fixing 

crops, fallow land, landscape features, buffer strips, etc.). Organic farms and farms with a large share 

of forage crops and/or leguminous crops and/or fallow land and/or flooded crops (rice) were 
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exempted from the compliance with greening rules, regardless of their dimension. For further details, 

see Regulation (EU) n. 1307/2013, articles 43-47. 

It is quite evident that these practices potentially affect farmland uses, particularly in a region like 

Lombardy, traditionally characterized by the presence of large farms and a widespread maize 

monoculture. Given such features, some studies have attempted to estimate how greening 

introduction impacted on farmland allocation choices in Lombardy. Most of these analyses were ex-

ante simulations, based on small-scale sample data (e.g. Cortignani et al., 2017). Conversely, Bertoni 

et al. (2018), Micheletti et al. (2020) and Bertoni et al. (2021) performed a detailed ex-post analysis 

by observing the actual behaviour of all farmland parcels in the Lombardy region for some years 

before and after greening implementation. Results of Bertoni et al. (2018) and Micheletti et al. (2020) 

claim for a change in transition probabilities of the main arable crops. Such changes consist in a 

decrease of transitions probabilities toward maize and in an increase of those toward nitrogen-fixing 

crops (soybean, alfalfa), herbages and other cereals. Bertoni et. al. (2021) estimated the net effect of 

greening on farmland allocation between 2014 and 2015. Their results show a reduction of 10% of 

maize area in eligible and not initially compliant farms, counterbalanced by increases of other crops 

(mainly soybean, alfalfa, wheat, barley, and fallow land). However, all these estimations focus on the 

effects of the policy on farmland allocation, which is only the visible outcome of the greening policy, 

and not on its environmental impact. In this sense, our study aims at testing whether and to what 

extent level and variations in soil indices may be somehow associated to observable outcomes (land 

use change) induced by the CAP greening. 

 

3. Datasets and methods 

 

3.1. Study area 

The area examined in this study is a large portion (covering about 2,150 km2) of the flatland of 

Lombardy region, in Northern Italy (see Figure 1). Lombardy is the most populated Italian region 

with more than 10 million inhabitants, corresponding to 16.4% of the Italian population, concentrated 

in only 7.9% of the national territory (ISTAT, 2021). Over 53% of the area, mainly in the north, is 

mountainous or hilly, while the southern part of the region is a plain, where 68.5% of the land is 

managed by the agricultural sector (ISTAT, 2021; DUSAF, 2015). Here, arable crops – in particular 

maize and forage crops - represent the main farmland utilization type (92.9%), while permanent 

grassland is limited to only 6.4% of the farmland (DUSAF, 2015). Water flood irrigation is 

widespread. Agriculture in Lombardy is characterized by high-intensity farming systems (Fumagalli 
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et al., 2011). The average value of production per hectare of farmland is 3.9 times that of the EU-28, 

while the average economic dimension of the farms is 5.7 times (Eurostat Farm Structure Survey, 

2013). Livestock products, especially milk and pigs, provide two thirds of the agricultural value, with 

the livestock density (measured as the number of Livestock Standard Units – LSU – per hectare), 

being 3.7 times that of the EU-28 (Eurostat Farm Structure Survey, 2013). Given the high livestock 

density, both nitrate leaching in water, and its dispersion in air, are considered serious problems 

(Perego et al., 2012; Acutis et al., 2014; Paracchini et al., 2015), while there is no particular evidence 

in the literature of critical issues related to the management of phosphorus. 

 

Figure 1: Top left: elevation of Lombardy and the study area; top right: location of Lombardy region 

within Italy. Bottom left:  the study area and example of the BI index calculated using Landsat OLI 

data from 2014.  

3.2. Remote sensing data 

Remote sensing data were acquired for 2014 (pre-greening conditions) and 2017 (greening 

conditions). To map soil properties through spectral indices, soils are required to be bare to exclude 

the influence of vegetation (Wang and Qu, 2007). Thus, we selected satellite images from October/ 

early November, as this time of year marks the period of rotation between summer and winter crops. 
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For 2014, we acquired Landsat-8 OLI data at 30 m spatial resolution, at the L1T processing level. 

These data are freely available from USGS and were downloaded at http://earthexplorer.usgs.gov/; 

altogether we selected four cloud-free tiles (see Table 1), acquired between 23/10 and 01/11, covering 

the low-lying areas of Lombardy. Individual tiles were merged together using the mean value for 

overlapping portions and top-of-atmosphere percent reflectance between 0 and 1 was calculated using 

the coefficients found in the Landsat tile metadata. Soil indices were calculated on the image mosaic 

obtained from the four tiles. 

For 2017, we downloaded six cloud-free 100 km by 100 km tiles (see Table 1) from the Sentinel-2A 

and –B satellites, acquired on 14/10 and 16/10, at the L1C processing level. The tiles were 

downloaded from the ESA Copernicus open access hub (https://scihub.copernicus.eu/) and were 

merged together using the same approach described for Landsat before calculating the indices on the 

image mosaic. For consistency with the other bands, we resampled bands 8A, 11 and 12, originally 

at 20 m spatial resolution, to 10 m resolution. These bands are necessary for calculation of the NMDI. 

We did not resample the other 20 m or 60 m bands of Sentinel-2, as they were not needed for 

calculation of other indices. Sentinel-2 digital numbers are provided as scaled reflectance between 0 

and 10,000. We transformed this value to percent reflectance between 0 and 1. 

 

Table 1: satellite images used to calculate indices for 2014 and 2017. Tile refers to the tiling system 

of Landsat 8 (path_row) and Sentinel-2 (UTM Military Grid Reference System). 

Satellite Tile  Date Resolution (m) 

Landsat 8 OLI 193_28 01/11/2014 30 

Landsat 8 OLI 193_29 01/11/2014 30 

Landsat 8 OLI 194_28 23/10/2014 30 

Landsat 8 OLI 194_29 23/10/2014 30 

Sentinel-2 32TMQ 14/10/2017 10 

Sentinel-2 32TMR 14/10/2017 10 

Sentinel-2 32TNQ 14/10/2017 10 

Sentinel-2 32TNR 14/10/2017 10 

Sentinel-2 32TPQ 16/10/2017 10 

Sentinel-2 32TPR 16/10/2017 10 
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3.3 Administrative data 

In our analysis, remote sensing data were combined with georeferenced administrative data coming 

from the SIARL dataset of Lombardy Region. SIARL is an administrative dataset by which 

Lombardy Region administration manages farmer requests for CAP payments. For each of about 

50,000 farms located in the Region, it contains information about farm structures, crops, livestock, 

family and hired labour, and CAP payments received. Particularly, for our purposes we gathered data 

about the use of each of the two millions of farmland parcels of the Lombardy region from 2011 to 

2017. These data came from yearly declarations of farmers applying for CAP payments. Parcels are 

typically rectangular in shape, with an average size of 1.2 ha, so they cover at least 10 Landsat 8 

pixels  and more than 100 Sentinel-2 pixels, which we deem adequate for our analysis. 

Given the occasional contemporary presence of more crops on the same parcel in the same year, not 

being able to georeference which part of the parcel is occupied by each crop, we adopted a 

methodology to assign each georeferenced parcel to only one use per year. In any case, this 

eventuality was quite rare, with the notable exception of the intra-annual succession between ryegrass 

and maize for silage. In this particular case we created a separate category of farmland use (ryegrass 

+ maize for silage). For further details about the adopted procedure see Bertoni et al. (2018). 

Consequently, the resulting number of potential farmland uses was 23. Subsequently, we created a 

balanced panel 2011-2017, eliminating those parcels not declared in all the observed years. In any 

case, the resulting balanced panel of farmland parcels represents 95% of the total agricultural area. 

Finally, we reduced the georeferenced balanced panel of parcels, considering only those parcels 

which overlap with remote sensing data. The result was a balanced panel 2011-2017 of 153,954 

farmland parcels covering altogether 214,968 hectares. Since some farmland uses result in a 

permanent land cover, leading to distortions in remote sensing indices, and/or are not affected by 

greening rules at all, we decided to eliminate parcels with those land use types. More specifically, we 

excluded from the dataset parcels with the following uses for at least one year between 2014 and 

2017: permanent crops, permanent grassland, flowers, woods and rice. After cleaning these parcels, 

the balanced panel 2011-2017 shrinks to 129,166 parcels for 191,645 hectares. The final number of 

farmland uses included in the model was 17. 

Based on Bertoni et al. (2021), each parcel belonging to the dataset was assigned to one of three 

groups based on criteria of both eligibility and compliance with the greening policy of the farm to 

which they belonged. These conditions were verified by referring to the year 2014, which was the 

last year before greening introduction. Specifically, we separated parcels into three groups: 1) Group 

1 (not eligible). This group includes parcels belonging to small farms and those that are exempted 
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from greening payments because of their characteristics; 2) Group 2 (eligible and compliant). This 

group includes parcels belonging to those farms that are eligible for greening practices, but were 

already compliant with these rules in 2014; 3) Group 3 (eligible, not compliant). This group includes 

parcels pertaining to farms that were eligible for greening payments, but that before the 

implementation of greening policies did not satisfy greening requirements.  Following this 

framework, Bertoni et al. (2021) demonstrated that after the introduction of greening, farmland 

parcels belonging to Group 3 changed their probability of transition from one use to another, 

compared to the pre-greening period, with a penalization of maize in favour of soybean, alfalfa, 

herbages and other cereals. Conversely, parcels of both Group 1 and Group 2 maintained the same 

transition dynamics. 

Classification of farmland parcels into three greening groups resulted in the creation of three sub-

samples of respectively 32,155 hectares (Group 1), 74,810 hectares (Group 2), and 84,680 hectares 

(Group 3). In annex 1 we show the details about the evolution of the farmland use, before and after 

greening introduction, in each of the three above mentioned groups. 

 

3.4 Calculation of remote sensing indices for each parcel.  

Remote sensing indices described here represent a proxy for specific soil health policy targets such 

as organic matter decline, salinisation, and desertification (see chapter 2 for more reference). For a 

variety of reasons, such proxies represent a simplification of the underlying policy target. Four types 

of indices were calculated based on the merged Landsat 8 and Sentinel-2 data, including the 

normalized multiband drought index (NMDI, Wang and Qu, 2007), which is related to the soil 

moisture content, the salinity and brightness indices (SI and BI, Dehni and Lounis, 2012), which are 

related to the soil salinity, and the Normalized Difference Vegetation Index (NDVI). The NDVI, 

although originally developed and most often used to monitor the health or phenology of vegetation 

(Primi et al., 2016), has been linked to the organic matter content in soils (Guo et al., 2017; 

Gholizadeh et al., 2018).  

The NMDI, developed by Wang and Qu (2007), has an inverse relationship with the moisture content 

of the soil: higher values (> 0.7) represent a moisture content lower than 0.1, values around 0.6 

intermediate wetness conditions and < 0.6 wet soil conditions (Wang and Qu, 2007). It is calculated 

following equation (1) 

𝑁𝑀𝐷𝐼 =
𝑁𝐼𝑅−(𝑆𝑊𝐼𝑅1−𝑆𝑊𝐼𝑅2)

𝑁𝐼𝑅+(𝑆𝑊𝐼𝑅1+𝑆𝑊𝐼𝑅2)
          (1) 
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Where NIR stands for near infrared and SWIR stands for shortwave infrared. The equation proposed 

by Wang and Qu (2007) is based on the MODIS sensor, where NIR is a band centered at 860 nm, 

SWIR1 is centered at 1640 nm and SWIR2 at 2130 nm. We selected the closest bands of Landsat 8 

(USGS, 2018) and Sentinel-2 (ESA, 2015). For Landsat, these are band 5 (865 nm), band 6 (1608.5 

nm) and band 7 (2200 nm). For Sentinel-2, we used band 8A (20 m resolution, resampled to 10 m) 

which is narrower than band 8 and closer to the original center wavelength, at 865 nm. Bands 11 

(1610 nm) and 12 (2190 mn) were used as SWIR1 and SWIR2, respectively. 

The three other indices only require a red and NIR band, combined in different ways. For the three 

indices, NIR (near infrared) corresponds to Landsat 8 OLI band 5 and Sentinel-2 MSI band 8, while 

the red band corresponds to band 4 in both Landsat 8 OLI and Sentinel-2 MSI mosaics. 

The SI and BI (sometimes called SI-1 and SI-3) are both sensitive to the salinity content of the soil, 

and are directly proportional to it, i.e. higher values represent an increase in salinity compared to 

lower ones (Bouaziz et al., 2011); these indices range generally between 0-0.30 (Nguyen et al., 2020). 

The indices were calculated following equations (2) and (3), see Dehni and Lounis (2013): 

𝑆𝐼 =  √𝑅𝐸𝐷 ×  𝑁𝐼𝑅           (2) 

𝐵𝐼 =  √𝑅𝐸𝐷2 + 𝑁𝐼𝑅2          (3) 

 

The NDVI, while generally employed to retrieve vegetation properties, has also been linked to the 

organic carbon content of soils (Zhang et al., 2019). This index generally ranges between -1 and +1, 

with values < 0.2 identifying bare soils, and is directly related to the organic content (Guo et al., 

2017; Gholizadeh et al., 2018). We followed Rouse et al. (1974) to calculate the NDVI according to 

equation (4). 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
           (4) 

 

We further extracted the average value of each index for all agricultural parcels. In view of the large 

number of parcels in the administrative database (153,954) and high resolution of raster data, using 

conventional GIS software proved too time consuming to perform these calculations; thus, we 

developed a computationally efficient version of the ray casting algorithm (Hormann and Agathos, 

2001) in the C programming language. The ray casting algorithm is used to detect whether a point 

lies inside a polygon and is based on the concept of ray crossing (see Fig. 2). A point is deemed inside 

Jo
urn

al 
Pre-

pro
of



 

   

 

a polygon if a horizontal ray starting from the point in a fixed direction crosses one side of the polygon 

an odd number of times. Otherwise, the point lies outside the polygon. The center of each raster cell 

was used as a starting point and each parcel was attributed the average of all raster cells lying inside 

it for each remote sensing index.  

 

Figure 2: The principles of the ray casting algorithm. Blue dots represent the center of Landsat 8 

OLI cells (30 m resolution), while red dots represent the centers of Sentinel-2 cells (10 m resolution). 

The horizontal ray (red arrow) from one dot inside the polygon in a fixed direction crosses a polygon 

side an odd number of times. 

 

 

3.5 Statistical tests on remote sensing indices and their variation 

Based on the ray casting algorithm, we calculated for each parcel the value of each index and the 

difference between its value in 2017 and 2014, that is the last year before greening implementation 

(Δindex=index2017-index2014). Recalling that both BI and SI are directly related to the salinity degree of 

the soil, for these two indexes a positive variation of Δindex means that salinity increased between 2014 

and 2017. Conversely, being NMDI inversely correlated with the content of water in the soil, an 

increase of Δindex results in a reduction of water in the soil, and vice-versa. As for the NDVI, as the 

index is directly linked to organic matter content when soil is bare, an increase of Δindex means an 

increase in soil organic matter content over the period 2014-2017. 

To evaluate the degree of association of different, competing factors in affecting values or variations 

in the indices, we performed five tests using stepwise selection for a linear regression based on the 
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Akaike information criterion (AIC) and weighting the observations by parcel size (see Venables and 

Ripley, 2002). Stepwise selection (or sequential replacement) is a combination of forward and 

backward selections. It starts with no predictors, then sequentially adds the predictor that most 

increases the AIC, like in a pure forward selection. After adding each new variable, it removes any 

variables that no longer provide an improvement in the model fit (like in a pure backward selection). 

When the procedure reaches an equilibrium, it stops. Depending on the test, in turn we used each 

index, or Δindex, as the dependent variable. It is worth pointing out that the tests performed aim to 

detect a statistically significant effect of the independent variables on the soil indices (in absolute or 

in variations), keeping in mind that those dependent variables may be affected by other, unobserved 

factors. Particularly, in the five tests we evaluated: 

1) Variation of soil indices with respect to farmland use. For each parcel, we determined the 

farmland use type in the three years post-greening (2015, 2016 and 2017) and summed the 

number of years for each type of land use as the variable coefficient. Δindex was selected as the 

dependent variable (see table 2 in the results section). As an example, if the parcel use in 2015 

and 2016 was wheat, while in 2017 it was soybean, the model evaluates Δindex = 2αwheat + 

1αsoybean. Maize farmland use was used as a reference. This kind of additive model is a second-

best strategy to control, in part, for the kind of rotations over the period examined. In fact, the 

possible rotations would be too numerous to include them as dependent variables in the 

regression.  

2) Variation of soil indices with respect to crop rotation. As in step (1), we identified the farmland 

use type for every year after 2014 and summed the number of changes in farmland use type 

from one year to another, which was used as the independent variable in the regression model. 

Δindex was used as the dependent variable (see table 3 in the results section). In the previous 

example, the model would evaluate Δindex = 1αrot, while in case of no changes the number of 

rotations would be 0. 

3) Pre-greening soil conditions with respect to eligibility and compliance with greening policies 

before they came into effect. The aim of this test was to understand whether soil indices were 

significantly different in the farms/parcels targeted by greening policies (group 3) compared 

to those which already complied with the policies (group 2) and those which were not eligible 

(group 1, chosen as reference). Here, the absolute value of each index, calculated in 2014, was 

used as the dependent variable (see table 4 in the results section). 

4) Variation of soil indices with respect to eligibility for and compliance with greening policies 

before they came into effect. We used the same approach described at point (3) to determine 

independent variables. In this case Δindex was used as the dependent variable (see table 5 in 
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the results section). The aim of this test was to determine whether farms/parcels that had to 

change cultivation practices to comply with greening rules actually underwent an 

improvement in soil quality indices as seen by remote sensing indicators. Group 3 (eligible, 

not compliant) was the reference. 

5) Variation of soil indices with respect to eligibility for and compliance with greening policies 

before they came into effect, and with respect to the farmland use and number of rotations. 

This last model is aimed at testing whether or not the estimated effects in model 4 are affected 

by the changes in farmland uses and number of rotations induced by the greening policy. If 

so, it would be possible to state that the differences between the greening groups are 

attributable to the variation in the crop mix. If not, these variations could largely depend on 

unobserved factors linked to the group to which each farmland parcel belongs. 

 

4. Results 

4.1 Variation in soil indices 

We first investigated changes in remote sensing based soil indices between 2014 and 2017, to 

understand how they evolved over time and which factors could contribute to variations aside from 

actual changes in soil properties. Density plots in figure 3 show the relationship between the value of 

each index in 2014 and 2017 for all agricultural parcels considered in the analysis. Such preliminary 

analysis is aimed at exploring possible impacts of starting values of each index on its variation. Low 

values of adjusted r-squared point to an independence between starting and end values, implying lack 

of correlation between absolute index and its variation. Among the indices, the SI shows a very high 

persistence, confirmed by a relatively high adjusted r-squared. Lower relative values of this index in 

2014 were followed by low values in 2017, while for higher values (> 0.15) in 2014 there is a higher 

spread and a tendency towards lower values in 2017. In comparison the BI, which should be linked 

to the same soil characteristics as the SI, i.e. salinity, has a much larger spread, and so do the NDVI 

and NMDI. The former shows slightly lower values in 2014 than in 2017 while the latter shows very 

little persistence, as the value of the index in 2014 and 2017 appear independent from each other.  

Figure 3: density plots of soil index values in 2014 and 2017 for all parcels considered in the analysis. 

Red represents a greater density of observations than blue. The value of adjusted R-squared is also 

reported. 
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4.2 Regression Analysis 

While the variations in soil indices appear shaped by various parameters, we performed subsequent 

statistical tests to provide insights into the factors directly related to the implementation of the 

greening policy. In the stepwise regression analysis, we found that the constant term is negative for 

all models where Δindex was used as the dependent variable, suggesting an average decrease in the 

value of all soil indices between 2014 and 2017 (see tables 2, 3, 5). Given the exploratory nature of 

this analysis, results are presented even if adjusted r-squared values are generally low in all five 

predictive models. For this reason, we chose not to focus on effect size. However, several independent 

variables included in the models attain high statistical significance. Here, we describe only those 

values that were significant in stepwise regression at the 99% confidence level. 

In the first test, we evaluated the relationship between farmland use type and Δindex (Table 2). The 

final number of land use types included in the model was highest for the ΔNDVI (14, 12 with p < 

0.01) and lowest for the ΔBI (8, of which 2 with p < 0.01). At the same time, 11 (7) and 9 (8) variables 

were included in the models for the ΔNMDI and ΔSI, and found significant for their variations at the 

99% confidence level, respectively. Variations in BI had a negative correlation with rotation ryegrass 

+ maize for silage and horticulture, but a positive correlation with alfalfa and other temporary 

grassland. ΔNDVI was negatively correlated with rotation ryegrass + maize for silage, triticale, 
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legume herbages, temporary grassland and fallow land. It was positively correlated with wheat, 

soybean, grass and mixed herbages, horticulture, ryegrass and alfalfa. Variations in NMDI were 

positively correlated with wheat, soybean, horticulture and alfalfa. They were negatively correlated 

with triticale, pulses (highest coefficient), grass herbages and fallow land. Finally, variations in SI 

were positively correlated with rotation ryegrass + maize for silage, triticale, temporary grassland and 

fallow land. They were negatively correlated with wheat, soybean, horticulture, other arable crops 

and alfalfa. Alfalfa and horticulture were significant in predictive models for all indices with 

concordant effect (with the exception of ΔBI). 

In the second test, we looked at the influence of rotation practices (see Table 3). The number of 

rotations at parcel level was positively correlated with ΔNDVI and ΔNMDI and negatively correlated 

with ΔSI, with ΔNDVI attaining a slightly higher coefficient. The coefficients suggest a decrease in 

salinity and an increase in organic matter with increased number of crop rotations, but also decreased 

soil water content.  

In the third and fourth test, we investigated the relationship between soil indices and compliance with 

greening policies, both before and after the implementation of greening policies. The estimated 

coefficients indicate the effect of the membership of a farmland parcel to group 1 (not eligible) and 

to group 2 (eligible and compliant) vs group 3 (eligible and not initially compliant to greening 

policies). We first checked whether membership in predefined groups had a relationship with the 

value of soil indices in 2014, that is the last year before greening implementation (see Table 4). In 

this way we assessed possible different starting points among groups of parcels that will or will not 

be called upon to adapt to the greening policy. Both group 1 and group 2 had a positive relationship 

with the SI and a negative correlation both with the NDVI and the NMDI compared to group 3. These 

findings could point to relatively high salinity in both groups in 2014, but also higher water content, 

particularly for members of group 1. BI coefficient confirms that the salinity was higher for group 1, 

at least. For the NDVI, the initial content of organic matter in the soil appears lower in groups 1 and 

2, compared to group 3. It is worth mentioning that such results are based on cross-sectional data 

referred to a single year. 

The analysis of the variation in soil indices with respect to eligibility and compliance to greening 

policies (see Table 5) shows that membership in group 1 (not eligible) and group 2 (eligible and 

compliant) has a negative relationship with variations in the SI, and positive relationships with 

variation in the BI, NDVI and NMDI. This suggests group membership could play a role by leading 

to decreased water content and increased organic matter for groups not expected to change their 
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farmland allocation after the implementation of greening policies, while the changes in salinity are 

less clear. 

Finally, in Table 6, we performed a more complete estimation of membership in greening groups, 

controlling for both number of rotations and farmland uses. This last elaboration permits us to 

evaluate how much of the variability between greening groups depends on increased crop variability 

or on other not controlled factors. Estimated coefficients for greening groups do not change sign and 

level of significance (with the exception of ∆BI for group 1 which lost significance). However, the 

magnitude of the coefficients is reduced compared to the model in Table 5, particularly for those of 

group 2. 

Table 2: predictive models of changes in soil remote sensing indices by farmland use type. Land use 

types are the independent variables, Δindex is the dependent variable. Only variables significant at 

the 90% confidence level or above are included. 

 
Note: *p<0.1; **p<0.05; ***p<0.01 

 

Table 3: predictive models of changes in soil remote sensing indices by rotation practices. The 

number of rotations from one year to the other is considered as independent variable, Δindex is the 

dependent variable. 
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Note: *p<0.1; **p<0.05; ***p<0.01 

Table 4: Predictive model of soil indices in 2014 with respect to eligibility and compliance with 

greening policies. The index value in 2014 is the dependent variable. Group membership represents 

the independent variable. 

 
Note: *p<0.1; **p<0.05; ***p<0.01 

 

Table 5: Predictive model of changes in soil remote sensing indices by eligibility and compliance 

with greening policies. Δindex is the dependent variable; group membership is the independent 

variable. 

 
Note: *p<0.1; **p<0.05; ***p<0.01 

 

Table 6: Predictive model of changes in soil remote sensing indices by eligibility and compliance 

with greening policies, number of rotations and farmland use. Δindex is the dependent variable; 

group membership, number of rotations and farmland uses are the independent variables. 
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Note: *p<0.1; **p<0.05; ***p<0.01 

 

5 Discussion 

5.1 Assessing the effects of policy changes through remote sensing: advantages and limitations 

 

In our study, we combine remote sensing-based spectral indices, geospatial administrative data, a fast 

algorithm for data processing and a robust statistical approach to provide a first attempt to detect the 

effects of the CAP reform on soil quality indices in the Lombardy region. The novelty of the work 

lies in the combination of these sources to assess the effects of policy changes, and particularly in the 

use of spectral indices from satellite data. These indices have the advantage of simplicity over other 

methods, making use of models (e.g. Borrelli et al., 2016), and the availability of data from Landsat-

8 and Sentinel-2 before and after the implementation of the CAP reform offers a unique possibility 

to look at the changes over wide areas while also providing a great level of detail. Our approach has 

further advantages: firstly, the combination of remote sensing techniques with administrative datasets 

ensures the almost total coverage of the territory and, at the same time, an extremely detailed level of 

analysis (farmland parcel level). Secondly, it represents a direct assessment of parameters related to 

the environmental sustainability of agriculture, and not derived from other parameters. Thirdly, it 

aims to offer an assessment of environmental performance parameters, linked to the quality of the 

soils, not investigated until now in previous studies. Finally, our methodology can be replicated over 

time and space, provided administrative data are available. 

The use of satellite sources for the assessment of soil properties however also comes with a number 

of uncertainties. In fact, the estimation of remote sensing indices is related to seasonality and a 

requirement that limits the availability of data for this approach is the choice of the best period to 

obtain a homogeneous bare soil. Recommendations by Bartholomeus et al. (2008) suggest that 

vegetation cover should be lower than 20% to be able to estimate bare soil indices; the value might 

also be lower for the NDVI, which in this study was used for soil organic carbon and which is sensitive 
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to the vegetation content of pixels observed by the satellite. As we cannot exclude that residual 

vegetation was present at the time of image acquisition, there is a chance that our approach to assess 

changes in soil organic carbon was affected. To exclude this possibility, and obtain a more robust 

indication of changes in this soil variable, the relationship between the NDVI and soil organic carbon 

should be tested in detail through dedicated field studies; alternatively, other indices or individual 

bands might be tested, including the reflectance in the visible band of the electromagnetic spectrum 

or the indices proposed by Bartholomeus et al. (2008), which should be the subject of further research. 

Additionally, the interaction between soil properties could be further evaluated, as organic matter and 

water content can be correlated (Kerr and Ochsner, 2020). Further issues still to be addressed include 

the calibration of indicators based on the degree of land cover and weather conditions, which deserve 

to be carefully investigated on a second step of improvement of such methodology, using e.g. field 

data as done by Yuzugullu et al. (2020).  

Concerning weather conditions, another issue which limits data availability from satellites is the 

presence of cloud cover, which can be rather high in the plains of Lombardy especially during the 

winter season, as low clouds can persist for several days (Kästner and Kriebel, 2001). Cloud cover 

particularly influences data availability before the implementation of greening policies, as in 2014 

only data from Landsat 8 were available; with the launch of Sentinel-2A in 2015 and its twin satellite 

Sentinel-2B in 2017, the number of remote sensing images for the greening period have greatly 

increased, and with them the chance to obtain high quality cloud-free data. Thus, future changes in 

remote sensing indices of soil quality might be investigated over a longer period and used to assess 

the effects of further changes in the agricultural policy if those are implemented. Further still, it might 

be possible to use a time series as opposed to single images to produce more robust estimates of 

variations in soil indices.  

In this study, we did not perform an atmospheric correction on Landsat and Sentinel-2 data before 

calculating the spectral indices. The effects of this lack of atmospheric correction should nevertheless 

be limited, as normalized indices show a low sensitivity to atmospheric conditions. This was 

confirmed by Rumora et al. (2021), who found high statistically significant correlations between 

indices computed from Sentinel-2 and Landsat-8 imagery acquired on the same day and processed 

with three separate atmospheric schemes and without correction. Although non-normalized indices 

(e.g. SI e BI) might be more affected by the atmosphere, the strength of our analysis is that it focuses 

on the relative variation in indices compared to a reference, and the absolute value of indices is 

unimportant. To further increase the reliability of our approach, the integration with radar remote 

sensing, with its ability to provide estimates of soil moisture (Ezzahar et al., 2020), might prove 
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useful. In summary, and given these limitations, the present analysis is therefore characterized above 

all from a methodological point of view and aspires to indicate a path for a new line of research, 

which could be refined in future evaluations. 

 

5.2 Assessment of soil indexes dynamics after the introduction of CAP greening  

CAP Greening mainly affects the allocation of agricultural land. As previously pointed out, in the 

area under investigation, greening has resulted in a reallocation of maize and maize for silage areas 

towards other crops such as soy, alfalfa, other cereals and set-aside (Bertoni et al., 2021). This 

occurred especially in group 3 (eligible and not compliant farms). For this reason, our first two 

elaborations have been related to the variations of the soil quality indices in relation to the farmland 

use (Tab. 2) and to the number of rotations in the reference period (Tab. 3). The coefficients calculated 

for the individual crops express a variation with respect to maize, which is the crop mainly affected 

by the introduction of the new policy. In general, the coefficients are very low, as is the R-square, a 

confirmation that the conditions of the soils tend to persist over time (Noormets et al., 2006) and are 

not particularly affected by crop changes, especially in a relatively short time interval such as that 

analysed. In any case, the coefficients of different crops were significant. Reminding that a positive 

coefficient indicates for BI and SI an increase in salinity, for NDVI an increase in the content of 

organic matter, for NMDI a reduction in the water content in soils, with reference to the main crops 

that have replaced maize, it is observed that soy has a positive effect on the organic substance content 

(NDVI) and contributes to the reduction of salinity (SI), on the contrary the NMDI coefficient goes 

in the direction of a reduction of the content of water in the soil. The trend of wheat is similar. Alfalfa 

would cause an increase in organic matter and a reduction in water content, while the results on 

salinity are contrasting between the two indices. The number of rotations over the period analysed is 

positively correlated with the organic matter content and negatively with the salinity and water 

content. 

We then tested the changes in the indices based on the group to which the farmland parcels belong, 

in terms of eligibility and compliance with greening. The regression in Tab. 5 shows the coefficients 

of the two groups that have not been affected by greening (group 1 - not eligible farms and group 2 - 

eligible and compliant farms) vs the reference group (group - 3 eligible and not compliant farms), 

that has been affected by the introduction of the new policy. Finally, in Tab. 6 we repeated this 

previous regression by groups, controlling at the same time for farmland use and the number of 

rotations. The sign of the coefficients does not change, pointing to a time persistence of the dynamics 

of such indicators. Evidently, these are mainly due to specific factors of the groups analysed for which 
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we do not have available control variables at the level of detail necessary for our analysis. This is also 

confirmed by the regression in Table 4, which highlights different starting conditions between the 

various groups. Therefore, the regression in Tab 6 suffers from omitted variable bias due to the 

exclusion of  some control variables. These are cultivation and irrigation practices (e.g.  fertilisation, 

fungicides, seed rates and timings, by-cropping, cover cropping, weed management, harvest dates) 

for which there is no georeferenced information in the territory considered, and soil type that is 

mapped at a scale not usable for our detail of analysis. Nevertheless, part of the effect of cultivation 

practices on soil indexes is controlled by including the type of crop. What is missing is the 

heterogeneity in agricultural practices for the same crop within the study area. The availability of this 

kind of information would have certainly improved the quality of our analysis, like the possibility of 

conducting the analysis over a longer period. 

In any case, it is interesting to note that by controlling for farmland uses and number of crops, the 

coefficient magnitude of the greening groups decreases. This applies, in particular, to the soil organic 

matter content (NDVI) and the salinity index (SI), the latter in relation to group 2. Membership in 

group 3 (farms eligible and non compliant) would worsen both of these indicators, compared to 

groups 1 and 2. However, such an effect is less pronounced when controls are added. Such 

improvement in the two indexes is attributable to the change in crop mix and to the increased rotations 

in  farms of group 3, as a consequence of the adaptation to greening prescriptions. 

In general, the results should be considered as an outcome of a preliminary and innovative research 

study. The aim of such a tool of analysis is to combine available big data (from administrative and 

remote sensing sources) in the attempt to lay the foundations for an ex-post assessment of CAP 

greening on soil properties. Such analytical effort is in line with the green architecture on incoming 

CAP, focussed on assessing environmental outcomes of its policy tools. Keeping this in mind, its 

efficacy and accuracy can and should be improved in different ways. The first one has been already 

mentioned and relates to additional data and information to consolidate the results. The second one 

pertains to improvements on the calibration of the soil quality indicators. In particular, the indicator 

of organic matter content (NDVI) presents the most critical issues. Our choice of excluding perennial 

crops, rice and permanent grassland, as well as that of calculating the indicators in the period with 

the greatest probability of having bare soil, goes in the direction of a refinement of the analysis. 

However, we cannot exclude confounding effects due to the presence of crop residues in the field 

(e.g. maize stalks). Therefore, such aspects should be improved in order to make such a combined 

methodology more reliable for ex-post assessment of environmental effects of agricultural policy. 
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Conclusions 

 

The present analysis is mainly methodological, aimed at developing a potential tool for ex-post 

assessment of CAP policy instruments, by combining administrative and remote sensing data with a 

high level of detail. As such, it could lay the foundations for the possible use of digital technologies 

in order to analyse environmental benefits, that are objectives desired by agro-environmental policies. 

In particular, we assessed the dynamics of agricultural land soil quality indices in the Lombardy 

region of Italy, over the period subsequent to the introduction of CAP greening in 2015. Soil quality 

indices considered in this study were obtained from remote sensing imagery, and combined with an 

administrative database of all agricultural parcels of the region; based on these two datasets, we 

performed a regression analysis to assess the impact of different factors, including farmland use type, 

eligibility and compliance with respect to greening policies, on the dynamic variability in soil 

properties in the region. Our preliminary results indicate a high persistence of the soil quality 

indicators before and after the introduction of CAP greening, but also significant correlations between 

variations in the indices and membership in specific groups pertaining to farmland use, eligibility and 

compliance with greening policies. In particular, greening group membership appears to lead to 

decreased water content and increased organic matter for groups not expected to change their 

farmland allocation after the implementation of greening policies.  

Nevertheless, our preliminary results come with a number of limitations that should be acknowledged 

to identify further possible improvements. First of all, the remote sensing indices adopted represent 

only approximations for specific soil health policy targets such as organic matter decline, salinisation, 

and desertification. Among them, some uncertainties are related to the choice of the NDVI, which 

might particularly be impacted by residuals of vegetation in the parcel. Furthermore, the attempt to 

isolate the effect of greening policy on change of soil property may suffer from the omission of 

potentially relevant variables such as agronomic practices (for instance, fertilisation, tillage, 

irrigation) and soil pedological properties. Such variables have been omitted because they were not 

available in the study area at the parcel scale of the analysis. However, part of such omitted variability 

may have been controlled for by the inclusion of crop choices. The omitted variable bias is confirmed 

by the low degree of variability explained by our models.  Further improvements are therefore 

necessary before our methodology can be fully used practically. These might stem from an increased 

availability of both remote sensing imagery (ideally at higher resolution and increased frequency) and 

data on agronomic practices and soil composition. Concerning remote sensing imagery, the two 

satellites of the Sentinel-2 family already partly satisfy the requirement for increased data, and the 
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advancements foreseen by the Landsat programme also go in this direction. Another crucial aspect is 

to better control for the types of rotations, while the current model considers only the number of 

rotations. Such improvements would allow performing ex-post assessments of policy effects on soil 

property changes over longer time scales.  
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Annex 1 – Farmland uses 2014-2017 in the greening groups 

Group 1 – Not eligible farms 

 

Source: own elaboration on SIARL data 

 

Group 2 – Eligible and compliant farms 

 

Source: own elaboration on SIARL data 

 

Group 3 – Eligible and not compliant farms 
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Source: own elaboration on SIARL data 
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● We integrate remote sensing into ex-post assessment of CAP effects  

● We evaluate the effects of CAP greening on soil quality parameters 

● Integration of administrative data with remote sensing offers full land coverage 

● Membership in greening groups has moderate effects on soil quality 

● The approach is reproducible in time and space  
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