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We develop a phenomenological Landau-de Gennes (LdG) theory for lyotropic colloidal suspensions of bent rods
using a Q-tensor expansion of the chemical-potential dependent grand potential. In addition, we introduce a bend
flexoelectric term, coupling the polarization and the divergence of the Q-tensor, to study the stability of uniaxial (N),
twist-bend (NTB), and splay-bend (NSB) nematic phases of colloidal bent rods. We first show that a mapping can be
found between the LdG theory and the Oseen-Frank theory. By breaking the degeneracy between the splay and bend
elastic constants, we find that the LdG theory predicts either an N-NTB-NSB or an N-NSB-NTB phase sequence upon
increasing the particle concentration. Finally we employ our theory to study the first-order N-NTB phase transition, for
which we find that K33 as well as its renormalized version Keff

33 remain positive at the transition, whereas Keff
33 vanishes

at the nematic spinodal. We connect these findings to recent simulation results.

I. INTRODUCTION

Bent-core liquid crystals are mesophases formed by
molecules with a “banana-like" shape1. In the simplest liq-
uid crystal phase, i.e. the uniaxial nematic (N) phase, the
long axes of the bent-core molecules are preferentially aligned
along a common direction, the so-called nematic director n̂,
and the transverse orientations of the molecules are randomly
oriented in the plane perpendicular to n̂. In addition to the
N phase with orientational order of the main molecular axis,
the molecular shape can stabilize a nematic phase with po-
lar order, in which the transverse orientations exhibit a net
alignment in a direction perpendicular to n̂. In 1969 Meyer2

argued that polar order of the transverse directions couples
to the bend deformations of the nematic director n̂ through
a mechanism called the bend flexoelectric effect. Polar or-
der and the bend flexoelectric effect may occur in liquid crys-
tals due to electrostatic polarization, but may also arise due
to the molecular shape in systems of bent-core molecules in
absence of electric fields. As a result, it is particularly easy
to induce bend deformations in the nematic director field of
bent-core liquid crystals. Many years later, Dozov3 noted that
the bend elastic constant K33 can be very small for bent-core
liquid crystals, yielding a low energy cost for bend deforma-
tions. In addition, Dozov speculated that K33 could also be-
come negative in certain bent-core liquid crystals. In this case,
higher-order terms in the derivatives of the nematic director
field (beyond linear elasticity) should be included in the free
energy in order to stabilize the system. The competition be-
tween the putative negative K33 term and the positive higher-
order terms would favor spontaneous bend deformations. In-
terestingly, however, the theoretical work of Dozov did not
consider any polar order. Since it is impossible to extend

a)Electronic mail: c.anzivino@uu.nl
b)Electronic mail: m.dijkstra@uu.nl

a pure bend deformation in three-dimensional space, Meyer
as well as Dozov predicted that the uniaxial N phase can ei-
ther become unstable with respect to a spatially modulated
twist-bend nematic (NTB) phase, characterized by a heliconi-
cal variation with bend and twist deformations in the molecu-
lar orientation (see Fig. 1 (a)), or to a modulated splay-bend
nematic (NSB) phase, characterized by alternating domains of
splay and bend3,4 (see Fig. 1 (b)). Quantitatively, Dozov’s the-
ory, based on the Oseen-Frank elastic theory, predicts that the
uniaxial N phase becomes unstable to the formation of NTB or
NSB phases at a critical point corresponding to K33 = 0, where
the system either stabilizes an NTB phase if K11 > 2K22, or an
NSB phase if K11 < 2K22, with K11 and K22 the splay and twist
elastic constants, respectively3.

Recently, Selinger and collaborators5–7 suggested that the
presence of polar order could provide the simplest explana-
tion not only for the formation of spatially modulated phases,
in agreement with Meyer, but also for the negative bend elas-
tic constant K33 proposed by Dozov. These authors introduced
a Landau theory that combines the Oseen-Frank free energy
for the nematic director n̂, the polar order P perpendicular
to n̂, and a coupling between polar order and bend deforma-
tions. By minimizing the free energy with respect to polar
order, they obtained Dozov’s effective free energy in terms
of only the nematic director field n̂ with renomalized elastic
constants. In this picture, K33 remains always positive while
its renormalized version Keff

33 decreases in magnitude and van-
ishes at a critical point where the uniaxial N phase becomes
unstable with respect to the NTB or NSB phase. Interestingly,
they also found the same criterion for the relative stability
of the spatially modulated phases calculated by Dozov6, i.e.
K11 < 2K22 for a NSB phase and K11 > 2K22 for a NTB phase.
Finally, Selinger’s theory has been extended8–12 to a meso-
scopic Landau-de Gennes (LdG) theory where the director n̂
is replaced by a second rank, symmetric and traceless tensor
Q(r) with components Qαβ (r) where α,β = 1,2,3 represent
the cartesian coordinates.

For completeness, we also mention that theories have



2

been developed for bent-core liquid crystals that do not in-
volve spontaneous polar order or a negative bend elastic
constant13–18. Additionally, molecular field approaches19–30

for bent-core liquid crystals exist, of which several20,26,28–30

support the idea of a softening of the bend elastic constant be-
fore the onset of polar order in bent-core liquid crystals, in
agreement with Selinger et al.5–7

Much research in recent years has been focused on ther-
motropic bent-core mesogens that become liquid crystalline
upon lowering the temperature. Very recently, various routes
have been developed to synthesize lyotropic colloidal model
systems of bent-core molecules, e.g. silica rods with a sharp
kink31–33 or smoothly curved SU-8 rods34. The liquid crys-
talline behavior of these colloidal systems is driven by con-
centration and has been studied by simulations and micro-
scopic theories. Using Onsager theory35, a first-order uni-
axial N to NTB phase transition has been predicted recently
in a system of hard curved particles at sufficiently high parti-
cle concentrations19, which has been confirmed in computer
simulations19,36 on systems of hard bent spherocylinders. In
addition, this simulation study showed that the N-NTB phase
transition is followed by a second-order NTB-NSB phase tran-
sition in a polydisperse system of hard bent spherocylinders
and in a system of hard curved particles.

In this paper, we extend the existing LdG theories of ther-
motropic bent-core liquid crystals to lyotropic liquid crystals
in order to develop a framework to describe the recent findings
of Refs.19,36. To this end, we introduce a chemical-potential
dependent grand potential based on a Q-tensor expansion and
a bend flexoelectric term coupling the polarization and the di-
vergence of the Q-tensor8–12. We first show that a mapping
can be found between the LdG theory and the Oseen-Frank
theory of Selinger6,7. We then show, by breaking the degen-
eracy between the splay and bend elastic constants, that the
LdG theory predicts a series of second-order phase transitions
between periodically modulated nematic phases, reproducing
what was found in Ref.36. Finally we employ our theory to
study the first-order N-NTB phase transition observed in sim-
ulations. We find that while the LdG theory predicts that
K33 > 0 and Keff

33 = 0 at a second-order N-NTB phase transi-
tion, it also predicts that K33 as well as Keff

33 remain positive
at a first-order N-NTB transition, whereas Keff

33 vanishes at the
nematic spinodal.

As a final introductory remark it is worth mentioning that
the splay-bend nematic phase considered in this paper dif-
fers from the so-called splay nematic (NS) phase considered
in Refs.12,37,38. This NS phase is characterized by a modula-
tion perpendicular to the average director while the NSB phase
is characterized by a spatial modulation parallel to the global
nematic director. Moreover the onset of the NS phase is driven
by a softening of the renormalized splay elastic constant Keff

11
rather than of the renormalized bend elastic constant Keff

33 .
The outline of the paper is as follows: section II describes

our LdG theory. In section III we briefly review the isotropic-
nematic phase transition of hard rods within this framework,
that will be used as a reference system throughout the paper.
In section IV we investigate possible phase sequences of the
spatially modulated phases. The first-order N-NTB transition
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FIG. 1. (a) Twist-bend nematic (NTB) phase characterized by a he-
liconical variation of the particles orientation along the z-axis. (b)
Splay-bend nematic (NSB) phase characterized by alternating do-
mains of splay and bend in the x-z plane.

is studied in section V and the renormalized elastic constants
are derived in section VI. Finally we present our conclusions
and a discussion in section VII.

II. LANDAU-DE GENNES THEORY

LdG theory is based on the hypothesis that equilibrium
properties of a thermodynamic system can be found from a
variational Helmholtz (or Gibbs) free energy F, constructed
as an expansion in powers of a suitable order parameter. A
restriction on the expansion is that it must be stable against an
unlimited growth of the order parameter. It is well-known39

that the orientational order of three-dimensional nematic liq-
uid crystals can be described by a second-rank, symmetric,
traceless tensor field, Q(r) with cartesian components Qαβ (r)
for α,β = 1,2,3, which vanishes in the isotropic (I) phase
and thus serves as an order parameter for the N phase. The
eigenvector of Q corresponding to the maximum modulus
of a nondegenerate eigenvalue defines the nematic director n̂
of the system. The variational LdG free energy F for ordi-
nary, non-chiral nematics is constructed from frame-invariant
contractions of Qαβ and spatial derivatives ∂λ Qαβ such as
Qαβ Qβα ,Qαβ Qβλ Qλα , etc., with phenomenological coeffi-
cients that contain the dependence on the thermodynamic state
(pressure, temperature). Usually for thermotropic liquid crys-
tals, only the quadratic term of the Landau expansion changes
sign as a function of temperature, which drives the phase
transition40–42.

In contrast to “ordinary" nematics, a proper characteri-
zation of orientational order exhibited by bent-core liquid-
crystal phases requires additional order parameters. In the
case of theories based on the flexoelectric effect, not only the
tensor field Q(r) is required, but also a vector field P(r) with
cartesian components Pα(r) that describes the polar order in a
direction perpendicular to n̂. In the I phase Q = 0 and P = 0;
in the uniaxial N phase Q 6= 0 and P = 0; and in the spatially
modulated nematic phases Q 6= 0 and P 6= 0. General O(3)-
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symmetric extensions of the free energy F that contain addi-
tionally lowest order couplings with P and its derivatives ∂α Pβ

have been developed in Refs.8–12. However, these expansions
are only suitable for thermotropic systems that become liq-
uid crystalline as a function of temperature. In contrast, ly-
otropic systems become ordered as a function of density and
are not conveniently described by the Helmholtz free energy
F. A naive remedy for this problem would be to replace the
temperature in F by the density ρ, but this cannot capture the
density jumps that are found at first-order transitions, which
for the I-N phase transition can be as large as 25%43. The
density discontinuity at the I-N transition is instead exhibited
by microscopic theories, such as Onsager theory.

Here we follow Ref.44 and set up a Landau expansion for
lyotropics for which we will use the grand potential Ω rather
than the Helmholtz (or Gibbs) free energy F. By using Ω, the
expansion parameters will depend on the chemical potential
µ, and the density jumps will naturally be encoded through
the relation ∂ (Ω/V )/∂ µ|V,T =−ρ, with V the volume of the
system and ρ the average density. Only the quadratic term
Qαβ Qβα has a µ-dependent prefactor that changes sign to
drive the phase transition. This procedure is easier to use
than, for example, the phase-field-crystal method of Ref.45,
which produces terms that also explicitly depend on density,
for which also an Euler-Lagrange equation for ρ needs to be
solved, in addition to the one for Q.

We consider a system of hard bent rods modeled as curved
or kinked rods of contour length L and diameter D, at chemical
potential µ in a macroscopic volume V at fixed temperature T.
We write the LdG grand potential as

∆Ω(Q,P) =
∫

V
dr[∆ωb +ωe +ωP], (1)

where ∆ωb ≡ ∆ωb(Q; µ) is the excess bulk grand poten-
tial density with respect to the I state, ωe ≡ ωe(Q,∇Q) de-
scribes elastic deformations and surface tension effects, and
ωP ≡ ωP(Q,P,∇Q,∇P) contains additionally lowest order
couplings between Q and the polarization field P and its
derivatives ∂α Pβ .

We expand the bulk contribution in units of β−1 = kBT
with kB the Boltzmann constant, until fourth order in Q, which
gives us

βB2∆ωb(Q; µ) =
2
3

aβ (µ∗−µ)Qαβ Qβα

− 4
3

b Qαβ Qβλ Qλα +
4
9

d Qαβ Qβα Qλρ Qρλ ,

(2)

where we use Einstein’s summation convention for repeated
indices throughout the paper. The second virial coefficient in
the isotropic fluid phase is given by B2 = πL2D/4 in the limit
L� D and is included in our definition to render the Lan-
dau coefficients a,b and d conveniently dimensionless. For
simplicity we assume them to be independent of µ. We also
introduce µ∗, the chemical potential at which the quadratic
term changes sign, i.e. it defines the spinodal of the I-N tran-
sition. A stable I phase at µ < µ∗ requires a > 0, the stability
of the expansion (2) with respect to an unlimited growth of Q

requires that d > 0 while b > 0 allows us to describe a first-
order I-N transition to a state with Q 6= 0. Throughout we will
satisfy these stability criteria.

For the terms in gradients of Q we only retain terms up to
the square gradients in Q, and we consider only one of the
possible invariants that involve a coupling between the order
parameter Q and quadratic gradient in Q to break the degen-
eracy between the splay and bend elastic constants K11 and
K33

46. We thus write

βB2ωe(Q,∇Q) =
2
9

l1(∂α Qβλ )(∂α Qβλ )

+
2
9

l2(∂α Qαλ )(∂β Qβλ )−
2
9

l3Qαβ (∂γ Qαγ)(∂ξ Qβξ ),

(3)

where we omitted another second-order term in ∇Q, that
scales with (∂α Qβλ )(∂λ Qβα) because it can be written as a
linear combination of a surface term and the elastic terms al-
ready included in the expansion (3). We express the expansion
parameters l1, l2 and l3 in units of L2 throughout the paper. We
note again that we have chosen only one of the possible cou-
plings between Q and ∇Q to break the degeneracy between
K11 and K33

46. This choice is arbitrary, also other terms could
have been considered or even more terms could have been in-
cluded. Since all couplings add a contribution proportional to
S3 to the elastic constants, the predictions of the theory are not
affected by this choice.

Expressing Q(r) in terms of a scalar order parameter S(r)
and a nematic director field n(r),

Qαβ (r) =
3
2

S(r)
(

nα(r)nβ (r)−
1
3

δαβ

)
, (4)

we can relate the parameters l1, l2 and l3 to the Oseen-
Frank elastic constants through βDK11 = 4S2

(
2l1 + l2 −

Sl3
)
/
(
πL2

)
, βDK22 = 8S2l1/

(
πL2

)
, and βDK33 = 4S2(2l1 +

l2 +
(
S/2)l3

)
/
(
πL2

)
. These relations can be found by com-

paring the elastic expansion (3) using the expression (4) with
the Oseen-Frank elastic energy47,48

F =
1
2

∫
dr
[

K11(∇ · n̂)2 +K22(n̂ ·∇× n̂)2

+K33|n̂× (∇× n̂)|2
]
,

(5)

where K11,K22 and K33 are the splay, twist and bend elastic
constants, respectively. We assume l1, l2 and l3 to be indepen-
dent of µ.

Finally we expand ωP up to sixth order in P, and write

βB2ωP(Q,P,∇Q,∇P) = e2Pα(δαβ +
2
S0

Qαβ )Pβ

+ e4Pα Pα Pβ Pβ −λPα(∂β Qαβ )

+κ(∂α Pβ )(∂α Pβ )+ e6Pα Pα Pβ Pβ Pγ Pγ ,

(6)

with coefficients e2,e4,e6,κ,λ and S0. Throughout the paper
we will express λ and κ in terms of L and L2, respectively.
Stability in the dilute limit requires e2 > 0 while stability with
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respect to an unlimited growth of P requires that e6 > 0. The
coefficients 2/S0,λ , and κ represent the strength of the cou-
pling between Q and P fields, the flexoelectric coupling be-
tween P and gradients in Q, and a polar elastic constant, re-
spectively. In order to describe a favored polarization perpen-
dicular to the nematic director, leading to bend flexoelectric-
ity, we set S0 > 08. Finally, we allow e4 to be positive as well
as negative.

Our LdG expansion is very similar to those of Refs.8,11.
Nevertheless, in contrast with their work, and following the
suggestion of Ref.7, we consider terms up to sixth order in P
and simultaneously allow the coefficient e4 of the fourth-order
term in P to be either positive or negative. This choice allows
us to describe first-order as well as second-order transitions
to the spatially modulated phases49. In particular if e4 < 0
we expect first-order phase transitions, while if e4 ≥ 0 we ex-
pect second-order phase transitions. Our expansion includes
the additional elastic term Qαβ (∂γ Qαγ)(∂ξ Qβξ ) to break the
degeneracy between the splay and bend elastic constants K11
and K33 in agreement with Ref.37. However, we note that
Ref.37 lacks the term (∂α Qαλ )(∂β Qβλ ) and only considers
terms up to second-order in P. We also remark that our addi-
tional elastic term allows us not only to break the degeneracy
between the splay and bend elastic constants but also enables
us to change the ratio between the splay and twist elastic con-
stants K11/K22 by varying the particle concentration. As will
become clear in section IV, this latter condition is important
for investigating the possibility of concentration-driven phase
transitions between the periodically modulated phases, as was
recently found in simulations of hard particles36.

III. I-N TRANSITION

Here we briefly review the LdG theory to describe the I-
N transition of uniaxial hard rods as derived in Ref.44. As
stated in the previous section, the uniaxial N phase is char-
acterised by Q 6= 0 and P = 0, and hence the ωP term in the
grand potential (1) vanishes. We describe the bulk uniaxial N
phase by taking n̂ parallel to the z-axis. In this case the elas-
tic expansion ωe = 0 and ∆Ω/V reduces to ∆ωb. Inserting the
tensor order parameter (4) with n̂ = (0,0,1) in (2), we obtain
βB2∆ωb = aβ (µ∗− µ)S2− bS3 + dS4. The Euler-Lagrange
equation ∂∆ωb/∂S = 0 can be solved analytically, in order to
find the stable, metastable and unstable phases. We find the
solutions

SI(µ) = 0;

S±N (µ) =
3b
8d

(1±
√

1− 32adβ (µ∗−µ)

9b2 ),
(7)

whose stability can be investigated by analyzing the sign
of ∂ 2∆ωb/∂S2. We first note that from the conditions
∂ 2∆ωb/∂S2|S=SI = 0,∂ 2∆ωb/∂S2|S=S+N

= 0 and ∆ωb(SI) =

∆ωb(S+N ), we can find the chemical potential µ∗ correspond-
ing to the spinodal of the I phase with respect to the N phase,
the chemical potential β µ+ = β µ∗−9b/(32ad) correspond-
ing to the spinodal of the N phase with respect to the I phase,

and the chemical potential β µIN = β µ∗ − b2/(4ad) corre-
sponding to the I-N transition, respectively. We then find that
(i) for µ < µ+ the I phase (SI) is the stable configuration, (ii)
for µ+ < µ < µIN the I phase is stable, S−N unstable, and S+N
metastable, (iii) for µIN < µ < µ∗ the S+N solution is stable,
the I phase is metastable, and S−N unstable, (iv) for µ > µ∗

the S+N solution is stable, S−N is metastable, and the I phase is
unstable. The solution S+N represents the N phase and, for the
sake of simplicity we will use SN(µ)≡ S+N (µ) throughout the
paper.

In order to describe the I-N transition of hard rods, we first
convert the chemical potential µ to the particle concentration
c = B2ρ, and then fit the phenomenological coefficients a,b,
and d to results from Onsager theory44. Concerning the first,
we introduce the grand potential density of the I state ωI and
define ω ≡ ωI +∆ωb. From the condition ∂ (B2ω)/∂ µ =−c,
we then find

c(µ) = cI(µ)+aS2(µ), (8)

where the particle concentration of the I phase cI(µ) =
−∂ (B2ωI)/∂ µ can be calculated within Onsager theory, by
using an isotropic distribution function, such that β µ(cI) =
log(cI/4π) + 2cI

50. By inverting this relation, we obtain
cI(µ). For the fit of the phenomenological coefficients a,b,
and d, we exploit the thermodynamic quantities of the sys-
tem at the I-N phase coexistence. Using Onsager theory
for a system of hard rods in the limit L/D → ∞50,51, we
find cI(µIN) = 3.290,c(µIN) = 4.191,β µ∗ = 6.855,β µIN =
5.241, and SIN = 0.7992. Inserting these values into the fol-
lowing expressions

c(µIN) = cI(µIN)+aS2
IN ,

β µIN = β µ
∗−b2/

(
4ad
)
,

SIN = b/
(
2d
)
,

(9)

we obtain a = 1.436,b = 5.851 and d = 3.693. With this set
of coefficients, a plot of SI and SN as a function of the concen-
tration c as defined by Eq. (8), allows one to observe that the
concentration jump associated with the I-N transition is cor-
rectly captured, as shown in Ref.44. Unless stated otherwise,
we will use these values of a,b,d, and µ∗ in the following.
We will also follow Ref.44 in fitting the square-gradient coef-
ficients l1 and l2 by using the surface tension of a planar I-N
interface of a system of hard rods with a parallel and perpen-
dicular anchoring, yielding l1 = 0.165L2 and l2 = 1.708L2.
We thus take a system of hard rods with L/D→ ∞ as a refer-
ence system for our study. Alternative reference systems are
straightforward to implement provided a sufficient number of
quantities is known at the bulk I-N transition.

IV. SPATIALLY MODULATED PHASES

In this section we study the phase behaviour of lyotropic
suspensions of bent rods by employing the LdG theory intro-
duced in section II with e6 = 0 and e4 > 0 in Eq. (6), i.e. using
the formalism for second-order phase transitions. We show
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that if l3 6= 0 in Eq. (3), the LdG theory predicts that an N-
NTB-NSB and an N-NSB-NTB phase sequence can be stabilized
in this system upon increasing the nematic order, in addition
to the N-NTB and N-NSB transitions already predicted by the
same theory in the case of l3 = 0.

To this end, we describe the NTB phase by a nematic direc-
tor n̂TB(z) precessing around the z-axis with a conical angle
θ , a pitch p = 2π/q, and a polarization vector PTB(z) perpen-
dicular to n̂TB(z), given by3,6

n̂TB(z) = (sinθ cos(qz), sinθ sin(qz), cosθ),

PTB(z) = P(sin(qz),−cos(qz), 0).
(10)

We describe the NSB phase by a nematic director n̂SB(z) and
polarization vector PSB(z) given by3,6

n̂SB(z) = (sinφ(z), 0, cosφ(z)),

PSB(z) = Pψ(z)(−cosφ(z),0,
1
2

sin2φ(z)),
(11)

where ψ(z) = cos(qz) and φ(z) = θ sinqz. Observe that n̂SB
describes alternating domains of splay and bend.

In order to study the stability of these phases, we first find
the equilibrium values of q and θ , which can then be inserted
into Eq. (1). Subsequently, we minimize the obtained Ω with
respect to S and P at fixed µ, i.e. we solve the Euler-Lagrange
equations ∂∆Ω/∂S = 0 and ∂∆Ω/∂P = 0. However, since we
are considering second-order transitions from the uniaxial N
phase, the dependence of S on µ is known analytically, given
by the SN(µ) solution of Eq. (7). As a consequence, we can
perform the stability analysis by minimizing Ω with respect
to P at fixed S, i.e. by solving the Euler-Lagrange equation
∂∆Ω/∂P = 0. The dependence of P and S on the particle con-
centration can finally be obtained from the dependence on µ

using the procedure described in section III.

A. Comparison with the Oseen-Frank theory

As already mentioned in the introduction, the Oseen-Frank
theory of Dozov3 and Selinger6,7 predicts a phase transition
from a uniaxial N phase to either an NTB or an NSB phase.
In this subsection, we show that a complete mapping exists
between the LdG theory with l3 = 0, i.e. with a degenerate
bend and splay elastic constant, and the Oseen-Frank theory
of Selinger6,7.

To compute the grand potential density of the NTB phase,
we insert n̂TB(z) in the tensor order parameter Eq. (4) and the
resulting Q(z) together with PTB(z) in the grand potential Eq.
(1). We minimize the obtained grand potential with respect to
the wave number q and the tilt angle θ , respectively, and find

qTB =
3λ sin(2θTB)SP

8κP2 +4S2(2l1 + l2)sin2
θTB−4S2l2 sin4

θTB
, (12)

and

sin2
θTB =

κP2

S2l1
+

√
κP2(κP2 +S2l1)

S2l1
. (13)

Inserting Eqs. (12) and (13) back into Eq. (1) and approxi-
mating for small P, we find the grand potential density of the
NTB phase

∆ΩTB

V
=

∆Ω

V
− ∆ΩN

V

=

[
e2(S0−S)

S0
− 9λ 2

8(2l1 + l2)

]
P2

+
9λ 2

√
κS2l1

2S2(2l1 + l2)2 |P|
3 + e4P4 +O(P5),

(14)

where ∆ΩN/V = aS2(µ∗−µ)−bS3+dS4 is the grand poten-
tial density of the N phase.

Analogously, in order to compute the grand potential den-
sity of the NSB phase, we insert the nematic director n̂SB(z)
into the tensor order parameter Eq. (4) and the resulting Q(z)
together with PSB(z) into the grand potential Eq. (1). In con-
trast with the case of the NTB phase, the resulting grand po-
tential density varies periodically as a function of z and hence
we average it over a full period 2π/q to find

∆Ω

V
=

q
2π

∫ 2π
q

0
dz∆ω(z). (15)

We then minimize the obtained grand potential with respect to
the wave number q and the tilt angle θ , respectively, and find

qSB =
3λθSB(θ

2
SB−8)PS

8(4+3θ 2
SB)κP2 +16S2(2l1 + l2)θ 2

SB
, (16)

and

θ
2
SB =

16κP2

3κP2 +
√

κP2(57κP2 +32S2(2l1 + l2))
. (17)

Inserting Eqs. (16) and (17) back into Eq. (1) and approxi-
mating for small P, we find for the grand potential density of
the NSB phase

∆ΩSB

V
=

∆Ω

V
− ∆ΩN

V

=

[
e2
(
S0−S

)
2S0

− 9λ 2

16(2l1 + l2)

]
P2

+
9λ 2

√
κS2(2l1 + l2)

8
√

2S2(2l1 + l2)2
|P|3 + 3e4

8
P4 +O(P5).

(18)

We observe that for small P both ∆ΩTB and ∆ΩSB vanish at
the critical scalar nematic order parameter

Sc = S0

(
1− 9λ 2

8e2(2l1 + l2)

)
. (19)

Close to this point we can assume PTB �
9λ 2

√
κS2l1/(2e4S2(2l1 + l2)2) and PSB �

3λ 2
√

κS2(2l1 + l2)/(
√

2e4S2(2l1 + l2)2) such that the cubic
terms dominate over the quartic terms in Eqs. (14) and (18).
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FIG. 2. Phase diagram as a function of the scalar nematic order parameter S and the coefficient l3 for the coefficients e2 = 1,S0 = 0.85,κ =
0.1L2 and λ = 0.1L, replicated three times with the background color denoting the value of the splay (K11), twist (K22), and bend (K33) elastic
constants as indicated by the color bar. The I-N phase transition occurs at SIN = 0.7922. The green line corresponds to the set of points where
the renormalized bend elastic constant Keff

33 vanishes and hence the uniaxial N phase becomes unstable with respect to the spatially modulated
nematic phases. For l3 > −1.0L2 and l3 < −1.25L2 only a second-order N-NTB and N-NSB phase transition occur as a function of S. For
−1.25L2 < l3 <−1.0L2, the N-NTB phase transition is followed by a second-order NTB-NSB phase transition.

Solving the Euler-Lagrange equations ∂ (∆ΩTB/V )/∂P = 0
and ∂ (∆ΩSB/V )/∂P = 0, we find

PTB =
4e2S2(2l1 + l2)2(S−Sc)

27S0λ 2
√

κS2l1
, (20)

and

PSB =
8
√

2e2S2(2l1 + l2)2(S−Sc)

27S0λ 2
√

κS2(2l1 + l2)
, (21)

respectively. Inserting Eqs. (20) and (21) back in Eqs. (14)
and (18), yields

∆ΩTB

V
=−

16e3
2S2(2l1 + l2)4(S−Sc)

3

729S3
0κλ 4l1

, (22)

and

∆ΩSB

V
=−

64e3
2S2(2l1 + l2)3(S−Sc)

3

729S3
0κλ 4

. (23)

The ratio between the grand potential densities (22) and (23)
is then given by

∆ΩTB

∆ΩSB
=

2l1 + l2
4l1

=
K11

2K22
, (24)

where we have used that K11 = S2
(
2l1 + l2

)
and K22 =

S2
(
2l1
)
. From Eq. (24) and the overal minus signs in Eqs.

(22) and (23), it is clear that at S = Sc a second-order N-NTB
occurs if K11 > 2K22, while a second-order N-NSB occurs if
K11 < 2K22, in perfect agreement with the findings of Selinger
as well as of Dozov3,6. As will be shown in section VI, at Sc
the renormalized elastic constant Keff

33 vanishes while K33 re-
mains positive. A complete mapping of our LdG theory with

the Oseen-Frank theory of Selinger follows. In particular it
can be observed that Eqs. (20), (21), (22) and (23) strongly
resemble the expressions for the free-energy differences given
in Refs.6,7.

B. Phase Transitions between spatially modulated nematic
phases

The Oseen-Frank theories of Selinger and Dozov cannot
describe phase transitions between periodically modulated ne-
matic phases, since in these theories the elastic constants do
not explicitly depend on control parameters, in contrast with
the LdG framework. However, for l3 = 0 in the case of the
LdG theory described in the previous subsection, the elastic
constants K11,K22 and K33 depend on S but the ratio K11/K22
is independent of S, and consequently the theory predicts only
either an N-NTB or an N-NSB phase transition. In order to
overcome this limitation we consider l3 6= 0 in Eq. (3). This
procedure not only removes the degeneracy between K11 and
K33, but also allows the ratio K11/K22 to vary with particle
concentration. Extending the computation of the previous
subsection (for details see Appendix), we find that if l3 6= 0,
the ratio of the (negative) grand potential densities of the NTB
and NSB phase close to the transition point is given by

∆ΩTB

∆ΩSB
=

2l1 + l2
4l1

+
l3

8l1
S

=
K11

2K22
+

3l3
8l1

S,
(25)

where we have used that K11 = S2
(
2l1 + l2− Sl3

)
and K22 =

S2
(
2l1
)
. The critical scalar nematic order parameter at which
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FIG. 3. Same as Fig. 2, but now for l1 = 1.65L2, and l2 = 0.854L2. For l3 < 5.75L2, the second-order N-NSB transition is followed by a
second-order NSB-NTB transition.

∆ΩTB, ∆ΩSB, and Keff
33 vanish reads

Sc =
−4l1−2l2 +S0l3

2l3

+

√√√√−9S0λ 2

4e2l3
+

(
4l1 +2l2 +S0l3

)2

4l2
3

.

(26)

From the linear S-dependence of Eq. (25) one can deduce that,
depending on the values of l1, l2 and l3, either a second-order
N-NTB phase transition occurs at Sc followed by a second-
order NTB-NSB phase transition at S > Sc, or a second-order
N-NSB transition occurs at Sc succeeded by a second-order
NSB-NTB transition at S > Sc. To illustrate this, we map out
the phase diagram as a function of the scalar nematic order
parameter S and coefficient l3, for the coefficients e2 = 1,S0 =
0.85,κ = 0.1L2 and λ = 0.1L. In Fig. 2, we display the re-
sulting phase diagram three times with the background color
denoting the values of the splay, twist, bend elastic constants
as indicated by the color bar. The I-N transition occurs at a ne-
matic order parameter value of SIN = 0.7922. The green line
in Fig. 2 corresponds to the set of points where the renormal-
ized Keff

33 vanishes and hence the uniaxial N phase becomes
unstable with respect to the spatially modulated phases. For
l3 > −1.0L2 and l3 < −1.25L2 only a second-order N-NTB
and a N-NSB phase transition occur, respectively, as a func-
tion of S. For −1.25L2 ≤ l3 ≤ −1.0L2, instead, the N-NTB
phase transition is followed by a second-order NTB-NSB phase
transition.

To map out the phase diagram of Fig. 2, we have used
the coefficients l1 = 0.165L2 and l2 = 1.708L2, obtained from
a fit to the results from Onsager theory of hard rods, as
stated in section III. For a different choice, l1 = 1.65L2 and
l2 = 0.854L2, the phase sequence of N-NTB-NSB can be re-
placed by a N-NSB-NTB phase sequence, as shown in Fig. 3.
Again, the I-N phase transition occurs at SIN = 0.7922, the
green line corresponds to the set of points where the uniaxial
N phase becomes unstable with respect to the spatially modu-

lated phases, and the background color denotes the values of
K11, K22, and K33. We clearly observe from Fig. 3 that for
l3 < 5.75L2, the second-order N-NSB phase transition is fol-
lowed by a second-order NSB-NTB transition.

V. FIRST-ORDER N-NTB PHASE TRANSITION

We now consider the LdG theory of section II with e6 > 0
and allow e4 to change sign in order to describe the first-order
N-NTB phase transition recently found in Onsager theory and
simulations19,36. For the sake of simplicity we set l3 = 0 cor-
responding to a degenerate splay and bend elastic constant.
We again start by inserting the nematic director n̂TB(z) into
the nematic tensor order parameter Eq. (4) and by inserting
the resulting Q(z) together with PTB(z) in the grand poten-
tial Eq. (1). Minimizing the obtained grand potential with
respect to the wave number q and the tilt angle θ , we find the
expressions (12) and (13) already found in section IV. We per-
form a stability analysis inserting these expressions into the
grand potential Eq. (1) and minimize the resulting Ω with re-
spect to S and P at fixed µ, i.e. we solve the Euler-Lagrange
equations ∂∆Ω/∂S = 0 and ∂∆Ω/∂P = 0. Analytically solv-
ing this system is cumbersome, since the two equations take
the form of polynomials of third and fifth order, respectively,
with a nonzero constant term. For this reason we directly
minimize the grand potential Ω using a simulated annealing
algorithm52. In this way we obtain S and P as a function of
µ. Note that in contrast with the situation discussed in sec-
tion IV we cannot perform a stability analysis by minimiz-
ing Ω with respect to P at fixed S, i.e. by solving the Euler-
Lagrange equation ∂∆Ω/∂P = 0. A jump in S is expected at
a first-order N-NTB phase transition, and while we know the
expression of SN as a function of µ, we do not know SNTB as a
function of µ analytically. Nevertheless, valuable insight can
yet be obtained from the expression for P as a function of S.
For example, expressions can be derived for the spinodal of
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FIG. 4. Amplitude of the polar vector P and the equilibrium wave
number q, and tilt angle θ as given by Eqs. (27), (12) and (13),
respectively, as a function of the scalar order parameter S for the
coefficients e2 = 1,S0 = 0.85,λ = 0.08L,κ = 0.1L2,e6 = 10 and
e4 = −1 (a) or e4 = 1 (b). The uniaxial N solution P0(S) = 0 is
represented by a red full line when it is stable, and by a red dashed
line when it is metastable. The NTB solution P±2 (S) is represented
by a black full line, while the metastable solutions P±1 (S) are rep-
resented by black dashed lines. The equilibrium q and θ are repre-
sented in orange and violet, respectively. In (a) the spinodal of the
NTB phase with respect to the uniaxial N phase is at S+ = 0.826,
while the spinodal of the uniaxial N phase with respect to the NTB
phase is at S∗ = 0.847. In (b) the second-order N-NTB transition oc-
curs at Sc = 0.847. We observe that S∗ = Sc, i.e. the nematic spinodal
of a first-order N-NTB phase transition becomes the transition point
if the N-NTB transition is second-order.

the uniaxial N phase with respect to NTB, and for the spinodal
of the NTB phase with respect to the uniaxial N phase. Hence,
the limits of stability of the N and NTB phases are analytically
known. For small P the solutions of the Euler-Lagrange equa-
tion ∂∆Ω/∂P = 0 are given by

P0(S) = 0,

P±1 (S) =±

√
−16e4−

√
γ(S)

48e6
,

P±2 (S) =±

√
−16e4 +

√
γ(S)

48e6
,

(27)

with γ(S) = 256e2
4− 96e6

(
8e2− 8Se2/S0− 9λ 2/

(
2l1 + l2

))
.

The solution P0(S) corresponds to the uniaxial N phase. If
e4 < 0, we find for increasing S a jump from the uniaxial
N phase corresponding to P0(S) to the two (equivalent) solu-
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FIG. 5. Scalar nematic order parameter (brown and blue) and am-
plitude of the polarity P (black) as a function of the chemical po-
tential β µ, for the coefficients e2 = 1,λ = 0.08L,κ = 0.1L2,e6 =
10,S0 = 0.85, and e4 = −1 (a) or e4 = 1 (b). The equilibrium q
and θ are represented in orange and violet, respectively. In (a) the
“Onsager"-type first-order I-N transition at β µIN = 5.241 is followed
by a weakly first-order N-NTB transition at β µNNTB = 5.293. In (b)
the “Onsager"-type first-order I-N transition is instead followed by a
continuous second-order N-NTB transition at β µNNTB = 5.36.

tions P±2 (S), while the solutions P±1 (S) are always metastable.
The solutions P±2 (S) represent the NTB phase with equilib-
rium wave vector q and equilibrium angle θ given by Eqs.
(12) and (13), respectively. The spinodal of the NTB phase
with respect to the uniaxial N phase, given by the condition
∂ 2∆Ω/∂ 2P|P=P±2

= 0, is at

S+ = S0

(
1− 9λ 2

8e2(2l1 + l2)
− e2

4
4e2e6

)
, (28)

while the spinodal of the uniaxial N phase with respect to the
NTB phase, given by the condition ∂ 2∆Ω/∂ 2P|P=P0 = 0, is at

S∗ = S0

(
1− 9λ 2

8e2(2l1 + l2)

)
. (29)

If instead e4 ≥ 0, we find a second-order phase transition from
the N phase with P0(S) = 0 to the NTB phase with P±2 (S) at
Sc = S0

(
1−9λ 2/

(
8e2
(
2l1 + l2

)))
, while the solutions P±1 (S)

are imaginary and hence unphysical. Note that the nematic
spinodal of the first-order N-NTB phase transition coincides
with the transition point of the second-order N-NTB transition.
Furthermore the transition point of the second-order N-NTB
transition found in this section coincides with the one found
in section IV.
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FIG. 6. Scalar nematic order parameter (brown and blue) and ampli-
tude of the polarity P (black) as a function of the particle concentra-
tion c = B2ρ, for the coefficients e2 = 1,λ = 0.08L,κ = 0.1L2,e6 =
10,S0 = 0.85, and e4 = −1 (a) or e4 = 1 (b). The equilibrium q
and θ are represented in orange and violet, respectively. In (a)
the “Onsager"-type first-order I-N transition with coexisting concen-
trations cI = 3.290 and cN = 4.191, is followed by a weakly first-
order N-NTB transition with coexisting concentrations cN = 4.265
and cNTB = 4.295, i.e. a density jump on the order of 1%. The inset
shows a zoom of the discontinuous jump in the scalar order parame-
ter at the N-NTB transition. In (b) the “Onsager"-type first-order I-N
transition is instead followed by a continuous second-order N-NTB
transition at cN = cNTB = 4.36.

Exemplarily, we show the analytical solutions for the am-
plitude of the polar vector P (27) and the equilibrium wave
vector q denoted in orange and tilt angle θ in violet as given
by Eqs. (12) and (13) in Fig. 4 as a function of the scalar
nematic order parameter S for the coefficients e2 = 1,S0 =
0.85,λ = 0.08L,κ = 0.1L2,e6 = 10 and e4 = −1 (Fig. 4(a))
and e4 = 1 (Fig. 4(b)). The uniaxial N solution P0(S) = 0 is
represented by a red full line when it is stable, and by a red
dashed line when it is metastable. The NTB solution P±2 (S) is
represented by a black full line, while the metastable solutions
P±1 (S) are represented by black dashed lines. We find that in
(a) the spinodal of the NTB phase with respect to the uniaxial
N phase is at S+ = 0.826, while the spinodal of the uniaxial
N phase with respect to the NTB phase is at S∗ = 0.847. In
(b) the second-order N-NTB transition occurs at Sc = 0.847.
We note that S∗ = Sc, i.e. the nematic spinodal of a first-order
N-NTB phase transition becomes the transition point if the N-
NTB transition is second-order. In addition, we find that in the
case of a second-order N-NTB phase transition, the equilib-
rium q and θ tend to zero at the transition, in agreement with

Refs.6,20.
The solutions S(µ) and P(µ) as obtained by directly min-

imizing Ω are plotted in Fig. 5. In addition, we plot θ , q
and Scosθ as a function of µ in the same figure. The de-
pendence on chemical potential in Fig. 5 is then converted
to concentration in Fig. 6. If e4 = −1, upon increasing µ

we find the “Onsager"-type first-order I-N phase transition
described in section III, followed by a weakly first-order N-
NTB phase transition at β µNNTB = 5.293, where the nematic
order parameter jumps from SN = 0.814 to SNTB = 0.836. The
coexisting densities are cN = 4.265 and cNTB = 4.295, i.e. a
density jump on the order of 1%. Interestingly, we also find
jumps in P,θ ,q and SN cosθ , which is to be contrasted with a
second-order N-NTB phase transition. For instance, upon in-
creasing the chemical potential µ for the parameter e4 = 1,
we find an “Onsager"-type I-N phase transition and subse-
quently a second-order N-NTB transition at β µNNTB = 5.36,
where SN(µNNTB) = SNTB(µNNTB) = 0.847, cN = cNTB = 4.36,
and P = θ = q = 0, so no jumps at all.

Finally, we map out two phase diagrams of Figs. 7(a) and
7(b). In Fig. 7(a) we plot the phase diagram as a function of
the particle concentration c=B2ρ and the modulus of the flex-
oelectric coupling coefficient |λ | for the same coefficients as
above, i.e. e2 = 1,S0 = 0.85,e4 =−1,κ = 0.1L2 and e6 = 10.
The pink regions represent two-phase coexistence regions. At
|λ | < 0.14L, the phase diagram features the “Onsager"-type
first-order I-N transition followed by a weakly first-order N-
NTB transition at higher densities. At |λ | > 0.14L, however,
we find a direct first-order I-NTB transition of which the coex-
isting densities decrease with increasing |λ |. The two regimes
are separated by an I-N-NTB triple point at |λ | = 0.14L. It is
important to observe that the I-NTB transition remains always
first-order such that we never find a second-order I-NTB transi-
tion. Moreover at λ = 0 a first-order phase transition is found
from a uniaxial N phase to an NTB phase with an infinite pitch,
i.e. a polar nematic phase. In Fig. 7(b), instead, we build a
phase diagram as a function of particle concentration c = B2ρ

and coefficient e4 of the |P|4 term that we allow to be negative
because of the presence of a stabilising (positive) |P|6 term in
the grand potential. We fix the other coefficients to the values
as employed above, i.e. e1 = 1,λ = 0.08L,κ = 0.1L2,e6 = 10
and S0 = 0.85. Again the pink regions represent bulk coex-
istence regions. We note that we have chosen a value of λ

such that the I-N transition is followed by an N-NTB transition
at e4 = −1 according to Fig. 7(a). For −1.5 < e4 < 0, we
find the “Onsager"-type first-order I-N transition followed by
a weakly first-order N-NTB transition. We observe, however,
a direct strongly first-order I-NTB transition for e4 <−1.5 and
an I-N-NTB triple point at e4 = −1.5. Furthermore, we find
that the line of first-order N-NTB transitions ends in a tricrit-
ical point at (c = 4.3,e4 = 0). At e4 > 0 the N-NTB tran-
sition ceases to be first-order and becomes second-order as
illustrated by the dashed line.

As a final observation, we mention that the formalism in-
troduced in this section should also hold for the NSB phase.
Despite reasonable efforts, but not exhaustive, we did not find
a set of coefficients for which the NSB phase is more stable
than the NTB one. However, since in simulations and Onsager
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FIG. 7. (a) Phase diagram as a function of the particle concentration c = B2ρ and the modulus of the flexoelectric coupling coefficient |λ |/L,
for the coefficients e2 = 1,S0 = 0.85,e4 = −1,κ = 0.1L2 and e6 = 10. For a weak flexoelectric coupling (|λ | < 0.14L), an “Onsager"-type
first-order I-N transition is followed by a weakly first-order N-NTB transition while for strong coupling (|λ | > 0.14L), a direct strongly first-
order I-NTB transition occurs. A I-N-NTB triple point stabilizes at |λ | = 0.14L. (b) Phase diagram as a function of the particle concentration
c = B2ρ and the coefficient e4, for the coefficients e2 = 1,λ = 0.08L,κ = 0.1L2,e6 = 10 and S0 = 0.85. For −1.5 < e4 < 0, the “Onsager"-
type first-order I-N transition is followed by a weakly first-order N-NTB phase transition while a strongly first-order I-NTB transition occurs for
e4 <−1.5. A I-N-NTB triple point stabilizes at e4 =−1.5. The line of first-order N-NTB transitions ends in a tricritical point (c = 4.3,e4 = 0),
from where it continues as a second-order N-NTB transition. In (a) as well as in (b) the circles indicate triple points, the square indicates the
tricritical point, the pink regions represent coexistence regions, and the dashed line indicates a second-order transition.

theory only an N-NTB phase transition was found, we focused
on the latter one. Very interestingly, the nematic spinodal of
such a putative N-NSB transition would coincide with the ne-
matic spinodal of the N-NTB phase found here. Furthermore,
by breaking the degeneracy between K11 and K33, i.e. by set-
ting l3 6= 0 in Eq. (3), the first-order N-NTB phase transition
described in this section could be followed by a first-order
NTB-NSB phase transition.

VI. RENORMALIZED ELASTIC CONSTANTS

The flexoelectric coupling term −λPα ∂β Qβα of Eq. (6) af-
fects the elastic response of polar nematic phases, which trans-
lates into renormalized elastic constants. In order to quantify
the renormalization of the elastic constants we follow the pro-
cedure of Refs.1,6. First we solve the Euler-Lagrange equa-
tion ∂ (βB2ωP)/∂Pρ = 0. By using Eq. (4) for the tensor or-
der parameter Q, the fact that P and n̂ are perpendicular, i.e.
Pα nα = 0, and that Pα Pα = 0 in the uniaxial N phase, we find

Pρ =
λS0

2e2(S0−S)
∂γ Qργ , (30)

which upon insertion into Eq. (6), with l3 = 0 for convenience,
yields

βB2ωP =− λ 2S0(S0−2S)
4e2(S0−S)2 (∂γ Qγα)(∂β Qβα)

+
λ 2S0

2e2(S0−S)2 (∂γ Qγα)Qαβ (∂ξ Qξ β ).

(31)

In the final step we neglected the terms
e4Pα Pα Pβ Pβ ,κ(∂α Pβ )(∂α Pβ ) and e6Pα Pα Pβ Pβ Pγ Pγ in
Eq. (6) because they do not contribute to the linear elasticity
as they contain derivatives of the nematic director of order
higher than two. It follows that the form of the renormal-
ized elastic constant is the same for second-order transitions
(e4 > 0,e6 ≥ 0) as well as for first-order ones (e4 < 0,e6 > 0).
Using that ni(∂ jni) = (∂ jni)ni = 0 and that

(∂α nβ )(∂α nβ ) = (∇ · n̂)2 +[n̂ · (∇× n̂)]2

+ |n̂× (∇× n̂)|2

−∇ · [n̂(∇ · n̂)+ n̂× (∇× n̂)],
(32)

we find

βB2
(
ωe +ωP

)
=

[
l1 +

1
2

l2−
S0−4S
S0−S

ξ (S)
]

S2(
∇ · n̂

)2
+

[
l1 +

1
2

l2−ξ (S)
]

S2|n̂×
(
∇× n̂

)
|2

+
1
3

[
2l2 +

10S−3S0

S0−S
ξ (S)

]
S
(
∇ · n̂

)(
∇S · n̂

)
+

[
1
6

l2−
S0−3S
S0−S

ξ (S)
](

∇S · n̂
)2

+

[
1
3

l2−ξ
(
S
)]
|∇S|2 + l1S2

{[
n̂ ·
(
∇× n̂

)]2−∇ ·
[
n̂
(
∇ · n̂

)
+ n̂×

(
∇× n̂

)]}
,

(33)
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and renormalized

(
Keff

11 ,K
eff
22 ,K

eff
33
)

splay, twist and bend elastic constants as a function of the scalar
nematic order parameter S, for the fixed values of the coefficients
e2 = 1,S0 = 1,λ = 0.08L and e6 = 10. While Keff

11 ,K11 = K33
and Keff

22 = K22 increase monotonically with S, Keff
33 starts to de-

crease beyond a certain value of S, until it becomes zero at S =
S0(1−9λ 2/(8e2(2l1 + l2))). This nematic order parameter value Sc
is where the N-NTB transition occurs if it is second-order, while it
is the spinodal S∗ of the N phase with respect to the NTB one in the
case of a first-order N-NTB transition. S+ indicates the spinodal of
the NTB phase with respect to the uniaxial N one.

with ξ (S) = 9λ 2S0/
(
16e2

(
S0−S

))
. Comparing Eq. (33) with

the Oseen-Frank elastic energy (5) gives us the renormalized
splay

(
Keff

11
)
, twist

(
Keff

22
)
, and bend

(
Keff

33
)

elastic constants

βDKeff
11 = βDK11−

8S2

πL2
S0−4S
S0−S

ξ (S),

βDKeff
22 = βDK22,

βDKeff
33 = βDK33−

8S2

πL2 ξ (S),

(34)

where K11,K22 and K33 are the bare splay, twist and bend elas-
tic constants discussed in section II. Eq. (34) directly reveals
the flexoelectric coupling as the source of the renormalization,
since λ = 0 gives ξ (S) = 0 and hence no renormalization at
all. For λ 6= 0, we observe, however, that the renormalization
procedure breaks the degeneracy between the renormalized
splay and bend elastic constants, so even though K11 = K33,
we have nevertheless that Keff

11 6= Keff
33 . The renormalization

does not affect the twist elastic constant, for which K22 =Keff
22 .

The elastic constants Keff
11 , Keff

22 = K22 and K11 = K33 increase
monotonically with S, while the renormalized bend elastic
constant Keff

33 starts to decrease beyond a certain value of S
until it becomes zero at Sc = S0(1− 9λ 2/(8e2(2l1 + l2))).
As discussed in sections IV and V, the second-order N-NTB
phase transition occurs at a nematic order parameter value Sc,
whereas in the case of a first-order transition the spinodal of
the N phase with respect to the NSB phase is located at Sc.
As a consequence, our result is in agreement with Selinger’s
one in the case of a second-order N-NTB transition, while in
the case of a first-order transition we find that at the transi-
tion point both K33 > 0 and Keff

33 > 0. In the latter case Keff
33

becomes zero at the nematic spinodal. The bare as well as

the renormalized elastic constants are plotted as a function of
the scalar order parameter S in Fig. 8, for the coefficients
e2 = 1,S0 = 1,λ = 0.08L and e6 = 10. The monotonic in-
crease of Keff

11 , Keff
22 = K22 and K11 = K33 with S, together with

the simultaneous softening of Keff
33 can be observed in the fig-

ure. The picture is qualitatively the same for l3 6= 0, with Keff
33

vanishing at Sc as given by Eq. (26).

VII. CONCLUSIONS AND DISCUSSION

In this paper we have developed a phenomenological LdG
theory for lyotropic suspensions of bent hard rods, using a Q-
tensor expansion of the chemical-potential dependent grand
potential. In addition, we introduce a bend flexoelectric term
that couples the polarization and the divergence of the Q-
tensor, to study the stability of uniaxial (N), twist-bend (NTB)
and splay-bend (NSB) nematic phases of colloidal bent rods as
a function of particle concentration. We first showed that our
LdG theory can be mapped onto an Oseen-Frank theory. Sub-
sequently, by breaking the degeneracy between the splay and
bend elastic constants, we find that the LdG theory predicts
either an N-NTB-NSB or an N-NSB-NTB phase sequence upon
increasing the particle concentration. We have mapped out
several phase diagrams as a function of the particle concen-
tration that can be used as guidelines for experiments, sim-
ulations and microscopic theories. In addition, we have fo-
cused on the first-order N-NTB phase transition. Our model is
able to reproduce the discontinuous jumps associated with this
transition, including the density jump and the discontinuities
in the polarization and nematic order. Moreover, in contrast
with the case of a second-order N-NTB phase transition where
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the bend elastic constant K33 is positive while its renormal-
ized version Keff

33 vanishes, we have found that Keff
33 vanishes

at the nematic spinodal in the case of a first-order N-NTB tran-
sition, so that K33 as well as Keff

33 remain positive at the actual
transition point. This finding appears to be general and could
help in understanding the problem of the softening of the elas-
tic constants in systems with spontaneous polar order and of
the mechanism driving the onset of the spatially modulated
phases in bent-core liquid crystals.

Finally, it is interesting to employ the LdG theory to
study confinement effects of these spatially modulated ne-
matic phases and to investigate the structure of the inter-
face between a coexisting NTB or NSB phase with either an
isotropic, uniaxial nematic, or with a substrate. We will post-
pone this to future work.
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Appendix A: Grand potential density of the NTB and NSB
phases for l3 6= 0.

In order to compute the grand potential density of the NTB
phase, we insert n̂TB = (sinθ cos(qz),sinθ sin(qz),cosθ) in
the tensor order parameter Qαβ (r) = 3

2 S(r)(nα(r)nβ (r)−
1
3 δαβ ), and the resulting Q, together with PTB =
(Psin(qz),−Pcos(qz),0), in the grand potential given
by Eq. (1). We minimize the obtained grand potential with
respect to the wave number q and the tilt angle θ , respectively,
and find

qTB =
3λ sin(2θTB)SP

8κP2 +4S2(2l1 + l2)sin2
θTB−4l2S2 sin4

θTB +2S3l3(sin2
θTB− sin4

θTB)
, (A1)

and

sin2
θTB =

κP2

S2l1
+

√
κP2(κP2 +S2l1)

S2l1
. (A2)

Inserting (A1) and (A2) back into Eq. (1), and approximating
for small P, the grand potential density in the NTB phase is
given by

∆ΩTB

V
=

∆Ω

V
− ∆ΩN

V

=

[
e2
(
S0−S

)
S0

− 9λ 2

4(4l1 +2l2 +Sl3)

]
P2

+
18λ 2

√
κS2l1

S2 (4l1 +2l2 +Sl3)
2 |P|

3

+ e4P4 +O(P5)

(A3)

where ∆ΩN/V = aS2 (µ∗−µ) − bS3 + dS4 is the grand-
potential density of the N phase.

Analogously, in order to compute the grand poten-
tial density of the NSB phase, we insert the nematic
director n̂SB = (sin(θ sin(qz)),0,cos(θ sin(qz))) into the
tensor order parameter Qαβ (r) = 3

2 S(r)(nα(r)nβ (r) −
1
3 δαβ ), and the resulting Q, together with PSB =

(−Pcos(qz)cos(θ sin(qz)),0, 1
2 Pcos(qz)sin(2θ sin(qz))),

into the grand potential given by Eq. (1), and average it over

a full period 2π/q. We then minimize the obtained grand
potential with respect to the wave number q and the tilt angle
θ , respectively, and find

qSB =
3λθSB

(
θ 2

SB−8
)

PS
8
(
4+3θ 2

SB

)
κP2 +16S2 (2l1 + l2 +Sl3)θ 2

SB
, (A4)

and

θ
2
SB =

16κP2

3κP2 +
√

κP2 (57κP2 +16S2 (4l1 +2l2 +Sl3))
.

(A5)

Inserting Eqs. (A4) and (A5) back into Eq. (1) and approx-
imating for small P, the grand potential density of the NSB
phase reads

∆ΩSB

V
=

∆Ω

V
− ∆ΩN

V

=

[
e2
(
S0−S

)
2S0

− 9λ 2

8
(
4l1 +2l2 +Sl3

)]P2

− 9λ 2
√

κS2 (4l1 +2l2 +Sl3)

4S2 (4l1 +2l2 +Sl3)
2 |P|3

+
3
8

e4P4 +O(P5)

(A6)

where ∆ΩN/V = aS2 (µ∗−µ)−bS3 +dS4 is again the grand
potential density of the N phase.
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We observe that for small P both ∆ΩTB and ∆ΩSB vanish at
the critical point Sc given by Eq. (26). Close to this point we
can assume PTB� 18λ 2

√
κS2l1/

(
e4S2

(
4l1+2l2+Sl3

)2) and

PSB � 6λ 2
√

κS2
(
4l1 +2l2 +Sl3

)
/
(
e4S2

(
4l1 + 2l2 + Sl3

)2)
,

such that the cubic terms dominate over the quartic terms in
Eqs. (A3) and (A6). Solving the Euler-Lagrange equations
∂ (∆ΩTB/V )/∂P = 0 and ∂ (∆ΩSB/V )/∂P = 0, we find

PTB =
(9λ 2S0−4e2(S0−S)(4l1 +2l2 +Sl3))(4l1 +2l2 +Sl3)S2

108λ 2l1S0
√

κS2l1
, (A7)

and

PSB =
(9λ 2S0−4e2(S0−S)(4l1 +2l2 +Sl3))

√
κS2(4l1 +2l2 +Sl3)

27λ 2κS0
, (A8)

respectively. Inserting these back in Eqs. (A3) and (A6) gives close to the transition

∆ΩTB

V
=

(−9λ 2S0 +4e2(S0−S)(4l1 +2l2 +Sl3))3(4l1 +2l2 +Sl3)S2

46656κλ 2l1S3
0

, (A9)

and

∆ΩSB

V
=

(−9λ 2S0 +4e2(S0−S)(4l1 +2l2 +Sl3))3S2

5832κλ 2S3
0

, (A10)

respectively. The ratio between the grand potential densities
(A9) and (A10) is then given by Eq. (25).
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