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To what extent can changes in PageRank’s damping factor affect node ranking? We
prove that, at least on some graphs, the top k nodes assume all possible k! orderings
as the damping factor varies, even if it varies within an arbitrarily small interval (e.g.
[0.84999,0.85001]). Thus, the rank of a node for a given (finite set of discrete) damping
factor(s) provides very little information about the rank of that node as the damping factor
varies over a continuous interval.
We bypass this problem introducing lineage analysis and proving that there is a simple
condition, with a “natural” interpretation independent of PageRank, that allows one to
verify “in one shot” if a node outperforms another simultaneously for all damping factors
and all damping variables (informally, time variant damping factors). The novel notions of
strong rank and weak rank of a node provide a measure of the fuzziness of the rank of that
node, of the objective orderability of a graph’s nodes, and of the quality of results returned
by different ranking algorithms based on the random surfer model.
We deploy our analytical tools on a 41M node snapshot of the .it Web domain and on
a 0.7M node snapshot of the CiteSeer citation graph. Among other findings, we show
that rank is indeed relatively stable in both graphs; that “classic” PageRank (d = 0.85)
marginally outperforms Weighted In-degree (d → 0), mainly due to its ability to ferret out
“niche” items; and that, for both the Web and CiteSeer, the ideal damping factor appears
to be 0.8–0.9 to obtain those items of high importance to at least one (model of randomly
surfing) user, but only 0.5–0.6 to obtain those items important to every (model of randomly
surfing) user.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses the fundamental question of how the ranking induced by PageRank can be affected by variations
of the damping factor. This introduction briefly reviews the PageRank algorithm (Section 1.1) and the crucial difference
between score and rank (Section 1.2) before presenting an overview of our results and the organization of the rest of the
paper (Section 1.3).

1.1. PageRank and the damping factor

PageRank [23] is probably the best known of link analysis algorithms, ranking nodes of a generic graph in order of
“importance”. PageRank was first used in search engines to rank the nodes of the Web graph; since then, it has been adapted
to many other application domains, such as credit and reputation systems [17], crawling [8], automatic construction of Web
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directories [7], word stemming [2], automatic synonym extraction in a dictionary [4], word sense disambiguation [26], item
selection [28] and text summarization [10].

In its original form, PageRank is based on a model of a Web surfer that probabilistically browses the Web graph, starting
at a node chosen at random according to the distribution given by a personalization vector e > 0 whose generic component ev

is the probability of starting at node v . At each step, if the current node has outgoing links to m > 0 other nodes v1, . . . , vm ,
the surfer next browses with probability d one of those nodes (chosen uniformly at random), and with probability 1 − d
a node chosen at random according to e. If the current node is a sink with no outgoing links, the surfer automatically
chooses the next node at random according to e.

If the damping factor d is less than 1 (for the Web graph a popular value is ≈ 0.85 [20,23]), the probability P v(t) of
visiting the node v at time t converges for t → ∞ to a stationary probability P v . This is the score PageRank assigns to v ,
ranking all nodes in order of non-increasing score. Intuitively, the more ancestors (both immediate and far removed) a node
has, and the fewer descendants those ancestors have, the higher the score of that node.

It is crucial to observe that both the score of each node and its rank may in general change as the damping factor
changes [25]. Lower damping factors decrease the likelihood of following long paths of links without taking a random jump
— and thus increase the contribution to a node’s score and rank of its more immediate ancestors.

1.2. Score vs. rank

PageRank assigns to the n nodes of a graph G a score vector that is the dominant (right) eigenvector of the stochastic
n × n matrix d M + (1 − d)e · 1T , where M is obtained from the transposed adjacency matrix of G by normalizing each
non-zero column, and replacing each zero column (corresponding to a sink) with the personalization vector e. Typically,
the score vector is calculated using the Power Method [20]. Thus, one can analyse the impact of the damping factor on the
score vector using the highly developed toolset of linear algebra [20]. This is no longer true when dealing with rank: loss of
linearity and continuity in the mathematical model make analysis considerably more difficult and require different tools.

And unfortunately, in many cases, (variation in) rank is far more important than (variation in) score. One might observe
that the PageRank score is often combined with other scores (e.g. obtained from textual analysis in the context of Web
pages) to provide a ranking, and thus large variations in PageRank score would seem more important than large variations
in rank. However, this is (ever more) often not the case. Some search engines may simply filter items ranked by PageRank
through a Boolean model of relevance to the query at hand — in these cases the ordering induced by PageRank is strictly
maintained [2]. And many other applications simply use the unmodified PageRank score to rank items in order of prece-
dence, whether for efficiency or by lack of other valid alternatives: e.g. Web crawlers [8] and reputation systems [17]. For a
more thorough discussion of why, in many cases, rank is more important than score and thus why it is crucial to analyse
the perturbation in rank induced by variations of the damping factor, see [13,16,21,22,24].

1.3. Our results

This paper addresses the fundamental question of how variations in PageRank’s damping factor can affect the ranking of
nodes: clearly this ranking elicits confidence only when relatively insensitive to small variations in the value of a parameter
in the user model (the damping factor) likely to differ between different users and, in any case, hard to assess precisely. The
rest of the paper is organized as follows.

Section 2 shows that for any k, at least on some graphs, arbitrarily small variations in the damping factor can completely
reverse the ranking of the top k nodes, or indeed make them assume all possible k! orderings. It is natural to ask whether
this can happen in “real” graphs encountered in the vast and growing number of application domains of PageRank. Ex-
periments sampling ranking for a handful of different damping factors [12,22] suggest this is not the case at least for the
Web graph (leaving open the issue of other application domains). However, verifying rank stability for discrete variations
in the damping factor (e.g. 0.01 increments) is not sufficient to conclude that rank is stable as the damping factor varies
over a whole continuous interval — just like sampling the function f (x) = sin(100πx) for x = 0.01,0.02, . . . is not enough to
conclude that f (x) = 0 ∀x ∈ R.

Section 3 provides the analytical tools to address this issue. We show a simple, “natural” condition that is both necessary
and sufficient to guarantee that a node outranks another simultaneously for all damping factors and all damping variables
(informally, time-variant damping factors). This condition, based on the concept of lineage of a node, can be checked effi-
ciently and has an intuitive justification totally independent of PageRank.

Section 4 leverages lineage analysis to introduce the novel concepts of strong rank and weak rank. These provide for each
node a measure of the “fuzziness” of its ranking that is subtly but profoundly different from pure rank variation; they also
provide a measure of the effectiveness of the random surfer model on a generic graph; finally, they allow an objective
evaluation of the performance of “classic” (d = 0.85) PageRank and some of its variations (e.g. d → 0).

Section 5 brings the analytical machinery of Section 3 to bear on two real graphs — a snapshot of the .it domain, and
the CiteSeer citation graph [9].

Section 6 summarizes our results, analyses their significance, and reviews a few problems this paper leaves open, before
concluding with the bibliography.
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2. The damping makes the ranking

This section presents two theorems showing that, at least on some graphs, a minuscule variation of the damping factor
can dramatically change the ranking of the top k nodes. More formally, we prove:

Theorem 1. For every even k > 1 and every d satisfying 1
k < d < 1− 1

k , there is a graph G of 2k2 +4k −2 vertices such that PageRank’s

top k nodes are, in order, 〈v1, . . . , vk〉 if the damping factor is d, and 〈vk, . . . , v1〉 if it is d + 1
k .

Theorem 2. Consider an arbitrary set Π of orderings of k nodes v1, . . . , vk (|Π | � k!), and an arbitrary open interval I ⊂ [0,1],
however small. Then there is a graph G such that PageRank’s top k nodes are always v1, . . . , vk but appear in every order in Π as the
damping factor varies within I .

By Theorem 1, there are graphs of ≈ 2M nodes (a size comparable to that of a citation archive or of a small first level
domain) where a variation of the damping factor as small as 0.001 (e.g. from 0.850 to 0.851) can cause a complete reversal
of the ranking of the top 1000 items; and the sensitivity to the damping factor can grow even higher for larger graphs.
Theorem 2 is even more general: for any arbitrarily small interval of variation of the damping factor, there are graphs in
which the top items assume all possible permutations (but providing bounds on the size of these graphs is beyond the
scope of this paper).

The rest of this section is organized as follows. Section 2.1 introduces some notation, necessary for the proofs of these
two theorems, that will also be of use later. Section 2.2 is devoted to the proofs themselves, and may be skipped without
impairing the understanding of the rest of the paper.

2.1. Notation

The score assigned by PageRank to the node v using a damping factor d, P v(d) — i.e. the stationary probability of being
on that node according to the model presented in Section 1.1 — can be seen as the sum, over all � � 0, of the probability of
taking, � timesteps in the past, the last random jump to a node v� at distance � from v , and following any path of length �

from v� to v .

More formally, denote by p
�→ v the fact that p is a path of � + 1 vertices 〈v�, . . . , v1, v〉, from some vertex v� to v .

Let branching(p) be the inverse of the product of the out-degrees ω�, . . . ,ω1 of v�, . . . , v1, i.e. branching(p) = 1/(ω� . . .ω1)

(informally, the probability of following the whole path if one starts on the first node v� and no random jumps are taken).
Then (see e.g. [3]):

P v(d) =
+∞∑
�=0

(1 − d)d�
∑
p

�→v

branching(p) · ev�
(1)

where ev�
is the entry of e associated with the first node, v� , of the path p. It is easy to verify that the term∑

p
�→v

branching(p) · ev�
, the branching contribution at level �, equals the sum of the row of M� corresponding to v , each

weighted by the corresponding component of e. Intuitively, this term corresponds to the score a node v would hold after
� timesteps if each node vi started with a score evi and, at each timestep, bequeathed all of its score dividing it evenly
among its children. Note that branching contribution is completely independent of the damping factor; whereas the other
term of the product, (1 −d)d� (the probability of having taken the last jump exactly � timesteps in the past), depends solely
on the damping factor and is independent of the structure of the graph.

2.2. Rank can change completely: A proof

Proof of Theorem 1. For simplicity we set the personalization vector e = [ 1
n . . . 1

n ], but the result can be easily extended

to the general case e > 0. Let m be the smallest integer such that d < k
m < d + 1

k — one such m � k2 always exists, since
k
m − k

m+1 = k
m(m+1)

< 1
k for k

m � 1 − 1
k . G is formed by 4 sets of nodes (see Fig. 1): V = {v1, . . . , vk} is the set of k nodes

whose ranking is reversed by the variation in d; W = {w1, . . . , wk} and U = {u1, . . . , uk−1, u′
1, . . . , u′

k−1} are two sets of
nodes that are parents of nodes in V ; T = {t1, . . . , t2k2} is a set of nodes that are parents both of nodes in V and of nodes
in W . Nodes of V are sinks; nodes of U and W have outdegree k

2 except for wk that is a sink; nodes of T have outdegree
k. Nodes of T and U have in-degree 0; nodes of W are all linked (only) by t1, . . . , tm (and thus all have the same score);
nodes of V are all linked by tm+1, . . . , t2k2 , and by one or more nodes of W and/or U (and thus always have a higher
score than every other node). More specifically, vi receives a link from each of u1, . . . , uk−i and u′

1, . . . , u′
k−i for i � k/2

and a link from each of ui, . . . , uk−1 and u′
i, . . . , u′

k−1 for i > k/2 (receiving 2(k − i) links from U ); as well as a link from
each of wk+1−i, . . . , wk−1 for i � k/2 (meaning u1 receives no such link) and a link from each of w1, . . . , wi−1 for i > k/2
(receiving i − 1 links from W ). Then, for all i < k, vi receives two more links from U and one less link from W than
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Fig. 1. The graph G (Theorem 1) formed by the 4 blocks of nodes U , V , W and T (left); and the specific link structure of U , V and W for k = 4 (right).

vi+1, and Pd̄(vi) − Pd̄(vi+1) ∝ (d̄ 2
k/2 ) − (d̄ 1

k/2 + d̄2 m
k

1
k/2 ) = d̄

k/2 (1 − d̄ m
k ). The last term is positive for d̄ = d and negative for

d̄ = d + 1/k, proving the thesis. �
Proof of Theorem 2. We (arbitrarily) choose F = |Π | distinct values d1, . . . ,dF in I , and, for each dh , a k-tuple of scores
sh1, . . . , shk for v1, . . . , vk that induces a distinct permutation in Π . For each node v j we build a system A X j = B j , where

A =
( d1

1 . . . dF
1

. . .

d1
F . . . dF

F

)
, X j =

( x1 j
. . .

xF j

)
, B j =

( s1 j
. . .

sF j

)

whose solutions x1 j, . . . , xF j are the branching contributions at levels 1, . . . , F that the graph must provide to v j in order to
satisfy the score assignment (note that A is non-singular since it is the product of a Vandermonde matrix and a non-singular
matrix). Although it might not be possible to construct a graph that provides these exact contributions, we show how to
build one that maintains the same ranking of v1, . . . , vk for each value dh of the damping factor. We use the solutions of
the systems to iteratively build an ancestor forest of k trees (see Fig. 2), where at step h we add the nodes at depth h in
each tree (step 0 adds the k roots v1, . . . , vk).

We first assume that xhj > 0 for all j = 1, . . . ,k, and build level h of the ancestor tree of v j as follows. Let u be a node
in level h − 1 of the ancestor tree of v j , and let p be the unique (as will immediately be clear) path from u to v j . Create nhj
new nodes and add them a link to u; then add ωhj −1 children to each of these new nodes. Note that now there is a unique
path from each of these nodes to v j . Now the branching contribution from the hth level is (nhj/ωhj)branching(p), and we
can choose nhj , ωhj such that this contribution approximates xhj to an arbitrary degree of precision. Finally set δh = 0 (the
reason will be clear soon).

If instead xhj � 0 for some j, let yh = min j{xhj}, and choose δh > 0 such that δh + yh > 0. For j = 1, . . . ,k replace xhj
with xhj + δh (which is positive by construction) and proceed as above.

We now prove that PageRank ranks v1, . . . , vk in every order in Π as d takes values d1, . . . ,dF . For simplicity we set the
personalization vector e = [ 1

n . . . 1
n ], but the result can be easily extended to the general case e > 0. Recalling Eq. (1), the

PageRank score for v j is

P v j (dh) = 1 − dh

n

∞∑
�=0

d�
h

∑
p

�→v

branching(p)

= 1 − dh

n

F∑
�=0

d�
h · (xlj + δ�)

= 1 − dh

n

F∑
�=1

d�
h · xlj + 1 − dh

n

(
1 +

F∑
�=0

d�
hδ�

)

= 1 − dh

n
· shj + qh

and thus, for a fixed h, the relative order of v1, . . . , vk follows the choice of the scores sh1, . . . , shk . To bring v1, . . . , vk to
the top k positions, we increase their score by adding m parents to each v j ; i.e., we choose m equal to the maximum size
(in nodes) of any ancestor tree. This increases the branching contribution at level 1 of each v j by the same quantity, but
does not affect the ordering; so v1, . . . , vk still assume all possible permutations in Π as d varies in d1, . . . ,dF .

Some readers might note that — at least in some application domains — one is unlikely to encounter graphs that are
acyclic and/or disconnected and wonder about the applicability of Theorem 2 in such cases. It is easy to verify that the
PageRank score vector does not change if one adds to every sink of a generic graph links to every other node in the graph,
and that this modification makes the graph of Theorem 2 strongly connected. �
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Fig. 2. Ancestor tree for node v j (Theorem 2). “Empty” nodes are orphans.

3. Lineage analysis

It is natural to ask to what extent PageRank rankings of “real” graphs like the Web graph are affected by variations
in the damping factor, particularly in the light of the results of Section 2. Unfortunately, verifying that a node always
outranks another as the damping factor varies by discrete increments (e.g. 0.01) suggests, but cannot conclusively prove that
the first node always outranks the second over a whole continuous interval of variation of the damping factor: by virtue
of Theorems 1 and 2 the ranking could drastically change between those isolated sampling points. For the same reason,
while previous experimental evidence obtained over a set of isolated values of the damping factor (e.g. [22]) suggests that
PageRank is indeed stable even for large variations, this evidence cannot be taken as conclusive. This section shows how to
bypass this problem.

Just like Shannon’s Sampling Theorem proves that a continuous signal can be reconstructed from a finite number of
samples so long as it is bandwidth-limited, Section 3.1 shows that, so long as PageRank can be approximated using only
a finite number of iterations, one can exploit Sturm’s theorem to verify if a node outranks another for all damping factors
in a finite number of steps. We also consider a more “robust” notion of rank dominance between nodes — not only for all
damping factors, but also for all “damping variables” — informally, time-variant damping factors introduced in Section 3.2
and related to the damping functions of [3]. The core result of this section is a simple condition that can be checked efficiently
and yet is both necessary and sufficient to guarantee that a node outranks another for all damping variables. Section 3.3
presents this “dominance” condition, which is based on the concept of lineage of a node, and turns out to be a very “natural”
concept with a strong intuitive justification totally independent of PageRank.

3.1. Better rank for every damping factor?

In theory, one can check if the relative order of two nodes u, v changes as d varies by verifying if the difference between
their PageRank series is both positive and negative in the interval (0,1). If one considers PageRank computations truncated
after t iterations for some t (which is always true in practice), this can be done via Sturm’s theorem [14].

Let x be a generic root of a real polynomial Q (x) with multiplicity m; then x is a root of Q 1(x) = GCD(Q (x), d
dx Q (X))

with multiplicity m − 1. Sturm’s theorem [14] allows one to compute the number of real roots of Q (x) of multiplicity � 1
in the interval (0,1). Applying it to Q 1(x) = GCD(Q (x), d

dx Q (x)), then to Q 2 = GCD(Q 1(x), d
dx Q 1(x)) and so on, one can

compute the number of real roots of multiplicity respectively � 2, � 3, etc. and thus the exact number of real roots of
multiplicity 1,2,3, etc. It is then immediate to verify that the relative order of u and v changes as d varies over the interval
(0,1) if and only if the difference between their truncated PageRank series P t

u(d) − P t
v(d) has roots of odd multiplicity in

that interval.
This method has a number of limitations. First, it does not allow an “incremental refinement” of the rank comparison: it

is essentially impossible to extend the analysis obtained by truncating the PageRank series after t steps to include the effects
of one more step without recomputing everything “from scratch”. Second, its computational complexity is considerable,
since Sturm’s procedure for a single polynomial in general entails Ω(t) divisions between polynomials of degree ≈ t . Third,
it also requires considerable effort to avoid finite-precision errors, since it can involve a large number of subtractions and
thus “catastrophic cancellations” [19,29]. Fourth, it provides no natural interpretation of why a node outranks another for
every damping factor. Fifth, the underlying model is not robust, as it does not capture the possibility of random surfers
whose probability of “pressing the reset button” (one minus the damping factor) varies with time. The following Section 3.2
explores this last issue in greater detail.

3.2. Damping variables

It is natural to extend the stochastic model of PageRank to one where the probability of following one of the current
node’s outgoing links is not a constant damping factor d, but is instead a damping variable d(τ ) that is a function of the
number of steps τ taken since the last random jump. E.g. a Web surfer might have a high probability of following a chain of
links up to a depth of e.g. 3, and then of “hitting the reset button” with a random jump. In this case d(τ ) would be close to
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1 for τ � 3, but close to 0 for τ > 3 (we formally define d(0) = 1). We can generalize the analysis carried out in Section 2.1
to damping variables, and prove that:

Theorem 3. If d(τ ) � (1 − ε) for some ε > 0 and for infinitely many τ , then the score assigned by PageRank to the node v is:

P v
(
d(·)) =

+∞∑
�=0

Jd(·)
�∏

j=0

d( j)
∑
p

�→v

branching(p) · ev�
(2)

where Jd(·) is the limit for t → +∞ of the probability Jd(·)(t) that a random jump occurs at time t, and Jd(·)
∏i−1

j=0 d( j) is the limit for
t → +∞ of the damping function [3] denoting the probability of having taken the last random jump exactly i steps before time t.

While the meaning of Eq. (2) and its relationship to Eq. (1) are quite intuitive, proving that it holds requires some
subtlety; indeed, if the condition d(τ ) � (1 − ε) is not satisfied (e.g. if one only requires d(τ ) < 1) then the probability of
being at node v at time t might not become stationary as t → ∞. In this case, one might still formally define the score
of a node through Eq. (2), but relating it to a stochastic surfing model becomes considerably harder; and, perhaps more
importantly, computing the score of a node becomes considerably more difficult, since the classic iterative algorithms based
on the power method can fail to converge.

Note that PageRank in practice is computed using only a finite number τ̄ of iterations of the power method, effectively
truncating the series in Eqs. (1) and (2) to the τ th term — i.e. employing, rather than a constant damping factor d̄, a
damping variable d(τ ) equal to d̄ for τ � τ̄ and to 0 for τ > τ̄ . This provides further justification for the introduction of
damping variables.

The proof that, indeed, the stochastic process above does produce the stationary probability described by Theorem 3 may
be skipped without impairing the understanding of the rest of the paper.

Proof of Theorem 3. We first show that the probability Jd(·)(�) that a random jump occurs at time � converges to a limit.
More formally, let ε > 0 and let d : N → [0,1] such that d(τ ) � 1 − ε for infinitely many τ . Then the following limit exists:

Jd(·) � lim
�→+∞ Jd(·)(�). (3)

Let L(�) be the time of the last jump before �. By the law of total probability,

Jd(·)(�) =
�−1∑
i=0

P
(
jump at �

∣∣ L(�) = i
)

P (jump at i) =
�−1∑
i=0

(
1 − d(� − i)

)( �−i−1∏
j=0

d( j)

)
Jd(·)(i) =

�−1∑
i=0

a�−i Jd(·)(i)

where a�−i = (1 − d(� − i))(
∏�−i−1

j=0 d( j)). We break up the last summation as
∑�−k−1

i=0 a�−i Jd(·)(i) + ∑�−1
i=�−k a�−i Jd(·)(i);

we show that the first term vanishes and the whole summation tends to the second term, which converges. The first
term satisfies

∑�−k−1
i=0 a�−i Jd(·)(i) �

∑�−k−1
i=0 a�−i = ∏k

j=0 d( j), thus we choose a sufficiently large constant k0 such that, for
� > k > k0, we have d( j) � 1 − ε for at least m values of j in 0, . . . ,k, where m is such that (1 − ε)m < δ/2; and then∏k

j=0 d( j) < δ/2.

Let us prove that the second term converges for �,k → ∞. The last equation can be rewritten as x(�) = ∑k
i=1 ai x(�− i)+

δ′ , where δ′ < δ/2. The characteristic polynomial is then
∑k

i=1 ai zi − (1 − δ′), and the sum of all terms ai is 1 − ∏k
j=0 d( j);

the last quantity is strictly less than 1 − δ′ for an appropriate choice of k (if d( j) = 0 for j < k, k0 = j − 1 implies δ′ = 0).
The roots of the polynomial lie outside the unit circle and the system converges to a limit Jd(·) .

We can now prove the theorem. Choose δ > 0. The probability of being on node v at time � is P �
v(d(·)) =∑�

i=0 πv (i) Jd(·)(� − i) where πv(i) = ∏i
j=0 d( j)

∑
p

i→v
branching(p) · epi is the probability of reaching v following i links

after a random jump. We rewrite P �
v(d(·)) = ∑λ

i=0 πv(i) Jd(·)(� − i) + ∑�
i=λ+1 πv (i) Jd(·)(� − i) and bound the two terms. By

Eq. (3), the ith addend of the first term converges to Jd(·)πv (i) as � → +∞ for a fixed λ. Thus we can choose �0 such that,
for every � � �0,∣∣∣∣∣ Jd(·)

λ∑
i=0

πv(i) −
λ∑

i=0

πv(i) Jd(·)(� − i)

∣∣∣∣∣ �
λ∑

i=0

∣∣ Jd(·) − Jd(·)(� − i)
∣∣ <

λ∑
i=0

δ

2(λ + 1)
= δ/2.

The second term is the probability of reaching v at time � having taken the last random jump before time � − λ; therefore
it is bounded by the probability of having taken a path of length λ, which is no more than c(λ). We can now choose λ � λ0
large enough to ensure that c(λ) < (1 − ε)m < δ/4.

The two bounds yield, for � � �0 and λ > λ0,
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∣∣∣∣∣ Jd(·)
�∑

i=0

πv(i) − P �
v

(
d(·))

∣∣∣∣∣
�

∣∣∣∣∣ Jd(·)
λ∑

i=0

πv(i) −
λ∑

i=0

πv(i) Jd(·)(� − i)

∣∣∣∣∣ +
∣∣∣∣∣ Jd(·)

�∑
i=λ+1

πv(i)

∣∣∣∣∣ +
∣∣∣∣∣

�∑
i=λ+1

πv(i) Jd(·)(� − i)

∣∣∣∣∣ � δ.

In conclusion, lim�→+∞ P �
v(d(·)) = Jd(·)

∑+∞
i=0 πv(i). �

For each node v , we now have a well-defined score P v(d(·)). The score vector has a representation which is very similar
to that of the PageRank vector:

P
(
d(·)) = Jd(·)

+∞∑
�=0

c�M� · e (4)

where c� = ∏�
j=0 d( j). Note that for constant d(·) = d we have Jd(·) = 1 − d and c� = d� , which yields the classic PageRank

formulation as a power series that can be found e.g. in [3].

3.3. Lineages

This subsection provides a simple condition both necessary and sufficient to guarantee that, for all damping variables
d(·), the score P v(d(·)) of a node v is always at least as high as the score P w(d(·)) of a node w .

Recall the term
∑

p
�→v

branching(p) · ev�
in Eq. (2) — the level � branching contribution to the score of v . Informally, the

mth generation of the lineage of v is equal to the sum of the branching contributions of all levels � � m. More precisely:

Definition 1. The mth generation of the lineage of v is Lv(m) = ∑m
�=0

∑
p

�→v
branching(p) · ev�

.

We say that the lineage Lv(·) of a node v is greater than or equal to the lineage Lw(·) of a node w if it is greater or
equal at every generation, in which case we write simply Lv � Lw .

There is a simple, intuitive interpretation of dominance between lineages. If we imagine that the authority/reputation/
trust of a node is divided evenly among the nodes it points to, having a greater lineage at the mth generation means
receiving more authority from all nodes within at most m hops. Note that in such a comparison nodes that are further than
m hops away are completely disregarded: this models the fact that, after all, authority/reputation/trust may be inherited,
but only to a point. If one is uncertain to which point, one can be sure that a node has authority at least as high as that of
another node only if its lineage is at least as high at every generation.

And, indeed, we show that having a lineage that is at least as high at every generation is strictly equivalent to receiving
an equal or higher score by PageRank for every damping variable. More formally, we prove:

Theorem 4. Lv � Lw ⇔ ∀d(·) ∈ (0,1), P v (d(·)) � P w(d(·)).

Proof. We first prove the (⇒) side. Recall ci = ∏i
j=0 d( j). The score vector is a convex linear combination of lineages:

P v
(
d(·)) = Jd(·)

+∞∑
i=0

bi Lv(i) (5)

where bi = ci − ci+1 � 0. Then P v(d(·)) � P w(d(·)).
We now prove the (⇐) side. For a generic k � 0, and a generic ε > 0, consider the function:

d(i) =
{

1 − ε, i = 0, . . . ,k,

ε, i > k

where ε ∈ (0,1) will be defined later. Let P (k)(d(·)) be equal to Jd(·)
∑k

j=0 c jM j · e, i.e. to the truncation of the PageRank
series to the term of order k. Then we have:

P v
(
d(·)) = Jd(·)

k∑
i=0

ci
(
Mi · e

)
v + Jd(·)

∞∑
i=k+1

ci
(
Mi · e

)
v

� P (k)
v

(
d(·)) + Jd(·)

∞∑
i=k+1

(1 − ε)kε i−kn

� P (k)
v

(
d(·)) + Jd(·)ε(1 − ε)k−1n.
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Considering nodes v and w we have:

P (k)
v

(
d(·)) + Jd(·)ε(1 − ε)k−1n � P v

(
d(·)) � P w

(
d(·)) � P (k)

w
(
d(·))

which can be rewritten as

(1 − ε)k Lv(k) + ε

k−1∑
i=0

(1 − ε)i Lv(i) + ε Jd(·)(1 − ε)k−1n � (1 − ε)k Lw(k) + ε

k−1∑
i=0

(1 − ε)i Lw(i).

Since the last equation must hold for every (arbitrarily small) ε > 0, by continuity Lv(k) � Lw(k). �
Note that in practice we do not need to check lineage dominance at every generation; if we restrict ourselves to damping

variables that are 0 for τ > t , we only need to check at most t generations. This is equivalent to considering PageRank
computations truncated after at most t iterations (effectively truncating the series in Eqs. (2) and (4) to the tth term),
which is always true in practice. Thus, one can check if the relative order of two nodes is the same for every damping
variable in O (t) comparisons; by contrast, the algorithm based on Sturm’s theorem described in Section 3.1 requires Ω(t2)

operations.
In addition, comparing lineages yields computations that have considerably fewer problems of numerical stability than

those involving Sturm chains. While an in-depth exploration of this issue is beyond the scope of this paper (see e.g. [30]), it
is immediate to verify that computing the �th lineage involves summations where each term is (a) positive and (b) obtained
as the inverse of a product of a number of integers equal to the lineage. The products can be computed with a loss of
accuracy equal to at most �log2(�)� bits; the sum entails an additional loss of at most 1 bit of accuracy (see e.g. [19,29]).

Thus, on any graph of size n and outdegree at most g on which PageRank converges in at most � iterations, a floating
point arithmetic with exponents of max(log2 log2(�n), log2 log2(g�)) bits and significands greater than ≈ log2(1/ε) + log2(�)

bits suffices to discriminate between lineages within a factor 1 + ε of each other. In particular, IEEE 754 double precision
arithmetic appears more than sufficient to guarantee several dozen bits of precision on the Web graph and on any “lesser”
graph.

4. Damping-independent ranking

Lineages and Theorem 4 provide powerful tools to compare two nodes over the spectrum of all damping variables.
This section leverages them to introduce the concepts of strong rank and weak rank (Section 4.1), and the related ranking
algorithms StrongRank and WeakRank (Section 4.2). These provide interesting measures of the “fuzziness” of rankings, of the
“orderability” of the nodes of a graph, and of the performance of different ranking algorithms based on the random surfer
model.

4.1. Strong and weak rank

Given a node v , and assuming for simplicity all ties in lineage score are broken (e.g. arbitrarily), all other nodes fall into
three sets: the set S(v) of nodes stronger than v (with a greater lineage), the set W (v) of nodes weaker than v (with a
lesser lineage), and the set I(v) of nodes incomparable with v (with a lineage greater at some generations and lesser at
others). The cardinalities of these sets define the weak and strong rank of v:

Definition 2. The weak rank ρw(v) and the strong rank ρs(v) of a node v are, respectively, |S(v)| + 1 and |S(v) ∪ I(v)| + 1.

Note that ρw(v) − 1 is the number of those nodes that outperform v for all damping variables, whereas ρs(v) − 1
is the number of those nodes which outperform v for at least one damping variable. Thus ρw(v) is a lower bound to the
minimum (i.e. best) rank achievable by v , while ρs(v) is an upper bound to the maximum (i.e. worse) rank achievable by v;
and ρs(v)−ρw(v) is then an upper bound to the maximum variation in v ’s rank. Note that any or all of these three bounds
might hold strictly, and there is a subtle but profound difference between ρs(v) − ρw(v) and the maximum variation of
v ’s rank that makes the former more descriptive of the “fuzziness” of v ’s performance. E.g. suppose that v holds 10th rank
for all damping variables, but 999 other nodes fill the top 9 positions in turn for different damping variables. In this case
ρs(v) = 1000, since v does not fare definitively better than any of those 999 nodes; and ρw(v) = 1, since none of those 999
nodes fares definitively better than v .

Strong and weak rank also provide a measure of the global rank fuzziness in a generic graph — that is, of the extent to
which the graph can be ordered satisfying simultaneously every type of user (with different user behaviours described by
different damping variables). For a graph G , consider the number sk(G) of nodes with strong rank k or less. If sk(G) ≈ k,
then every user’s top k set has a high density of nodes also in the top k set of every other user. Conversely, if sk(G) � k,
then few nodes will be of “universal importance”. Similarly, consider the number wk(G) of nodes with weak rank k or less.
If wk(G) ≈ k, then relatively few nodes are sufficient to include the k most important nodes of every other user. Conversely,
if wk(G) � k, then the behaviours of different users are sufficiently diverse that, in order to ensure that no user misses the
items of the greatest importance to him, any algorithm must return a very large collection of items.
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The ratio wk(G)/sk(G) can then be seen as a measure of the inevitable price of obliviousness to the user’s model: the
smaller it is, the more well-orderable G is. In the ideal case, sk(G) = k = wk(G), all users have exactly the same preferences
and every damping variable yields the same ordering.

4.2. StrongRank and WeakRank

Strong rank and weak rank automatically induce two new ranking algorithms, StrongRank and WeakRank, that rank
nodes respectively in order of strong and weak rank. Neither necessarily corresponds to PageRank for some damping vari-
able. StrongRank tends to return items that are each of at least moderate importance for every user (with different user
behaviours described by different damping variables). WeakRank tends to return, for every user, at least a few items that
are of high importance for that user. The evaluation of the effectiveness of StrongRank and WeakRank as practical ranking
algorithms (either on the Web or in other application domains) is certainly a promising direction of future research.

It is immediately obvious, however, that StrongRank and WeakRank can provide benchmarks to classify the performance
of other ranking algorithms based on the surfer model. If for every k many of the top k items returned by a ranking
algorithm are also among the top k items returned by StrongRank (the “intersection metric” of [11]), one can reasonably
deduce that a large fraction of items returned by that algorithm is of at least moderate importance for every user. Similarly,
a large intersection with WeakRank points to an algorithm that returns, for every user, a large fraction of that user’s top
choices.

A complete analysis of the complexity of StrongRank and WeakRank would require taking into account the properties of
the target graph (and thus of the application domain) as well as caching and parallelizability issues. This is beyond the scope
of this paper; however, the remainder of this section provides a few basic results (that can be skipped without impairing
the understanding of the rest of the paper).

It is not difficult to prove that the worst case complexity of PageRank (for one value of the damping factor) on a graph of
n nodes equals that of StrongRank and WeakRank:

Theorem 5. The worst case complexity of computing StrongRank and WeakRank up to lineage � on an n node graph is O (�n2), equal
to that of computing the first � iterations of PageRank.

StrongRank and WeakRank can then be computed for any graph of up to millions of nodes on a PC in a few days; and
very few application domains of PageRank entail larger graphs (the World Wide Web being one notable exception). Graphs
of much larger size n are manageable by PageRank itself only if of low (average) degree g � n; and in such graphs, one is
often interested only in the top k ranking nodes, with k � n. When these graphs are �-well orderable, i.e. there are at most
k� nodes with weak rank less than k and at least k/� with strong rank less than k (this seems to hold with 2 � � � 4 for
k > 100 in social networks like the Web, see Section 5) we can refine Theorem 5 into Theorem 6:

Theorem 6. The worst case complexity of computing the top k ranks of StrongRank and WeakRank up to lineage � on a �-well
orderable graph of average degree g and n nodes is, respectively, O (n�g(1 + log(k)

g + �(k+�)(log(�)+k)
ng )) and O (n�g(1 + log(k)

g +
k2�3+�(k+�)(log(�)+k)

ng )) vs. a complexity of Θ(n�g) for the top k ranks and the first � iterations of PageRank.

For max(log(n), g, �) � k �
√

n the complexity of StrongRank and WeakRank becomes respectively O (n�g(1 + log(k)+�
g ))

and O (n�g(1 + log(k)+�3

g )). Thus, even in the case of the (indexed) Web graph it still appears possible to compute the top

≈ 105 ranks of StrongRank and WeakRank in time comparable to that of PageRank (within an order of magnitude — several
hours on a single PC).

The rest of this section is devoted to the proof of Theorem 6, of which Theorem 5 is a corollary.

Proof. We first describe two initial “preprocessing” steps that are common to StrongRank and WeakRank, before detailing
how each algorithm computes its top k ranked nodes; finally, we analyse the worst case complexity for the top k ranks and
the first � iterations of PageRank.

The first preprocessing step computes the lineages, up to level �, of all the n nodes of the graph. This can be done in
time O (ngl) by iteratively computing the lineage at each level i, which takes an average O (g) (the average (in)degree of
the graph) for each of the n nodes. The second preprocessing step extracts, for each of the � levels, the top k nodes (as
ranked by lineage) in non-decreasing order. This takes O (n log(k)) steps for each level using a max-heap of size k. The cost
of performing these two steps adds up to O (ln g + ln log(k)).

To find the top k nodes ranked by StrongRank, it is sufficient to consider all the nodes with strong rank less than k�,
which by definition of � are at least k. These nodes belong necessarily to the intersection of the sets of top k� nodes (as
ranked by lineage) at each level. Since � is unknown in advance, one can use a binary search over the size of these sets
until an intersection of size between k and k + � is found; this takes O (log(k�)) steps, each computing the intersection
between � sets of size O ((k + �)�) each; and the cost sums up to O (log(k�)�(k + �)�). For each of the (less than) k + �
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nodes in the intersection found, one computes its strong rank as the number of nodes which are ranked higher (by lineage)
in at least one level. This takes O (kl�) steps for each node, for a total of O ((k + �)kl�) steps. Thus the cost of StrongRank,
including the two preprocessing steps, is O (ln g + ln log(k) + log(k�)�(k + �)� + (k + �)lk�). When k is of reasonable size
(i.e. log(k) = O (g)) and when, as in the case of the Web graph, � is a small constant and � = O (k) (i.e. PageRank converges
in a few thousand iterations) then, in the formula above, the second term is O (ln g), the third term is O (�k�g) = O (ln g)

(since k� � n), the fourth term is O (�k2�) = O (�n�). This yields a total cost of O (ln g + ln �) steps.
To find the top k nodes ranked by WeakRank, it is sufficient to consider all nodes with weak rank less than k, which

are at least k and, by definition of �, no more than k�. These nodes belong necessarily to the union of the sets of top k�

nodes (as ranked by lineage) at each level; i.e. to the union of the same sets considered in the computation of StrongRank
above, yielding the same cost. This union has cardinality at most k�2 — otherwise there would be more than (k�)�

nodes with weak rank less than k�, which is impossible by definition of �. For each of these O (k�2) nodes, its weak
rank is the number of nodes ranked higher (by lineage) at each level. This (using lineage rankings) takes no more than
kl� steps for each node, and O (k2��3) total steps. Thus the cost of WeakRank, including the two preprocessing steps, is
O (ln g + ln log(k) + log(k�)�(k + �)� + k2��3); under the same assumptions made above, this becomes O (ln g + ln �3).

Note that the cost of computing the top k nodes ranked by PageRank using the first � iterations is asymptotically no
less that the cost of the first preprocessing step of StrongRank and WeakRank, Ω(ln g), plus the cost of extracting the top k
nodes, which is Ω(n log(k)). This yields a total cost of Ω(ln g) steps for PageRank. �

In the Web graph � appears to be bounded by a small constant not exceeding 2.5 (see Section 5.2 below). Thus we
could run StrongRank and WeakRank for k = 20 000 even for a fairly large snapshot of the .it domain in a few hours on a
personal computer.

5. Experimental results

This section brings the analytical machinery of Section 3 to bear on “real” graphs — a 2004 snapshot of the .it domain
Web graph, and a 2007 snapshot of the CiteSeer citation graph. Section 5.1 briefly presents the data and the experimental
setup. Section 5.2 evaluates the extent to which the nodes of those graphs can be ordered in a fashion satisfying simultane-
ously every user (with different user behaviours described by different damping variables). Finally, Section 5.3 analyses the
performance of PageRank as d varies from nearly 0 to nearly 1 by evaluating the intersection of its top k node set with the
top k node set of StrongRank and WeakRank.

5.1. Data and experimental setup

We analyse the 40M node, 1G link snapshot of the 2004 .it domain published by [27], and the 0.7M node, 1.7M link
snapshot of the late 2007 CiteSeer citation graph [9] (nodes are articles and links are citations). We use the WebGraph
package [6,27] for their manipulation.

.it, as a national first level domain, provides a large and (unlike e.g. .com or .gov) “well-rounded” portion of the Web
graph with a size still within reach of our storage and computational resources. Furthermore, the primary language of .it is
not shared by any other country (unlike e.g. .uk or .fr), minimizing distortions in ranking introduced by the inevitable cut of
links with the rest of the Web. We perform two pre-processing steps on the .it snapshot. First, we remove intra-domain links
(which constitute strongly biased conferral of authority, see [18] and [15]). Second, we merge all dynamic pages generated
from the same base page, dealing with pages (like the homepage of a forum’s dynamic language) automatically linked by a
huge collection of other template-generated pages. Both steps appear to markedly improve the human-perceived quality of
the results.

Then, we compute the lineage of each node up to the 128th generation for both graphs. Note that, in theory, lineages
should be compared for all generations. Stopping at the 128th generation is equivalent to considering damping variables
d(τ ) that are 0 for τ > 128, and (typical) PageRank implementations that compute the score vector using at most 128
iterations and disregarding authority propagation over paths longer than 128 hops. This appears reasonable because for
all damping factors/variables except those extremely close to 1, the branching contribution of levels beyond the 128th is
dwarfed by rounding errors of finite precision computing machinery; and because, empirically, the set of the top k items
returned by StrongRank and WeakRank when considering only the first � generations appears to almost completely stabilize
as � grows larger than 60–100 (Figs. 3 and 4 show the normalized intersection between the top k item sets returned by
StrongRank and WeakRank when considering 128 lineages, and the top k item sets returned when considering � lineages
for � = 1, . . . ,128).

5.2. Choose the damping, choose the ranking?

Figs. 5 and 6 show the number of k-strongly ranked nodes and the number of k-weakly ranked nodes for the .it domain
graph and the CiteSeer citation graph as k varies from 1 to 16 000. The two graphs exhibit a strikingly similar behaviour,
with a few differences.
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Fig. 3. .it Web graph: convergence of top k-strong (left) and top k-weak (right) sets as a function of lineage generation, for different values of k.

Fig. 4. CiteSeer citation graph: convergence of top k-strong (left) and top k-weak (right) sets as a function of lineage generation, for different values of k.

Both in the .it and in the CiteSeer graph the ratio wk/k between the number wk of k-weakly ranked nodes and k is
never higher than 6, and converges relatively quickly to a value between 1.5 and 2.5 (it is never larger than 4 for k � 7 on
the .it graph, and for k � 127 on the CiteSeer graph). This ratio represents the inevitable cost of obliviousness to the user model:
the set of all those items that are outranked by less than k other items for some damping variable has size at least wk .

The ratio sk/k between the number sk of k-strongly ranked nodes and k is considerably smaller than 1 in both graphs —
particularly in the CiteSeer graph. This ratio represents the fraction of items that are robustly in the top k, for all damping
factors and variables. For the CiteSeer graph, the ratio is ≈ 0.05 for k < 200, converging to a value between 0.5 and 0.6 for
k > 10 000. For the .it graph, it is slightly larger: between 0.1 and 0.2 for k < 200, converging to a value between 0.4 and
0.5 for k > 10 000.

Thus, ranking sensitivity to the damping factor in “real” graphs appears not nearly as high as that of the synthetic graphs
of Section 2, but still considerable — particularly for the top 10–100 items. To return all items that would appear among
the top k for some damping factor or variable, even the “best” ranking algorithm might have to return from 2 to 4 times as
many items; and although any choice of the damping factor will guarantee among the top k a non-negligible core of items
that would also be returned among the top k for every other choice, this core appears relatively small, between 5% and 40%
of the total.

5.3. The best damping factor

In this subsection we deploy StrongRank and WeakRank as a testbed to evaluate the performance of PageRank for
different damping factors (see Section 3.3) on the .it graph and on the CiteSeer graph. Figs. 7, 8, 9 and 10 show the fraction
of the top k items returned by PageRank that are also among the top k items returned respectively by StrongRank and
WeakRank, for k = 16, 64, 256 and 1024, as the damping factor varies between 0.01 and 0.99 in steps of 0.01.

Again, the behaviour of PageRank is strikingly similar on the two graphs. For both of them and for all four values of
k, the size of the intersection set is between 0.38k and 0.93k for all damping factors sampled (but note that, in theory,
anything could happen between those discrete sampling points — see Section 2!). Thus, for all damping factors, including
ones very close to 0 that make the computation of the score vector particularly efficient [5], PageRank always returns a set
of results in common with both StrongRank and WeakRank of reasonable size.
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Fig. 5. .it Web graph: sk (number of k-strongly ranked nodes) and wk (number of k-weakly ranked nodes), as a function of k.

Fig. 6. CiteSeer citation graph: sk (number of k-strongly ranked nodes) and wk (number of k-weakly ranked nodes), as a function of k.

For both graphs, the largest intersection with WeakRank is achieved for damping factors in the 0.8–0.9 range; whereas
the largest intersection with StrongRank is achieved for damping factors in the 0.5–0.6 range. Which is more desirable?
Ultimately, it depends on the nature of the application.

For example, a Web search engine typically returns to a user many more “leads” than that user will follow. In this
context a false negative (not returning a “good” page) is far more damaging than a false positive (returning a “mediocre”
page). Thus, a large intersection with WeakRank is more desirable, being indicative of an algorithm that returns, for every
user, a large fraction of that user’s top choices. It is then perhaps not surprising that the typical value assigned to the
damping factor in search engines is indeed 0.85!

On the other hand, in a trust/reputation system a false positive (returning as highly trusted an item the user would not
trust) is far more damaging than a false negative (not returning as trusted an item the user would actually trust). A large
intersection with StrongRank is then more desirable, being indicative of an algorithm that returns only items that are at
least moderately trusted by every user model; and a damping factor closer to 0.5 — as suggested in [1] — might be a better
choice.

6. Conclusions

This paper addresses the fundamental question of how variations in PageRank’s damping factor can affect the ranking of
nodes. We show that for any k, at least on some graphs, arbitrarily small variations in the damping factor can completely
reverse the ranking of the top k nodes, or indeed make them assume all possible k! orderings. This is deeply unsatisfying
should one be aiming at an “objective” ranking, since an item may be ranked higher or lower than another depending on
a tiny variation in the value of a parameter in the user model (the damping factor) likely to differ between different users
and, in any case, hard to assess precisely.

Previous experiments that sampled ranking for a handful of different damping factors [19,11] suggested this was not the
case at least for the Web graph (leaving the issue open for other application domains). However, verifying rank stability
for discrete variations in the damping factor (e.g. 0.01 increments) is not sufficient to conclude that rank is stable as the
damping factor varies over a whole continuous interval — just like a set of discrete samples from a continuous signal is not,
in general, sufficient to reconstruct it. Yet, just like Shannon’s Sampling Theorem allows the reconstruction of a continuous
signal from a finite set of samples so long as it is limited in bandwidth, lineage analysis allows us to compare the rank of
two nodes “in one shot” for all (even “time variant”) damping factors using just a finite set of lineage measurements, so
long as PageRank scores can be computed or sufficiently approximated with a limited number of iterations of the Power
Method (which is the case for all practical applications).
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Fig. 7. .it graph: PageRank/StrongRank intersection metric as d varies.

Fig. 8. .it graph: PageRank/WeakRank intersection metric as d varies.

Fig. 9. CiteSeer: PageRank/StrongRank intersection metric as d varies.

Fig. 10. CiteSeer: PageRank/WeakRank intersection metric as d varies.
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Lineage analysis not only allows us to efficiently verify that, indeed, in “real” graphs like Web graphs or citation graphs
PageRank is not excessively ranking sensitive (but not insensitive either!) to variations of the damping factor. It also pro-
vides a simple, very “natural” interpretation of rank dominance for all damping factors that is completely independent of
PageRank. And it allows one to introduce the notions of strong rank and weak rank of a node, related to, but subtly different
from, those of best and worse rank — and more descriptive, since they capture the level of churn “around” a node whose
rank is relatively stable overall yet highly unstable compared to its individual competitors.

Weak and strong rank also induce two new ranking algorithms, StrongRank and WeakRank. StrongRank tends to return
results that are at least moderately useful under all user models (i.e. for all damping variables). WeakRank tends to return
results that are highly useful to at least a niche of users. As such, they can provide useful benchmarks to compare different
link analysis algorithms in terms of their ability to, respectively, return “universally useful” results, and to ferret out results
of high importance to niches of users. A more thorough evaluation of StrongRank and WeakRank is certainly a promising
direction for future research.

StrongRank and WeakRank can also be used to evaluate different values of the damping factor — validating the “folk
lore” result that 0.85 is ideal, at least for search engines and other applications where it is far more important to avoid false
negatives then false positives. For applications where the reverse is true, our results suggest that a value closer to 0.5 might
be more effective, reflecting the results of [1]. It is surprising that, in this regard, the .it and CiteSeer graphs exhibit exactly
the same characteristics — it would be interesting to investigate if (and perhaps why) this is the case in other application
domains of PageRank.
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