
UNIVERSITÀ DEGLI STUDI DI MILANO cia

DIPARTIMENTO DI INFORMATICA “Giovanni Degli Antoni”

CORSO DI DOTTORATO IN INFORMATICA

Settore Scientifico-Disciplinare: INF/01

XXXIV Ciclo

On the security of cryptographic circuits:

protection against probing attacks and

performance improvement of garbled

circuits

Maria Chiara Molteni

Tutor: Prof. Stelvio Cimato

Co-Tutor: Prof. Vittorio Zaccaria

Co-Tutor: Prof. Valentina Ciriani

Coordinatore del corso: Prof. Paolo Boldi

A.A. 2020/2021

UNIVERSITÀ DEGLI STUDI DI MILANO cia

DIPARTIMENTO DI INFORMATICA “Giovanni Degli Antoni”

CORSO DI DOTTORATO IN INFORMATICA

Settore Scientifico-Disciplinare: INF/01

XXXIV Ciclo

On the security of cryptographic circuits:

protection against probing attacks and

performance improvement of garbled

circuits

Tesi di:
Maria Chiara Molteni

Tutor:
Prof. Stelvio Cimato

Co-Tutor:
Prof. Vittorio Zaccaria

Co-Tutor:
Prof. Valentina Ciriani

Coordinatore del corso:
Prof. Paolo Boldi

A.A. 2020/2021

ABSTRACT

Dealing with secure computation and communication in hardware devices, an

attacker that threatens to security of the systems can be of two different types.

The first type of attacker is external to the exchange of secret messages and tries

to steal some sensitive information. Probing a circuit is a useful technique through

which an attacker can derive information correlated with the secret manipulated by

a cryptographic circuit. Probing security is the branch of research that tries to de-

vise models, tools and countermeasures against this type of attacks. We define a new

methodology that allows to determine if a gadget (i.e., a portion of a circuit) is secure

against probing attacks. Moreover, we reason about composability of gadgets, in such

a way that also this composition is probing secure. The reasoning is extended also to

the case in which glitches are considered, namely when the attacks are mounted when

timing hazards are present. The proposed methodology is based on the construction

of the Walsh matrix of a Boolean function that describes the operations of the cir-

cuit. This method allows reaching an exact solution, but generally needs a lot of

computation’s time (mainly for big gadgets). To overcome the problem, we propose

to compute the Walsh matrix exploiting the theory and applications of Algebraic

Decision Diagrams (ADDs).

Different is the case when the malicious part is internal: each party is interested

in protecting its own sensitive information from all the others. When the parties

are only two, from literature the garbled circuit protocol is a solution that allows

to reach a result implying some secrets, without sharing them. The cost of this

protocol depends on the number of and gates in the circuit that implements the

Boolean function describing the protocol computations. In this context, we work to

reduce the number of multiplications in two classes of particular Boolean functions,

called autosymmetric and D-reducible. Moreover, in the context of the garbled circuit

protocol, we discuss some innovative solutions to further reduce the protocol’s costs,

as the application of the 3-valued logic. This logic is an extension of the Boolean one,

resulting from the addition of a new element to the set Boolean set {0, 1}.

CONTENTS

1 Introduction 1

1.1 Outline of Contents . 2

1.2 Scientific Contributions . 3

2 Cryptography and secret management 7

2.1 Mathematical context . 7

2.1.1 Binary Field and Boolean Space 8

2.1.2 Boolean functions . 9

2.1.2.1 Fourier transform and Walsh transform 9

2.1.3 Vectorial Boolean function . 11

2.1.3.1 Walsh matrix . 11

2.1.4 Tensor product between matrices 12

2.1.5 String diagram . 13

2.1.6 Binary Decision Diagrams . 13

2.1.6.1 Manipulation of BDDs 14

2.1.6.2 Algebraic Decision Diagrams 15

2.2 Cryptographic algorithms . 16

2.2.1 Advanced Encryption Standard 17

2.2.2 Circuits . 19

2.3 Protecting secrets from an external attacker 21

2.3.1 Side-channel attacks . 22

2.3.2 Power Analysis Attacks . 22

2.3.2.1 Countermeasures . 26

2.3.3 Physical Defaults . 29

2.4 Protecting secrets during computations 30

I

2.4.1 Secure computation . 30

2.4.2 Garbled circuit . 32

2.4.2.1 Oblivious transfer protocol 33

2.4.2.2 Cost of gates’ transfer 34

2.4.2.3 Send xor gates for free 34

2.4.2.4 Reduction rows in the encrypted table 35

I Protecting secrets from an external attacker 37

3 Probing security 39

3.1 State of the art . 40

3.1.1 Probing security . 40

3.1.1.1 The composability problem 43

3.1.2 Robust probing security . 45

3.1.2.1 The robust composability problem 50

3.1.3 Verification tools . 51

3.2 A relation calculus for reasoning about t-probing security 53

3.2.1 A relation calculus for shares 54

3.2.2 Application to t-probing security 59

3.2.3 Proving general patterns of compositional security 61

3.2.4 Extending the approach to Fn
2k

: the AES inversion 67

3.2.4.1 Shares encoded over Fn
2k

. 67

3.2.4.2 Proof of strong non-interference 68

3.2.5 Appendix . 68

3.2.5.1 A: Properties of the Walsh transform 68

3.2.5.2 B: Formal definition of shares’ relation matrix 71

3.2.5.3 C: Relevant theorems and proofs - Section 3.2.2 . . . 76

3.3 On the Spectral Features of Robust Probing Security 77

3.3.1 Probing security as a relation calculus 79

3.3.1.1 The vulnerability profile of a function 79

3.3.1.2 Composition of vulnerability profiles 80

3.3.1.3 Extended probes . 82

3.3.2 Definition of robustness . 86

3.3.3 Revisiting the probing security of CMS 88

3.3.3.1 Achieving Robust Strong non-Interference for CMS . 92

3.3.4 Analysis of the robust probing security of DOM-indep 93

3.3.5 On enabling general reasoning about non-interference 96

II

3.3.6 Computational complexity and scalability of the proposed ap-

proach . 99

3.4 On robust strong-non-interferent low-latency multiplications 100

3.4.1 Overcoming the latest constructions 101

3.4.2 A provably robust-t-SNI, 1-cycle-latency CMS-like scheme . . 102

3.4.2.1 Saving randomness for t ≤ 4 105

3.4.3 Applications . 106

3.5 ADD-based Spectral Analysis of Probing Security 107

3.5.1 Methodology . 108

3.5.1.1 Reading and ”unfolding” the circuit description . . . 108

3.5.1.2 Computing the Walsh Spectrum and the correspond-

ing relation matrix 110

3.5.1.3 Interference check 110

3.5.2 Experimental results . 111

3.6 Conclusion and further works . 114

II Protecting secrets during computations 117

4 Multiplicative complexity, autosymmetric and dimension reducible

Boolean functions 119

4.1 State of the art . 120

4.1.1 Autosymmetric functions . 121

4.1.2 D-reducible functions . 124

4.1.3 Mockturtle tool . 125

4.2 Multiplicative Complexity of Autosymmetric Functions: Theory and

Applications to Security . 126

4.2.1 Multiplicative Complexity of Autosymmetric Functions 126

4.2.2 Experimental results . 129

4.3 Multiplicative Complexity of Regular Functions 132

4.3.1 Multiplicative Complexity of D-reducible Functions 132

4.3.2 Multiplicative complexity of D-reducible autosymmetric functions136

4.3.3 Experimental results . 137

4.3.3.1 Autosymmetric functions 137

4.3.3.2 D-reducible functions 140

4.3.3.3 Autosymmetric and D-reducible functions 142

4.4 Conclusion and further works . 143

III

5 Multiple-valued logic 145

5.1 State of the art . 145

5.1.1 MVL as generalization of the Boolean Logic 146

5.1.2 Lindell and Yanai’s 3VL approach 150

5.1.3 Cimato at Al.’s 3VL approach 156

5.2 A Multiple Valued Logic Approach for the Synthesis of Garbled Circuits157

5.2.1 Multiple Valued approaches: a comparison 158

5.2.1.1 Free xor gates . 158

5.2.1.2 Encodings in the FTU approach 158

5.2.2 Encodings in the 012 approach 159

5.2.2.1 Encodings’ equivalences 162

5.2.2.2 More convenient encodings 164

5.2.3 Free xor Evaluation in Multiple Valued Logic 168

5.2.4 From 3VL to Boolean logic: costs comparison 169

5.2.5 Applied case: Adder . 173

5.2.5.1 Costs for garbling the Full Adder circuit 175

5.2.5.2 More convenient encodings for the Full Adder 175

5.2.6 Appendix: Cheapest transformations for all the functional en-

codings . 177

5.3 Conclusion and further works . 177

6 Conclusion and open problems 183

Bibliography 187

IV

LIST OF FIGURES

2.1 String diagrams for composition and tensor product between two func-

tions. 14

2.2 BDD for f(x0, x1, x2) = x0 · x1 ⊕ x2. 15

2.3 ADD for f(x0, x1, x2) = x0 · x1 + x2. 16

2.4 Simple circuit example. 21

2.5 Three cases of possible recombinations: combinatorial (glitches), mem-

ory (transitions), routing (coupling). 29

2.6 Schemes of parties role in SC protocols. (a) Homomorphic Encryption.

(b) Linear Secret Sharing. (c) Garbled Circuit. 31

2.7 Garbled or gate. 33

3.1 Two state of the art probing secure circuits. 42

3.2 The composition pattern of f (t-NI) and g (t-SNI) studied in Example

3.1.2: the composed function h(a) is not t-NI. 44

3.3 ISW and circuit, with t = 1, in case of glitches. 46

3.4 CMS scheme when t = 2, and then with 3 shares. 47

3.5 CMS scheme when t = 3, and then with 4 shares. 48

3.6 DOM scheme when t = 1, and then with 2 shares. 49

3.7 The composition pattern of f (t-NI) and g (t-SNI) studied in Example

3.2.7 and derived from [52]. The composed function h(a) is not t-NI

as can be easily checked with our formalism. 60

V

3.8 The shares’ relation matrix of function h in example 3.2.7 derived from

[52] (we use greek letters to indicate the spectral coordinate associated

with each function variable, i.e., α is the spectral coordinate associated

with variable a and so on). One can see that in row [1, 1, 0], column

[0, 0, 3] there is a potential relation between two probes and the three

shares of a, meaning that the composition is not even 2-NI. 61

3.9 Part of the shares’ relation matrix of SecMult function [52] (only inter-

esting rows for t-SNI are shown). Note that α, β and ρ are the spectral

coordinates associated with inputs a, b and r, while ω and π are the

spectral coordinates for o and p. 63

3.10 Map between Fourier transforms of probability distributions implied

by a function composition l = g ◦ f 63

3.11 Map between Fourier transforms of probability distributions implied

by the second composition pattern studied in this work 65

3.12 Example of reduction operation u(k,n).i. The new spectral coordinate

binary encoding u(4,2).2 is the result of or’ing k-bit wide blocks of the

original encoding u . 67

3.13 An example application of the proposed formalism to functions over

Fn
2k

. Blocks m4 and m2 in (b) are structured as in (a). Note that we

have slightly modified the algorithm presented in [99] by moving two

power computation blocks across duplication points. Semantically, it is

always the same circuit but it is easier to see how previously introduced

patterns can still be used to show that it is t-SNI. 69

3.14 Example of compositional equality derived through a string diagram.

The diagram on the left corresponds to the product (Wg ⊗Wf) while

the one on the right corresponds to (1 ⊗Wf)(Wg ⊗ 1)(each factor is

highlighted with a dotted box). The fact that the second can be derived

simply by moving boxes without crossing wires implies (because we are

in monoidal category) that the underlying formulas are equivalent, i.e.,

(Wg ⊗Wf) = (1⊗Wf)(Wg ⊗ 1) . 72

3.15 The vulnerability profile of a function corresponds to the tensor prod-

uct of the regular Walsh transform of a function and of its probes fπ,

multiplied by Wδ. 79

3.16 The composition of two vulnerability profiles as a map in the proba-

bility space. 81

3.17 The composition pattern of f (t-NI) and g (t-SNI) derived from [50]. 81

VI

3.18 Vulnerability profile of [50] (we use greek letters to indicate the spectral

coordinate associated with each function variable, i.e., α is the spectral

coordinate associated with variable a and so on). 82

3.19 The vulnerability profile of a register in terms of maps over the Fourier

transform of input and output distributions. 84

3.20 The vulnerability profile of a composition of functions when considering

extended probes. 85

3.21 The vulnerability profile of a composition of three functions when con-

sidering extended probes. 86

3.22 (a) shows the vulnerability profile of a composition of two functions

when a register is considered in the middle. Probes that come after

the ”circuit breaker” map to the unit of VectR and thus do not add

any information so they have been drawn with a white circle. The

Fourier transform of the output distribution is isomorphic to the one

produced by the diagram in (b). 86

3.23 The four-share CMS scheme considered in [92]. The scheme is decom-

posed in three layers, non-linear (N), refresh (R) and compression (C).
To preserve output shares from the propagation of glitches, a register

(thick line) layer is inserted between compression and refresh. Orange

circles correspond to regular probes that break the t-probing security. 89

3.24 The robust 3-probing secure CMS scheme found with our formalization.

Highlighted in orange the probes which make the above scheme not

robust 3-SNI. 90

3.25 The vulnerability profile of the robust 3-probing secure CMS scheme found

with our formalization. This has been computed only for a sum of the

hamming weight of the output spectral coordinates (i.e., the sum of probes)

equal to 3. Red circles indicate where the vulnerability profile fails to be

robust 3-SNI because for ωfπ = 2 there can be a dependency with up to

α = 2 or β = 2. 91

3.26 The robust 3-SNI CMS scheme proposed in Section. Additional ran-

dom are identified with the label qj. Other randoms have been grayed

out to avoid crowding the image. 92

3.27 Vulnerability profile of CMS scheme with s = 4 when using additional

randoms qj. 93

3.28 The DOM scheme for t = 1, s = 2 . 94

3.29 Vulnerability profiles of DOM without (left) and with (right) output

register for t = 1 (s = 2). 95

VII

3.30 Part of the vulnerability profiles of DOM without (left) and with (right)

output register for t = 2 (s = 3). 96

3.31 Map between Fourier transforms of probability distributions implied

by the considered example composition pattern. 97

3.32 The considered example composition pattern, gray boxes are registers. 97

3.33 Pruning of the a vulnerability profile considering equivalences and dom-

inance relations of the correlation matrix calculus. 98

3.34 Estimated time needed to compute the vulnerability profile for well

known algorithms. 100

3.35 1-cycle latency CMS-derived gadget proposed in [89]. Green discs rep-

resent the three extended probes that make it not robust 3-SNI. The

black thick line indicates the register layer. The expressions to compute

the outputs are those in Eq. 3.35 except that the values in red brackets

are not sampled in an additional register, i.e., only those values in the

black brackets are sampled. 101

3.36 A cone of the proposed robust t-SNI CMS structure which has still 1-

cycle latency. Green discs represent the possible probes used in propo-

sition 3.4.1. The black thick lines indicate register layers. 103

3.37 The optimized construction which is valid for any t < 5 but fails for

t ≥ 5. Green discs represent the probes used to mount the attack. . . 106

3.38 The DOM-1 multiplication circuit. 108

3.39 Annotated ILANG file . 109

3.40 The methodology proposed in this paper. 109

3.41 Comparison of overall (left), convolution (middle) and verification (right)

times between the method proposed in [89] (lil) and the proposed

method (mapi) . 111

3.42 Comparison of overall computation times of the proposed method (mapi)

and other implementations analysed in the experimental results. . . 113

4.1 XAG representation of the 4-input Boolean function. 121

4.2 Synthesis process, when autosymmetry test is applied to an autosym-

metric function f . 122

4.3 Karnaugh map of a Boolean function that depends on 5 Boolean vari-

ables x1, x2, x3, x4, x5. 123

4.4 Karnaugh map of the restriction of the Boolean function in Figure 4.3,

which depends on 4 Boolean variables y1, y2, y3, y4. 124

4.5 Karnaugh maps of a D-reducible function f and its corresponding pro-

jection fA. 125

VIII

4.6 A XAG for an autosymmetric function f obtained adding a xor level

implementing the reduction equations to a XAG for the restriction fk. 127

4.7 XAG representation for the benchmark rd53 (second output), derived

exploiting the autosymmetry of the function. 129

4.8 An XAG representation for a D-reducible function f obtained combin-

ing an XAG for the affine space A with a XAG for the projection fA.

Notice that only dimA of the n input variables are actual inputs for fA. 133

5.1 Operations in the Kleene’s logic K3. 148

5.2 Operations in the Bochvar’s logic B3. 148

5.3 Orders of the truth values in Belnap’s logic. 149

5.4 Operations in the Kleene’s logic K3. 150

5.5 Operations in the 3VL with the FTU approach. 150

5.6 Encoding steps. 152

5.7 Embedded and and or. 155

5.8 Embedded xor. 155

5.9 Operations in the 3VL with the 012 approach. 156

5.10 Synthesis of function f in a 3VL circuit. 171

5.11 Synthesis of function f in the Boolean logic, after the application of

the encoding in Eq. 5.3. In each dashed circle, there is an operation

among ¬2, ∧2 or ⊕2. 172

5.12 Synthesis of function f in the Mixed logic, after the application of the

encoding in Eq. 5.3 only for the gate ∧3, that is transformed into ∧2

(dashed circle). 172

5.13 Full Adder circuit: function FA3 has as inputs Ci−1, Ai and Bi, and

as outputs Si and Ci. 173

5.14 Half Adder circuit: function HA3 has as inputs α and β, and as outputs

σ and χ. 174

IX

X

LIST OF TABLES

2.1 and operation in F2. 8

2.2 xor operation in F2. 8

2.3 not operation in F2. 8

2.4 or operation in F2. 8

2.5 True table of the Boolean function f(x0, x1, x2) = x0x̄2 ⊕ x1. 10

2.6 Application of the Fourier and Walsh transforms to the Boolean func-

tion f(x0, x1, x2, x3) = x0x1x2 ⊕ x0x3 ⊕ x1. 11

2.7 True table of the vectorial Boolean function f(x0, x1, x2) = [x0x1, x1⊕x̄2]. 12

2.8 Walsh matrix of the vectorial Boolean function f(x) = [x0x1⊕x2, x0x2⊕
x3, x1 ⊕ x3] with x = [x0, x1, x2, x3] ∈ F4

2 and f0(x) = x0x1 ⊕ x2,

f1(x) = x0x2 ⊕ x3, f2(x) = x1 ⊕ x3. 12

2.9 Symbols that correspond to the gates of circuits, implementing the

Boolean operations. 20

2.10 Alice’s computations. 33

3.1 Algebraic composition rules for probes. 85

3.2 Meaning of some mathematical symbols employed in the text. 103

3.3 Results of the comparison between our methodology and lists of lists

implementation. Values in third and fourth columns are in seconds. . 112

3.4 Evaluation of different implementation choices. Values from third to

sixth columns are in seconds. 113

3.5 Comparison between mapi and the state of the art tools in [7], [26]

and [75]. Values from third to sixth columns are in seconds. 114

XI

4.1 Experimental comparison of autosymmetric benchmarks, considering

a XAG after the autosymmerty test and the standard XAG computed

without the autosymmetry test. 130

4.2 Summary of the experimental evaluation, considering the number of

ands in the XAGs for autosymmetric functions and non-degenerate

autosymemtric functions. 131

4.3 Experimental comparison of autosymmetric benchmarks, considering

an XAG after the autosymmerty test and the standard XAG computed

without the autosymmetry test. 139

4.4 Summary of the experimental evaluation, considering the number of

ands in the XAGs for autosymmetric functions and non-degenerate

autosymmetric functions. 139

4.5 Experimental comparison of D-reducible benchmarks, considering XAGs

computed exploting the D-reducibility property with standard XAGs. 141

4.6 Summary of the experimental evaluation, considering the number of

ands in the XAGs for D-reducible functions. 141

4.7 Summary of the experimental evaluation, considering the number of

ands in the XAGs for autosymmetric and D-reducible functions. . . . 142

5.1 Two-inputs MVL operations. 146

5.2 Naive garbling for a 3VL gate. 151

5.3 FTU approach: cost of each translated operations in the Boolean logic,

in case of the natural encoding. 153

5.4 FTU approach: cost of each translated operations in the Boolean logic,

in case of the functional encoding. 154

5.5 FTU approach: cost of each translated operations in the Boolean logic,

in case of the non-functional encoding. 155

5.6 A comparison between multiple valued approaches. 159

5.7 Tr3→2 functions, describing all functional encoding in the 012 approach.160

5.8 012 approach: cost of translated ⊕3 operation in the Boolean logic, in

case of the example functions. 162

5.9 Boolean gates needed to compute the operation ∧2 for every functional

encoding. 165

5.10 Boolean gates needed to compute the operation ⊕2 for every functional

encoding. 166

5.11 Boolean gates needed to compute the operation ¬2 for every functional

encoding. 167

5.12 Definition of ⊕6 using a truth table. 169

XII

5.13 Number of rows in the garbled tables for each gate (columns) in all the

three scenarios (rows). 171

5.14 Comparison of costs. 171

5.15 Steps performed to sum the sequences A = 0120 and B = 0122. . . . 174

5.16 Total points awarded to the Half Adder and the Full Adder, for each

encoding, following the rule: 1 point to a ¬ gate, 2 points to a ⊕ gate

and 3 points to an ∧ gate. 176

5.17 Cheapest transformations for ¬3. 178

5.18 Cheapest transformations for ∧3, for encodings with 0L = 0. 179

5.19 Cheapest transformations for ∧3, for encodings with 0L = 1. 180

5.20 Cheapest transformations for ⊕3. 181

XIII

XIV

CHAPTER 1

INTRODUCTION

Cryptography is the theory that studies how to protect sensitive information dur-

ing computation/communication. An attacker is the party that tries to recover some

knowledge about the implied secrets, without the consensus of the owner. In this

work, we study the nature of the attacker in two different cases, when the crypto-

graphic algorithms are implemented in hardware devices.

When the attacker is external to the communication, she tries to steal some sensi-

tive information during the exchange of secret messages between other two (or more)

entities. In this specific context, the main treated topic in this work is the protection

of circuits against probing attacks. Probing a circuit means to read intermediate bits

on the circuit’s wires through metal needles placed on them, or more generally mea-

suring the power consumption or EM emissions from a subset of nodes of a circuit. It

is a useful technique through which an attacker can derive information correlated with

the secret manipulated by a cryptographic circuit. Probing security is the branch of

research that tries to devise models, tools, and countermeasures against this type of

attacks. In this work, we define a new methodology, that allows to prove if a gadget

(i.e., portion of a circuit) is secure against probing attacks. Moreover, we also reason

about composability of gadgets, in such a way that the composition is probing secure.

This study is extended also to the case in which glitches are considered, namely when

the attacks are mounted when timing hazards are present. The proposed method-

ology is based on the construction of the Walsh matrix of a Boolean function that

describes the operations of the circuit: it allows reaching an exact solution but needs

a prohibitive computation’s time for big gadgets. To overcome the problem, we dis-

cuss a new way to compute the Walsh matrix, exploiting the theory and applications

of Algebraic Decision Diagrams (ADDs).

1

Chapter 1. Introduction

Different is the case when the malicious part is internal: each participant to the

communication is interested in protecting their own sensitive information from all

the others. In the two secure computation theory, a solution to this issue is the

garbled circuit protocol. The cost of this protocol depends on the number of and

gates in the circuit that implements the Boolean function describing the protocol

computations. In this context, we work to reduce the number of multiplications (i.e.,

multiplicative complexity property) in two classes of particular Boolean functions,

called autosymmetric and D-reducible. Moreover, in the context of the garbled circuit

protocol, some innovative solutions are discussed, as the application of the three

valued logic. This logic is an extension of the Boolean one, resulting from the addition

of a new element to the set containing the classical true and false. The study of

the three valued logic in the garbled circuit protocol context is possible because here

the circuits are implemented in software, and it aims to further reduce the protocol’s

costs.

1.1 Outline of Contents

After Chapter 2, the material is split into two parts, the first one containing only

one chapter, and the second one holding two chapters.

Chapter 2 In this Chapter, we introduce all the mathematical notions needed to

understand the following chapters. Some other general concepts are reported, divided

into those that need for the comprehension of part I and those for Part II.

I part - Protecting the secret from an external attacker

In this part of the thesis, we treat the following case: two or more entities try

to communicate securely, handling sensitive messages, and an external entity (the

attacker) tries to recover some information about the secrets.

Chapter 3 In this Chapter we analyze the topic of the probing security, starting

from an exhaustive state of the art, and presenting also all the work done in our

published works in this context.

II part - Protecting the secret during computations

2

1.2. Scientific Contributions

In this part of the thesis, the malicious entity is part of the communication.

Indeed, any participants want to keep their own sensitive information hidden from

the others. In particular, in the context of the two-party secure computation, the

attention is focused on the garbled circuit protocol.

Chapter 4 In this Chapter we treat the topic of the multiplicative complexity,

considering in particular the autosymmetric and D-reducible Boolean functions’ case

of study. About this topic, we have published two papers, that are reported at the

end of the Chapter.

Chapter 5 In this Chapter we analyze two different definitions of three-valued logic,

and their application to the garbled circuit protocol. Our submitted work about this

topic is also presented.

1.2 Scientific Contributions

I part - Protecting the secret from an external attacker

� A relation calculus for reasoning about t-probing security [90]. We introduce a

calculus for mechanically reasoning about the shares of a variable and show that

this formalism provides a lean algebraic explanation of known compositional

patterns allowing for the discovery of new ones. Eventually, we show how this

formalism can be applied to study the probing security of known cryptographic

gadgets.

� On the spectral features of robust probing security [89]. We expand the spectral

formalization of non-interference discussed in the previous work, investigating

the case in presence of glitches. Our goal is to present new theoretical and

practical tools to reason about robust-d-probing security. We show that the

current understanding of extended probes lends itself to probes that participate,

during gadget composition, in the creation of additional extended probes. In

turn, this enables a natural extension of non-interference definitions into robust

ones to build a new reasoning framework that can formally explain some semi-

formal results already appeared in the past and be used to synthesize new

robust-d-SNI gadgets.

� On robust strong-non-interferent low-latency multiplications [88]. The over-

arching goal of our work is to present new theoretical and practical tools to

3

Chapter 1. Introduction

implement robust t-probing security. In this paper, we present a low-latency

multiplication gadget that is secure against probing attacks that exploit logic

glitches in the circuit. The gadget is the first of its kind to present a 1-cycle

input-to-output latency while belonging to the class of probing security by opti-

mized composition gadgets [39]. We show that it is possible to construct robust

t-SNI gadgets without compromising on latency with a moderate increase in

area. We provide a theoretical proof for the robustness of the gadget and show

that, for t ≤ 4, the amount of randomness required can even be reduced without

compromising on robustness.

� ADD-based Spectral Analysis of Probing Security. In this paper, we introduce

a novel exact verification methodology for non-interference properties of cryp-

tographic circuits. The methodology exploits the Algebraic Decision Diagram

representation of the Walsh spectrum to overcome the potential slow down as-

sociated with its exact verification against non-interference constraints. Bench-

marked against a standard set of use cases, the methodology speeds-up 1.88x

the median verification time over the existing state-of-the art tools for exact

verification. This work has been accepted at the Design, Automation and Test

in Europe Conference (DATE2022).

II part - Protecting the secret during computations

� Multiplicative Complexity of Autosymmetric Functions: Theory and Applica-

tions to Security [13]. In this paper we study a particular structure regularity

of Boolean functions, called autosymmetry, and exploit it to decrease the num-

ber of ands in xor -and Graphs (XAGs), i.e., Boolean networks composed by

ands, xors, and inverters. The interest in autosymmetric functions is motivated

by the fact that a considerable amount of standard Boolean functions of prac-

tical interest presents this regularity; indeed, about 24% of the functions in the

classical ESPRESSO benchmark suite have at least one autosymmetric output.

The experimental results validate the proposed approach.

� Multiplicative Complexity of XOR Based Regular Functions [14]. In this pa-

per we study the multiplicative complexity of Boolean functions characterized

by two regularities, called autosymmetry and D-reducibility. Moreover, we ex-

ploit these regularities for decreasing the number of and nodes in XAGs. The

experimental results validate the proposed approaches.

4

1.2. Scientific Contributions

� A Multiple Valued Logic Approach for the Synthesis of Garbled Circuits. In

this paper, we explore the possibility to extend the garbled circuit technique to

the case of multiple valued gates, where the wires can carry some finite set of

values. We first focus on 3-valued logic and define possible encodings for values

in Boolean logic, allowing the evaluation of garbled circuits. Such encodings are

compared, and the resulting circuits analyzed to find if some more efficiency, in

terms of number of gates and overall complexity of computation, can be gained.

Moreover, we prove that the 3-valued logic considered, can be easily extended

to general multiple valued logic, which still guarantees the free xor property,

exploited for the fast evaluation of the circuit. We report some experiments to

evaluate the different encodings and the efficiency improvements. We submitted

this work presented to IEEE Transactions on Information Forensics & Security.

5

Chapter 1. Introduction

6

CHAPTER 2

CRYPTOGRAPHY AND SECRET

MANAGEMENT

Cryptography is the theory that studies how a party can protect sensitive infor-

mation during some computation/communication from other parties, that can be

malevolent and try to derive some knowledge about secrets. To make possible these

secure computations, we employ many mathematical notions, and some of them are

explained in Section 2.1.5, to make all the following material clearer. Moreover, in

Section 2.2 we also present some basic notions about cryptographic algorithms.

The main concept from which this work takes place is the different kinds of ma-

licious entities that can threaten the security of a cryptographic computation. Gen-

erally, it is possible to identify two types of them, i.e., external entities, also called

attackers (Section 2.3), and internal entities (Section 2.4).

2.1 Mathematical context

A large part of cryptography is based on the mathematical theory of Binary Field

F2 and functions that take inputs and outputs from this field, called Boolean functions.

Many features of Boolean functions have been studied, but in this work the main

topics are around the concept of Fourier and Walsh transforms (Section 2.1.2.1), and

the concept of autosymmetric Boolean functions (Section 4).

7

Chapter 2. Cryptography and secret management

∧ 0 1

0 0 0

1 0 1

Table 2.1: and operation in F2.

⊕ 0 1

0 0 1

1 1 0

Table 2.2: xor operation in F2.

¬
0 1

1 0

Table 2.3: not operation in F2.

∨ 0 1

0 0 1

1 1 1

Table 2.4: or operation in F2.

2.1.1 Binary Field and Boolean Space

Definition 2.1. A field is a not empty set F with two composition laws � and ?

such that F with operation � is a commutative group, F− {0} with operation ? is a

commutative group and the distributive law holds [87].

The smallest field is the one containing only 2 elements, i.e., F2 = {0, 1}; this field

is also called binary field, and its elements bits [101].

In the binary field, the two composition laws are called and (∧, also often denoted

with ·) and xor (⊕), and they are defined in Tables 2.1 and 2.2.

For the scope of this work, two other operations in binary field must be defined.

The first one is the not operation (¬), that gives the opposite element in the field

(Table 2.3). For the sake of clarity, sometimes ¬x is also written as x̄, with x ∈ F2.

The second operation is or (∨), that is defined in Table 2.4. It is also possible to

rewrite the xor operation depending on ∧ and ∨, through the following expression:

a⊕ b = (a ∧ b̄) ∨ (ā ∧ b).

There is a direct correspondence between Binary Field and Boolean Logic, sub-

stituting the elements 0 and 1 with the correspondent false (F) and true (T). The

operations between the elements of the logic are the same, i.e., not, and, or and xor

[91].

The following definitions are necessary for the treated arguments in Section 4.1.

Definition 2.2. The Boolean space {0, 1}n is a vector space with respect to the xor

function and the multiplication with the scalars 0 and 1.

Definition 2.3. An affine space is a vector space or a translation of a vector space.

Then, if V is a vector subspace of the Boolean vector space ({0, 1}n,⊕) and α is

a point in {0, 1}n, then the set A = {α ⊕ v|v ∈ V } is an affine space over V with

translation point α [15].

8

2.1.2 Boolean functions

2.1.2 Boolean functions

A Boolean single output function f is a function

f : Fn2 → F2.

where Fn2 is the set of all binary vectors of length n [37][123].

A possible representation of the Boolean functions is the Algebraic Normal Form

(ANF), for which the representation of a Boolean function f with n inputs is:

f(x) =
⊕

I∈P(N)

aIxI

where P(N) is the power set of N = {1, . . . , n}, xI =
∏
i∈I
xi and aI is a coefficient in

F2.

Some features of Boolean functions are relevant for the study in this work. First,

the Hamming weight wH(x) of an element x ∈ Fn2 is the number of nonzero elements

in vector x. In particular, the Hamming weight wH(f) of a Boolean function f is the

number of elements in the set {x ∈ Fn2 |f(x) 6= 0}. Moreover, the Hamming distance

dH(f, g) between two Boolean functions f and g is the number of elements in the set

{x ∈ Fn2 |f(x) 6= g(x)}.
Finally, a pseudo-Boolean function f is a function with co-domain in R:

f : Fn2 → R.

As for elements in the finite field, also between Boolean functions it is possible to

apply operations ¬, ·, ∨ and ⊕, that means apply them to their outputs.

Example. Let f : F3
2 → F2 be a Boolean function:

f(x0, x1, x2) = x0x̄2 ⊕ x1

where x = [x0, x1, x2] ∈ F3
2. The true table in Table 2.5 reports the output of function

f varying the inputs. The Hamming weight of f is wH(f) = 4.

2.1.2.1 Fourier transform and Walsh transform

Many features of a Boolean function can be obtained through some widely studied

tools [37]. Among them, one of the most used is the Discrete Fourier Transform, i.e.,

the linear mapping which maps any pseudo-Boolean function f on Fn2 to the function

f̂ defined on Fn2 by:

f̂(u) =
∑
x∈Fn2

f(x)(−1)x∗u

9

Chapter 2. Cryptography and secret management

x2 x1 x0 f(x)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Table 2.5: True table of the Boolean function f(x0, x1, x2) = x0x̄2 ⊕ x1.

where ∗ denotes the inner product between two vectors in Fn2 and the sum is in R.

The vector resulting from the evaluation of f̂ varying the inputs u ∈ Fn2 is called

Fourier spectrum of f . Notice that f̂(0) equals to the Hamming weight of f .

An application of the Fourier transform is the following [37]: for a given Boolean

function f , the knowledge of its discrete Fourier transform is equivalent to the knowl-

edge of the weights of all the functions f ⊕ l, where l is a linear (or affine) function.

The discrete Fourier transform can also be applied to the pseudo Boolean function

fχ(x) = (−1)f(x), often called the sign function, instead of f itself. Then

f̂χ(u) =
∑
x∈Fn2

(−1)f(u)⊕x∗u

is called the Walsh transform of f , and vector f̂χ(u) computed varying u ∈ Fn2 is

called the Walsh spectrum of f . Dually, f can be reconstructed from f̂χ with the

inverse function:

f(x) = 2n
∑
u∈Fn2

(−1)f̂χ(x)⊕x∗u.

The Walsh transform of a Boolean function gives the knowledge of the correlation

between output and inputs of the function itself [123].

Example. Let f : F4
2 → F2 be a Boolean function:

f(x0, x1, x2, x3) = x0x1x2 ⊕ x0x3 ⊕ x1.

Then, in Table 2.6 the evaluation of f varying the inputs (column f(x)) and its Walsh

spectrum (column f̂χ) are reported.

10

2.1.3 Vectorial Boolean function

x3 x2 x1 x0 f(x) f̂χ

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 1 8

0 0 1 1 1 8

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 0 1 0

0 1 1 1 0 0

x3 x2 x1 x0 f(x) f̂χ

1 0 0 0 0 4

1 0 0 1 1 -4

1 0 1 0 1 4

1 0 1 1 0 -4

1 1 0 0 0 -4

1 1 0 1 1 4

1 1 1 0 1 4

1 1 1 1 1 -4

Table 2.6: Application of the Fourier and Walsh transforms to the Boolean function

f(x0, x1, x2, x3) = x0x1x2 ⊕ x0x3 ⊕ x1.

2.1.3 Vectorial Boolean function

A vectorial Boolean function f is a function such that the inputs and outputs are

elements in F2:

f : Fm2 → Fn2

where Fm2 and Fn2 are the set of all binary vectors of length m and n respectively

[36]. Each output of f can be read as the output of a Boolean function, i.e., f(x) =

[f0(x), f1(x), . . . fm−1(x)] for any x ∈ Fm2 . It implies that also a vectorial Boolean

function has its algebraic normal form representation, given by the ANF of every

single fi, for all 0 ≤ i ≤ m− 1.

Example. Let f : F3
2 → F2

2 be a vectorial Boolean function:

f(x0, x1, x2) = [x0x1, x1 ⊕ x̄2]

where x = [x0, x1, x2] ∈ F3
2, and f0(x0, x1, x2) = x0x1 and f1(x0, x1, x2) = x1 ⊕ x̄2.

The true table in Table 2.7 reports the output of function f varying the inputs.

2.1.3.1 Walsh matrix

The Walsh transform explained in Section 2.1.2.1, can be also applied to the vec-

torial Boolean functions: the linear mapping, defined on a vectorial Boolean function

f with inputs in Fm2 and outputs in Fn2 , is defined by:

Wf (u, v) =
∑
x∈Fn2

(−1)f(x)∗v⊕x∗u

11

Chapter 2. Cryptography and secret management

x2 x1 x0 f0(x) f1(x)

0 0 0 0 1

0 0 1 0 1

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 0 0

1 1 0 0 1

1 1 1 1 1

Table 2.7: True table of the vectorial Boolean function f(x0, x1, x2) = [x0x1, x1⊕ x̄2].

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x3
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x2
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x0

0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 8 8 8 -8 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 8 8 0 0 8 -8 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 8 -8 8 8 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 8 -8 8 8

1 1 0 0 0 8 8 0 0 8 -8 0 0 0 0 0 0 0 0

1 1 1 8 -8 0 0 0 0 8 8 0 0 0 0 0 0 0 0

f2(x) f1(x) f0(x)

Table 2.8: Walsh matrix of the vectorial Boolean function f(x) = [x0x1 ⊕ x2, x0x2 ⊕
x3, x1 ⊕ x3] with x = [x0, x1, x2, x3] ∈ F4

2 and f0(x) = x0x1 ⊕ x2, f1(x) = x0x2 ⊕ x3,

f2(x) = x1 ⊕ x3.

where ∗ denotes the inner product between two vectors and the sum is in R. The

matrix resulting from the evaluation of Wf varying u ∈ Fm2 and v ∈ Fn2 is called Walsh

matrix of f .

The Walsh matrix for a vectorial Boolean function f gives the knowledge of the

correlation between the outputs and the inputs of the function.

Example. Let f : F4
2 → F3

2 be the vectorial Boolean function:

f(x0, x1, x2, x3) = [x0x1 ⊕ x2, x0x2 ⊕ x3, x1 ⊕ x3].

Then, its Walsh matrix of dimension 23 × 24 is reported in Table 2.8. For example,

the nonzero elements in row [f2(x), f1(x), f0(x)] = [0, 1, 1] give information about the

correlation between f1(x)⊕f0(x) and x3⊕x2, x3⊕x2⊕x0, x3⊕x2⊕x1, x3⊕x2⊕x1⊕x0.

2.1.4 Tensor product between matrices

For the scope of this work, we must define the operation of tensor product between

matrices[72].

12

2.1.5 String diagram

Let A be a matrix of dimension l × n and B a matrix of dimension m× t. Then

the matrix A ⊗ B resulting from the tensor product between them has dimension

(l ·m)× (n · t) and it is such that each element is defined by:

A⊗B(x, y) = A(
⌊ x
m

⌋
,
⌊y
t

⌋
) ·B(x−

⌊ x
m

⌋
, y −

⌊y
t

⌋
)

with x ∈ {0, . . . , l · m − 1} and y ∈ {0, . . . , n · t − 1}. An easier way to write the

resulting matrix is as follows:

S ⊗B =


A(0, 0) ·B A(0, 1) ·B · · · A(0,m− 1) ·B
A(1, 0) ·B A(1, 1) ·B · · · A(1,m− 1) ·B

...
...

. . .
...

A(l − 1, 0) ·B A(l − 1, 1) ·B · · · A(l − 1,m− 1) ·B


In literature, tensor product is also called Kronecker product.

2.1.5 String diagram

String diagram is a tool that allows to simply reason about functions and matrices,

mainly when they are composed.

Let f : U → V be a linear map; through the string diagram’s representation [104],

this map can be drawn as a box labelled f with one input string labelled U and one

output string labelled V .

Let g : V → W be another linear map, then the composition f ◦ g can be repre-

sented through horizontal juxtaposition of boxes representing the functions, pairing

input and output wires with matching labels (Figure 2.1a).

Let f : U1 → V1 and g : U2 → V2 be two linear maps, then their tensor product is

a map f ⊗ g : U1 ⊗ U2 → V1 ⊗ V2 represented graphically by vertically juxtaposition

of the boxes representing the functions. Note that f ⊗ g has two input wires and two

output wires (Figure 2.1b).

The identity map idV : V → V is represented by a wire with no attached box, to

reflect the fact that it is an identity for composition.

2.1.6 Binary Decision Diagrams

As described in the previous section, there are many ways to represent a Boolean

Function. Among them, Binary Decision Diagrams (BDDs) are in general a very

compact representation, that allows to compute rapidly operations between Boolean

functions. BDDs are direct acyclic graphs, i.e., a representation composed of nodes

(vertices) and edges (arcs), in which each edge has a direction (given by an arrow)

and with a nodes’ hierarchy [2, 109, 34, 76].

13

Chapter 2. Cryptography and secret management

(a) String diagram for f ◦ g.

(b) String diagram for f ⊗ g.

Figure 2.1: String diagrams for composition and tensor product between two func-

tions.

Definition 2.4. A Binary Decision Diagram (BDD) on a set of Boolean variables

{x1, . . . xn} is a rooted, connected direct acyclic graph, where each internal node N

is labeled by a Boolean variable xi and it has two outgoing edges, the 0-edge and the

1-edge, pointing to two nodes, i.e., the 0-child and the 1-child of node N , respectively.

Terminal nodes (or leaves) are labeled with a constant value 0 or 1. Usually, binary

decision diagrams are exploited to represent Boolean functions.

Definition 2.5. A BDD is ordered (OBDD) if there exists a total order < over the

set of variables such that if an internal node is labeled by xi, and its 0-child and

1-child have labels xi0 and xi1 , respectively, then xi < xi0 and xi < xi1 . The choice

of the variable order can have a dramatic impact on the size of the BDD.

Definition 2.6. A OBDD is reduced if there exist no nodes whose 1-child is equal to

the 0-child and there aren’t two distinct nodes that are roots of isomorphic subgraphs.

A reduced and ordered BDD is called ROBDD.

Note that, usually, the term BDD is used instead of the correct term ROBDD.

Example 2.1.1. An example of BDD is in Figure 2.2, which represents the Boolean

function f(x0, x1, x2) = x0 · x1 ⊕ x2.

2.1.6.1 Manipulation of BDDs

Given two BDDs representing functions f and g, it is interesting to analyze how

to build the BDD for f < op > g, where < op > is a binary operation (and, or,

xor for example) [109]. The basic idea is to apply the Shannon’s expansion [105] as

follow:

f < op > g = x(fx < op > gx) + x̄(fx̄ < op > gx̄).

14

2.1.6 Binary Decision Diagrams

Figure 2.2: BDD for f(x0, x1, x2) = x0 · x1 ⊕ x2.

If x is the top variable of f and g, we can first cofactor the two functions with respect

to x and solve two simpler problems recursively, and then create a node labelled x

that points to the results of the two subproblems. The cofactors of f and g with

respect to x are the two children of the top node of f , when x is the top variable of

f ; otherwise, if f does not depend on x, fx = fx̄ = f . The algorithm that takes f , g

and < op > as arguments and returns f < op > g is called Apply in the literature.

Much simpler is the procedure to compute the negation of a function, since it

consists in change the values of the leaves (0 becomes 1 and vice versa).

The time occurred to compute an operation depends on the dimensions of the

involved BDDs; much smaller is the dimension of BDDs, than faster are the manip-

ulations.

Note that, if the manipulations can become hard to treat when BDDs are bigger,

solve a satisfiability problem when the function is given in BDD form is always trivial,

since it is sufficient to check whether the BDD is the constant 0 function and that

takes constant time.

2.1.6.2 Algebraic Decision Diagrams

Definition 2.7. An Algebraic Decision Diagram (ADD) [5] can be described as a

BDD with a generalized set of constant values. Therefore, an ADDs is the represen-

tation of a function f : {0, 1}n → S, where S is an arbitrary set. When S is {0, 1}
the ADD is a classical BDD.

Note that in this case, the ADD is the representation of a pseudo-Boolean function.

15

Chapter 2. Cryptography and secret management

Figure 2.3: ADD for f(x0, x1, x2) = x0 · x1 + x2.

ADDs can be manipulated as BDDs.

Example 2.1.2. Let f(x0, x1, x2) = x0 · x1 + x2 be a Boolean function, where + is

the sum in R. Then the corresponding ADD is in Figure 2.3, for which the results’

set is {0, 1, 2} ∈ R.

2.2 Cryptographic algorithms

The main aim of cryptography is to enable communication between two or more

entities (called also parties) in a secure way, sending messages that cannot be re-

covered from untrusted entities [37][100]. For this purpose, cryptosystems have been

developed.

The following three sets are fundamental for a cryptosystem:

� P is the set of plaintexts, elements that have to be sent in some secure way;

� C is the set of ciphertexts, elements that derive from plaintexts and are sent

instead of plaintexts;

� K is the set of keys, secrets used to perform transformation from plaintexts to

ciphertexts.

Generally, an encryption scheme is based on an encryption function Ek, depending

on a key k ∈ K,

Ek : (P ,K) −→ C

16

2.2.1 Advanced Encryption Standard

and a decryption function Dh, depending on h ∈ K, that can be equal to k,

Dh : (C,K) −→ P

such that Dh(Ek(p)) = p for all p ∈ P .

It is possible to recognize two categories of encryption functions, namely functions

that constitute symmetric cryptography and those that form asymmetric cryptogra-

phy.

Symmetric cryptography is based on the concept that the chosen key used for the

encryption function is also the one used for the decryption function. This key must

be shared among entities in a secure way. There are two types of algorithms that

belong to the symmetric cryptography:

� Stream ciphers : starting from a (short) secret vector s, called seed, a very long

sequence of bits, called keystream, is generated. The ciphertext is generated

xoring bitwise the plaintext with the keystream. To decrypt the ciphertext, it

has to be xored with the keystream, and the plaintext is recovered.

� Block ciphers : they are based on rounds. From key k, by an algorithm called key

schedule all round keys k1, ..., kr are derived. In the first round, the encryption

function is applied to the plaintext with key k1, obtaining the partial ciphertext

m1. At each round i, the encryption function is applied to mi−1 with key ki,

until in the last round r the ciphertext is generated.

Instead, asymmetric cryptography is based on two keys, a private key, used to

encrypt the message and known only by one entity, and a public one, used to decrypt

the ciphertext and recover the message.

Another type of cryptographic algorithms are hash functions , that generally can

be used to map data of arbitrary size to data of fixed size. The most widespread appli-

cations of hash functions are digital signature, password verification, key-derivation,

pseudo-random number generation and authentication.

2.2.1 Advanced Encryption Standard

The AES algorithm is one of the most popular symmetric-key block ciphers, and

it is widely employed for many applications, with implementations both in software

and in hardware. It was originally designed by J. Daemen and V. Rijmen under the

name of Rijndael, a subset of which was selected in 2001 by the National Institute

of Standard and Technology to constitute the Advanced Encryption Standard (AES)

[54].

17

Chapter 2. Cryptography and secret management

The AES algorithm operates on fixed-length data blocks of 128 bits, in encryption

as well as in decryption, by using cipher keys of 128, 192 or 256 bits. Each data block

is progressively transformed by a sequence of four primitive functions (AddRoundKey,

SubBytes, ShiftRows and MixColumns) organized in rounds, which number depends

on the key length.

The basic data unit is the byte, a vector of 8 bits ordered as in b = {b7, b6, b5, b4, b3,

b2, b1, b0}. Bytes can be interpreted as elements of the finite field F8
2, with the poly-

nomial representation:

b(x) =
7∑
i=0

bix
i

The xor operation in F8
2, denoted by ⊕8, is achieved by performing the typical xor

in F2 between the coefficients for the corresponding powers in the polynomials. For

sake of clearness, the xor between b, b′ ∈ F8
2 is computed as:

b(x)⊕8 b
′(x) = (b7 ⊕ b′7)x7 + (b6 ⊕ b′6)x6 + · · ·+ b0 ⊕ b′0

The multiplication in F8
2, denoted by ·, is achieved by performing the polynomial

multiplication modulo an irreducible polynomial (i.e., a polynomial that cannot be

factored into the product of two non-constant polynomials) of degree 8. The reduction

polynomial used by AES is m(x) = x8 + x4 + x3 + x + 1. For sake of clearness, the

multiplication between b, b′ ∈ F8
2 is computed as:

b(x) · b′(x) = [(b7x
7 + b6x

6 + · · ·+ b0) · (b′7x7 + b′6x
6 + · · ·+ b′0)] mod(m(x))

The AES-128 encryption primitive transforms a 128-bit input plaintext into a

128-bit output ciphertext by manipulating a fixed-length data block, known as State,

arranged into a two-dimensional square matrix S of bytes si, where columns and rows

can be viewed as 32-bit (4 bytes) words:

S =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


The AES-128 algorithm is divided in two distinct parts:

� the datapath, where all the transformations on the S matrix take place. In each

round but the last, the functions iteratively applied on the state are: SubBytes,

ShiftRows, MixColumns and AddRoundKey. In the last round MixColumns is

omitted.

18

2.2.2 Circuits

� the key schedule, which is responsible for providing a new 128-bit round key for

each round, derived from the original secret key.

Right before the execution of the first round, the original encryption key is added to

the State. This operation is called Initial Key Addition or First Whitening.

SubBytes This function applies a substitution table, called S-Box, to each of the

State’s 16 bytes. The S-Box itself is the result of two subsequent operations, a non-

linear inversion in F8
2 followed by an affine transformation. SubBytes represents the

only non-linear function in the AES cipher, due to the multiplicative inversion, which

is critical to minimize the correlation between inputs and outputs (cryptographic

property of “confusion”).

ShiftRows The State’s rows, except for the first one, are cyclically shifted to the

left by a fixed offset: one byte for the second row, two bytes for the third, three bytes

for the fourth. It is designed to introduce the cryptographic property of “diffusion”

on the State.

MixColumns The 32-bit columns of the State are iteratively multiplied by a ma-

trix, namely, called s′i the elements of the State after this transformation:
s′i
s′i+1

s′i+2

s′i+3

 =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 ·

si

si+1

si+2

si+3


As said, the MixColumns step is not applied in the last round (in the case of

AES-128, the 10-th). It provides the diffusion property to each individual column.

AddRoundKey The round key kr for the current round is added to the State by

means of a simple bitwise xor operation, which is equivalent to applying the addition

⊕8 defined in the AES finite field F8
2. Each 128-bit round key kr is provided by the

key schedule part of the algorithm.

2.2.2 Circuits

Circuits are the hardware implementations of Boolean functions [103]. A generic

circuit is composed of some registers, in which the state is memorized, and a com-

binatorial network of electrical components connected by wires. The combinatorial

network implements some logic operations, with n inputs and m outputs. The basic

19

Chapter 2. Cryptography and secret management

Name Symbol Boolean operation

not not(x) = ¬x

and and(x, y) = x ∧ y

or
or(x, y) = x ∨ y

xor
xor(x, y) = x⊕ y

Table 2.9: Symbols that correspond to the gates of circuits, implementing the Boolean

operations.

elements that constitute the combinatorial network are called logic gates, and they

implement the principal operations of Boolean Algebra (see Section 2.1.1 and Table

2.9).

In this work, only feedback-free circuits are treated, namely circuits without any

loop.

Given some circuit’s inputs, signal propagation through wires produces the gates’

outputs and finally a circuit’s output. For each gate in the circuit, each gate’s input

bit can be a circuit’s input bit or an output bit of another gate in the circuit.

Example 2.2.1. In Figure 2.4a a very simple circuit is represented. Circuit’s inputs

are x0 a x1, gate G0 is a not gate (with input x0), and G1 is an and gate (with input

the output of G0 and x1). y, the output of G1, is also the output of the circuit. In

Figure 2.4b there is an evaluation of that circuit, when both x0 and x1 are equal to 1.

In this case, the computed output y has value 0.

To conclude this overview about circuits, also some last definitions have to been

given.

A clock signal is a particular type of signal that oscillates between a high and a

low state and is utilized like a metronome to coordinate actions of digital circuits. A

clock cycle is the execution period between two subsequent clock signals. The clock

frequency is the number of clock signals executed in a time unit.

20

2.3. Protecting secrets from an external attacker

(a) A circuit. (b) A circuit evaluation.

Figure 2.4: Simple circuit example.

A synchronous circuit is a digital circuit in which the changes in the state of

memory elements are synchronized by a clock signal. An asynchronous circuit is a

sequential digital logic circuit which is not governed by a clock signal.

2.3 Protecting secrets from an external attacker

The first kind of malicious considered is the external entity, then an attacker that

is not involved by the computation, but that tries to recover some information about

secrets from an external point of view. In the classical cryptographic situation where

Alice and Bob want to communicate a secret that is encrypted, their main aim is

to keep hidden any information about the secret message from another entity called

Eve, that is the attacker.

There can be different types of attacks, depending on the attacker’s level of ca-

pacities. Let {m1,m2, ...,mn} ⊆ P be the plaintext messages; they are encrypted by

an encryption function Ek into ciphertexts {c1, c2, ..., cn} ⊆ C.
� Ciphertext-only attack : the attacker knows P and C, but she sees only the

ciphertexts {c1, c2, ..., cn}.

� Known-plaintext attack : the attacker knows some plaintexts {m1,m2, ...,mn}
and the correspondent ciphertexts {c1, c2, ..., cn}. In this case, the attacker’s

goal can be to use pairs of plaintext and ciphertext to recover the key k of the

encryption function. When an attacker knows the key, then she can encrypt

and decrypt as she likes.

� Chosen-plaintext attack : it is a kind of attack such that the attacker can choose

messages {m1,m2, ...,mn} and force their encryption. Sometimes there can be

the presence of special messages that allow an easy reconstruction of the key.

An attack is called algebraic attack when it is based on the analysis of the math-

ematical operations computed during the encryption (or decryption). If the crypto-

graphic algorithm is not vulnerable to any algebraic attack, then it is called math-

ematically secure. The algebraic analysis of a cryptosystem is called cryptoanalysis

21

Chapter 2. Cryptography and secret management

and is performed to recover some information exploitable to learn something about

sensible data processed during the encryption/decryption computations.

2.3.1 Side-channel attacks

Generally, an algebraic secure cryptosystem is considered as a system implement-

ing some mathematical functions that output only the proper result (the ciphertext)

and nothing more. But in practice, sometimes partial information about internal com-

putations can be leaked from the device implementing the cryptographic algorithm,

jeopardizing the cryptosystem’s security.

Definition 2.8. Side-channel information are information that are recovered from

the encryption device while it executes the encryption operations.

Some examples of side-channel information are: the power that is consumed by

the encryption device while it computes all its operations, the electromagnetic field

produced by the electronic system and the amount of time necessary to the device for

the implementation. Then, an attacker can try to exploit the information recovered

from these sources to mount an attack.

Definition 2.9. Attacks on cryptographic algorithms, done exploiting side-channel

information, are called side-channel attacks.

In a circuit, a loss of sensitive information exploitable for a side-channel attack is

called leakage. In this work, only leakage due to the power consumption of a circuit

is treated. It is possible to distinguish three different types of power consumption in

a circuit:

1. Static leakage: this refers to the energy needed by the circuit to maintain the

current state when no switch of input bits is present.

2. Switching of register : the consumption taken by the circuit for updating the

state in two consecutive clock cycles.

3. Switching of combinatorial logic: this is the consumption at combinatorial logic

level, due to the switches in circuit’s gates. This consumption, in most cases,

spans the entire duration of the clock cycle.

2.3.2 Power Analysis Attacks

The most widespread side-channel attacks are power consumption attacks [83]: the

amount of power used by a device is influenced by what is processing, and so power

22

2.3.2 Power Analysis Attacks

consumption measurements contain information about a circuit’s calculation. More-

over, when a device is processing some cryptographic secrets, its data-dependent

power usage can expose these secrets to an attack.

A power consumption attack is based on two basic concepts:

� the attacker has access to the device that she wants to analyze, and so she can

force it to do some controlled operations, or just monitoring the activity of it;

� she can measure the power consumed by the device at each operation.

The attacker can manage the plaintext in input at the cryptographic algorithm, and

she knows the related ciphertext in output. However, she does not know the key

used, and so this attack is a known-plaintext attack. She can also recover information

knowing only the ciphertext, and in this case the attack is a ciphertext-only attack.

Definition 2.10. Measurements collected from the target device are called power

traces, denoted by Vi ∈ RT , where T ∈ N is the number of considered time points.

When one or more traces are collected, these data about power consumption are

processed with some analytic methods. Three among them, that are relatively recent

and powerful, are described in the following paragraphs.

Simple Power Analysis. Simple power analysis (SPA) is the less intrusive side-

channel attack. It involves visual examination of graphs of the current used by a device

over time. Variations in power consumption occur as the device performs different

operations. For example, different instructions performed by a microprocessor will

have differing power consumption profiles.

Differential Power Analysis. Differential Power Analysis (DPA) is a statistical

method for analyzing sets of measurements to identify data-dependent relations [77].

This method consist in some basic steps:

� a set of measurements are collected to be analyzed;

� some guesses about the secret key used by the algorithm are made;

� using these guessed keys, some predictions are made, i.e., some plaintexts are

encrypted with the guessed keys;

� a selection function is applied, which is used to assign traces to sets;

� if a correlation between sets is noted, then the guess is correct, contrariwise if

no correlation is analyzed, a new guess has to be done.

23

Chapter 2. Cryptography and secret management

In [77], the differential power attack is computed using the Difference of Mean

(DoM). Let P be the plaintext, K̃ the guessed key and s the selection function. Steps

of this attack are:

� a set of traces is partitioned into two subsets, M0 and M1, defined as:

Mj = {Vi ∈ RT |s(P, K̃) = j} for j ∈ Z2

where Vi is a trace.

� then the difference of mean is computed for each subset, i.e.:

DoM(M0,M1) = E(M0)− E(M1)

where E is the mean of the elements in the set.

� if the choice that has assigned a set for each element is uncorrelated to the

measurements, at the increasing of the traces’ number, each subset’s difference

of mean will approach to zero;

� on the contrary, if the partition in subsets is correlated to the trace measure-

ments, each subset’s difference of mean will approach a nonzero value.

Some differential power attacks use also other statistical moments, as variance and

asymmetry. Attacks using statistical moment of higher order, have more possibilities

to recover some relevant information. However, these attacks are more sensible to

noise, and they need more traces (higher-order attacks, versus first-order).

Correlation Power Analysis. Correlation Power Analysis (CPA) is another sta-

tistical power analysis technique, first appeared in [33], that uses Pearson’s correlation

coefficient as a statistical test.

Steps of this type of power analysis attack are reported in the following points.

� The power consumption relative to an execution i is stored as a power trace ti,

and N power traces ti are acquired, each one relative to a different known data di

(1 ≤ i ≤ N) and a fixed key k̂ (that is stored in the device under attack). Power

traces ti can be viewed as a vector of M power samples ti = [ti,1, ti,2, ..., ti,M].

They can be all collected in the matrix T:

T =


t1

t2

...

tN

 =


t1,1 t1,2 · · · t1,M
t2,1 t2,2 · · · t2,M
...

...
...

tN,1 tN,2 · · · tN,M


24

2.3.2 Power Analysis Attacks

� In the first step, an intermediate value of the cryptographic algorithm that

is computed as a known function f(d, k), where d is a known non-constant

data value and k is a small portion of the key, has to be identified. Generally,

this intermediate value is called target value; the data d is typically either the

plaintext or the ciphertext.

� In this step, the target value vi,j for each data di and every possible kj, that

are small portions of the guess key such that vi,j = f(di, kj), are computed. In

this way, matrix V is computed, that contains every intermediate value for each

possible key guess kj, with 1 ≤ j ≤ K:

V =


v1,1 = f(d1, k1) v1,2 = f(d1, k2) · · · v1,K = f(d1, kK)

v2,1 = f(d2, k1) v2,2 = f(d2, k2) · · · v2,K = f(d2, kK)
...

...
...

vN,1 = f(dN , k1) vN,2 = f(dN , k2) · · · vN,K = f(dN , kK)


� Now, a power model that maps the matrix V of hypothetical intermediate values

to a matrix H of hypothetical power consumption values, is used through a

function fs that has to be chosen according to a criteria of power consumption

of the device under attack:

H =


h1,1 = fs(v1,1) h1,2 = fs(v1,2) · · · h1,K = fs(v1,K)

h2,1 = fs(v2,1) h2,2 = fs(v2,2) · · · h2,K = fs(v2,K)
...

...
...

hN,1 = fs(vN,1) hN,2 = fs(vN,2) · · · hN,K = fs(vN,K)


� In the last step, CPA specific, Pearson’s correlation is applied between columns

of the power traces and columns of the matrix H. As a result, the column that

presents the maximum correlation reveals j such that kj is the real portion of

k̂ with the highest probability.

The Pearson’s correlation coefficient is a normalized version of the covariance that

gives a result in the interval [-1,1], namely

ρH,T =
cov(H,T)

σHσT
=

E[(H − µH)(T − µT)]

σHσT

where the random variable T represents the measured power consumptions for a

column of T and the random variable H is the random variable that represents

the corresponding hypothetical power consumption; µ and σ are mean and standard

deviation, respectively.

25

Chapter 2. Cryptography and secret management

2.3.2.1 Countermeasures

The improvement of side-channel attacks has as direct consequence an improve-

ment of methods to protect algorithms and secrets from these new threats [83]. There-

fore, new countermeasures have been created. Among them, the most spread are

masking and threshold implementation, that are presented after in this Section. How-

ever, some other countermeasures against side-channel attacks have been developed.

� Clock Randomization: the duration of each clock cycle is determined randomly;

traces collected are difficult to compare, and a previous reorganization of them

is necessary and not always feasible.

� False executions : in this case, in addition to the usual computations of the

cryptographic algorithm, some other operations are executed (for example, the

same algorithm with a different key), so to confuse an attacker.

� Complemented logic: in parallel to the usual computations, are executed the

same computations but with complemented inputs and combinatorial logic. The

idea behind this countermeasure is to make power consumption that comes from

logical values toggling constant, so that the information leakage is not dependent

on the secret data.

Masking. A countermeasure against side-channel attacks is masking, which tries to

randomize the intermediate values of a cryptographic algorithm [70][83]. In a masking

implementation, all intermediate values a are concealed by a random value m which

is called mask. The most spread masking scheme is the additive masking, in which

each intermediate value a is xored with a mask m generating the masked value am,

i.e., am = a ⊕ m. For some cryptographic algorithms can be used a multiplicative

masking, where the masked value is calculated multiplying the intermediate value

with a mask, i.e., bm = h ∗m.

Masking can be used against side-channel attacks because the randomly masked

intermediate values produce a no predictable power consumption. Some basic rules

must be respected:

� masks are added at the beginning of the algorithm to the plaintext;

� during the execution of the algorithm, every intermediate value must stay

masked: this is achieved modifying also the operations in the algorithm that

has to be changed to respect the masking;

� at the end of the algorithm, the mask is removed from intermediate values, and

output is recovered.

26

2.3.2 Power Analysis Attacks

It is imperative for the security of a masked implementation that all intermediate

values always remain masked.

Threshold Implementations. The second method is called Threshold Implemen-

tations, and it has been proposed for the first time in [94] and developed also in [95].

Although it has a high computational complexity, it also requires random values only

at the start (differently from masking) and it stays effective in the presence of glitches

(for a definition of what glitches are, see section 2.3.3).

The scheme of this method is exposed below. Given a variable x ∈ Z2, it is split

into s additive shares xi ∈ Z2 such that

x =
s⊕
i=1

xi. (2.1)

The vector of shares xi is denoted by x = x1, x2, ..., xs. Note that the knowledge of

up to s− 1 shares does not give any additional information on the value of x.

Let f be a function with p inputs x1, x2, ..., xp and q outputs z1, z2, ..., zq.

(X1, X2, ..., Xp) are values that the inputs of f can take, and (X1, X2, ..., Xp) are

values that the vector of inputs’ shares can take, such that
s∑
i=1

Xj
i = Xj, ∀ 1 ≤ j ≤ p.

In the same way, vector of values that the output of f can take is defined with

(Z1, Z2, ..., Zq), and (Z1, Z2, ..., Zq) are values that the vector of outputs’ shares can

take, such that
s∑
i=1

Zj
i = Zj, ∀ 1 ≤ j ≤ q. Let c be a constant value. A first property

that the secret sharing must respect is

Pr(x1 = X
1
, ..., xp = X

p
) = c · Pr(x1 =

s∑
i=1

X1
i , ..., x

p =
s∑
i=1

Xp
i) (2.2)

and hence
s∑
i=1

Xj
i =

s∑
i=1

Y j
i ,∀j =⇒ Pr(x1 = X

1
, ..., xp = X

p
) = (x1 = Y

1
, ..., xp = Y

p
)

In words, all shares of native variables that respect equation 2.1 are equal probable.

In order to implement a vector function (z1, ..., zq) = f(x1, ..., xp), a set of functions

fi which compute together the output(s) of f is needed: vector (f1, ..., fs) is the vector

of shares of f , called realization.

To have a protection from side-channel attacks using first statistical moment,

sharing must respect three properties:

1. Correctness

A realization of f is correct if and only if

(Z1, ..., Zq) = f(X1, ..., Xp) =
s∑
i=1

fi(X
1
, ..., X

p
)

27

Chapter 2. Cryptography and secret management

for all vectors of input shares (X
1
, ..., X

p
).

2. Non-Completeness

Every function is independent of at least one share of the input variable x

and consequently, independent of at least one share of each component. If

the reduced vector (xj1, ..., x
j
i−1, x

j
i+1, ..., x

j
s) is denoted by xji , without loss of

generality zi are required to be independent of xji , ∀j, i.e.:

z1 = f1(x1
1, x

2
1, ..., x

p
1)

z2 = f2(x1
2, x

2
2, ..., x

p
2)

· · ·
zs = fs(x

1
s, x

2
s, ..., x

p
s)

3. Uniformity

A realization is uniform if for all distributions of the inputs (x1, x2, ..., xp) and for

all input share distributions satisfying property 2.2, the conditional probability

Pr(z1 = Z
1
, ..., zq = Z

q|z1 =
s∑
i=1

Z1
i , ..., z

q =
s∑
i=1

Zq
i)

is constant.

In a realization satisfying these three properties, each of the output shares zji is

statistically independent of the input variables xj and the output variables zj. The

same holds for all intermediate results and physical quantities (power consumption,

electromagnetic radiation, ...). Then, this realization is protected from first order

side-channel attack, also in presence of glitches.

Property 1 and Property 2 impose a lower bound on the number of shares s, as is

shown in the following theorem, presented in article [95].

Theorem 2.3.1. The minimum number of shares required to implement a product of

d variables with a realization satisfying Property 1 and Property 2 is given by

s = 1 + d

Proof. For the proof of this Theorem, see [95], Theorem 3.

Observation 1. Starting from theorem 2.3.1, it follows that at least three shares are

needed to implement a nonlinear function.

28

2.3.3 Physical Defaults

2.3.3 Physical Defaults

In this Section, we discuss the concept of physical defaults, which can be exploited

for (side-channel) attacks.The following presentation is based on explanations in [60].

Physical defaults happening in a circuit can be attributed to one of the following

types (Figure 2.5).

� Combinatorial recombinations (glitches). In this case, they are caused by the

mixing (recombination) of the inputs during the operations implemented by

gates. Note that recombination actually happens in most cases for standard

circuits [23]. Generally, to mitigate the effect of glitches, registers are added in

strategic positions in the circuit (Section 3.1), in such a way that partial results

are saved and glitches don’t propagate anymore. In this thesis, the discussion

is focused on this type of physical defaults and their threats in circuits.

� Memory recombinations (transitions). Memory recombinations can mix the

content of the memory elements in consecutive cycles. This would happen if

the same memory gate is used to store both the inputs and output of a cycle.

� Routing recombinations (couplings). In this case, the leakage can happen if

there is a mix of the shares manipulated by adjacent wires.

Figure 2.5: Three cases of possible recombinations: combinatorial (glitches), memory

(transitions), routing (coupling).

29

Chapter 2. Cryptography and secret management

2.4 Protecting secrets during computations

Now the malicious considered is an internal entity, then an attacker that is in-

volved by the computation. Then there are two or more entities that want to produce

an output from their own secrets, keeping them unshared with the others. In this

case, the exploited procedures are called Secure Computation Protocols [79][4].

Example 2.4.1. A classic example, usually proposed to explain the concept of pro-

tection of secret from internal malicious, is the Millionaires’ Example. Suppose that

three millionaires want to know the sum of all their money, without sharing their cap-

itals. Then a protocol that they can use is the following: the first millionaire chooses

a key k and add it to his capital c1, i.e., he computes c1 +k and sends it to the second

millionaire. The second adds his capital c2 to what he has received, i.e., he computes

(c1 + k) + c2 and sends it to the third millionaire. The last adds his capital c3, i.e.,

he computes (c1 + k+ c2) + c3 and sends it to the first. Now this millionaire (the only

one that knows the key) can subtract k to what he has received, recovering the total

amount of their money. Finally, he shares the result with all the others. Note that, if

the participants are only two, this protocol is not useful anymore, because, when the

second millionaire sends (c1 + k) + c2 to the first, this can recover c2 (knowing c1 and

k).

2.4.1 Secure computation

Secure Computation (SC) is a term describing all those technologies that allow

the computation of a function without revealing the inputs, which remain secret [4].

The wide collection of secure computation protocols includes also the well known

Multi-Party Computation Protocols, which is a secure computation technology pro-

grammable, i.e., it is Turing-complete.

Definition 2.11. A Secure Multi-Party Computation (MPC) Protocol enables a set

of parties to interact and compute a joint function of their private inputs, without

revealing nothing about the secrets and sharing only the output of the function.

This computation have to be performed without a third-part meddling (for example,

authority parties) [79].

If the participants are only two, then it is a two-party computation protocol.

The participants could be dishonest and become internal malicious. In this con-

text, usually secure computation protocols are divided into passive, i.e., those that

are secure against adversaries who follow the protocol but aim to learn all they can

30

2.4.1 Secure computation

(a)
(b)

(c)

Figure 2.6: Schemes of parties role in SC protocols. (a) Homomorphic Encryption.

(b) Linear Secret Sharing. (c) Garbled Circuit.

from observing the execution, or active, i.e., those that are secure also against par-

ties trying to learn information about the inputs cheating and do not following the

protocol.

In [4], an exhaustive classification of SC protocols is explained, which is based on a

definition of participating parties and their role (Bogdanov model [28]): input parties

(I) are those that provide their data for the computation, computing parties (C) are

those that effectively execute the computation, and result parties (R) are those that

reveal the outputs of the computation. The inputs keys remain secret during all the

protocol, and only outputs are shared at the end. Three of the major SC paradigms

are Homomorphic Encryption (HE), Linear Secret Sharing (LSS) and Garbled Circuit

(GC); explicative schemes are in Figure 2.6.

Homomorphic Encryption. This protocol is generally used when a single com-

puting party, the server, offers its resources to the other two parties, that coincide in

the client (Figure 2.6a). HE is a two-party protocol in which the client has the keys

and outsources some computation to the server, by providing it with the encrypted

inputs and requesting a result from it.

Figuratively, HE can be associated to an opaque locked glove box: the client

inserts its inputs and locks the box. Anyone with the box can use the gloves to

manipulate the items, but only the box’s owner has the key to open it and remove

the contents.

Linear Secret Sharing. This protocol is used when more parties collaborate (Fig-

ure 2.6b). In this SC paradigm, the input parties can divide secrets into shares such

that, however chosen a subset of them, it does not reveal information about the secret.

Each computing party receives a share, and they collaboratively execute interactive

protocols to compute operations.

Figuratively, this protocol can be associated to a set of interconnected gloves boxes

with input hatches. Any party distributes its input between the boxes through the

hatches, and the box operators can exchange pieces and manipulate the introduced

31

Chapter 2. Cryptography and secret management

values using the gloves. The result is obtained only when all boxes are opened, and

their results combined.

Garbled Circuit. This protocol is mostly implemented when two parties want to

compute a function over their inputs, and then they are input, result and computing

parties together (Figure 2.6c). Garbled circuit is an integrated digital circuit in

which the wire values are encoded as random strings and each gate’s truth table

is encrypted. Ideally, each garbled circuit can be exploited for only one execution,

because the materials used in the construction are fragile and dissolve after use. For

more details, see Section 2.4.2.

2.4.2 Garbled circuit

The aim of two-party secure computation protocols is performing collaborative

computation between two parties who do not want to disclose the input values they

own. In the general formulation, two parties called Alice and Bob want to compute

a function on their respective inputs, which must remain private. The first protocol

with this aim was presented in the seminal work by Yao et al. [122] and is usually

referred to as the Garbled Circuit (GC) construction of Yao, where the function to

be computed securely is represented as a simple Boolean circuit cf .

In this protocol, Alice is called the garbler and Bob the evaluator [43]. Alice

produces the garbled circuit cg from cf , and together the parties evaluate it. The

protocol is based on three steps: garbling, evaluation and sharing of the output.

Garbling. The garbling is obtained by producing a garbled table for each gate

contained in the circuit. Considering a gate g in circuit cf , with input wires Wi and

Wj, Alice randomly chooses two secret keys, w0
i and w1

i corresponding to the garbling

of input values 0 and 1, and does the same for the other input wire, selecting the keys

w0
j and w1

j . Through this procedure, Alice produce a garbled table for each gate in

the circuit, and sends them to Bob.

Example 2.4.2. In order to better understand the Yao’s construction, consider a

circuit composed of a single gate with two input wires, wa and wb, and one output

wire wz (Figure 2.7). Alice chooses the secret keys w0
a and w1

a for her input, w0
b and

w1
b for Bob’s input and w0

z and w1
z for the output. She produces an encrypted table

and transforms it in a garbled table permuting its rows. Finally, Alice sends it to Bob

(Table 2.10).

32

2.4.2 Garbled circuit

Figure 2.7: Garbled or gate.

truth table encrypted table garbled table

0 0 0 Ew0
a
(Ew0

b
(w0

z)) Ew1
a
(Ew0

b
(w1

z))

0 1 1 Ew0
a
(Ew1

b
(w1

z)) Ew1
a
(Ew1

b
(w1

z))

1 0 1 Ew1
a
(Ew0

b
(w1

z)) Ew0
a
(Ew0

b
(w0

z))

1 1 1 Ew1
a
(Ew1

b
(w1

z)) Ew0
a
(Ew1

b
(w1

z))

Table 2.10: Alice’s computations.

Evaluation. Alice encrypts her secret input xa and sends it to Bob. After that,

she also encrypts Bob’s secret input xb without knowing its value, (this procedure is

possible thanks to an oblivious protocol). Bob obtains the garbled output simply by

evaluating the garbled circuit gate by gate, using the garbled tables previously sent

by Alice. Note that Bob can evaluate the garbled circuit on the two inputs ignoring

the value of xa, while Alice does not learn anything about xb (apart from what the

parties can deduct from the result and their current input).

Example 2.4.3. In the situation described in Example 2.4.2, consider for example

that xa = 1 and xb = 0. Then Alice sends to Bob w1
a and w0

b , and Bob computes

Ew1
a
(Ew0

b
(w1

z)) in the garbled table.

Sharing of the output. Bob sends to Alice the result of his evaluation on cg, and

Alice decrypts it (only she knows the keys). Finally, she shares the result of cf with

Bob.

2.4.2.1 Oblivious transfer protocol

The protocol of oblivious transfer (OT) is an important concept needed for the

execution of the Yao’s GC Protocol, that allows to send a single value without either

the sender learning which exact value was received or the receiver finding out any

other value than the one he actually intended to receive [106]. In particular, the

Yao’s GC makes use of a 1-out-of-2 Oblivious Transfer (1-2 OT), since it works on a

set of only two values, which provides security against semi-honest adversaries.

Formally, assume that S (the sending party) holds a pair of strings (s0, s1) one of

which is to be sent to R (the receiving). R selects i ∈ {0, 1}, depending on whether

she wants to learn s0 or s1. She then generates a pair of asymmetric cryptographic

keys (kpriv, kpub), and another value k̃ that looks like a public key to S, but to which

R has no private key. Then, R chooses the working public key to be kpubi and k̃ as

kpubi−1, and advertises them to S as keys for s0 and s1, respectively. S encrypts s0 with

the received kpub0 and s1 with kpub1 and transmits the resulting c0 and c1 to R, who

33

Chapter 2. Cryptography and secret management

will then decrypt her desired value ci with the corresponding kprivi , which results in

the correct si. R will not be able to decrypt the ci−1 because she has not generated

a corresponding private key for k̃, and S will not know which value R has actually

seen.

2.4.2.2 Cost of gates’ transfer

In Yao’s GC implementations, each gate has a cost, that refers to computation

and communication required for creation, transfer, and evaluation of its garbled table

[78]. Generally, it is considered proportional to the number of rows in the garbled

table that has to be sent for each gate, since they must be transferred one-by-one

from the garbler to the evaluator. Then, in Boolean logic circuits, gates with 2 inputs

and 1 output cost 4 rows of the garbled table (e.g. the one in Example 2.4.2).

2.4.2.3 Send xor gates for free

In [78] Kolesnikov and Schneider present an optimization, which allows the evalu-

ation of xors for free, avoiding any interaction between the two parties for such gates.

In other words, there is no need to compute and send the garbled tables for the xor

gates.

Let G be a xor gate that has two input wires Wa, Wb and output wire Wc.

Their idea is to garble the wire values as follows. Randomly choose w0
a and w0

b and

R ∈ {0, 1}. Set w0
c = w0

a ⊕w0
b , and ∀i ∈ {a, b, c} : w1

i = w0
i ⊕R. It is easy to see that

the garbled gate output is simply obtained by xoring garbled gate inputs:

w0
c = w0

a ⊕ w0
b = (w0

a ⊕R)⊕ (w0
b ⊕R) = w1

a ⊕ w1
b

w1
c = w0

c ⊕R = w0
a ⊕ (w0

b ⊕R) = w0
a ⊕ w1

b = (w0
a ⊕R)⊕ w0

b = w1
a ⊕ w0

b

Further, the garblings wji do not reveal the wire values they correspond to.

This reasoning shows how the xor gate in a Boolean logic can be evaluated without

communication between the parties. The optimization then requires that there is

only a global random R known only to Alice the garbler, such that the garbled value

corresponding to 1 for a wire is determined by xoring the garbled 0 value with the

quantity R. In this way, computing the output for a garbled xor gate amounts to

compute the value resulting by the xor of the two inputs. Security of this solution is

proved under different assumptions in [78, 97].

From AIG to XAG. Before the Kolesnikov and Schneider’s paper, the most

widespread circuit construction was the And-Inverter graph (AIG), i.e., a di-

rected, acyclic graph, consisting of two-input nodes representing logical conjunction,

34

2.4.2 Garbled circuit

terminal nodes labelled with variable names, and edges optionally containing markers

indicating logical negation. This was the most employed and studied circuits’ form

mainly because the area occupied by the xor gates is bigger than that of the and

gates.

When sending xors in a garbled circuit protocol was declared without any cost,

then the attention is gradually shifted to the Xor-And graph (XAG), which is a

representation of the Boolean functions on a basis of gates that are xor, and and not,

trying to minimize the number of ands because they are those costing in the transfers

during the protocol (see Chapter 5 for more details and examples on XAGs).

2.4.2.4 Reduction rows in the encrypted table

Trying to reduce the cost needed to send a garbled table, in [97] is proposed a trick

that allows to decrease the size of the tables of the non-xor gates. This optimization

provides a 25% reduction in the sizes of the tables needed to represent two-inputs

gates.

The trick is that, instead of defining the two garbled values of the output wires

randomly, Alice the garbler defines one of them as a function of garbled values of the

two input wires. In other words, she chooses an input pair (b1, b2) with bi ∈ {0, 1},
and defines the garbled output value of cg(b1, b2) to be a function of the garbled

values of b1 and b2. The gate table therefore needs not store an entry for the input

combination (b1, b2). In the evaluation phase, if Bob the evaluator has the garbled

values of the pair (b1, b2) he can compute the corresponding garbled output directly,

without consulting the garbled table.

Some years later, in [124] the authors present a method for garbling and gates

that requires only two rows in the garbled table. It consists in the employment of

the half-gates procedure, involving and gates for which one party knows one of

the inputs in clear. In the paper is described how to construct half-gates when the

garbler knows one of the inputs, and the evaluator knows one of the inputs, using one

ciphertext each party, in a way that is compatible with free-xor. Then, an and gate

can be written as a combination of xors and two half-gates of opposite types. Hence,

the resulting and gate uses only two ciphertexts in combination with free-xor, and

then its garbled table has only two rows.

35

Chapter 2. Cryptography and secret management

36

Part I

Protecting secrets from an external

attacker

37

CHAPTER 3

PROBING SECURITY

In Section 2.3.2.1, we discuss about side-channel attacks, with a particular focus

on power consumption attacks, i.e., those in which the attacker is able to collect power

traces and use them to recover information about secrets.

Following the same idea of attacks on hardware computing cryptographic opera-

tions, in this chapter we present probing attacks, starting from the state of the art,

and concluding with some interesting and innovative developments.

In a probing attack to an hardware device, the attacker is able to place some

probes (for example, metal needles) on wires of a circuit and read with them some

punctual information flowing in those wires. Usually, what the attacker can read

with a probe is the value carried along the wires (bit) or the power consumed in that

specific point of the circuit.

Many countermeasures against these attacks have been developed in the last years,

trying to protect circuits also from probing attacks that exploit glitches occurring in

the circuit.

The goal of this Chapter is to discuss about probing analysis, and introduce a new

methodology to identify if a circuit is not probing secure, with an exact final claim.

It is finalized both with and without glitches. We also develop a tool implementing

it, based on BDDs. In Section 3.1 we propose an analysis of the state of the art about

this topic, both with and without glitches. In Sections 3.2, 3.3, 3.4 and 3.5 we discuss

some further innovative studies about this argument, that have been presented in

four papers of which the author of this thesis is co-author.

39

Chapter 3. Probing security

3.1 State of the art

This Section is divided into two parts: in the first part there is a discussion about

the classical probing security, i.e., the one without considering the effects that glitches

create inside a circuit. In the second part, the robust probing security is presented,

i.e., the one in which the attacker is able to exploit also the information recovered

thanks to glitches.

3.1.1 Probing security

All the amount of works about probing security takes origin to paper [73], in

which the concept of probing security is developed, taking inspiration by notes in [3],

written some years earlier. In paper [73], following definition is given:

Definition 3.1. A probing attack is an attack computed placing a metal needle on a

wire of interest and reading off the value carried along that wire during the device’s

operations.

The order of a probing attack t is the number of probes that the attacker can

place in the circuit. If with those probes she can mount an attack, then it is called

a t-probing attack. Otherwise, the gadget is considered t-probing secure. Ideally,

the attacker could recover all k bits of the key placing k probes in proper positions

on circuit’s wires. However, each probe has a specific cost and dimension, then in a

circuit it is possible to place only a limited number of them, depending on its physical

features and the employed tools’ power. Consequently, the order of a probing attack

on a specific circuit has an upper bound, and the ideal case previously described is

substantially impracticable.

Generally, to face to attack of higher order (i.e., in presence of a more powerful

attacker), more complex hardware constructions are studied. Many efforts are done

to find secure solution to protect the and operation in circuits. The reason of this

interest resides in the fact that the circuit’s nonlinear part generally is the one leaking

more information about secrets.

Ishai-Sahai-Wagner multiplication. In [73], the authors propose a construction

that provide a generic defence against probing attacks (denoted here as ISW scheme).

This construction is finalized to protect the and gate in circuits.

Let a, b two input bits of an and gate, and c the output bit, such that c = a · b.
To protect information about a, b from a probing attack in which the attacker can

place at most t probes, they give the following procedure.

40

3.1.1 Probing security

First step. The inputs are split into t + 1 shares (see Section 2.3.2.1), i.e., sets

{a0, . . . , at} and {b0, . . . , bt} are defined, such that a =
⊕

i ai and b =
⊕

i bi.

Second step. For each 1 ≤ i < j ≤ t, a random bit zi,j is generated. Then, zj,i are

computed, such that zj,i = (zi,j ⊕ ai · bj) ⊕ aj · bi. Note that individually each zi,j is

distributed uniformly, but any pair zi,j and zj,i depend on ai, aj, bi and bj.

Third step. The output bits {c0, . . . , ct} (such that c =
⊕

i co) are computed as

ci = ai · bi ⊕
⊕
j 6=i

zi,j.

This construction is provably secure, and to verify that, in [73] the author develop

a formal model of the adversary and propose definitions of security against probing

attacks. This scheme doubles the number of shares to achieve t-probing security. It is

proved in [99] that the scheme is actually t-probing secure with the optimal number

of t+ 1 shares only.

Example 3.1.1. Consider for example the ISW scheme that give a protection against

first order probing attacks, i.e., with 2 shares. The secure construction is (Figure

3.1a):

c0 =a0 · b0 ⊕ z0,1

c1 =a1 · b1 ⊕ ((a0 · b1 ⊕ z0,1)⊕ a1 · b0)

Same scheme, but secure against second order probing attacks, is the following

construction:

c0 =a0 · b0 ⊕ z0,1 ⊕ z0,2

c1 =a1 · b1 ⊕ ((a0 · b1 ⊕ z0,1)⊕ a1 · b0)⊕ z1,2

c2 =a2 · b2 ⊕ ((a0 · b2 ⊕ z0,2)⊕ a2 · b0)⊕ ((a1 · b2 ⊕ z1,2)⊕ a2 · b1)

Trichina multiplication. In [115] the author presented the Trichina and gate,

that allows to implement a masked and gate (c = ab) securely in the probing security

context, only at the first order. The construction requires two shares for each secret,

i.e., a = a0 ⊕ a1 and b = b0 ⊕ b1, and a random z, and its equation is:

c0 = (((z ⊕ a0 · b1)⊕ a1 · b0)⊕ a1 · b1)⊕ a0 · b0

Note that the security of this scheme relies strictly on the order of the operations to

avoid unmasking certain bits, on the assumption that the sharing of a are independent

from those of b (Figure 3.1b).

41

Chapter 3. Probing security

(a) ISW and circuit, with t = 1. (b) Trichina and circuit.

Figure 3.1: Two state of the art probing secure circuits.

Threshold Implementation multiplication. In Section 2.3.2.1, we present the

Threshold Implementation solution against glitches [95]. Here, we explain how to

apply the scheme to protect an and gate. At first, when a single and gate is considered,

it has been shown that there exists no 3-sharing satisfying both uniformity and first-

order non-completeness [25]. Therefore, the output shares of the 3-shares and gate

must be refreshed. Then, considering an and and a xor gate instead of a single and

gate, i.e., considering the function d = c ⊕ a · b (Toffoli gate), it is possible to reach

all TI properties with the following construction:

d0 = c1 ⊕ a1 · b1 ⊕ a0 · b1 ⊕ a1 · b0

d1 = c2 ⊕ a2 · b2 ⊕ a2 · b1 ⊕ a1 · b2 (3.1)

d2 = c0 ⊕ a0 · b0 ⊕ a0 · b2 ⊕ a2 · b0

Note that this construction results 2 probing secure only if assuming that the

gadget is implemented in a single cycle. In this case, the adversary can only probe

the input shares ai, bi, ci and output shares di, but not the intermediate values.

Observation 2. Note that in all these constructions the number of shares s in which

the secrets are split increases in relation to the order of the probing attack t. In

particular, in all of them s = t + 1. This is the smarter trade-off that is possible to

reach, because:

� if the shares’ number s is less or equal to t, then with s probes placed on the

wires that connect the inputs to the netlist the attacker can recover all the

shares and the secret itself;

42

3.1.1 Probing security

� construction of the circuit becomes trickier with the increase of the shares’

number. Indeed, in this process the correctness property must be respected any

time.

3.1.1.1 The composability problem

Since the appearance of this first solution against probing attacks, it becomes

clear that, while proving the security for small gadgets (portion of circuit) requires

a small effort, reasoning about their composition is not so trivial. In fact, one of

the main problems studied in literature is the composability of security properties,

i.e., determining if the functional composition of two t-probing secure gadgets is still

t-probing secure. Over the years, it has been observed that composability depends

on the amount of used refreshing [50] and on some properties of the circuits’ imple-

mentation, that are called non interference and strong non interference [9, 8]. These

properties ensure that the probabilistic distribution of the probed values does not

depend on all of the secret’s shares.

Definition 3.2. A function is t-non interfering (shortly t-NI) if, when given o outputs

and i internal probes (i.e., probes placed on wires that are internal to the circuit),

with o+ i ≤ t, it implies a dependency with maximum o+ i input shares.

Definition 3.3. A function is t-strong non interfering (shortly t-SNI) if, when given o

outputs and i internal probes, with o+ i ≤ t, it implies a dependency with maximum

i input shares.

These properties give information about the composability of gadgets. Generally,

to prove that a composition of gadgets is probing secure becomes a long and complex

task, and sometimes requires much expertise in type theoretical or formal validation

area [9].

Example 3.1.2. This Example is often shown in literature [50], and is used to explain

how one could identify a violation when some (declared secure) gadgets are composed.

Figure 3.2 shows the structure of a function h(a) which is a composition of two

functions f and g. Function f refreshes its input a = (a0, a1, a2) with two random

bits rf = (rf0 , r
f
1):

of (a, rf) = [a0 ⊕ rf0 ⊕ rf1 , a1 ⊕ rf0 , a2 ⊕ rf1]

while g is the ISW multiplication [73] which consumes 3 random bits rg = (rg0, r
g
1, r

g
2)

43

Chapter 3. Probing security

g
f a

og = h(a)

rfrg

pfpg

of

Figure 3.2: The composition pattern of f (t-NI) and g (t-SNI) studied in Example

3.1.2: the composed function h(a) is not t-NI.

for the secret computation:

og(of , a, rg) = [of0 · a0 ⊕ rg0 ⊕ rg1,
of1 · a1 ⊕ ((of0 · a1 ⊕ rg0)⊕ of1 · a0)⊕ rg2,
of2 · a2 ⊕ ((of0 · a2 ⊕ rg1)⊕ of2 · a0)⊕ ((of1 · a2 ⊕ rg2)⊕ of2 · a1)]

From Definition 3.2, it’s clear that function f is a 2-NI function: however choosing

two elements among the outputs and the internal probes, at most two shares of a are

recovered. Moreover, function g is 2-SNI, because the attacker can recover at most as

shares as the number of internal probes that places.

Now, considering the composition function h, an attacker can place an internal

probe p0 = a0⊕ rf0 on f and an internal probe p1 = of1 · a2 on g. In this way, since of

is the output of f :

p0 = a0 ⊕ rf0
p1 = (a1 ⊕ rf0) · a2

From probe p1, the attacker recovers information about both a1 ⊕ rf0 and a2, because

the multiplication is correlated with both the factors. Then xoring a0⊕rf0 and a1⊕rf0 ,

a0 and a1 are unmasked and finally she has all the three shares of a. This proves that

the composition of a t-NI gadget with a t-SNI one can be not probing secure.

The and construction proposed by Ishai et Al. is t-SNI [9]. Also Trichina and is

declared t-SNI, but only in the case in which the order of operations doesn’t change.

Probe-isolating non-interference. To overcome the composability problem, re-

cently the new security notion of Isolating Non-Interference (PINI) has been proposed

[41]. The main difference between the (Strong) Non- Interference (NI/SNI) definitions

44

3.1.2 Robust probing security

and PINI is that the former rely on the number of probes in a target implementation,

while the latter rather relies on their position (i.e., the shares’ indices). The whole

circuit can then be cut into d circuit shares that are not interconnected, except for

non-linear gadgets. If we neglect those gadgets, the circuit is t-probing secure (for

t < d): the adversary can only probe t of the circuit shares, hence it has no infor-

mation about at least d − t ≥ 1 circuit shares, which contains at least one share of

each input. Non-linear PINI gadgets then behave in the probing model as if they had

no connection between circuit shares, which allows implementing non-linear functions

while keeping the previous circuit sharing intuition. More formally:

Definition 3.4. Let G be a gadget over d shares, xi,j and yi,j its inputs and outputs

(respectively), such that all the inputs and outputs in the circuit share i are denoted

as xi,∗ and yi,∗. Let P be a set of t1 probes on wires of G (internal probes), and A

a set of t2 share indices. G is t-Probe-Isolating Non-Interfering (t-PINI) iff for all P

and A such that t1 + t2 ≤ t, there exists a set B of at most t1 share indices such that

probes on the set of wires P ∪ yGA , ∗ can be simulated with the wires xGA∪B, ∗.

The authors in [41] prove that a t-PINI gadget is t-probing secure and composition

of t-PINI gadgets is t-PINI.

3.1.2 Robust probing security

Recently, significant efforts have been devoted to the design of masking gadgets

for hardware implementations. In this context, one important additional issue is that

physical defaults such as glitches can easily contradict the independence assumption

required for secure masking (Section 2.3.3). Since this break of the independence as-

sumption directly leads to devastating attacks, the literature then focused on the de-

sign of gadgets with better resistance to glitches. Since then, various papers proposed

innovative ways to implement higher-order masking in hardware, also interesting in

the probing security area [98, 47, 67, 10].

Definition 3.5. A probe is called extended if it is placed in circuit leaking information

due to glitches. By contrast, the probe considered when no physical defaults are

considered are called classical.

Note that, if the probe is extended, (i.e., if the attacker can exploit also glitches),

the attacker can recover (in the best case for her) all the inputs concurring to the

computation of the value flowing in the wire on which the probe is placed.

Example 3.1.3. Consider for example the following function:

c = a · b⊕ r.

45

Chapter 3. Probing security

Figure 3.3: ISW and circuit, with t = 1, in case of glitches.

If an attacker places a classical probe on the output, then she can know only the

combination a · b⊕ c of the inputs. Instead, if the probe is extended, she can recover

(in the best case for her) all the values in the set {a, b, r}.

If an extended probe is placed on an output wire, it is called external extended

probe, while if it is placed on an internal wire, it is called internal extended probe.

Observation 3. Usually, to prevent leakages due to glitches, besides randoms addi-

tion, a useful and wide technique is to add some register in a smart way, to protect

intermediate values. Note that this patch causes an increase of the latency of the

circuit. Then, the study of a new construction to preserve security in presence of

glitches implies finding a trade-off between the randomness usage (increase of area)

and the added registers (increase of latency).

Ishai-Sahai-Wagner multiplication. With a smart reordering of the intermedi-

ate values of the scheme, and saving refreshed results in registers, the ISW and is

robust t probing secure [9]. Explicitly, for t = 1 (square brackets indicate registers):

c0 = a0 · b0 ⊕ [a0 · b1 ⊕ z0,1]

c1 = a1 · b1 ⊕ [a1 · b0 ⊕ z0,1]

This construction is depicted in Figure 3.3. Note that for example, without these

registers, an external extended probe placed on the output wire c0 = a0 · b0 ⊕ (a0 ·
b1 ⊕ z0,1) would give information about two shares of a, rendering all the scheme not

robust t-probing secure.

46

3.1.2 Robust probing security

⊕

r0

a0
b0

⊕

r1 a0
b1

⊕

r2

a0
b2

⊕r3

a1
b0

⊕
r4

a1b1

⊕

r5

a1
b2 ⊕

r6

a2
b0

⊕
r7

a2
b1

⊕ r8

a2b2

⊕
c0⊕ c1

⊕
c2

C R
N

Figure 3.4: CMS scheme when t = 2, and then with 3 shares.

Consolidating Masking Scheme for multiplication. This scheme has been pre-

sented in [98], with the aim to define a secure construction for the and gate also in

presence of glitches. Unfortunately, it has been proved secure only since the second

order, i.e., it is not t probing secure for t ≥ 3 [92].

The Consolidating Masking Scheme (shortly CMS) descends from a reorganization

of the three more studied probing secure schemes, namely ISW, Trichina and TI

(Section 2.3.2.1), trying to exploit better features from all, i.e., probing security from

ISW and Trichina, glitches resistance from TI. The result is the general construction

ci =
⊕
j=0...t

(ai · bj ⊕ ri·(t+1)+j ⊕ ri·(t+1)+j+1) (3.2)

for i = 0 . . . t. This scheme involves 2t+1 randoms, and in Equation 3.2 is rt·(t+1)+t+1 =

r0. In particular, case when t = 2 is reported in Figure 3.4.

The construction is decomposed into three layers. The non-linear layer N (ring

green in Figure 3.4), is the part in which the products ai · bj are computed. Note

that this layer maps 2 · (t+ 1) inputs in (t+ 1)2 outputs. In the refresh layer R (ring

yellow in Figure 3.4) the 2t+1 randoms are xored to the products computed in N ;

main features of this ring descend from ISW scheme. The outputs of this layer are

in number (t+ 1)2. In the last compression layer C (ring red in Figure 3.4), outputs

of the construction are computed, xoring all the outputs of R (t + 1)-by-(t + 1).

47

Chapter 3. Probing security

⊕
r1

a0

b0

⊕

r2 a0

b1⊕

r3

a0
b2

⊕
r4

a0
b3

⊕
r5

a1b0

⊕r6

a1b1

⊕r7

a1
b2

⊕
r8

a1
b3

⊕
r9

a2

b0

⊕
r10

a2
b1

⊕
r11

a2
b2

⊕
r12

a2b3

⊕
r13

a3b0

⊕
r14

a3
b1

⊕ r15

a3
b2

⊕
r0

a3

b3

⊕
c0

⊕
c1

⊕
c2

⊕
c3

compression layer C
refresh layer R
non-linear layer N

Figure 3.5: CMS scheme when t = 3, and then with 4 shares.

To satisfy the non-completeness property and avoid glitches causing leakage of more

than the intended number of shares, it is crucial to isolate the R and C layers using

registers (black ring in Figure 3.4).

All the ci output shares are computed in a pseudo-isolating way, and each part of

the construction outputting them is called cone. Every cone shares only two randoms

with the adjacent ones, one on the left side and one on the right.

In [98], it is proved that the CMS scheme until t = 2 is robust probing secure,

while in [92] the non-robust probing security of it is proved for t ≥ 3. Note that

this vulnerability exists even if one does not consider extended probes. Indeed, when

t = 3 (Figure 3.5), an attacker can place for example a classical probe on the output

c0, recovering the quantity

a0 · (
⊕
j=0...t

bj)⊕ r0 ⊕ r4

and two internal probes knowing values of r0 and r4, with the aim to unmask the xor

among all the shares of b.

Domain-oriented masking for multiplication. The domain-oriented masking

(DOM) [67] is a generic masking scheme that leads to hardware designs which can be

synthesized for arbitrary protection orders. DOM involves a relatively few randomness

amount (t+1
2

randoms to achieve t probing security), without being vulnerable to

glitches.

48

3.1.2 Robust probing security

⊕ a1

b0

a1b1

a0

b0

⊕
r0

a0b1

⊕
c0

⊕
c1

Figure 3.6: DOM scheme when t = 1, and then with 2 shares.

The core idea is that each share of a variable is associated with one share domain,

i.e., shares of x are such that x0 is associated to the 0−domain, x1 to the 1−domain

and so on. Then, in this construction, each multiplication between two shares from

different domains (cross domain product) is refreshed and saved into registers. In

opposition, multiplications between elements from the same domain are called inner

domain products.

In [67] two DOM schemes are presented: the DOM-indep and the DOM-dep (the

last has been declared not secure in presence of glitches [92]). For what concerns the

DOM-indep scheme, its general form is described by the following equations:

c0 = a0b0 + [a0b1 + r0] + [a0b2 + r1] + [a0b3 + r3] . . .

c1 = [a1b0 + r0] + a1b1 + [a1b2 + r2] + [a1b3 + r4] . . .

c2 = [a2b0 + r1] + [a2b1 + r2] + a2b2 + [a2b3 + r5] . . .

c3 = [a3b0 + r3] + [a3b1 + r4] + [a3b2 + r5] + a3b3 . . .

. . .

where in bold there are the inner domains terms, that don’t need to be stored in

registers. In Figure 3.6 there is the representation of this scheme when t = 1. Note

that, in relation to Figures 3.4 and 3.5, the construction is divided into three parts:

nonlinear, refreshing and compression.

This scheme, is proved robust t-probing secure and also t-SNI [67, 92].

49

Chapter 3. Probing security

3.1.2.1 The robust composability problem

In literature, the problem to define secure and composable gadgets has been stud-

ied also when glitches are considered. In [59], it is exposed for the first time this

issue.

Let G be a gadget declared t-SNI. Clearly, as long as one assumes that no in-

formation is leaked about the internal values, G remains t-SNI, but this model is

unrealistic. Indeed, as just seen before, a concrete hardware implementation may

leak about intermediate values via glitches. So, despite G is SNI in a classical model

(namely, without considering glitches), in this context it is not SNI because the in-

termediate values can be leaked due to physical defaults, preventing any successful

simulation.

On the other side, if the gadget G is declared glitch-resistant, this is not a sufficient

condition for the composability, and then the composition of more of such gadgets

can however leak information about the secrets.

This shows that these two properties alone are not enough to reason about probing

security in hardware (i.e., in presence of glitches).

A first solution can be to add some refresh gadgets, namely gadgets with the

function to mask the shares of the secrets [98]. But the more recent solution to this

issue is given in [59], in which the robust probing model is defined.

Definition 3.6. A function is t-robust non interfering (shortly robust t-NI) if, when

given o external output probes and i internal extended probes, with o + i ≤ t, it

implies a dependency with maximum o+ i input shares.

Definition 3.7. A function is t-robust strong non interfering (shortly robust t-SNI) if,

when given o external extended probes and i internal extended probes, with o+ i ≤ t,

it implies a dependency with maximum i input shares.

In [59], a notable result about robust composability is presented: if registers are

inserted after t-SNI gadgets, a designer can deal with glitch robustness and compos-

ability separately.

Proposition 3.1.1. If a gadget G storing its outputs in registers is both robust t-NI

and t-SNI (without glitches), then it is also robust t-SNI.

Proof. For the proof, see [59].

Ishai-Sahai-Wagner multiplication. In [59], the ISW scheme is declared robust

t-SNI, with a little finessing, i.e., reordering the intermediate values, saving them after

refreshing part in registers, and placing also other registers on the outputs, rendering

the implementation of two cycles. Explicitly, for t = 1:

50

3.1.3 Verification tools

c0 = [a0 · b0 ⊕ [a0 · b1 ⊕ z0,1]]

c1 = [a1 · b1 ⊕ [a1 · b0 ⊕ z0,1]]

This means to add external registers to the construction in Figure 3.3. Note

that now an extended probe placed on the output before been saved in register is

an internal probe, preserving robust t-SNI definition. This is a clear example of the

effects presented in Proposition 3.1.1.

Domain-oriented masking multiplication. DOM-indep scheme is not robust t-

SNI [92], but, since the DOM-indep is proved to be t-SNI and robust t-NI, another

time thanks to Proposition 3.1.1 it is possible to achieve the robust strong non-

interference storing the outputs in registers.

Probe-isolating non-interference. Also in the context of the probe-isolating non-

interference property, some considerations in the presence of glitches can be done.

Indeed, in [39] the authors prove that a compositional strategy that is correct

without glitches remains valid with glitches. Then, they use this extended framework

and present some masked gadgets that enable trivial composition with glitches at

arbitrary orders. For example, they describe the Hardware Private Circuits 1 (HPC1),

an efficient glitch-robust PINI multiplication gadget, proving its security at all orders

and for any field Fn.

3.1.3 Verification tools

In the literature, many efforts have been done to define tools verifying if a gadget is

secure (probing secure, t-NI, t-SNI, ...). Generally, these verification tools are divided

into software and hardware: in the first set are counted the automated methods to

build or verify masked implementations in a ”classical” probing situation, then when

glitches are not considered. Instead, in the second set, there are those that declare if

an implementation is secure also in case of glitches.

Software-based tools. The first work done in this direction is in [93], where the

authors consider the use of automated methods to build or verify masked implemen-

tations. They propose and implement a masking compiler that track which variables

are masked by random values and iteratively modifies an unprotected program until

all secrets are masked. This strategy suffices to ensure security against first-order

power attacks and works well on many examples. This method is mostly efficient

51

Chapter 3. Probing security

and scalable, but often overly conservative, and sometimes also secure programs are

rejected.

In [11] a smt-based method for analyzing the security of masked implementations

against first-order power attacks is suggested: this method directly proves the sta-

tistical independence between secrets and leakage. The approach is limited to first

order masking, but was extended to higher orders in [58]. Unfortunately, this method

incurs an exponential blow-up in the security order, and also the improved version in

[58] remains limited from this side.

Some years later, in [125] the authors propose a tool called SCInfer, in which

they implement some abstraction-refinement techniques, providing significant im-

provement in terms of precision and scalability. Indeed, that tool alternates between

fast and moderately precise approaches and computationally expensive but precise

approaches.

Among all the methods appeared in literature to verify if a gadget is non inter-

fering, the most relevant in the last years is certainly the maskverif tool, presented

for the first time at the EUROCRYPT conference [10]. In this work, the authors

establish a tight connection between the security of masked implementations and

probabilistic non interference, for which they suggest efficient verification methods.

Specifically, they show how a relational program logic previously used for mechanizing

proofs of provable security can be specialized into an efficient procedure for proving

probabilistic non interference and develop techniques that overcome the combinato-

rial explosion of observation sets for high orders. The main idea of their algorithm

is to carefully select sets of t or more intermediate variables and to repeatedly apply

optimistic sampling on the tuple of expressions that represent the results of these

intermediate variables until they do not depend on the secret. The maskverif tool

achieves practicality at reasonably high orders. For instance, maskverif is used

to automatically and formally verify the probing security of gadgets also at higher

order (e.g., ISW scheme at fifth order). A slightly modified version also can verify

the security of higher-order implementations in the transition-based model. After

the introduction of the strong non interference definition, they adapt maskverif to

check the t-SNI property. The adaptation achieves similar coverage as the original

tool, i.e., it achieves practicality at reasonably high-orders.

More recently, in [51] a tool called checkMasks has been presented. check-

Masks achieves similar functionalities as maskverif, but exploits a more extensive

set of transformations for operating on tuples of expressions. This is useful to achieve

better verification times on selected examples.

52

3.2. A relation calculus for reasoning about t-probing security

Hardware-based tools. In a context in which also glitches are considered, in [26]

the authors propose a formal technique for proving security of implementations in

the threshold probing model with glitches. Their method is based on Xiao-Massey

lemma, which provides a necessary and sufficient condition for a Boolean function to

be statistically independent of a subset of its variables. Informally, the lemma states

that a Boolean function f is statistically independent of a set of variables X if and

only if the Fourier coefficients of every non-empty subset of X is null. To overcome

the computational expensiveness of the computation of Fourier coefficients, they use

instead an approximation method. By encoding their approximation in logical form,

they can instantiate their approach using sat-based solvers. Their tool is able to

verify implementations of S-Boxes of AES, Keccak and FIDES. However, the cost of

the verification is significant.

Later, also maskverif tool has been improved [6] with a unified framework to

efficiently and formally verify both software and hardware implementations. In this

process, the authors introduce a simple but expressive intermediate language: their

representation requires that each instruction is instrumented with leakage expressions

that may depend on the expressions that arise in the instruction and on previous

computation.

In the context of the hardware-based tools, another important branch has been

recently developed, i.e., that based on the exploitation of BDDs as formal verification

(see Section 2.1.6). In particular, in [75] the authors propose SILVER tool, based

on a symbolic analysis of probability distributions and statistical independence of

joint distributions. With Silver, they are able to formally analyze and verify masked

circuits in the d-probing model, even in the presence of glitches as physical defaults.

Recently, a new BDDs-based tool has been presented in [74], which allows creating

secure and efficient masked cryptographic circuits originating from an unprotected

design.

3.2 A relation calculus for reasoning about t-probing

security

In this work [90], we investigate an alternative formalization which, we argue, is

simpler to reason with. In fact, it allowed us to prove some new properties of probing

security (see Theorem 3.2.12 and 3.2.19). Our approach is based on the spectral

theory of Boolean functions, and represents, to some extent, an extension of the work

presented in [26]. However, while the latter only addressed single output Boolean

functions, we are the first to formalize the multiple dependencies between outputs

53

Chapter 3. Probing security

and inputs of a vector function, with the added benefit of being supported by many

matrix-based toolboxes.

3.2.1 A relation calculus for shares

Let us consider a hardware implementation of a generic function:

f(x1, . . . , xn) : Fn2 → Fm2

where the values xi are sensitive (i.e., they have been computed using a secret).

A side-channel attack consists of measuring the power consumption of internal nodes

of the circuit (through probes) and by searching through a set of guesses of the secret

for the one that maximizes the correlation.

To design a mitigation against a side-channel attack, designers split each sensitive

value xi into d values αi = {αi,j}j∈1...d such that
∑

j αi,j = xi; these d values are called

shares. In principle, this is done by using d− 1 auxiliary random values (aka masks)

and, unless one obtains all d shares αi,j, the correlation of each share with the sensitive

value xi is negligible [73]. The implementation of f must be changed to provide the

result as a set of shares much like the original sensitive values. The computation of

each output fi is thus split into a set of d vector functions ωi = {ωi,j}j∈1...d such that

fi(x1, . . . , xn) =
∑
j

ωi,j(A1, . . . , An), Ai ⊆ {αi,1, . . . αi,d}

where each ωi,j is called an output share of fi and it must be impossible to recon-

struct fi unless one obtains all d output shares.

In the probing-security attack model, aside from regular output shares ωi, at-

tackers can observe (through probes) a group of the internal values of the circuit as

additional outputs

Π = {π1, . . . , π|Π|}

where each πi is a function of the input shares. A mitigation against a probing

attack ensures that none of the πi are correlated with the original sensitive values.

To design such countermeasures, besides the shares of the original sensitive values,

designers use an additional group of inputs P = {ρ1 . . . ρ|P |} which are uniformly

random. These values are used to ”refresh” the internally computed values of the

function to make each π and ω not correlated with the sensitive values.

It is clear that correlation between each ω and π with any α and ρ is critical

to determine whether the circuit is probing secure. A possible way to encode this

54

3.2.1 A relation calculus for shares

information is to have a multi-dimensional matrix* called the shares’ relation matrix :

Definition 3.2.1 (Shares’ relation matrix). Given a boolean function f : F|A|2 → F|Ω|2 ,

where A is the set of the function’s input shares αk, Ω is the set of output shares ωk,

we define the shares’ relation matrix of f as a multidimensional matrix F where each

element:

F
jρjα|A| ···jα1

iπiω|Ω| ···iω1
∈ {0, 1}, (3.3)

is indexed by:

� jαk ∈ {0, . . . , d}, k ∈ {1, . . . , |A|}

� jρ ∈ {0, . . . , |P |}

� iωp ∈ {0, . . . , d}, p ∈ {1, . . . , |Ω|}

� iπ ∈ {0, . . . , |Π|}

and it is equal to 1 only if there exist a non-zero correlation between jαk shares of

αk and jρ randoms with iωp output shares of ωp and iπ probes, for all k, p.

A formal definition of such type of matrices is presented in Appendix 3.2.5.2 where,

in particular, we consider multiple random Pl and probe Πz groups instead of a single

P and Π as above; however, for the rest of this Section, it is only necessary to get

an intuitive understanding of it which we will develop in the following paragraphs. A

practical way to compute a shares’ relation matrix for a function f is deriving it from

the Walsh matrix of f . Indeed, correlation matrices are useful to determine whether a

set of output shares is vulnerable, i.e., correlated with one or more sensitive variables

[123, 119, 38]. In particular, for a circuit f , any combination of outputs (encoded

with the spectral coordinate φ) is correlated with a set of inputs (encoded with the

spectral coordinate ψ) if Wf (φ, ψ) 6= 0. It is possible to see a correlation matrix

as an incidence matrix which encodes a dependency relation between the inputs and

outputs of f . Such relation matrices (which are typically built over a Boolean semiring

K = {(0, 1),∨,∧}) are the fundamental building block for the calculus of relations�,

an algorithmic device that allows the substitution of computation for a sometimes

*Perhaps the most appropriate name for this type of object would be tensor but this name also

implies some additional properties that are not used in this work.
�A relation matrix element Ri,j ∈ K represents the absence (0) or presence (1) of a relationship

iRj between entities encoded through row index i and column index j and the logic composition of

relations can be encoded into a linear algebra expression and analyzed with conventional tools. In

particular, logical disjunction is represented as matrix sum ((R + S)i,j = Ri,j ∨ Si,j), logical con-

junction as the Hadamard product ((R ◦S)i,j = Ri,j ∧Si,j), and ”Relative product” as conventional

matrix multiplication ((RS)i,j = ∃kRi,k ∧ Sk,j).

55

Chapter 3. Probing security

difficult ratiocination [49]. We can derive a relation matrix W̃f from the correlation

matrix Wf of a vectorial Boolean function element-wise *:

W̃f (i, j) := (Wf (i, j) 6= 0). (3.4)

Once a relation matrix W̃f has been found, one can derive easily the shares’ relation

matrix in Eq. 3.3 by inspection. Thus, we derive the shares’ relation matrix in a

two-step process by starting from the correlation matrix of f :

Wf → W̃f → F

Example 3.2.2. Consider a function f : F4
2 → F3

2

f(a0, a1, r0, r1) =

 f0

f1

f2

 =

 a0 + r0 + r1

a1 + r0 + r1

a1 + r0


such that

� a0 and a1 are two shares of a single sensitive input a,

� r0 and r1 are two random values,

� f0 and f1 are two shares of a single output o, and

� f2 is the value associated with a potential internal probe p within the circuit

realization of f .

From its correlation matrix, we can derive through Eq. 3.4 the following relation

matrix W̃f (φ, ψ) (φ = [γf2γf1γf0], ψ = [γr1γr0γa1γa0]):

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 γr1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 γr0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 γa1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 γa0

γf2 γf1 γf0
0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

(3.5)

*In Section, we consider all indices starting from 0.

56

3.2.1 A relation calculus for shares

Note that we have labeled columns (rows) with the corresponding combination of

inputs (outputs) in binary form. For example, element W̃f ([011], [0011]) (which is

1) represents an existing dependency between f0 ⊕ f1 and a0 ⊕ a1; note that in this

specific case Wf = W̃f = 1 but in general W̃f (i, j) is 1 whenever Wf (i, j) is different

from zero.

From the original correlation matrix W̃f (Eq. 3.5), it is thus possible to derive the

corresponding shares’ relation matrix F which accounts only for the amount of shares

of the output and probes whose combination is correlated with a specified number of

shares of the input and of randoms:

0 0 0 1 1 1 2 2 2 ρ

0 1 2 0 1 2 0 1 2 α

π ω

0 0 1

0 1 1

0 2 1

1 0 1

1 1 1 1

1 2 1

(3.6)

Note that the coordinates of this new relation matrix are computed by the Ham-

ming weights of the spectral coordinates of W̃f split by their type (r the randoms,

a the inputs, o the outputs, p the probes). This allows us to index in an alternative

way any element F (i, j):

F jrja
ipio

where, as shown in the appendix, ip, io, jr, ja are exactly the multi-radix representation

of i, j and carry additional information, i.e., the distinction between the related input-

random (output-probe) composition.

This work concerns itself with deriving security properties associated with the

composition of functions. In the following we consider the function h(x) = g(f(x))

as an horizontal composition of g with f while the vector function

v(x1, x2) = [f(x1); g(x2)]

as the vertical composition of f and g. We will show that the shares’ relation ma-

trix of a function distributes over vertical composition while, concerning horizontal

composition, we can assert a weaker rule (see below) which will be still valid for in-

ferring probing security. With regard to the proofs of following theorems, the reader

is invited to refer to Appendix 3.2.5.2.

Note that the definition of the shares’ relation matrix is different from the Probe

Distribution Table (PDT) introduced in [40] because the latter does not account for

57

Chapter 3. Probing security

the potential compression of information that is obtained by encoding the hamming

weights of the spectral coordinates. With respect to [40] we show that it is possible to

work with such minimal objects without resorting to encoding explicitly all possible

input/output relationships. Note also that the goal of our work is more related to

explaining how the composition of primitive gadgets works rather than in determining

inner properties for such primitives through their correlation matrices. However, we

have provided in other work [89] some deduction on the complexity required for

deriving from scratch the above correlation matrices.

Theorem 3.2.3 (Identity). Given id : Fn2 → Fn2 the identity function, its shares’

relation matrix is In+1, where I is the identity matrix (see Appendix for the proof).

The horizontal compositionality of the shares’ relation matrices is determined by a

weaker rule with respect to the conventional correlation matrix (see Theorem 3.2.32);

in particular, as long as we look at the constituent parts of an horizontal composition

of shares’ relation matrices, their product will be always conservatively more than

the original shares’ relation matrix, as stated in the following theorem:

Theorem 3.2.4 (Shares’ relation matrices pseudo-horizontal composition). Given

two functions f and g, and F , G, FG the shares’ relation matrices of f , g and g ◦ f
respectively, the following dominance holds:

(FG)
JρJα
IπIω
� FKL

IπIωG
JρJα
KL

(see Appendix for the proof).

Practically speaking, if the product of two shares’ relation matrices does not imply

a dependency between variables, this will be absent from the whole shares’ relation

matrix as well. Vertical composition, however, still holds as the following theorems

show:

Theorem 3.2.5 (Shares’ relation matrices pseudo-distributivity over tensor product).

Given two functions f and g, and F , G, F |G the shares’ relation matrices of f , g

and the vertical juxtaposition of g above f respectively, the following holds:

(F |G)
(Jρf |Jρg)(Jαf |Jαg)

(Iπf |Iπg)(Iωf |Iωg) = F
Jρf Jαf
Iπf Iωf

⊗GJρgJαg
Iπg Iωg

where ⊗ is the Kronecker (or tensor) product, see Appendix for the proof.

Corollary 3.2.6 (Tensor product with identity). From the previous theorems, it

follows that the following equalities hold:

(In+1|G)
(Jρid |Jρg)(Jαid |Jαg)

(Iπid |Iπg)(Iωid |Iωg) = δ(JρidJαid , IπidJωid) ·G
JρgJαg
Iπg Iωg

(G|In+1)
(Jρg |Jρid)(Jαg |Jαid)

(Iπg |Iπid)(Iωg |Iωid) = G
JρgJαg
Iπg Iωg

· δ(JρidJαid , IπidJωid)
(3.7)

where δ is the Kronecker’s delta.

58

3.2.2 Application to t-probing security

3.2.2 Application to t-probing security

In this section we revisit and enhance known theorems about t-probing security

by showing how they naturally descend from the relation calculus of shares based

on shares’ relation matrices. We recall that t-probing security centers around the

concept of t-non-interfering function. A function f is t-NI if, when given a total of

s outputs and internal probes, s ≤ t implies a dependency with maximum s input

shares. A function f is t-SNI if s ≤ t implies a dependency with maximum i input

shares, where i is the number of internal probes.

Much has been said about the composition rules of such functions and, unfortu-

nately, their proofs are complex, long or require much expertise in type theoretical

or formal validation area [9]; we will show that the relation calculus of shares allows

to revisit and extend these proofs with conventional linear algebra tools, broadening

the potential audience.

To talk about t-probing security, we’ve found useful to follow this general pattern:

i) we explicitly include random refresh values as inputs* and ii) we include in the sig-

nature of the function also the probes considered. This creates a natural subdivision

of the shares’ relation matrix for the considered function. Before introducing some

general results that can be derived with our formalism, however, we introduce an

additional example that shows how one could identify a violation of compositionality

in an existing gadget with our formalism.

Example 3.2.7. (Extended from [89]). In this example, we revisit through our

formalism a case discovered in [52] that proves that, in general, the composition of

t-NI and t-SNI functions is not t-NI.

Figure 3.7 shows the structure of a function h(a) which is a composition of two

functions f and g; the assumptions are that f is t-NI and g is t-SNI. The secrets are

split into three shares. f refreshes its input a with two random bits rf :

of (a0, a1, a2, r0, r1) = [a0 ⊕ r0 ⊕ r1, a1 ⊕ r0, a2 ⊕ r1]

and it is assumed to have been probed at location pf = a0 ⊕ r0. On the other hand,

g(a, b, rg) is the ISW multiplication [73] which consumes 3 random bits rg for the secret

computation. Also in this case, it is assumed a single probe pg = a2 ∧ b1. We will

show that our method provides a sufficient precision to individuate the vulnerability

spotted in [52]. To fit into our formalism however, we must consider the underlying

correlation matrices that include explicitly i) the random values both f and g consume

to refresh the data and ii) the probes that are present. The string diagram in Figure

*After all, these are values generated independently by a separated random number generator

so it makes sense to include them in the signature of the function itself.

59

Chapter 3. Probing security

g
f a

og = h(a)

rfrg

pfpg

of

Figure 3.7: The composition pattern of f (t-NI) and g (t-SNI) studied in Example

3.2.7 and derived from [52]. The composed function h(a) is not t-NI as can be easily

checked with our formalism.

3.11 describes the composition pattern of correlation matrices as a mapping from the

space of the Fourier transform of the input distribution A⊗Rf ⊗Rg (i.e., the actual

inputs plus the random values) to the one of the output distribution Og ⊗ Pg ⊗ Pf
(i.e., the actual output of g and the probes in both f and g). Still considering the

string diagram of Figure 3.11, one can derive one of the equivalent expressions of the

correlation matrix of h as

Wh = (I2 ⊗Wg)(Wq ⊗ I23 ⊗ I23)(I23 ⊗Wf ⊗ I23)(I23 ⊗ I22 ⊗Ws)

where Ws is the correlation matrix of the duplication function s = (x) 7→ (x, x) and

Wq is the correlation matrix of function q = (x, y) 7→ (y, x). We are interested in

computing the potential dependencies between any combination of output/probes and

inputs that are not masked by random values. Thus, computing the shares’ relation

matrices from all the previous correlation matrices, by Theorems 3.2.4 and 3.2.5, the

following holds:

H � (I2 ⊗G)(Q⊗ I4 ⊗ I4)(I4 ⊗ F ⊗ I4)(I4 ⊗ I3 ⊗ S) (3.8)

where H, F , G, S and Q are the shares’ relation matrices computed for functions

h, f , g, s and q respectively.

The value of the right-hand side of Eq. 3.8 is shown in Figure 3.8. First, we are

interested only in the first 4 columns, as these are the ones that represent relationships

between the outputs and the shares of a not masked by any random value. We note

that there is a potential dependency in row [1, 1, 0], column [0, 0, 3], exactly the one

found in [52], which says that one needs only two probe values to get three shares; h is

thus not even 2-NI, showing that t-NI and t-SNI do not compose into a t-NI function.

This example shows that the proposed calculus of shares has sufficient precision to

60

3.2.3 Proving general patterns of compositional security

0 0 0 0 0 0 0 0 0 0 . . . ρg

0 0 0 0 1 1 1 1 2 2 . . . ρf

0 1 2 3 0 1 2 3 0 1 . . . α

πf πg ωg

0 0 0 1

0 0 1

0 0 2

0 0 3 1 1

0 1 0 1 1 1 1 1 1 1

0 1 1

0 1 2

0 1 3 1 1 1 1 1 1 1 1 1 1

1 0 0 1

1 0 1

1 0 2

1 0 3 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1

1 1 2

1 1 3 1 1 1 1 1 1 1 1 1 1

(3.9)

Figure 3.8: The shares’ relation matrix of function h in example 3.2.7 derived from

[52] (we use greek letters to indicate the spectral coordinate associated with each

function variable, i.e., α is the spectral coordinate associated with variable a and so

on). One can see that in row [1, 1, 0], column [0, 0, 3] there is a potential relation

between two probes and the three shares of a, meaning that the composition is not

even 2-NI.

discover these cases. On one hand, these could be false positives because of the

dominance relation in Eq. (3.8); on the other hand, however, this formalism rules out

any false negative. We will show that the stronger concept of t-SNI naturally emerges,

in our relation calculus, as a fundamental property to ensure compositionality.

3.2.3 Proving general patterns of compositional security

The shares’ relation matrix can be a reasonable way for exploring t-probing secu-

rity, but there is more. In fact, it is possible to demonstrate that in order to rule out

dependencies similar to Example 3.2.7, both f and g must be t-SNI. In this section,

we will revisit some known composition patterns (e.g., Theorem 3.2.19 and Corollar-

ies 3.2.16 and 3.2.24 appeared in [8]) and introduce a new one not known in literature

(Theorem 3.2.12).

Here, we restate what it means for a function f to be t-NI/t-SNI in terms of the

61

Chapter 3. Probing security

shares’ relation matrix F :

Definition 3.2.8. f is t-SNI iff, for any set of probes that could be introduced in it,

the following predicate is true for any element (i, j) of its shares’ relation matrix:

|iπ|+ |iω| ≤ t ∧ (∃a.jαa > |iπ|) =⇒ ¬F 0···0jα|A| ···jα1

iπ|Π| ···iπ1 iω|Ω| ···iω1

Definition 3.2.9. f is t-NI iff, for any set of probes that could be introduced in it,

the following predicate is true for any element (i, j) of its shares’ relation matrix:

|iπ|+ |iω| ≤ t ∧ (∃a.jαa > |iπ|+ |iω|) =⇒ ¬F 0···0jα|A| ···jα1

iπ|Π| ···iπ1 iω|Ω| ···iω1

where it is evident that t-NI corresponds to a weaker version of t-SNI.

Example 3.2.10. The Coron’s linear-space variant [52] of the ISW multiplication

[73] is t-SNI [9] and this can be easily seen through the shares’ relation matrix. Let

us consider its form for t = 1; in this case we have two shares for two inputs a and b,

one random value r, two output shares o and six possible internal probes p:

SecMult(a0, a1, b0, b1, r) = [o0, o1, p0, p1, p2, p3, p4, p5]

where 

o0

o1

p0

p1

p2

p3

p4

p5


=



a0b0 + r

a1b1 + ((a0b1 + r) + a1b0)

a0b0

a1b1

a0b1

a1b0

a0b1 + r

(a0b1 + r) + a1b0


(3.10)

Part of the corresponding shares’ relation matrix is shown in Figure 3.9; it can be

seen that for π+ω ≤ 1, ρ = 0 and α, β > 1 (white areas) we have a null dependency,

i.e., the function is 1-SNI.

The simplest composition pattern for which we can derive general rules is l = g◦f .

The corresponding map between the Fourier transforms of distributions is shown in

Figure 3.10. The question we address is if l (with the associated shares’ relation matrix

L) is t-SNI/t-NI according to definition 3.2.8 and 3.2.9, by making assumptions on the

probing security of the underlying functions f and g (whose shares’ relation matrices

are called F and G respectively). Note that, to fit within our formalism, we need to

explicitly route the refresh values for g and probed value of f with a function q that

62

3.2.3 Proving general patterns of compositional security

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 . . . ρ

0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 . . . β

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 . . . α

π ω

0 0

0 1 1 1 1 1 1 1 1 1 1

... ...

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

... ...

(3.11)

Figure 3.9: Part of the shares’ relation matrix of SecMult function [52] (only inter-

esting rows for t-SNI are shown). Note that α, β and ρ are the spectral coordinates

associated with inputs a, b and r, while ω and π are the spectral coordinates for o

and p.

Wq

WcWbWa

Rg

Rf

A

Pf

Of

WfWg

Pf

Pg

Og

Figure 3.10: Map between Fourier transforms of probability distributions implied by

a function composition l = g ◦ f .

63

Chapter 3. Probing security

just swaps those values. Note that, since matrix Q is the shares’ relation matrix of

q : (x, y) 7→ (y, x) function, it can be shown that the following holds:

Q
jπf ,jρg
iρg ,iπf

= δ(iπf , jπf) · δ(iρg , jρg)

Besides, by Theorem 3.2.4, we know that L is dominated by the product:

ABC = (Inπf ⊗G) · (Q⊗ Inωf) · (Inρg ⊗ F)

where nπf (nωf , nρg) is the number of probes in f (output’s shares of f , randoms

needed to refresh g) plus 1 (see Theorem 3.2.3).

The following lemma can be proved

Lemma 3.2.11. The product ABC is such that

(ABC)0,0,jα
iπf iπg iωg

=
∑
r

G0,r
iπg iωg

F 0,jα
iπf ,r

For a proof see Appendix.

We are now able to derive formally if and when L is t-SNI/t-NI.

Theorem 3.2.12. If f is t-SNI and g is t-NI, then l(x) = g(f(x)) is t-SNI. Formally,

the following three axioms:

Axiom 3.2.13. r + |iπf | ≤ t ∧ v > |iπf | =⇒ ¬F 0,v
iπf ,r

Axiom 3.2.14. |iωg |+ |iπg | ≤ t ∧ r > |iπg |+ |iωg | =⇒ ¬G0,r
iπg ,iωg

Axiom 3.2.15. (|iπg |+ |iπf |+ |iωg | ≤ t) ∧ (jα > |iπg |+ |iπf |)

entail (ABC)0,0,jα
iπf iπg iωg

= 0

Proof. Exploiting above Axioms and Lemma 3.2.11 we can derive that:

(ABC)0,0,jα
iπf iπg iωg

Lem. 3.2.11
=

∑
r

G0,r
iπg iωg

F 0,jα
iπf ,r

A3.2.13,A3.2.14

�
∑

t−iπf<r≤iπg+iωg

G0,r
iπg ,iωg

A3.2.15

� 0

Corollary 3.2.16. If f and g are t-SNI functions then also l(x) = g(f(x)) is t-SNI.

Proof. Assuming g is t-SNI, then it is also t-NI and the thesis follows from theorem

3.2.12.

64

3.2.3 Proving general patterns of compositional security

Ws

Wq

WdWcWbWa

Rg

Rf

A

Pf

Of

Wf

Wg

Pf

Pg

Og

Figure 3.11: Map between Fourier transforms of probability distributions implied by

the second composition pattern studied in this work

We already saw an example of another composition pattern studied in the lit-

erature, whose circuit diagram is shown in Figure 3.7. The diagram associated to

its correlation matrices is the one shown in Figure 3.11. With our formalism, it is

possible to identify some general rules to determine if such a composed function is

t-NI/t-SNI (according to definitions 3.2.8 and 3.2.9) by making assumptions on the

probing security of the underlying functions f and g. Note that, to reconcile with

our model of function, we explicitly split the whole function l into a composition

a ◦ b ◦ c ◦ d. In particular, d contains the duplication function s that sends a copy

of the shared input to both f and g, while b contains q as in the pattern that we

previously studied. The shares relation matrix S associated to s : x 7→ (x, x) function

is characterized by the following lemma:

Lemma 3.2.17. For any iα1 , iα2 , jα indices, the following holds:

|iα1|+ |iα2| < |jα| =⇒ Sjαiα1 ,iα2
= 0

For a proof see Appendix.

From the point of view of the shares’ relation matrix involved, we know that whole

function is dominated by the product (see Theorem 3.2.4):

ABCD = (Inπf ⊗G) · (Q⊗ Inωf ⊗ Inα1
)·(Inρg ⊗ F ⊗ Inα1

)·
· (Inρg ⊗ Inρf ⊗ S)

where nα1 (nρf) is the number of shares of the first g’s input (randoms needed to

refresh f) plus 1.

65

Chapter 3. Probing security

Lemma 3.2.18. The complete relation matrix ABCD computed in Figure 3.11 is

such that

(ABCD)0,0,jα
iπf iπg iωg

=
∑
v,z

(
∑
r

G0,r,z
iπg iωg

F 0,v
iπf ,r

)Sjαv,z

For a proof see Appendix.

We are now able to derive formally when L is t-SNI/t-NI.

Theorem 3.2.19. If f is t-SNI function and g is t-NI, then l(x) = g(f(x), x) is t-NI.

Formally, the following three axioms:

Axiom 3.2.20. r + |iπf | ≤ t ∧ v > |iπf | =⇒ ¬F 0,v
iπf ,r

Axiom 3.2.21. |iωg |+ |iπg | ≤ t ∧ (r > |iπg |+ |iωg | ∨ z > |iπg |+ |iωg |) =⇒ ¬G0,r,z
iπg ,iωg

Axiom 3.2.22. (|iπg |+ |iπf |+ |iωg | ≤ t) ∧ (|jα| > |iπg |+ |iπf |+ |iωg |)
entail (ABCD)0,0,jα

iπf iπg iωg
= 0

Proof. Exploiting above axioms and Lemmas 3.2.17 and 3.2.18:

(ABCD)0,0,jα
iπf iπg iωg

Lem. 3.2.18
=

∑
v,z

(
∑
r

G0,r,z
iπg iωg

F 0,v
iπf ,r

)Sjαv,z (3.12)

A3.2.20

�
∑

v≤iπf ,z

∑
r>t−iπf

G0,r,z
iπg iωg

Sjαv,z (3.13)

A3.2.21,A3.2.22

�
∑

v≤iπf ,z≤iπg+iωg

Sjαv,z
Lem. 3.2.17,A3.2.22

� 0 (3.14)

Remark 3.2.23. Note that the case handled in Theorem 3.2.19 concerns f t-SNI and

g t-NI; vice versa, Example 3.2.7 concerns the inverted case f t-NI and g t-SNI.

Corollary 3.2.24. If f and g are t-SNI functions then also l(x) = g(f(x), x) is

t-SNI. Formally, the following three axioms:

Axiom 3.2.25. r + |iπf | ≤ t ∧ v > |iπf | =⇒ ¬F 0,v
iπf ,r

Axiom 3.2.26. |iωg |+ |iπg | ≤ t ∧ (r > |iπg | ∨ z > |iπg |) =⇒ ¬G0,r,z
iπg ,iωg

Axiom 3.2.27. (|iπg |+ |iπf |+ |iωg | ≤ t) ∧ (|jα| > |iπg |+ |iπf |)
entail (ABCD)0,0,jα

iπf iπg iωg
= 0

Proof. The initial part of the proof is the same of Theorem 3.2.19 up to Equation

(3.13); then the different axioms apply:∑
v≤iπf ,z

∑
r>t−iπf

G0,r,z
iπg iωg

Sjαv,z
A3.2.26,A3.2.27

�
∑

v≤iπf ,z≤iπg

Sjαv,z
Lem. 3.2.17,A3.2.27

� 0

66

3.2.4 Extending the approach to Fn
2k

: the AES inversion

0 1 1 0 1 1 0 1 u

a ∈ F24 b ∈ F24

∨ ∨
1 1 u(4,2).2

Figure 3.12: Example of reduction operation u(k,n).i. The new spectral coordinate bi-

nary encoding u(4,2).2 is the result of or’ing k-bit wide blocks of the original encoding

u

3.2.4 Extending the approach to Fn2k: the AES inversion

A function that has been widely studied in the probing security framework is the

inversion function in AES algorithm; finding a gadget that implements it in a probing

secure way, also when it is composed with previous and following gadgets, has been

a well-known research’s cornerstone [8]. In this section we show how the same result

can be obtained with our formalism; before proceeding, we need to extend some of the

previous results to the case where shares encode values over k bits, i.e., they belong

to Fn
2k

.

3.2.4.1 Shares encoded over Fn2k
Let us thus consider a function f : Fn

2k
→ Fm

2k
; we can extend Eq. 3.4 as follows:

W̃f (i, j) = ∃u, v.Wf (u, v) 6= 0 ∧ (u(k,n).n = i) ∧ (v(k,m).m = j) (3.15)

where u(k,n).n is a reduction operation over the binary encoding of the spectral co-

ordinate u (see Figure 3.12). It can be shown that the shares’ relation matrix for

the relation matrices computed as in Eq. 3.15 still complies with Definitions 3.2.8

and 3.2.9 and Theorems 3.2.4 and 3.2.5. In this setting, affine functions have a nice

representation that will be useful to extend the application of previous theorems:

Definition 3.2.28. A function f : Fn
2k
→ Fn

2k
is a (multi-share) affine function if:

∀x ∈ Fn2k ,∀i ∈ {0, . . . , n− 1}∃g.f(x)i = g(xi)

where g is an affine function, xi is the i-th share of x and f(x)i is the i-th share of

f(x) (see [8]). For conciseness, we will refer to f as an affine function as well.

The relation matrix of an affine function (as well as its shares’ relation matrix) is

an identity, as the following lemma shows.

67

Chapter 3. Probing security

Lemma 3.2.29. Let f : Fn
2k
→ Fn

2k
be an affine function; then W̃f = I2n.

Proof. The affine function f can be seen as the parallel application of n functions gi

such that f(x)i = gi(xi) with 0 ≤ i ≤ n− 1. This implies that

Wf =
0⊗

i=n−1

Wgi

Since each gi is an affine (and balanced) function, then W̃gi = I2 and

W̃f =
0⊗

i=n−1

I2 = I2n

3.2.4.2 Proof of strong non-interference

Let us consider the AES inversion in F28 shown in Figure 3.13b and presented

originally in [99]. First of all, we note that there is a recurring pattern, i.e., the

circuit in Figure 3.13a. The block is composed of a mask refresh Refresh (t-SNI), the

ISW multiplication SecMult (t-SNI), and ·x, an affine power function parameterized

over the exponent x (which is a multiple of two). It is possible to demonstrate that mx

is t-SNI following the same line of reasoning of Theorem 3.2.24 because, by Lemma

3.2.29, the relation matrix of the power function can be interpreted as an identity,

thus the same case as the one shown in Figure 3.11 applies. Considering the overall

algorithm in Figure 3.13b, we observe that this is t-SNI if b◦m2 is t-SNI (by Theorem

3.2.24). By Corollary 3.2.16, b ◦ m2 is t-SNI if b is t-SNI and the latter is true by

Theorem 3.2.24 and by Lemma 3.2.29.

3.2.5 Appendix

Related to this work, there are the three appendices added to this article.

3.2.5.1 A: Properties of the Walsh transform

This section recaps the important properties of the Walsh transform of a vecto-

rial Boolean function and introduces the concept of tensor product for the resulting

matrices [38].

Definition 3.2.30 (Walsh transform of a vectorial function). Given a vectorial

Boolean function f : Fn2 → Fm2 , we define its Walsh transform as a 2m × 2n ma-

trix f̂ whose elements are:

68

3.2.5 Appendix

·x

SecMult

Refresh

(a) The mx block

m2m4·16
SecMult

·4
SecMult

·2

a

a−1 b

(b) Inversion algorithm proposed in [99]

Figure 3.13: An example application of the proposed formalism to functions over

Fn
2k

. Blocks m4 and m2 in (b) are structured as in (a). Note that we have slightly

modified the algorithm presented in [99] by moving two power computation blocks

across duplication points. Semantically, it is always the same circuit but it is easier

to see how previously introduced patterns can still be used to show that it is t-SNI.

f̂ω,α =
∑
x∈Fn2

(−1)ω
ᵀf(x)⊕αᵀx (3.16)

ω ∈ Fm2 , α ∈ Fn2 being the binary encoding of the row and column indices, called

spectral coordinates (or sometimes masks).

These matrices encode the correlation information between input variables’ xor-

combinations and the corresponding output ones. For this reason they sometimes

appear in the literature, scaled by a coefficient 2−n, as correlation matrices [53]:

Wf = 2−nf̂

For correlation matrices, the following theorem holds:

Theorem 3.2.31 (Correlation matrix as a map of probability distributions). Given

a function f : Fn2 → Fm2 and a probability distribution pX : Fn2 → R for its input

variable, the following relation holds:

WfFpX = FpY

where pY is the distribution of the output values while Fg is the Fourier transform of

69

Chapter 3. Probing security

any pseudo-Boolean function g : Fn2 → R and defined as the following:

Fg(γ) =
∑
x∈Fn2

g(x)(−1)γ
ᵀx

For a proof see [53, 55].

Interpreting the Fourier transform of a probability distribution of a variable in

Fn2 as a vector in a subset* Pn of R2n , we find that the correlation matrix Wf of a

function f : Fn2 → Fm2 is just a linear map Pn → Pm. These maps are endowed with

composition:

Theorem 3.2.32 (Composition of correlation matrices). Given two functions f :

Fn2 → Fm2 and g : Fm2 → Fq2, the following holds:

Wg◦f = WgWf

Moreover, if f is a bijection, Wf−1 = W−1
f . For a proof see [38, 96].

Given two independent variables xf ∈ Fnf2 and xg ∈ Fng2 , one can form the prob-

ability distribution of the vector [xf , xg] with the product of distributions. From the

point of view of its Fourier transform, this is a mapping Pnf × Png → Pnf+ng . The

following theorem holds:

Theorem 3.2.33 (Tensor product of correlation matrices). Given two functions f :

Fnf2 → Fmf2 and g : Fng2 → Fmg2 , the correlation matrix of the function h([xf , xg]) =

[f(xf), g(xg)] is Wh = Wg ⊗ Wf where the symbol ⊗ is the Kronecker product (or

tensor product) of matrices (proof in the appendix). It is customary to say that Wh

is a mapping from the space Pnf ⊗ Png to the space Pmf ⊗ Pmg .

Theorem 3.2.33 is informally proven in [53] and it is applied in several works, as

in [24]; taking this into account, in this appendix we try to give to it a formal proof.

For this scope, we define the quotient and remainder operators as follows, to remind

ourselves of the structure of the indices:

i↑p =

⌊
i

p

⌋
, i↓p = i− pi↑p

When p = 2n and i is a number that can be encoded over k > n bit, i↑p corresponds to

the value encoded by the upper k−n bits, while i↓p corresponds to the value encoded

by the lower n bits.

*Note that these are not sub-spaces as the set Pn is not closed under addition.

70

3.2.5 Appendix

Definition 3.2.34 (Kronecker product of matrices). The tensor product of two ma-

trices. X (of n×m elements) and Y (of p× q elements) can be defined as:

(X ⊗ Y)i,j = Xi↑p,j↑qYi↓p,j↓q

Theorem 3.2.33. Note that ω (α) can be treated as a decimal number or as the cor-

responding (vector) binary encoding; moreover, the encoding of ω (α) can in turn be

decomposed into two parts [ωg, ωf] ([αg, αf]) of mg (ng) and mf (nf) bits respectively.

We start by rewriting the definition of ĥ:

ĥ(ω, α) =
1

2nf+ng

∑
x∈F

nf+ng

2

(−1)ω
>h(x)+α>x

=
1

2nf+ng

∑
[xf ,xg]∈F

nf+ng

2

(−1)ω
>
f f(xf)+ω>g g(xg)+α>f xf+α>g xg

= ĝ(ωg, αg)f̂(ωf , αf)

= ĝ(
⌊ ω

2mg

⌋
,
⌊ α

2ng

⌋
)f̂(ω − 2mg

⌊ ω

2mg

⌋
, α− 2ng

⌊ α
2ng

⌋
)

= ĝ(ω↑2mg , α↑2ng)f̂(ω↓2mg , α↓2ng)

and conclude (using Definition 3.2.34) that the last equation represents the generic

element in position (ω, α) of the Kronecker product ĝ ⊗ f̂ .

Reasonings on the effect of composing correlation matrices can be intuitively al-

lowed through diagrams. Each correlation matrix is drawn as a box (except for

identities which are drawn as simple wires), composition is the horizontal juxtaposi-

tion while tensor product is the vertical one (see Figure 3.14 for an example). We

note that there is a remarkable correspondence between a diagram and the underlying

circuit diagram to the point that we could talk about ”the” diagram of the circuit.

Moreover, there always exist two mappings Ba,b : Pa ⊗ Pb → Pb ⊗ Pa and Bb,a such

that Ba,bBb,a = I. Ba,b is exactly the Walsh transform of a function that permutes

variables a and b (this is typically drawn with crossing wires, such as block Q in

Figure 3.11).

3.2.5.2 B: Formal definition of shares’ relation matrix

To formally define the shares’ relation matrix, let us introduce, with a slight abuse

of notation, the mixed-radix representation mrρ(n) of a number n over the vector of

parts ρ = [ρN , . . . , ρ1] as a vector b = [bN+1, . . . , b1] such that:

n =
N+1∑
i=1

bi

i−1∏
j=1

(ρj + 1) where 0 ≤ bi < ρi

71

Chapter 3. Probing security

Wg ⊗ II ⊗Wf

Png

Pnf

Wg

Wf

Pmg

Pmf

Png

Pnf

Wg

Wf

Pmg

Pmf

Figure 3.14: Example of compositional equality derived through a string diagram.

The diagram on the left corresponds to the product (Wg ⊗Wf) while the one on the

right corresponds to (1⊗Wf)(Wg ⊗ 1)(each factor is highlighted with a dotted box).

The fact that the second can be derived simply by moving boxes without crossing

wires implies (because we are in monoidal category) that the underlying formulas are

equivalent, i.e., (Wg ⊗Wf) = (1⊗Wf)(Wg ⊗ 1)

The shares’ relation matrix notation F jrja
ipio

(see Example 3.2.2) refers to an element

(i, j) of F where ([ip, io], [jr, ja]) are just the mixed-radix representation of (i, j) over

the vector of parts ([fp, fo], [fr, fa]) where fa is the number of shares of the input of

function f , fr is the number of refresh values, fo is the number of shares for function

f ’s outputs and fp is the number of probes:

i = ip · (fo + 1) + io (3.17)

j = jr · (fa + 1) + ja (3.18)

Example 3.2.35. For example, the fifth row with index i = 4 of the matrix in

Equation (3.6) has a mixed radix representation [ip, io] = [1, 1] over the vector of

parts [fp, fo] = [1, 2] because:

i = 1 · (2 + 1) + 1

Same reasoning goes for column index 3 which corresponds to the representation [1, 0]

over the vector of parts [fr, fa] = [2, 2], i.e.:

j = 1 · (2 + 1) + 0

Thus we have that F 1,0
1,1 is the element (4, 3) of matrix F and its indexes carries the

fact that it corresponds the correlation of both probes and outputs ([ip, io] = [1, 1])

with one of the random values ([jr, ja] = [1, 0]).

To produce precise proofs of the theorems introduced in this appendix we need to

slightly modify the notation above to show the actual vector of parts over which the

72

3.2.5 Appendix

multi-radix representation is computed. For the sake of generality, we will consider a

generic vector of parts Ω (A) for the matrix rows (columns). Given a function f , we

thus talk about a shares’ relation matrix in the following form:

HΩ,A[W̃f]

With the understanding that each element (i, j) of HΩ,A[W̃f] is such that

F
mrA(j)

mrΩ(i) = HΩ,A[W̃f]i,j (3.19)

We will also use |iξ| to indicate
∑

k iξk , i.e., the sum of the mixed-radix components

of index i associated with the vector of parts Ξ. With this notation, |iπ| practically

means the number of probes associated with a specific value of index i.

Example 3.2.36. Considering Example 3.2.35, we have the following notational

equivalence

F 1,0
1,1 = H[1,2],[2,2][W̃f]4,3

The shares’ relation matrix can be seen as the encoding of a predicate over the

original relation matrix; this fact will be used to prove the remaining theorems in

this appendix and corresponds to an equivalent definition of the matrix itself, as the

following theorem shows.

Alternative Definition 1 (Shares’ relation matrix). The shares’ relation matrix com-

puted from a relation matrix Q̃ ∈ K2Ω×2A is a matrix HΩ,A[Q̃] ∈ KπΩ×πA where

πΩ =
∏
i

(ωi + 1), πA =
∏
i

(αi + 1) (3.20)

and such that each element H[Q̃]i,j is 1 iff:

∃Q̃r,s.Q̃r,s ∧ wtΩ(r) = mrΩ(i) ∧ wtA(s) = mrA(j) (3.21)

where wtV : N → Nv is the hamming weight of each of the v binary parts according

to the vector of parts V .

Remark 3.2.37 (Compact definition). We will sometimes use the notation r ∼Ω i

to indicate the predicate wtΩ(r) = mrΩ(i) (read r is a valid encoding for i). By

construction the following predicate is thus true:

HΩ,A[Q̃]i,j ⇐⇒ ∃r, s.Q̃r,s ∧ (r ∼Ω i) ∧ (s ∼A j) (3.22)

In the following paragraphs we provide a few relevant theorems and proofs valid

for the shares’ relation matrix.

73

Chapter 3. Probing security

Theorem 3.2.3. With the new notation, Theorem 3.2.3 can be rewritten as follows:

Given a vector of parts composed of a single part Π = [π] we have that

HΠ,Π[I2π] = Iπ+1.

To prove it, we elaborate the predicate in Eq. (3.22):

HΠ,Π[I2π]i,j ⇐⇒ ∃r, s.Ir,s ∧ (r ∼Π i) ∧ (s ∼Π j)

` HΠ,Π[I2π]i,j ⇐⇒ ∃r, s.(r == s) ∧ (r ∼Π i) ∧ (s ∼Π j)

` HΠ,Π[I2π]i,j ⇐⇒ (i == j)

and note that the implied condition means exactly that it must be an identity

matrix.

Theorem 3.2.4. With the new notation, Theorem 3.2.4 can be rewritten as follows:

Given two correlation matrices X ∈ K2Ω×2Z and Y ∈ K2Z×2A, the follow-

ing dominance holds between the shares’ relation matrices:

HΩ,A[X̃Y] � HΩ,Z [X̃]HZ,A[Ỹ]

for any choice of compatible* parts Ω, Z and A.

To prove it, note that

HΩ,A[X̃Y] � HΩ,Z [X̃]HZ,A[Ỹ]

represents the following implication (assuming
∑

zi∈Z zi = Z):

HΩ,A[X̃Y]i,j =⇒ ∃ζ.HΩ,Z [X̃]i,ζ ∧HZ,A[Ỹ]ζ,j

which follows directly from the definition in Eq (3.22) (note that once we have t,

ζ exists since we assume Z is compatible):

HΩ,A[X̃Y]i,j ⇐⇒ ∃r, s.(XY r,s 6= 0) ∧ (r ∼Ω i) ∧ (s ∼A j)
` HΩ,A[X̃Y]i,j =⇒ ∃r, s, t.(r ∼Ω i) ∧ (s ∼A j) ∧ (Xr,t 6= 0) ∧ (Yt,s 6= 0)

` HΩ,A[X̃Y]i,j =⇒ ∃r, s, t, ζ.(r ∼Ω i) ∧ (s ∼A j) ∧ (ζ ∼Z t) ∧ X̃r,t ∧ Ỹt,s
` HΩ,A[X̃Y]i,j =⇒ ∃ζ.HΩ,Z [X̃]i,ζ ∧HZ,A[Ỹ]ζ,j

where, in the second step, we applied the following axiom:

XYr,s 6= 0 =⇒ ∃t.Xr,t 6= 0 ∧ Yt,s 6= 0

Note that the converse (⇐) does not hold since matrix multiplication between Walsh

matrices is done over rational numbers which might have different signs so it may

cancel out.
*By compatible, we mean that the set of parts sums up to the specified size, e.g.,

∑
ωi∈Ω ωi = Ω.

74

3.2.5 Appendix

Theorem 3.2.5. With the new notation, Theorem 3.2.5 can be rewritten as follows:

Given two correlation matrices X ∈ K2Φ×2Ψ
and Y ∈ K2Ω×2A, the follow-

ing holds:

HΩ
Φ
,
A
Ψ

[X̃ ⊗ Y] = HΦ,Ψ[X̃]⊗HΩ,A[Ỹ]

where Ω
Φ = Φ‖Ω = {φNΦ

, . . . , φ1, ωNΩ
, . . . ω1}, i.e., the concatenation of

parts Φ and Ω

Before proceeding with the proof, we need to introduce the following lemma:

Lemma 3.2.38 (Equivalences over concatenations of vector of parts). When dealing

with a concatenation of parts Ω
Φ, both the extended Hamming weight and the multiradix

representation comply with the following equivalences:

wtΩ
Φ

(r) = wtΦ(r↑πΩ
)‖wtΩ(r↓πΩ

)

mrΩ
Φ

(i) = mrΦ(i↑πΩ
)‖mrΩ(i↓πΩ

)

Where ‖ is the vector concatenation while πΩ =
∏

i(ωi + 1). This means that we can

split r ∼Ω
Φ
i in the conjunction of two sub conditions:

r ∼Ω
Φ
i ⇐⇒ (r↑πΩ

∼Φ i↑πΩ
) ∧ (r↓πΩ

∼Ω i↓πΩ
)

Theorem 3.2.5 is easily proved by expanding HΩ
Φ
,
A
Ψ

[X̃ ⊗ Y] through the definition

in Eq (3.22), and apply successively Lemma 3.2.38 and Definition 3.2.34:

HΩ
Φ
,
A
Ψ

[X̃ ⊗ Y]i,j = ∃r, s.(X ⊗ Y)r,s 6= 0 ∧ (r ∼Ω
Φ
i) ∧ (s ∼A

Ψ
j)

= ∃r, s.Xr↑πΩ
,s↑πA

6= 0 ∧ Yr↓πΩ
,s↓πA

6= 0 ∧ (r ∼Ω
Φ
i) ∧ (s ∼A

Ψ
j)

= ∃r, s.Xr↑πΩ
,s↑πA

6= 0 ∧ Yr↓πΩ
,s↓πA

6= 0 ∧ (r↑πΩ
∼Φ i↑πΩ

)

∧(r↓πΩ
∼Ω i↓πΩ

) ∧ (s↑πA ∼Ψ j↑πA) ∧ (s↓πA ∼A j↓πA)

= HΦ,Ψ[X̃]i↑πΩ
,j↑πA
∧HΩ,A[Ỹ]i↓πΩ

,j↓πA

= (HΦ,Ψ[X̃]⊗HΩ,A[Ỹ])i,j

Corollary 3.2.6. With the new notation, Corollary 3.2.6 can be rewritten as follows:

HΩ
[x]
,
A
[x]

[I2x ⊗ W̃f]i,j = δ(ix, jx) · F
jα|A| ···jα1

iω|Ω| ···iω1

H[x]
Ω
,
[x]
A

[W̃f ⊗ I2x]i,j = F
jα|A| ···jα1

iω|Ω| ···iω1
· δ(ix, jx)

75

Chapter 3. Probing security

For the first equality:

HΩ
[x]
,
A
[x]

[I2x ⊗ W̃f]i,j ⇐⇒ [Ix+1 ⊗HΩ,A(W̃f)]i,j

⇐⇒ δ(ix, jx) · F
jα|A| ···jα1

iω|Ω| ···iω1

The second equality can be deduced in the same way.

3.2.5.3 C: Relevant theorems and proofs - Section 3.2.2

Lemma 3.2.11. The complete relation matrix ABC computed in Figure 3.10 is such

that

(ABC)0,0,jα
iπf iπg iωg

=
∑
p,q,r

ABp,q,r
iπf iπg iωg

C0,0,jα
p,q,r

=
∑
p,q,r

∑
l,m,n

Al,m,niπf iπg iωg
Bp,q,r
l,m,nC

0,0,jα
p,q,r

Cor. 3.2.6
=

∑
p,q,r

Aq,p,riπf iπg iωg
C0,0,jα
p,q,r

Cor. 3.2.6
=

∑
p,r

Gp,r
iπg iωg

C0,0,jα
p,iπf ,r

Cor. 3.2.6
=

∑
r

G0,r
iπg iωg

F 0,jα
iπf ,r

Lemma 3.2.17. S is the shares’ relation matrix computed from the relation matrix

W̃s of the duplication function s = x 7→ (x, x). It can be shown that elements of this

relation matrix are such that:

W̃s(l,m) ⇐⇒ l↑2n ⊕ l↓2n = m

To prove Lemma 3.2.17, we proceed with a reduction ad absurdum, i.e., we show that

∃iα1 , iα2 , jα.(iα1 + iα2 < jα) ∧ Sjαiα1 ,iα2
= 1

is a contradiction. To derive it we expand in it the definition of shares’ relation matrix

S:

∃iα1 , iα2 , jα.(iα1 + iα2 < jα) ∧ Sjαiα1 ,iα2
= 1

`∃l,m.W̃s(l,m) ∧ wt(α1
α2

)(l) = (
iα1
iα2

) ∧ wtα(m) = jα ∧ (iα1 + iα2 < jα)

`∃l,m.(l↑2n ⊕ l↓2n = m) ∧ wtα1(l↑2n) = iα1 ∧ wtα2(l↓2n) = iα2∧
∧ wtα(m) = jα ∧ (iα1 + iα2 < jα)

`∃l.wtα1(l↑2n) = iα1 ∧ wtα2(l↓2n) = iα2 ∧ wtα(l↑2n ⊕ l↓2n) = jα∧
∧ (iα1 + iα2 < jα)

`wtα1(l↑2n) + wtα2(l↓2n) < wtα(l↑2n ⊕ l↓2n)

76

3.3. On the Spectral Features of Robust Probing Security

the latter judgment is absurd because for all binary vectors a, b holds that wt(a) ⊕
wt(b) ≥ wt(a⊕ b).

Lemma 3.2.18. The complete relation matrix ABCD computed in Figure 3.11 is such

that

(ABCD)0,0,jα
iπf iπg iωg

=
∑
t,u,v,z

ABCt,u,v,z
iπf iπg iωg

D0,0,jα
t,u,v,z

Lem. 3.2.39
=

∑
t,u,v,z

∑
r

Gt,r,z
iπg iωg

F u,v
iπf ,r

D0,0,jα
t,u,v,z

Cor. 3.2.6
=

∑
v,z

(
∑
r

G0,r,z
iπg iωg

F 0,v
iπf ,r

)Sjαv,z

where we used the following:

Lemma 3.2.39.

ABCt,u,v,z
iπf iπg iωg

=
∑
p,q,r,s

ABp,q,r,s
iπf iπg iωg

Ct,u,v,z
p,q,r,s

=
∑
p,q,r,s

∑
l,m,n,o

Al,m,n,oiπf iπg iωg
Bp,q,r,s
l,m,n,oC

t,u,v,z
p,q,r,s

Cor. 3.2.6
=

∑
p,q,r,s

Aq,p,r,siπf iπg iωg
Ct,u,v,z
p,q,r,s

Cor. 3.2.6
=

∑
p,r,s

Gp,r,s
iπg iωg

Ct,u,v,z
p,iπf ,r,s

Cor. 3.2.6
=

∑
r

Gt,r,z
iπg iωg

F u,v
iπf ,r

3.3 On the Spectral Features of Robust Probing

Security

This work revisits t-probing security fundamentals by providing a spectral formal-

ization of non-interference that encompasses recently introduced advancements such

as robust t-probing security [85, 92], and we published it in Transactions of Conference

on Cryptographic Hardware and Embedded Systems (CHES) [89]. The overarching

goal is to give an alternative yet comprehensive view of the problem which might

be more amenable to proof mechanization, in the same vein as [26, 92]. We thus

take a detour from conventional information theoretical considerations (see, for ex-

ample, [85]) for a more algebraic approach which exploits the characterization of the

spectrum of vector Boolean functions and its connections with correlation immunity

[119, 123]. Our approach aims to be more foundational than other approaches based

on spectral characterization which are based on approximations and do not encompass

composability [26]. In this sense, we derive formal conditions for t-probing security

in the presence of glitches by further categorizing probes (e.g., pure vs composed)

to enable compositional reasoning of vulnerability profiles. More importantly, we

77

Chapter 3. Probing security

have found that, to conciliate with composability, the nature of an extended probe

must afford an additional distinction, i.e., output vs internal, where output probes

participate, during composition, in the creation of additional extended probes while

internal do not. We thus discovered a new definition of robust non-interference which

complies with existing observations in literature but has, from our point of view, a

more intuitive meaning.

To corroborate the usefulness of our approach, we show that the underlying tensor

calculus is useful to reason formally about both conventional and robust t-probing

security by giving new meaning to some results already appeared in the past [60].

On the other side, we show that it can enable the exploration of the design space of

known gadgets by deriving an improved consolidated masking scheme [98] which is

robust 3-probing secure and robust 3-SNI without the need of an additional register

at the output (compared to [60]). While this is done only for t = 3, we can derive

sufficient conditions for making a generalized CMS scheme into a robust t-SNI one.

We also give some deductions around the DOM multiplication scheme [67] that can

be made with our framework.

Before starting this research endeavor, we felt that there was a lack of mathemati-

cal definitions of robust strong non-interference. This concern was raised before in the

community. Recently, in a paper published on TCHES [85], the authors recognized

that despite the existence of the concept of robust SNI, it remained unclear how to

automate the verification of composability of hardware gadgets, as it was unclear how

to define a single mathematical equation. They acknowledge that there is still room

for more automated ways to reason about robust non-interference. To understand

how our approach fills this gap, we would like to highlight how our work can benefit

the community from both the research and development standpoints.

The research standpoint. As it is known, one of the main goals of any research

endeavor is to build inference rules to derive general solutions to common problem

patterns. This is distinguished from solving those problems with an instance-by-

instance approach or a tool. To show how our approach can be used for deriving

such general rules, we refer the reader to Appendix 3.3.5, where we present some

general conclusions about the robust probing security of a common pattern found in

cryptography, for any number of shares.

The development standpoint. Existing tools such as maskVerif [7] can be

helpful in verifying if a fixed configuration instance of a gadget is probing secure or

strong non-interferent; we call these instance-by-instance tools. Our approach can be

used also on an instance-by-instance basis. More importantly, notwithstanding the

efficiency of maskVerif, its developers argue that ”more precise approaches remain

important, when verification with more efficient methods fail”[7]. Given that our

78

3.3.1 Probing security as a relation calculus

Wδ

f∆

If

Wfπ

Wf

Ofπ

Of

Figure 3.15: The vulnerability profile of a function corresponds to the tensor product

of the regular Walsh transform of a function and of its probes fπ, multiplied by Wδ.

approach is not based on a syntactic model but on the exact theory of Boolean

functions, it is probably the first to fit this purpose as previous works have only

provided approximations [26] or partial solutions [85]. We note that our approach

provides the added benefit of a linear algebra based approach which is supported

by many mathematical toolboxes. However, given the exponential size of correlation

matrices, some analysis of computational complexity is in order. We refer the reader

to Appendix 3.3.6 for an estimate of the time needed for computing the vulnerability

profile for several known gadgets.

Note that the construction that we propose in this work as revision of the CMS

scheme 3 strong non interfering (Section 3.3.3.1) is now declared not 3-SNI. Indeed,

though the theoretical concept of the vulnerability profile is well structured and cor-

rect, for this paper we wrongly implemented it, and when considering more than one

probe we faced a loss of some information. We fixed the problems in it and give a

new better solution in Section 3.4.

3.3.1 Probing security as a relation calculus

The methodology that we propose is heavily based on the Walsh transform of a

vectorial Boolean function. For all the conventional concepts around it, we refer the

reader to Sections 2.1.2.1, 2.1.4 and 2.1.5. To understand the following discussion,

we also recommend to read Sections 3.2.1 and 3.2.5.1, for an introduction about the

relation calculus that is at the base of our probing security analysis.

3.3.1.1 The vulnerability profile of a function

Figure 3.15 shows a typical wiring diagram of the mapping between the Fourier

transform of its input and output distributions. In particular, it is related to the

Boolean function f and its potential probes fπ. The tensor product

79

Chapter 3. Probing security

f∆ = (Wfπ ⊗Wf)Wδ (3.23)

encodes all the vulnerability data associated to f . In practice, each row of this matrix

corresponds to a convolution of a combination of rows in Wf and in Wfπ and we know

that, if there is some input variable combination for which this convolution is not zero,

we have a dependency between a combination of outputs (either outputs of f or its

probes) and a subset of input variables [123, 119]. We call this data the vulnerability

profile of f . It is a special case of fan, a notion that will be useful to deal with glitches

and extended probes as well:

Definition 3.3.1 (fan of a family of matrices). The fan of a family of matrices

M = {Mi}i=1...n is a matrix:

∆M = (
⊗
i

Mi)W
n−1
δ

where Wδ is the correlation matrix associated with the duplication function.

3.3.1.2 Composition of vulnerability profiles

It is possible to derive the vulnerability profile of a composition of two functions

by studying the composition of two fans:

k∆ • h∆ = ∆{Whπ ,Wkπh,Wkh}

which is the fan of the composition of the original functions:

k∆ • h∆ = (k • h)∆

and it is possible to show that it is associative. Figure 3.16 shows the string diagram

associated to it where we exploited tensor product equivalences to create a compact

yet equivalent representation.

This way of modeling vulnerability allows to reason around t-probing security and

t-non-interference in a composable way. Recall that a function f is t-non interferent (t-

NI) if, when given a total of s outputs and internal probes, s ≤ t implies a dependency

with maximum s input shares. A function f is strongly t-non interferent (t-SNI) if

s ≤ t implies a dependency with maximum i input shares, where i is the number of

internal probes, among those placed [9].

Let us for example reconsider a case discovered in [50] that proves that, in gen-

eral, the composition of t-NI and t-SNI functions is not t-NI. Figure 3.17 shows the

80

3.3.1 Probing security as a relation calculus

I ⊗ k∆

k∆ h∆

Ih

Whπ

Wh

Wkπ

Wk

Ohπ

Okπh

Okh

Figure 3.16: The composition of two vulnerability profiles as a map in the probability

space.

g f aog

rf

pf

rg

pg

of

Figure 3.17: The composition pattern of f (t-NI) and g (t-SNI) derived from [50].

structure of a function h which is a composition of two functions f and g. The as-

sumptions are that f is t-NI and g is t-SNI. In particular, f refreshes its input a with

two random bits rf :

of (a0, a1, a2, r0, r1) = [a0 ⊕ r0 ⊕ r1, a1 ⊕ r0, a2 ⊕ r1]

and it is assumed to have been probed at location pf = a0 ⊕ r0. On the other hand,

g(a, b, rg) is the ISW multiplication [73] which consumes 3 random bits rg for the

secret computation. Also in this case, it is assumed a single probe pg = a2 ∧ b1.

The string diagram in Figure 3.16 can describe the vulnerability profile of the

circuit by considering h(a, rf , rg) = [f(a, rf), (a, rg)] and k(a, rf , rg, of) = g(a, of , rg)

where the space of the input distributions is Ih = A ⊗ Rf ⊗ Rg while for output

distributions we have Okh = Og,Okπh = Pg,Ohπ = Pf .
Figure 3.18 shows the compact representation of the vulnerability profile. First of

all, we are interested only in the first 4 columns, as these are the ones that represent

relationships between the outputs and the shares of a not masked by any random

value. We note that there is a potential dependency in row [1, 1, 0], column [0, 0, 3],

exactly the one found in [50], which says that one needs only two probe values to get

three shares. h is thus not even 2-NI, showing that t-NI and t-SNI do not compose

81

Chapter 3. Probing security

0 0 0 0 0 0 0 0 0 0 . . . ρg

0 0 0 0 1 1 1 1 2 2 . . . ρf

0 1 2 3 0 1 2 3 0 1 . . . α

πf πg ωg

0 0 0 1

0 0 1

0 0 2

0 0 3 1 1

0 1 0 1 1 1 1 1 1 1

0 1 1

0 1 2

0 1 3 1 1 1 1 1 1 1 1 1 1

1 0 0 1

1 0 1

1 0 2

1 0 3 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1

1 1 2

1 1 3 1 1 1 1 1 1 1 1 1 1

(3.24)

Figure 3.18: Vulnerability profile of [50] (we use greek letters to indicate the spectral

coordinate associated with each function variable, i.e., α is the spectral coordinate

associated with variable a and so on).

into a t-NI function. It is possible to show through the compact representation of

vulnerability profiles that, for this composition pattern, if f is t-SNI and g is t-NI

(t-SNI) then the composition is t-NI (t-SNI).

3.3.1.3 Extended probes

Extended probes change the attack model in the sense that they allow the attacker

to observe all the inputs of a gadget by probing its output wires. We will show that

the fan linear algebra introduced above is still suitable for computing probing security

profiles with a little more sophistication. In part this is because one has to model in

a composable way the information flow from inputs to outputs. Before going into the

details let us classify the probes used in this model (we will drop the term extended as

it is implicit in this discussion and we will introduce some symbol-coding to identify

probes):

� a pure probe (notation symbol ◦) wπ over a wire computing the combinato-

rial function w(x), modeled as a Boolean function that has a stable non-zero

82

3.3.1 Probing security as a relation calculus

correlation with all the inputs of w (and their combinations). A stable corre-

lation means that any transient effect is observable through that probe*. We

will exploit the spectral characteristics of the and operator (which has a non-

zero correlation with all of its operands and their combination) to model such

probes:

wπ(x) =
∧

xi∈support(w)

xi

� a composed probe (notation symbol m) wκ over a wire computing w(x) = (wa •
wb)(x) is a probe that can be factored into a pure probe over the intermediate

values of w:

wκ(x) = (waπ • wb)(x)

where wb(x) is different from the identity.

Probes might be orthogonally classified in output probes and internal ones. This

orthogonal characterization is relevant when talking about the composition of blocks:

� potential output probes (notation symbol ↑) are grouped in sets whose size cor-

responds to the actual outputs of the function. Among them we will distinguish

one set of pure probes and zero or more sets of composed probes. We will use

the symbol ω to indicate the overall number of sets (ω ≥ 1). Output probes

are important during composition of functions because they will produce new

probes (either pure or composed).

� Internal probes might be pure or composed. Compared to output ones, these

will not produce new probes when composing functions but will participate in

the computation of the probing profile of the result.

In this context, we define an extended fan that encompasses the probes of the

function

f∇ = ∆{
↑◦
Wfπ ,

↑m
Wf1

κ
, . . . ,

↑m
Wfω−1

κ︸ ︷︷ ︸
output

,
◦|m
Wf1

i
, . . . ,

◦|m
Wfνi︸ ︷︷ ︸

internal

,
↑
Wf}

Provided that one has all the matrices involved, f∇ describes the overall security

profile of the function. An important observation (which will be useful later) is that

if one considers a register r there is a single set of pure output probes that one can

build, i.e., constant ones.

r∇ = ∆{
↑◦
Wc,

↑
I} (3.25)

83

Chapter 3. Probing security

r∆

Ir

∼= R

Or

Figure 3.19: The vulnerability profile of a register in terms of maps over the Fourier

transform of input and output distributions.

This will have an important implication because, when computing the composi-

tion of blocks, the zero matrix will become a circuit breaker, essentially forcing all

successive functions to map to it as well. Let us consider the composition of two fans:

g∇ • f∇ = h∇

For it to be associative, the new fan h∇ will be such that:

� its internal probes (◦ or m) will be all those internal to f plus those produced

by composing:

– internal probes in g (◦ or m) with f ’s outputs and

– internal pure probes in g (◦) with output probes in f (↑m or ↑◦).

� its output probes (↑m or ↑◦) will be generated by combining

– pure output probes in g (↑◦) with f ’s outputs and its output probes (↑m
or ↑◦).

– composed output probes in g (↑m) with f ’s outputs.

Table (3.1) shows all the composition rules.

Example 3.3.2. Assume that both f and g have only a set of pure (output) probes:

f∇ = ∆{
↑◦
Wfπ ,

↑
Wf}

g∇ = ∆{
↑◦
Wgπ ,

↑
Wg}

then, g∇ • f∇ will be

g∇ • f∇ = ∆{
↑m

Wgπf ,
↑◦

Wgπfπ ,
◦

Wfπ ,
↑

Wgf}

84

3.3.1 Probing security as a relation calculus

g f g • f

↑ ↑ ↑
↑m ↑ ↑m
↑◦ ↑ ↑m
↑◦ ↑m ↑m
↑◦ ↑◦ ↑◦
◦ ↑ m

◦ ↑m m

◦ ↑◦ ◦
- ◦, m ◦, m

Table 3.1: Algebraic composition rules for probes.

f∇

If

Wfπ

Wf

Wgπ

Wgπ

Wg

Ofπ

↑ Ogπfπ

↑ Ogπf

↑ Ogf

Figure 3.20: The vulnerability profile of a composition of functions when considering

extended probes.

Diagrammatically, one could picture the above vulnerability profile as in Figure

3.20. If we compare this with the non-extended case (Figure 3.16), we see an addi-

tional pure output probe whose correlation matrix is

↑◦
Wgπfπ

This probe practically connects the outputs of the resulting vulnerability profile to

the inputs of f (with maximum correlation).

Example 3.3.3. Let us now consider the case where, between g and f , we put

a register r. The pure composition of these three blocks is shown in Figure 3.21.

However, if we consider the vulnerability profile of the register (Figure 3.19), we get

a more explicative diagram in Figure 3.22 which faithfully translates into correlation

matrices and corresponding Fourier transform of the probability distributions. In

practice, the probes are isomorphic to the one that would be produced by

*This definition works only for combinatorial functions. For a register, instead, any pure probe

on its output will have zero correlation with its inputs.

85

Chapter 3. Probing security

g∇ • r∇ • f∇ = ∆{
↑m

Wgπf ,
◦

Wfπ ,
↑

Wgf}

i.e, to the composition of vulnerability with probes acting as regular probes, not

extended ones.

Wfπ

Wf

Wrπ

Wrπ

Wr

Wgπ

Wgπ

Wgπ

Wg

↑

↑

↑

Figure 3.21: The vulnerability profile of a composition of three functions when con-

sidering extended probes.

Wfπ

Wf

Wgπ

Wgπ

Wgπ

Wg

↑

(a)

Wfπ

Wf

Wgπ

Wg

↑

(b)

Figure 3.22: (a) shows the vulnerability profile of a composition of two functions

when a register is considered in the middle. Probes that come after the ”circuit

breaker” map to the unit of VectR and thus do not add any information so they have

been drawn with a white circle. The Fourier transform of the output distribution is

isomorphic to the one produced by the diagram in (b).

3.3.2 Definition of robustness

Given a vulnerability profile f∇, we propose the following robustness definitions.

Definition 3.3.4 (robust-t-probing-secure vulnerability profile). A vulnerability pro-

file f∇ is t-probing secure when given a total of t outputs (either conventional or out-

put probes) and internal probes (either composed or pure), there is no dependency

with all the shares of a secret.

86

3.3.2 Definition of robustness

Definition 3.3.5 (robust t-NI vulnerability profile). A vulnerability profile f∇ is

robust t-NI when given a total of s outputs (either conventional or output probes)

and internal probes (either composed or pure), s ≤ t implies a dependency with

maximum s input shares.

Definition 3.3.6 (robust t-SNI vulnerability profile). A vulnerability profile f∇ is

robust t-SNI when given a total of s outputs (either conventional or output probes)

and internal probes (either composed or pure), s ≤ t implies a dependency with

maximum i input shares, where i is the number of internal probes.

Example 3.3.7. To show how the above definition of robust t-probing security

matches with the existing understanding, let us rederive the considerations exposed

in [60, 85] concerning the compositionality of a second-order secure multiplier when

considering glitches. The example considers inputs (x0, x1, x2) and (y0, y1, y2) and

consists of two stages separated by a register r. The first stage (let us call it f)

contains 9 products xiyj some of them (cross-domain products) are remasked:

f0,0 = x0y0 f0,1 = x0y1 ⊕ r1 f0,2 = x0y2 ⊕ r2

f1,0 = x1y0 ⊕ r1 f1,1 = x1y1 f1,2 = x1y2 ⊕ r3

f2,0 = x2y0 ⊕ r2 f2,1 = x2y1 ⊕ r3 f2,2 = x2y2

(3.26)

The second stage (let us call it g) compresses the triplets:

g0 = f0,0 ⊕ f0,1 ⊕ f0,2

g1 = f1,0 ⊕ f1,1 ⊕ f1,2

g2 = f2,0 ⊕ f2,1 ⊕ f2,2

(3.27)

The question is whether outputs g0 . . . g2 should be saved into a register s to

preserve composability in the sense of robust t-probing security. We thus compute

the two vulnerability profiles:

s∆ • g∆ • r∆ • f∆ = ∆{
◦

Wfπ ,
m

Wgπf ,
↑

Wgf} (3.28)

and

g∆ • r∆ • f∆ = ∆{
◦

Wfπ ,
↑m

Wgπf ,
↑

Wgf} (3.29)

We note that, when the register s is not present, probe gπf is an output probe (↑m)

and will participate in creating new probes in the following compositions. Instead,

when the register s is present (Eq. 3.28), the outputs are only the conventional

outputs of g • f while gπf is just an internal composed probe (m).

87

Chapter 3. Probing security

Considering again Eq. 3.29, if we take just one output in gπ • f and no internal

probes, one would get a dependency with f0,0 which in turn depends* on one share of

x and y. This shows that the case without output register is not robust t-SNI, because

there should not be any dependency over input shares. Note that this observation

has already been done in the past [60]. However, we argue that ours is one the first

attempts to formalize this point mathematically.

Before closing we note that, in a general case such as Eq. 3.29, one has always

Wgf � Wgπf because extended probes over g are always more powerful of g itself. in

this case, robust t-probing security is thus determined by Wfπ and Wgπf alone:

g∆ • r∆ • f∆ = ∆{
◦

Wfπ ,
m↑

Wgπf} (3.30)

we will exploit this consideration in the following sections.

3.3.3 Revisiting the probing security of CMS

The acronym CMS stems from the title of the proposing article [98] and identifies

an evolution of the ISW scheme [73] meant to provide, at the same time, t-probing

security and protection against glitches by borrowing ideas from the TI scheme [95].

A CMS scheme with s = 4 shares is organised as in Figure 3.23. Every output

share ci is computed in a logic cone which involves s pairs (ai, bh), h ∈ {0 . . . s − 1}.
Adjacent cones share only a random bit while internal bits within a cone preserve

uniformity, as is usual in a TI scheme. The computation is typically decomposed

in three layers: non-linear (N), refresh (R) and compression (C), the latter two

separated by a register to mitigate the propagation of glitches to the outputs.

While the original proposal identified a scheme that was t-probing secure up to

t = 2, a simple generalization of the scheme to t = 3 has shown that, as it is, it cannot

be made probing secure anymore [92]. Figure 3.23 shows the scheme for t = 3, s = 4

and a triplet of probes that reveals the four shares of b. Note that this vulnerability

exists even if one does not consider extended probes.

Considering robust probing security, we can say something more. First of all, note

that we are in the case covered by Eq. 3.30 where:

f = R •N , g = C

We thus know that the only probes that determine robust t-probing security are:

� the pure probes at the output of the refresh layer, i.e., fπ;

*Recall that a ∧ b is correlated with both a, b and a⊕ b, as it correlation matrix shows.

88

3.3.3 Revisiting the probing security of CMS

⊕

r1

a0
b0

⊕

r2 a0
b1⊕

r3

a0
b2

⊕

r4

a0b3

⊕
r5

a1b0

⊕
r6

a1b1

⊕r7

a1
b2

⊕
r8

a1
b3

⊕

r9

a2
b0

⊕

r10a2
b1

⊕

r11

a2
b2

⊕

r12

a2 b3

⊕
r13

a3 b0

⊕
r14

a3 b1

⊕ r15

a3
b2

⊕
r0

a3
b3

⊕
c0

⊕
c1

⊕
c2

⊕

c3

compression layer C
refresh layer R
non-linear layer N

Figure 3.23: The four-share CMS scheme considered in [92]. The scheme is decom-

posed in three layers, non-linear (N), refresh (R) and compression (C). To preserve

output shares from the propagation of glitches, a register (thick line) layer is inserted

between compression and refresh. Orange circles correspond to regular probes that

break the t-probing security.

� the composed probes at the output of the compression layer gπ • f .

Composed probes are just four and the number of shares that they cover is im-

portant to determine probing security. To show this, let us assign them a label:

Sc = {c0, c1, c2, c3}

and show, in a table, which pairs (ai, bh) are covered by which extended probe:

b0 b1 b2 b3

a0 c0 c0 c0 c0

a1 c1 c1 c1 c1

a2 c2 c2 c2 c2

a3 c3 c3 c3 c3

Note that, given one of these output probes, e.g., c0, one needs to recover only

the two random bits that separate it from adjacent cones c1and c3. These two bits

can be derived only by using just two pure probes of fπ.

It has been observed that non-completeness might be useful in this case to reach

robust t-probing security for t = 3 (see [92]). To find it, we note that a combination*

*With the symbol P(Sc) we denote the power set of Sc

89

Chapter 3. Probing security

⊕

r1

a1
b2

⊕

r2 a1
b0⊕

r3

a3
b0

⊕

r4

a3b2

⊕
r5

a1b3

⊕
r6

a1b1

⊕r7

a3
b1

⊕
r8

a3
b3

⊕

r9

a0
b1

⊕

r10a0
b0

⊕

r11

a2
b0

⊕

r12

a2 b1

⊕
r13

a0 b3

⊕
r14

a0 b2

⊕ r15

a2
b2

⊕
r0

a2
b3

⊕
c0

⊕
c1

⊕
c2

⊕

c3

Figure 3.24: The robust 3-probing secure CMS scheme found with our formalization.

Highlighted in orange the probes which make the above scheme not robust 3-SNI.

of output probes Π ∈ P(Sc) is such that it needs RΠ additional randoms depending on

adjacency. For example, Π = {c0} would need RΠ = 2 pure probes in fπ, while Π =

{c0, c2} would need RΠ = 4 because they form two partitions in terms of adjacency.

In fact, given TΠ as the number of such partitions we have RΠ = 2TΠ.

The organization of the input shares can be seen as a surjective mapping from the

set of pairs of input shares to the set of output cones:

λ : Sa × Sb → Sc

Define δλa (Π) as the maximum number of shares of a that a specific probe configu-

ration Π covers (δλb (Π) is analogously defined). To find a configuration that is robust

3-probing secure we can state the following problem:

Find a mapping λ such that, if the total number of probes is less or equal

to three, the number of shares that one can get is always less or equal to

three, i.e.:

∀Π ∈ P(Sc). |Π|+RΠ ≤ 3 =⇒ δλa (Π) ≤ 3 ∧
|Π|+RΠ ≤ 3 =⇒ δλb (Π) ≤ 3

We formalized the problem as an satisfiability modulo theory one and solved it

through Microsoft’s z3 SMT solver. The solver provided the following solution λ

(also depicted in Figure 3.24):

90

3.3.3 Revisiting the probing security of CMS

0 . . . ρ

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 . . . β

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 . . . α

ωfπ ωgπf

.

0 3

.

1 2

.

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.

3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.

(3.31)

Figure 3.25: The vulnerability profile of the robust 3-probing secure CMS scheme found

with our formalization. This has been computed only for a sum of the hamming weight of

the output spectral coordinates (i.e., the sum of probes) equal to 3. Red circles indicate

where the vulnerability profile fails to be robust 3-SNI because for ωfπ = 2 there can be a

dependency with up to α = 2 or β = 2.

b0 b1 b2 b3

a0 c2 c2 c3 c3

a1 c0 c1 c0 c1

a2 c2 c2 c3 c3

a3 c0 c1 c0 c1

We verified this solution by computing the vulnerability profile as in Eq. 3.30.

We computed the underlying correlation matrices Wfπ and Wgπf by using a sparse

representation while the complete fan is computed by convolving the rows of the above

two matrices. The used sparse representation of the correlation matrix is a modified

version of a List of Lists representation (LIL): each stored list refers to a specific row

of the correlation matrix, and the elements of every list are the column coordinates

of the nonzero element in the correlation matrix row. We do not need to store the

value of nonzero elements, because the presence of this nonzero elements is the only

thing that matters. To give an idea of the space required for correlation matrices

for t = 3, Wfπ is a 216 × 228 correlation matrix with less than 224 elements different

from 0. However, one needs to store data associated with only 16 rows because the

remaining part can be computed with convolution (if needed) by definition of vector

Walsh transform. In this use case, the overall operations involved in computing the

convolutions for determining strong-non interference for t = 3 are about 1.35 × 106,

for t = 4 about 4.92× 107 and for t = 5 about 2.63× 109.

91

Chapter 3. Probing security

⊕

r1

a1
b2

⊕

r2 a1
b0

q0
⊕

r3

a3
b0

q1⊕

r4

a3b2

⊕
r5

a1b3

⊕
r6

a1b1

q1

⊕r7

a3
b1

q2

⊕
r8

a3
b3

⊕

r9

a0
b1

⊕

r10a0
b0

q2 ⊕

r11

a2
b0

q3 ⊕

r12

a2 b1

⊕
r13

a0 b3

⊕
r14

a0 b2

q3

⊕ r15

a2
b2

q0

⊕
r0

a2
b3

⊕
c0

⊕
c1

⊕
c2

⊕

c3

Figure 3.26: The robust 3-SNI CMS scheme proposed in Section. Additional random

are identified with the label qj. Other randoms have been grayed out to avoid crowding

the image.

The compact representation of the resulting vulnerability profile can be seen in

Figure 3.25. In this matrix, ωfπ , ωgπf are the compact spectral index of pure internal

probes fπ and output composed probes gπf respectively. Similarly, α, β, ρ are the

compact spectral index of the shares of a, b and the refresh random bits r. Note

that, for the spectral indexes α = 4 or β = 4 and ρ = 0 the correlation between the

extended probes fπ and gπf is 0; this solution is thus robust 3-probing secure.

One could check whether for s > 4 there can be suitable solutions to the above

problem. However, we have found that for s ≥ 6 the underlying formulas are not

satisfiable anymore, leaving us conjecture that the above scheme hits an upper bound

for s = 5.

3.3.3.1 Achieving Robust Strong non-Interference for CMS

Figure 3.25 shows that the solution is not robust 3-SNI (we have marked in red

the correlation matrix positions that violate t-SNI properties). This is because, for

two internal probes fπ one can get up to three shares of either a, b or both*.

Indeed, as shown in Figure 3.24, if an output probe is placed on c0, and two internal

probes are placed in the refresh layer of adjacent cones, e.g., after the operation

r15 ⊕ (a2 · b3) ⊕ r0 and r4 ⊕ (a1 · b3) ⊕ r5, one can recover information about three

shares of a (a1, a2, a3) and three shares of b (b0,b2,b3) with only two internal pure

*Note that we have shown columns up to all combinations of a and b not covered by random

values.

92

3.3.4 Analysis of the robust probing security of DOM-indep

0 . . . ρ

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 . . . β

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 . . . α

ωfπ ωgπf

.

0 3

.

1 2

.

2 1

.

3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.

(3.32)

Figure 3.27: Vulnerability profile of CMS scheme with s = 4 when using additional

randoms qj.

probes. The rationale is that, whenever we try to attack the input shares of a cone,

we need to remove the two protecting randoms through two internal probes in adjacent

cones. Since any adjacent cone will work with different shares, these will be attacked

as well.

One countermeasure would be to increase the number of randoms that protect

adjacent cones. For example, by adding one random for each pair of adjacent cones

we would have that if an output probe is placed on one output ci, no matter how the

two internal probes are placed in the scheme, the output is always protected by two

random and one would need obviously two other internal probes. Note that, even

by adding output probes from adjacent cones, these will still be protected by four

random so one is forced to use internal probes. In Figure 3.26, we show a proposal

for such a scheme for s = 4 where additional random qj are applied pairwise to cones.

Computing the vulnerability profile for such scheme yields Figure 3.27. As can be

seen, two internal probes now do not imply a correlation with any share.

3.3.4 Analysis of the robust probing security of DOM-indep

As another example of application of our framework, we analyze the robust t-

probing security of another multiplication gadget referred to Domain Oriented Mask-

ing with independent shares (DOM-indep). Domain Oriented Masking is an alterna-

tive shared multiplication scheme which aims to be t-probing secure by using t(t+1)/2

random bits [67]. It is the basis above more sophisticated schemes have been built

(such as DOM-dep or DOM with dependent shares [66]). The generic structure of

DOM-indep is as follows:

93

Chapter 3. Probing security

c0 = a0b0 + (a0b1 + r0) + (a0b2 + r1) + (a0b3 + r3) . . .

c1 = (a1b0 + r0) + a1b1 + (a1b2 + r2) + (a1b3 + r4) . . .

c2 = (a2b0 + r1) + (a2b1 + r2) + a2b2 + (a2b3 + r5) . . .

c3 = (a3b0 + r3) + (a3b1 + r4) + (a3b2 + r5) + a3b3 . . .

. . .

Bold multiplication terms are called inner-domain terms and do not require to be

masked with randoms while, for the remaining cross-domain terms, the same random

is reused to mask terms with mirrored indices. Parentheses indicate that terms are

saved into registers before being compressed into the output share.

The current understanding of the DOM scheme is that, at least in the implemen-

tation that considers dependent shares (DOM-dep), it is not robust t-SNI [92]. We

will show here that also DOM-indep is not robust t-SNI. To do so, we will study how

inner pure probes fπ and output composed probes gπf behave.

⊕ a1
b0

a1b1

a0
b0

⊕
r0

a0 b1

⊕
c0

⊕

c1

Figure 3.28: The DOM scheme for t = 1, s = 2

The reasoning is simple: consider Figure 3.28. For it to be robust 1-SNI, taking

an output composed probe and no internal pure probes should not provide any in-

formation on input shares. However, an extended output probe on c1, for example,

allows to observe one of its inputs, i.e., a0b0 which is not covered by any random.

Given that a0b0 correlates with either share a0 or b0 we would have one input share

observable with zero internal probes, which goes against robust 1-SNI premises.

The vulnerability profile is shown in Figure 3.29 (left) where inner probes are

accounted with ωi while outputs and output probes are accounted with ωo. We can

see that it is not robust 1-SNI, as for (ωi = 0, ωo = 1) there is a dependency with at

least one share of α and β; however the gadget is still robust 1-probing secure.

94

3.3.4 Analysis of the robust probing security of DOM-indep

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ρ

0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 β

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 α

ωi ωo

0 0 1

0 1 1 1 1 1 1 1 1 1 1 1

0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 4 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ρ

0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 β

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 α

ωi ωo

0 0 1

0 1 1 1 1 1

0 2 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 0 1 1 1 1 1

6 1 1 1 1 1 1 1

6 2 1 1 1 1 1

Figure 3.29: Vulnerability profiles of DOM without (left) and with (right) output

register for t = 1 (s = 2).

Adding an output register we obtain Figure 3.29 (right) where we can see that it

is actually robust 1-SNI. Note that the one with the register has more inner probes

because the original non-registered outputs have become internal. Figure 3.30 shows

(part of) the vulnerability profiles for t = 2 which confirm that adding a register at

the outputs makes the gadget robust 2-SNI.

We verified that the same happens for t = 3. We note that, in this case, the

gadget DOM-indep uses 6 randoms, while the robust-3-SNI variant we propose for

CMS uses 20 (without output register). This suggests that there exists a trade-off

between registers and randomness when dealing with robust non interference. The

95

Chapter 3. Probing security

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ρ

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 β

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 α

ωi ωo

0 0 1

0 1 1 1 1 1 1 1

0 2 1 1 1 1 1 1 1 1 1 1 1 1 1

0 3 1

0 4 1

0 5 1

0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1

1 3 1

1 4 1

1 5 1

1 6 1

2 0 1 1 1 1 1 1 1 1 1 1 1 1

2 1

2 2 1

2 3 1

2 4 1

2 5 1

.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ρ

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 β

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 α

ωi ωo

0 0 1

0 1

0 2

0 3 1 1 1 1

1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 2 1

1 3 1

2 0 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1

2 2 1

2 3 1

3 0 1

3 1

3 2 1

3 3 1

4 0 1

4 1

4 2 1

4 3 1

.

Figure 3.30: Part of the vulnerability profiles of DOM without (left) and with (right)

output register for t = 2 (s = 3).

ratio of random usage between DOM and our CMS construction is:

2
(
s2

2
+
(
s
2

+ 1
)
s
)

(s− 1) s

which, asymptotically, provides a 2× size factor. We conjecture that this is the cost

one has to pay for sparing registers when building a robust t-SNI gadget.

3.3.5 On enabling general reasoning about non-interference

The aim of this Section is to show how the proposed formalization can enable

the analysis and derivation of new inference rules around (robust) non-interference.

For this purpose, consider the circuit represented in Figure 3.17. This circuit is one

96

3.3.5 On enabling general reasoning about non-interference

of building blocks used for computing the inverse in GF (28) [50]. It is known that

this type of circuit is t-SNI when both g and f are t-SNI [9]. Figure 3.31 shows the

corresponding correlation matrices diagram when not considering robustness against

glitches (namely probes are non-extended probes).

Wδ

Wq

WdWcWbWa

Rg

Rf

A

Pf

Of

Wf∆

Wg∆

Pf

Pg

Og

Figure 3.31: Map between Fourier transforms of probability distributions implied by

the considered example composition pattern.

Figure 3.32: The considered example composition pattern, gray boxes are registers.

g f aog

rf

pf

rg

pg

h

rs

Consider now the same circuit with a register between f and g (Figure 3.32).

This can be seen as the composition of two blocks g and h, where h is the block that

duplicates the input and propagates one of the paths through f . We already know

that, for robust non-interference, this composition has the vulnerability profile shown

in Eq. (3.28) and rewritten here to consider h:

s∆ • g∆ • r∆ • h∆ = ∆{
◦

Whπ ,
m

Wgπh,
↑

Wgh}

97

Chapter 3. Probing security

Wf

Wf

Wfπ

Wg

Wgπ

A

Rf

Rg

↑ Ogf

Ogπf

Ofπ

A

Rg

q0

q1

(a) Initial

Wf

Wfπ

Wg∆

A

Rf

Rg

Ogf

Ogπf

Ofπ

(b) Intermediate

Wf∆Wg∆

A

Rf

Rg

Ogf

Ogπf

Ofπ

(c) Final

Figure 3.33: Pruning of the a vulnerability profile considering equivalences and dom-

inance relations of the correlation matrix calculus.

where

Wh = (I ⊗Wf ⊗ I)(I ⊗ I ⊗Wδ) (3.33)

Whπ = (I ⊗Wfπ ⊗ I)(I ⊗ I ⊗Wδ) (3.34)

while I is the identity, and Wδ is the correlation matrix of the duplication function

δ = x 7→ (x, x).

Graphically, the above equations correspond to Figure 3.33a. From there, one can

reason by pruning redundant paths. For example, the distribution of A reaches the

output through the extended probe gπf , so path q0 can be pruned off without loss of

generality (same thing for path q1) obtaining 3.33b. Considering the commutativity

across duplication points we can move fπ and then substitute the definition of fan (Eq.

3.23) for both f and g, one can obtain 3.33c, which is exactly the vulnerability profile

of the non-robust case shown in Figure 3.31 where probes now are extended probes.

This means that the reasoning about the non-robust case can be directly applied

also to this case, i.e., if f∆ is t-SNI and g∆ is t-SNI (t-NI) then the composition

in Figure 3.32 is robust t-SNI (robust t-NI). Note that the derivation of the same

general conclusions through a classic approach would have possibly required a much

more involved demonstration.

98

3.3.6 Computational complexity and scalability of the proposed approach

3.3.6 Computational complexity and scalability of the pro-

posed approach

The vulnerability profile of a function f is computed starting from its correlation

matrices Wf and Wfπ (i.e. Wf∆
). The complete computation of these matrices could

become quickly impracticable due to the large number of their elements, which, in

turn, is exponentially related to the number of inputs, outputs and probes analysed.

To reduce the time and space computational complexity of this operation, we store

only the rows that refer to single outputs and probes, and compute on-demand the

remaining rows by using convolution. Besides, we exploit the fact that correlation

matrices are sparse (as explained in Section 3.3.3), to speed up the convolution itself.

In the following, we show some estimates of computation time when such sparsity is

considered.

Let us consider the nonlinear function χ of Keccak, implemented using the DOM

multiplication gadget to make it probing secure at the t-th order [68]. We recall

that the internal state of Keccak is divided into groups of five bits, called rows, and

function χ is applied row by row. Given x0, x1, x2, x3, x4 (the row bits), χ is defined

as:

yi = χ(xi, xi+1, xi+2) = xi + (xi+1xi+2)

where indices are computed modulus 5. To make it probing secure at the t-th order,

each element xi is split into t+ 1 shares x0
i , x

1
i , . . . x

t
i, and a share yji of the output yi

is computed as follows [68]:

yji =
(
xji +

(
xji+1x

j
i+2 +

∑
h>j

(xji+1x
h
i+2 + r

j+
h(h−1)

2

) +
∑
h<j

(xji+1x
h
i+2 + r

h+
j(j−1)

2

)
))

Note that parentheses indicate that terms are saved into registers. Thus, there is a

register before the compression layer in DOM (reg1), one that stores multiplication

results (reg2) and one that stores the final output’s share yji (reg3).

Define as χt the function that computes all the shares of yi. In the corresponding

circuit, we assume an extended probe on each wire that ends into a register: we thus

have n1 = (t + 1)t probes placed before reg1, n2 = t + 1 before reg2 and n3 = t + 1

before reg3.

In the correlation matrix of χt∆ each row referring to a probe before reg1 has

only a1 = 8 nonzero elements, while for a probe before reg2 or reg3 the nonzero

elements are respectively a2 = 2t+1 and a3 = 2t+2. Each remaining row is computed

by convolution of p single-probe rows, and it has, in average, av(p) elements different

from 0:

av(p) =

p∑
h=0

(
p−h∑
k=0

nk1a
k
1 · np−k−h2 ap−k−h2)nh3a

h
3

(n1 + n2 + n3)p

99

Chapter 3. Probing security

1 2 3 4 5
d

1 ms

1 sec

1 hour

1 day

1 week
1 month

tim
e

DOM for Keccak
DOM for Kecak, maskVerif

(a) Scalability computed for χ of Keccak with

DOM, and comparison with time needed to

apply maskVerif tool [7] to the same algo-

rithm.

1 2 3 4 5
d

1 ms

1 sec

1 hour

1 day

1 week
1 month

tim
e

ISW
CMS
modified CMS
DOM
DOM for Keccak

(b) Scalabity computed for known algorithms.

Figure 3.34: Estimated time needed to compute the vulnerability profile for well

known algorithms.

where 2 ≤ p ≤ n1 + n2 + n3. Figure 3.34(a) reports the estimated time needed to

compute the correlation matrix of χt∆ (solid line), in comparison with the time needed

to execute maskVerif [7] to show that χ with DOM algorithm is robust t-NI (dotted

line). Figure 3.34(b) reports the estimated time for other known gadgets to compute

their correlation matrices. In both cases, the value of t is varying between 1 and 5

and we assume to work with a 8 processors, 4GHz machine with a 1 integer operation

per clock cycle throughput*.

3.4 On robust strong-non-interferent low-latency

multiplications

We published this work in IET (Institution of Engineering and Technology) In-

formation Security journal [88]. The overarching goal of our work is to present new

theoretical and practical tools to implement robust t-probing security. In this Sec-

tion we present a low-latency multiplication gadget that is secure against probing

attacks that exploit logic glitches in the circuit. The gadget is the first of its kind to

present a 1-cycle input-to-output latency while belonging to the class of probing secu-

rity by optimized composition gadgets [39]. In particular, we show that it is possible

to construct robust t-SNI gadgets without compromising on latency with a moderate

*Luckily, the computation of multiple rows of the correlation matrix can be done in parallel.

100

3.4.1 Overcoming the latest constructions

�

r1

a1
b2

�

r2 a1
b0

q0�

r3

a3
b0

q1�

r4

a3b2

�
r5

a1b3

�
r6

a1b1

q1

�r7

a3
b1

q2

�
r8

a3
b3

�
r9

a0
b1

�

r10a0
b0

q2 �

r11

a2
b0

q3 �

r12

a2 b1

�
r13

a0 b3

�
r14

a0 b2

q3

� r15

a2
b2

q0

�
r0

a2
b3

�
c0

�
c1

�
c2

�

c3

P1

P3

P2

Figure 3.35: 1-cycle latency CMS-derived gadget proposed in [89]. Green discs

represent the three extended probes that make it not robust 3-SNI. The black thick

line indicates the register layer. The expressions to compute the outputs are those

in Eq. 3.35 except that the values in red brackets are not sampled in an additional

register, i.e., only those values in the black brackets are sampled.

increase in area. We provide a theoretical proof for the robustness of the gadget and

show that, for t ≤ 4, the amount of randomness required can even be reduced without

compromising on robustness.

3.4.1 Overcoming the latest constructions

In this work we address the problem of robust-t-probing security in the context

of optimized composability. Recent efforts put into improving CMS masking without

increasing the latency have been proposed [89]. Figure 3.26 shows a solution for the

case for t = 3, s = 4 as proposed by the authors of [89]. Note that the authors

elaborate this scheme starting from the first CMS proposed in [98], changing the

order of products aibj and introducing additional random bits qi to protect the shares;

however, as we now show, this gadget is not robust 3-SNI. In fact, consider the three

probes marked in green P1, P2 and P3 as in Figure 3.35: probes P2 and P3 are the only

internal probes so all three probes should convey information about up to two shares.

P1 allows to get (a1b2 + r0 + r1, a1b0 + r1 + r2 + q0, a3b0 + r2 + r3 + q1, a3b2 + r3 + r4),

while the two internal probes P2 and P3 allow to get (a2b3, r0, r15) and (a1b0, r1, r2, q0)

respectively. In principle, the information on the secrets derived from P1 (e.g., a1b2)

is covered by at least two random bits (e.g., a1b2 is covered with r0 and r1). However,

it is possible to unmask a1b2 from P1 adding r0 and r1 recovered from P2 and P3

101

Chapter 3. Probing security

respectively. Then, three shares of b are exposed (b2 from P1, b3 from P2 and b0 from

P3) with only two internal probes.

3.4.2 A provably robust-t-SNI, 1-cycle-latency CMS-like scheme

The problem with the scheme in Figure 3.35 is that internal extended probes give

access to each random used in the refresh layer (yellow section). To overcome this

leak, one can sum and save into a register these pairs of random bits to avoid that a

single probe (such as for example P3) has access to both intermediate products and

individual refresh random bits. Note that, from the point of view of the input-to-

output latency, the gadget is still one cycle as this sum could be pre-computed before

receiving the shares a and b. For the above gadget we would have the following

expressions:

c0 = [a1b2 + [r0 + r1]] + [a1b0 + [r1 + r2] + q0]+

+ [a3b0 + [r2 + r3] + q1] + [a3b2 + [r3 + r4]]

c1 = [a1b3 + [r4 + r5]] + [a1b1 + [r5 + r6] + q1]+

+ [a3b1 + [r6 + r7] + q2] + [a3b3 + [r7 + r8]] (3.35)

c2 = [a0b1 + [r8 + r9]] + [a0b0 + [r9 + r10] + q2]+

+ [a2b0 + [r10 + r11] + q3] + [a2b1 + [r11 + r12]]

c3 = [a0b3 + [r12 + r13]] + [a0b2 + [r13 + r14] + q3]+

+ [a2b2 + [r14 + r15] + q0] + [a2b3 + [r15 + r0]]

where square brackets indicate registered values (see Table 3.2), with additional red

color when they refer to the registered sum of refresh random bits. One can verify

with maskverif [6] that the above gadget is in fact robust 3-SNI. Note that Eq.

3.35 describes the scheme in Fig. 3.35 with some added registers (red brackets).

This strategy is not entirely new as it has been used, to the best of our knowledge,

only recently [39] in the field of trivial composability. However, we will show that

also optimized composability might benefit from such strategy, as it is possible to

generalize this idea to derive a sufficient condition for a gadget being 1-cycle robust

t-SNI, whose general cone structure is shown in Figure 3.36.

Note that the shares ai and bj are organized as in the original CMS scheme [98],

and the random bits are summed up and registered before using them in the refresh

layer.
Proposition 3.4.1. Given 2s2 independent random bits (qij)0≤i,j≤t and (rij)0≤i,j≤t

the following and-gadget is robust t-SNI:

ci :=
∑

0≤j≤t

[ai · bj + [ri,j + ri,j+1 + qi,j + qi+1,j]] (3.36)

102

3.4.2 A provably robust-t-SNI, 1-cycle-latency CMS-like scheme

N
ew

 la
ye

r
C

on
ve

nt
io

na
l l

ay
er

s

Figure 3.36: A cone of the proposed robust t-SNI CMS structure which has still

1-cycle latency. Green discs represent the possible probes used in proposition 3.4.1.

The black thick lines indicate register layers.

where ris := ri0, qsi := q0i for 0 ≤ i ≤ t and s := t+ 1.

Proof. For the meaning of mathematical symbols see Table 3.2. Setting oi,j := ai ·
bj + si,j with si,j := ri,j + ri,j+1 + qi,j + qi+1,j for 0 ≤ i, j ≤ t, the extended output

probes are γi := {oi,j | 0 ≤ j ≤ t} for 0 ≤ i ≤ t, and the maximal extended inner

probes are αi,j := {ri,j, ri,j+1, qi,j, qi+1,j} and βi,j := {ai · bj, si,j} for 0 ≤ i, j ≤ t.

An attacker gets to pick at most t extended probes, let’s say a set Γ of output

probes of type γj, a set A of inner probes of type αi,j and a set B of inner probes of

type βi,j, s.t. |Γ|+ |A|+ |B| ≤ t.

Setting I := {i | αi,j ∈ A or βi,j ∈ B} and J := {j | αi,j ∈ A or βi,j ∈ B}, we

Table 3.2: Meaning of some mathematical symbols employed in the text.

Symbol Meaning

[·] Value saved into a register

:= Mathematical definition

| · | Set cardinality

〈vi | i ∈ I〉 Vector space generated by the vectors (vi)i∈I

x = y mod V x equals y modulo the subspace V , i.e.:

x = y + v for some v ∈ V

103

Chapter 3. Probing security

claim that the attacker can simulate all those probes knowing just the inputs ai for

i ∈ I and bj for j ∈ J , where clearly |I| ≤ |A|+ |B| and |J | ≤ |A|+ |B| (|A|+ |B| is

the number of the chosen inner probes).

All standard (i.e., non-extended) probes are linear combinations of the linearly

independent values ai ·bj, ri,j and qi,j for 0 ≤ i, j ≤ t, i.e., elements of the vector space

〈ai · bj, ri,j, qi,j|0 ≤ i, j ≤ t〉. Applying to the probes the modulo operation w.r.t. the

vector subspace 〈ai · bj, ri,j | 0 ≤ i, j ≤ t〉, the probes have values qi,j rsp. qi,j + qi+1,j.

For each j, the values qi,j + qi+1,j span a t-dimensional subspace of the (t + 1)-

dimensional space generated by the qi,j with 0 ≤ i ≤ t, so
∑

0≤i≤t(qi,j + qi+1,j) = 0 is

the only non-trivial linear dependency of the values qi,j + qi+1,j for fixed j. Then for

any j, with R := 〈ai · bj, ri,j | 0 ≤ i, j ≤ t〉∑
i∈I

si,j = 0 mod R =⇒ I = ∅ or I = {0, . . . , t}. (3.37)

Analogously, applying to the probes the modulo operation w.r.t. the vector space

Q := 〈ai · bj, qi,j | 0 ≤ i, j ≤ t〉, for fixed j the only non-trivial linear dependency of

the values ri,j + ri,j+1 is
∑

0≤j≤t(ri,j + ri,j+1) = 0. Then for any i,∑
j∈J

si,j = 0 mod Q =⇒ J = ∅ or J = {0, . . . , t}. (3.38)

Implications (3.37) and (3.38) can be read as: If there are no inner probes of type

αi,j, a summand oi,j can be cancelled out mod〈ai · bj | 0 ≤ i, j ≤ t〉 only by a probe

βi,j or by another t summands oi′,j or βi′,j in (3.37) rsp. t summands oi,j′ or βi,j′ in

(3.38).

As the image of the uniform distribution under a linear map is the uniform dis-

tribution on its image, a sum σ of standard probes with σ ∈ 〈Γ,A,B〉 has uniform

distribution and is independent of all inputs ai and bj, unless σ ∈ 〈ai ·bj | 0 ≤ i, j ≤ t〉.
Hence we have to show that 〈Γ,A,B〉 ∩ 〈ai · bj | 0 ≤ i, j ≤ t〉 ⊆ 〈ai · bj | i ∈ I, j ∈ J〉.

Write σ ∈ 〈Γ,A,B〉 as a sum of standard probes. If σ involves a summand

containing the term ai · bj, this term stems either from the inner probe βi,j ∈ B

– implying i ∈ I and j ∈ J – or from the summand oi,j ∈ γi ∈ Γ. As oi,j =

si,j mod 〈ai · bj | 0 ≤ i, j ≤ t〉, assuming βi,j /∈ B implies by (3.37) that σ involves

either (a) for each 0 ≤ i′ ≤ t standard probes as summands that contain the term

si′,j or (b) a summand qi′,j for some 0 ≤ i′ ≤ t . The latter case (b) implies that αi′,j

or αi′−1,j is probed, and hence j ∈ J . The former case (a) requires at least t more

probes, as no extended probe involves terms si,j for more than one i. Both cases lead

to a contradiction.

Analogously, given the implication of (3.38), σ involves either (a) for each 0 ≤
j′ ≤ t standard probes as summands that contain the terms si,j′ or (b) a summand

104

3.4.2 A provably robust-t-SNI, 1-cycle-latency CMS-like scheme

ri,j′ for some 0 ≤ j′ ≤ t. The latter case (b) implies that αi,j′ or αi,j′−1 is probed, and

hence i ∈ I. For the former case (a), by just probing γi, an attacker can get all the

terms si,j′ . But in the last paragraph we showed that for each term si,j′ contained

in a summand of σ necessarily j′ ∈ J , implying J = {j | 0 ≤ j ≤ t}. As for each

inner probe at most one element is added to J , this contradicts that the attacker can

choose at most t probes.

The placement of the products ai · bj in the output cones ci as well as the presence

of randomness in Eq. 3.36 is essential to guarantee that the proposed construction is

robust t-SNI. Indeed, a different placement can break (robust) strong non-interference

for s big enough. In fact, assume that an attacker chooses n extended output probes

γ1, . . . , γn placed on adjacent cones, and 4(n − 1) inner probes α1,i, αi,1, αn,i, αi,n for

1 ≤ i ≤ n. The probes γ1, . . . , γn give access to all values oi,j for 1 ≤ i, j ≤ n, whose

sum is ∑
1≤i,j≤n

ai · bj +
∑

1≤i,j≤n

(ri,j + ri,j+1) +
∑

1≤i,j≤n

(qi,j + qi+1,j)

=
∑

1≤i,j≤n

ai · bj +
∑

1≤i≤n

(ri,1 + ri,n+1) +
∑

1≤j≤n

(q1,j + qn+1,j) .

The inner probes allow to derive ri,1 ∈ αi,1, ri,n+1 ∈ αi,n, q1,i ∈ α1,i and qn+1,i ∈
αn,i, effectively exposing the first summand

∑
1≤i,j≤n ai · bj of the equation above;

thus 4(n−1)+n probes allow to derive n2 different products ai · bj. The arrangement

of the ai · bj in Eq. 3.36 is such that even knowing these n2 products does not

break strong non-interference as the attacker only obtains n different shares ai and

bj (1 ≤ i, j ≤ n). But already for s = 12 and n = 3, a different placement of the

products ai · bj can expose more than 4(n− 1) shares of either secret, making it not

robust strong-interferent.

3.4.2.1 Saving randomness for t ≤ 4

For t ≤ 4, the scheme presented in Proposition 3.4.1 can be simplified by removing

the random bits ri,j without compromising security. This decreases the number of

involved random bits from 2 · s2 to s2 (see Figure 3.37 for this construction). In par-

ticular, as one can verify with maskverif, robust t-probing security can be ensured

with just the qi,j:

ci =
∑

0≤j≤t

[aibj + [qi,j + qi+1,j]] (3.39)

for 0 ≤ i, j ≤ t, t ≤ 4. However, for t ≥ 5 this particular scheme breaks because, with

a specific choice of three external probes on adjacent ci and two internal probes, an

attacker can recover three shares of a. For example, if the attacker places five probes

105

Chapter 3. Probing security

Figure 3.37: The optimized construction which is valid for any t < 5 but fails for

t ≥ 5. Green discs represent the probes used to mount the attack.

(see Figure 3.37’s green dots) on γi, γi+1, γi+2, αi,0 and αi+2,0 then she is able to derive

3 shares of a, with only 2 internal probes. This attack is possible for any t ≥ 5.

For t ≤ 2 one can additionally remove the random bits qi,i, deriving for t = 1 the

following scheme with only 2 random bits instead of s2 = 4:

c0 = [a0b0 + q1,0] + [a0b1 + q0,1]

c1 = [a1b0 + q1,0] + [a1b1 + q0,1] (3.40)

Similarly, for t = 2 one obtains the following construction with only 6 random

bits instead of s2 = 9:

c0 = [a0b0 + q1,0] + [a0b1 + q0,1] + [a0b2 + [q0,2 + q1,2]]

c1 = [a1b0 + [q1,0 + q2,0]] + [a1b1 + q2,1] + [a1b2 + q1,2] (3.41)

c2 = [a2b0 + q2,0] + [a2b1 + [q2,1 + q0,1]] + [a2b2 + q0,2]

Both schemes are robust t-SNI (for t = 1 and t = 2 respectively), as one can verify

with maskverif.

3.4.3 Applications

Our proposed structure allows to obtain an input-share-to-output-share latency

of one cycle while still being robust t-SNI, at the expense of increased randomness.

A t-SNI gadget could be made robust t-SNI with reasonable latency by replacing all

t-SNI ands with our proposed gadget, all t-NI ands with DOM ands, and all t-SNI

106

3.5. ADD-based Spectral Analysis of Probing Security

refresh gadgets with the robust t-SNI refresh gadgets from [39]. Indeed, compared to

the DOM [67] and the HPC2 [39] gadgets, which both need s(s− 1)/2 random bits,

our gadgets require 2x randomness for s = 2, 3, about 2.5x for s = 4, 5 and more than

4x for s > 5. However, our solution requires only 1-cycle latency instead of at least

2 cycles of latency that characterizes the current DOM and HPC2; it is thus clearly

a matter of trade-off of latency and randomness. Another application could be to

lower the latency of an HPC2-based construction by ”kickstarting” the S-boxes: after

1, 2, 3 rsp. 4 cycles one can obtain with HPC2 gadgets values of algebraic degrees

1, 2, 3 rsp. 5 in the input bits due to their asymmetric latency of 1 rsp. 2 in their

inputs. Replacing just all HPC2 gadgets in the first layer with our gadget can save

one cycle latency, as the achievable algebraic degrees are then 2, 3, 5 rsp. 8. This can

be done for example for the optimized PRESENT S-box of Fig. 6(b) of [39] to regain

the better latency of the DOM-based construction. If additionally all S-box inputs

that are added to the PRESENT S-Box outputs are refreshed before with a robust

mask refresh, the resulting circuit becomes robust probing secure for, we believe, a

moderate increase in area.

3.5 ADD-based Spectral Analysis of Probing Se-

curity

This work has been accepted to Design, Automation and Test in Europe (DATE2022)

Conference. In this paper, we address the problem of tooling needed for the verifi-

cation of non-interference properties. To contextualize our work, note that existing

heuristic tools such as maskVerif [7] can be helpful in verifying if a fixed configu-

ration instance of a gadget is t-probing secure or d strong-non-interferent (t-SNI).

Notwithstanding the efficiency of maskVerif, its developers argue that more pre-

cise approaches remain important when verification with more efficient methods fail

[7]. Therefore, the importance of studying exact techniques is quite evident. A few

other approaches have been proposed in the past to address this verification problem

through some kind of approximation [26, 85], while existing exact approaches either

suffer from size and exponential time complexity [89] or have not been tested on d > 3

[75].

In this paper, we introduce an Algebraic Decision Diagram (ADD)-based [5]

methodology for the exact validation of circuits against required strong non-interference

properties. To our knowledge, the methodology is faster than the state of arts exact

methods proposed in the literature and builds on decades of work on BDD/ADD li-

braries. Benchmarked against a standard set of use cases (taken from the maskVerif

107

Chapter 3. Probing security

ClkxCI

RstxBI
XxDI

YxDI

ZxDI

QxDO

$_DFF_P_
C

D

Q

$_DFF_P_
C

D

Q

0

1

1

0

1

0

Figure 3.38: The DOM-1 multiplication circuit.

[7] repository), we show that the proposed exact tool can compete with heuristic

methods as well.

3.5.1 Methodology

The overarching goal of this paper is to present a new methodology that facilitates

the analysis of a circuit description, to provide a proof that it is strongly d-non

interferent (d-SNI), i.e., given s outputs as long as s ≤ d implies a dependency with

maximum i input shares, where i is the number of internal probes [8].

From a high level point of view (see Figure 3.40), the first step of the proposed

methodology is a reading phase of a gate-level circuit description, which is anno-

tated with sensitive variables, sensitive outputs, and their corresponding shares. The

description is then ”unfolded” to produce all the intermediate probes that can be

derived. Moreover, an overall Walsh transform is computed for any combination of

either outputs/probes (1). Then, the derived Walsh transform is compressed into

a compact representation exploiting Algebraic Decision Diagrams (2). To perform

the interference check, the latter is then multiplied by a relation vector, which has

non-null values only in the regions where the Walsh transform must be zero (3, see

also Figure 3.18). If the resulting value is not zero then it means that the function is

not t-SNI; otherwise, we pass to the next output/probe combination. The following

paragraphs show a detailed description of the above steps.

3.5.1.1 Reading and ”unfolding” the circuit description

The tool reads-in a standard intermediate language (ILANG) format as produced

by YOSYS tool [118]. Figure 3.39 shows part an example annotation for the Domain

Oriented Masking and [67] protected at the first order (whose circuit is shown in

108

3.5.1 Methodology

Generated by Yosys 0.7 ԳԳ...
ٜٜ
module \dom_and
public \ClkxCI \RstxBI
input \XxDI
input \YxDI
output \QxDO
random \ZxDI
ٜٜ
wire width 2 input 3 \XxDI
wire width 2 input 4 \YxDI
wire width 1 input 5 \ZxDI
wire width 2 output 6 \QxDO
(other wires and cells)
ٜٜ

Figure 3.39: Annotated ILANG file

1

Circuit description
(ILANG)

3

Relation matrix
(ADD)

2

WALSH
TRANSFORM

4

INTERFERENCE
CHECK

Figure 3.40: The methodology proposed in this paper.

Figure 3.38).

The description is extended with a Maskverif compliant set of annotations for

identifying sensitive inputs (e.g., XxDI), outputs (e.g., QxD0) and additional random

bit (ZxDI). Being an implementation protected at the second order, each sensitive

value (e.g., XxDI) is encoded in two shares.

”Unfolding” the circuit means deriving the expression of all the possible interme-

diate nodes in the circuit. This is of course a potentially exponential operation whose

time increases with the levels of the circuit. Practically, at least for the considered

benchmarks, see Section 3.5.2, the complexity is still manageable. This part produces

a C++ file which builds the BDDs for all the outputs/probes that have been found

109

Chapter 3. Probing security

(by exploiting the C++ bindings of the CUDD library*). The idea is that the corre-

sponding manager will be able to build an internal representation exploiting common

subexpressions, especially when these correspond to actual factors and co-factors of

another function already parsed.

3.5.1.2 Computing the Walsh Spectrum and the correspond-

ing relation matrix

The Walsh transform of each base output/probe is computed through the Fujita

Walsh transform [61]. The algorithm works on the BDD representation of the func-

tion and returns an ADD whose variables are the bits associated with the spectral

coordinates. In principle, one could use this transform to work on any combination

of output/probes. However, we have found the performance of the algorithm subop-

timal with respect to a simpler computation which exploits the known fact that the

row of the correlation matrix associated with multiple base output/probes is propor-

tional to the convolution of the source rows when these are represented in suitable

associative container data types. While state of the art solutions are based on list of

lists [89], in this paper we propose to adopt hash-based containers (in C++ parlance

these are called unordered maps). Operations on such containers are O(1) on average

and allow fast insertion/update times of the result of the convolution. The data is

then converted back in an ADD for further processing.

3.5.1.3 Interference check

The machinery associated with BDD/ADDs allows to quickly prove predicates

over the data itself. In particular, one can express and solve existentially quantified

predicates, over the convolution W computed above, and have the ADD manager

work out the result. The interference check can be defined as a suitable predicate of

this form:

∃α.T (α, ρ) ∧W (α, ρ) ∧ (ρ = 0)

where α and ρ are the spectral coordinates of sensitive values and refresh values,

T (α, ρ) is a predicate matrix which is equal to 1 only where the convolution W is

expected to be 0 (essentially the white areas in Figure 3.18). If the predicate evaluates

to true, then it means that the function is not t-SNI. If the predicate is false then

it means that, for this particular combination of output/probes, no vulnerability has

been found. However, the search must continue for combinations of up to d among

*Colorado University Decision Diagrams [110]

110

3.5.2 Experimental results

outputs and probes for determining whether the function is t-SNI. To speed up the

search it has already been noted [7] that it is useful to start from combinations of the

maximum size and evaluate simpler combinations if those are not found vulnerable;

this is because there is a low probability that multiple output/probes mask out single

output/probe vulnerabilities.

100

102

104

106

108

1010

do
m

−
1

do
m

−
2

do
m

−
3

do
m

−
4

is
w

−
1

ke
cc

ak
−

1

ke
cc

ak
−

2

ke
cc

ak
−

3

ti−
1

tr
ic

hi
na

−
1

benchmark

lo
g1

0(
ov

er
al

l t
im

e
[m

s]
)

type

LIL

MAPI

100

102

104

106

108

1010

do
m

−
1

do
m

−
2

do
m

−
3

do
m

−
4

is
w

−
1

ke
cc

ak
−

1

ke
cc

ak
−

2

ke
cc

ak
−

3

ti−
1

tr
ic

hi
na

−
1

benchmark

lo
g1

0(
co

nv
ol

ut
io

n
tim

e
[m

s]
)

type

LIL

MAPI

100

102

104

106

108

1010

do
m

−
1

do
m

−
2

do
m

−
3

do
m

−
4

is
w

−
1

ke
cc

ak
−

1

ke
cc

ak
−

2

ke
cc

ak
−

3

ti−
1

tr
ic

hi
na

−
1

benchmark

lo
g1

0(
ve

rif
ic

at
io

n
tim

e
[m

s]
)

type

LIL

MAPI

Figure 3.41: Comparison of overall (left), convolution (middle) and verification (right)

times between the method proposed in [89] (lil) and the proposed method (mapi)

3.5.2 Experimental results

This experimental result section has a threefold goal: i) to compare the perfor-

mance of the proposed methodology with the state of arts exact method in [89], ii)

to compare alternative implementations of the proposed methodology with varying

degree adoption of BDD/ADD, and iii) to show a comparison with other current

state of the art approaches.

The experiments are based on the benchmarks from the maskVerif repository [7].

These benchmarks are a set of primitive cryptographic gadgets implemented to pre-

vent probing attacks. In particular, for the first level of security, we test the Threshold

Implementation algorithm (ti-1 in Tables 3.3 and 3.4) [95], Trichina (trichina-1)[116]

and ISW multiplication (isw-1) [73]; DOM (dom-*) [67] is tested from the first to

the fourth level, while the implementation of probing-protected Keccak algorithm

(keccak-*) [68] from the first to the third. We run our experiments on a single core

Intel Celeron N3150 at 1.601GHz. First, we compare the performance of our method-

ology with the implementation proposed in [89], where the authors exploited a lists

of lists (lil) data structure to store the Walsh spectrum and compute both the con-

volution and the verification over such lists. Table 3.3, shows a comparison between

lil and our method (maps improved or mapi). The first column refers to the tested

security level, while the names of gadgets are listed in the second column. Third and

111

Chapter 3. Probing security

Table 3.3: Results of the comparison between our methodology and lists of lists

implementation. Values in third and fourth columns are in seconds.

sec. lev. gadget lil mapi speed-up

1

ti-1 0.00367 0.00194 1.89

trichina-1 0.00248 0.00129 1.93

isw-1 0.00276 0.00157 1.76

dom-1 0.00272 0.00145 1.87

Keccak-1 0.05506 0.02633 2.09

2
dom-2 0.02478 0.02731 0.91

Keccak-2 106.60330 2.39039 44.6

3
dom-3 2.38042 3.29725 0.72

Keccak-3 1482378.91197 351.71293 4214.74

4 dom-4 756.00070 740.17401 1.02

median 1.88

fourth columns report the time taken for the implementation with lil and with mapi

respectively. The last column shows the speed-up of mapi, computed as the ratio

between the two previous columns. The overall execution time and the breakout of

the convolution and verification operations is presented in Figure 3.41. Note that the

y axis is logarithmic so the breakout is not meant to be additive as one can intuitively

think. Numerically, we can note:

� On convolution, the methods are comparable with a slight advantage for mapi,

given perhaps the faster average access time.

� On verification, the use of ADDs by mapi allows a significant speedup which

benefits the overall execution time.

� On the overall median, mapi can provide a speedup of 1.88x with respect.

� Whenever the speedup is lesser than one (in only two over ten cases) the differ-

ence is less than 30%.

� For Keccak, which is a benchmark of greater complexity with respect the other

ones, mapi shows a speedup of at least 3 orders of magnitude.

One could think that applying ADDs also for convolution would imply a better

performance. To answer this question we evaluate our methodology with two variants,

one in which both computation and verification is done only with hash maps (map)

and the case in which both convolution and verification is done with ADDs (fujita,

112

3.5.2 Experimental results

Table 3.4: Evaluation of different implementation choices. Values from third to sixth

columns are in seconds.

sec. lev. gadget lil fujita map best method

1

ti-1 1.89 6.70 1.94 1.89

trichina-1 1.93 10.83 1.96 1.93

isw-1 1.76 9.08 1.79 1.76

dom-1 1.87 9.74 1.84 1.84

Keccak-1 2.09 1.37 2.10 1.37

2
dom-2 0.91 2.44 0.84 0.84

Keccak-2 44.6 5.19 30.89 5.19

3
dom-3 0.72 1.75 0.57 0.57

Keccak-3 4214.74 34.76 1629.05 34.76

4 dom-4 1.02 1.43 0.56 0.56

median 1.88 5.94 1.89 1.80

using the Fujita method [61]). Table 3.4 reports the speed-ups of our method (mapi)

with respect to all the others (lil, map, fujita) while the absolute execution times

are shown in Figure 3.42. Overall mapi’s mixing of hash maps and ADDs improves

with respect to all other methods (median 1.8x), except for the DOM benchmark.

We suppose that this behavior is due to Walsh matrices being very sparse and thus

not requiring a significant effort in verification.

100

102

104

106

108

1010

do
m

−
1

do
m

−
2

do
m

−
3

do
m

−
4

is
w

−
1

ke
cc

ak
−

1

ke
cc

ak
−

2

ke
cc

ak
−

3

ti−
1

tr
ic

hi
na

−
1

benchmark

lo
g1

0(
ov

er
al

l t
im

e
[m

s]
)

type

FUJITA

LIL

MAP

MAPI

Figure 3.42: Comparison of overall computation times of the proposed method (mapi)

and other implementations analysed in the experimental results.

113

Chapter 3. Probing security

Table 3.5: Comparison between mapi and the state of the art tools in [7], [26] and

[75]. Values from third to sixth columns are in seconds.

heuristic exact

sec. lev. gadget maskVerif Bloem SILVER mapi

1

ti-1 0.01 ≤1 – 0.0019

trichina-1 0.01 ≤1 – 0.0013

isw-1 0.01 ≤1 – 0.0016

dom-1 0.01 ≤1 0.0 0.0015

Keccak-1 0.01 ≤1 – 0.0263

2
dom-2 0.01 ≤1 0.0 0.0273

Keccak-2 0.2 ≤10* – 2.3904

3
dom-3 0.04 ≤4 3.7 3.2972

Keccak-3 41 ≤240* – 351.7129

4 dom-4 0.34 ≤120 – 740.1740

We conclude by giving in Table 3.5 a comparison of mapi with other state of the

art tools, and in particular maskVerif [7], the approximate technique proposed by

Bloem et Al. in [26] (called Bloem in the Table) and SILVER [75]. Being exact, mapi

implies obviously more computation time respect the first two heuristic methods, but

not so much more, especially for Keccak-3. Instead, the comparison with SILVER is

difficult, due to the different choice of benchmarks. In this case, for DOM algorithm,

SILVER and mapi seem to need close processing time. Note that some results in

Bloem column are marked by a *, because the benchmarks provided for their tool in

[26] only concern the verification of one secret instead of all 5 secrets of elaborated

by the gadget; also, their technique verifies probing security and not the strong non-

interference.

3.6 Conclusion and further works

In this Chapter, we present our work in the context of the probing security. Two

main cases have been inspected: the classic probing model, i.e., when the probes

placed on the circuit allow to read only the values flowing inside the wires, and the

robust probing model, i.e., when also glitches are considered.

In the first case, we investigate a formalization that is an alternative from those

present in the state-of-the-art. It is based on the theory of Boolean functions, and is

able to describe the multiple dependencies between outputs and inputs of a vectorial

114

3.6. Conclusion and further works

function. This relation calculus is precise enough to prove and extend known compo-

sitional properties, without much semi-formal or verbal ratiocination. This reasoning

has much room of improvement, for example considering other probing security and

composition definitions, such as the t-PINI condition.

In the second case, we apply the relation calculus to the robust probing security,

providing a spectral formalization also in the context of gadgets composition. More-

over, we derive formal conditions for t-probing security in the presence of glitches by

further categorizing probes, to enable compositional reasoning of vulnerability pro-

files. Also in this case, we highlight that an improvement can be modelling t-PINI

condition, as well as inquiring about the minimum number of randoms required to

achieve robust t-strong non interference and/or investigating more efficient refresh

layers/gadgets.

In the context of robust probing security, we also propose a low-latency multi-

plication gadget that is secure against probing attacks that exploit logic glitches in

the circuit. This gadget is the first of its kind to present a 1-cycle input-to-output

latency while belonging to the class of probing security by optimized gadgets. A

possible extension of this work is find low-latency gadgets that allow higher probing

security protection, with the number of randoms as low as possible.

Among the tools proposed to examine the probing security of gadgets, with or

without glitches, we propose a new methodology that allows to exactly verify strong-

non-interference properties. Our approach combines both hash maps and ADDs and

provides, on a standard set of use cases, an interesting speed-up against other exact

methods. Next steps can be comparing it with more other tools, such as the very

new IronMask, and applying our tool to more complex gadgets, with higher security

levels and by exploiting parallelization.

115

Chapter 3. Probing security

116

Part II

Protecting secrets during

computations

117

CHAPTER 4

MULTIPLICATIVE COMPLEXITY,

AUTOSYMMETRIC AND DIMENSION

REDUCIBLE BOOLEAN FUNCTIONS

Nowadays, And Inverted Graph (AIG) is one of the most studied and exploited

data structure in Logic Synthesis. An AIG is a directed acyclic graph of 2-input and

nodes, with possibly inverted edges, that represents a Boolean function. The aca-

demic state of the art logic synthesis tool implementing the AIGs is called ABC [31].

Recently, the new logic networks representation of the xor-and Graphs (XAG) has

been developed [69, 71, 112, 114], namely an AIG enriched with 2-input xor nodes,

and then on the basis {and, xor, not}. The introduction of xor nodes in AIGs is

mainly due to two different requirements: several proposed emerging technologies ex-

ploit xor gates [22, 69, 107, 113], and the growing relevance of cryptography-related

applications has revived the interest in xor gates [44]. For example, in high-level cryp-

tography protocols such as secure multi-party computation, processing xor gates is

particularly convenient since their evaluation is possible without any communication

cost (see Section 2.4.2.3).

In the context of logic synthesis for emerging technologies, the minimization of

a XAGs mainly aims at reducing the number of and/xor nodes. On the contrary,

in the cryptography-related applications, we are typically interested in reducing the

number of and nodes, only. For example, for secure multi-party computation and

nodes are the only nodes in a XAG with a communication cost. In this case, the

minimization cost depends only on the number of and nodes, and then the main aim

is the minimization of the number of and gates in a XAG [113, 112, 114].

119

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

In this work, the XAG model used is the one described in [114], where regular and

complemented edges are used to connect the gates. Complemented edges indicate the

inversion of the signals and replace inverters in the network (see Example 4.1.1).

In Section 4.1 we outline an overview on the state of the art about multiplicative

complexity of circuits in XAG form, studying the particular cases of autosymmetric

functions and D-reducible functions. In Section 4.2 we present some developments

in the multiplicative complexity, which have been published in a paper of which the

author of this thesis is co-author. Similarly, for paper on which Section 4.3 is focused

on, which concerns some more investigations about the topic.

4.1 State of the art

At the beginning of this Section, we give two basic definitions.

Definition 4.1. The multiplicative complexity of a Boolean function is a measure

defined as the minimum number of and gates (i.e., multiplications) that are sufficient

to represent the function over the basis {and, xor, not}. More precisely, the multi-

plicative complexity M(f) of a Boolean function f is the number of and gates, with

fan-in 2, that are necessary and sufficient to implement f with a circuit over the basis

{and, xor, not}.

Definition 4.2. The multiplicative complexity MC(f) of a circuit C implementing a

Boolean function f over the basis {and, xor, not} is the actual number of and gates

in C.

Observe that the multiplicative complexity of a circuit for f only provides an

upper bound for the multiplicative complexity of f , i.e., M(f) ≤MC(f).

Example 4.1.1. In Figure 4.1 there is an example of XAG. Note that the comple-

mented edges are denoted by dashed lines. Since the number of and gates is 2, for this

particular circuit implementation the MC(f) measure is equal to 2.

The multiplicative complexity measure plays a crucial role in cryptography ap-

plications, for various reasons. First, the minimization of the number of and gates

is important for high-level cryptography protocols such as zero-knowledge protocols

and secure multi-party computation, where processing and gates is more expensive

than processing xor gates [1]. Moreover, the multiplicative complexity is an indica-

tor of the degree of vulnerability of the circuits, as a small number of and gates in

an XAG corresponds to a high vulnerability to algebraic attacks [65, 111]. Unfortu-

nately, determining the exact value of the multiplicative complexity of a function f is

120

4.1.1 Autosymmetric functions

y1 y2 y3 y4

⊕ ⊕

⋀⊕

⋀

⊕

Figure 4.1: XAG representation of the 4-input Boolean function.

a computationally intractable problem [35]. Thus, the minimization of the number of

and gates in any circuit implementation over the basis {and, xor, not} becomes very

important to assess the actual multiplicative complexity of the function.

4.1.1 Autosymmetric functions

Generally, the regularities of Boolean functions are exploited with the purpose to

derive more compact circuits in shorter synthesis time. When a Boolean function

has to be synthesized in a circuit, it is not always easy to find if exists a regularity

that can be exploited for a faster and more performing synthesis. In the literature,

some works have focused on structural regularities of Boolean functions based on

the notion of affine spaces and easily expressed using xor gates. In this context, in

order to decrease the multiplicative complexity of a XAG, it is possible to exploit the

regularity called autosymmetry [18, 20, 81, 30].

A Boolean function f over n variables is k- autosymmetric if it can be projected

onto a smaller function fk that depends on n−k variables. The regularity of a Boolean

function f is then measured computing its autosymmetry degree k, with 0 ≤ k ≤ n,

where k = 0 means no regularity. For k ≥ 1 the Boolean function f is said to be

autosymmetric, and a new function fk depending on n− k variables only, called the

restriction of f , is identified in polynomial time. Moreover, an expression for f can

be simply built from the restriction fk, indeed f(x1, x2, . . . , xn) = fk(y1, y2, . . . , yn−k),

where fk is a Boolean function on n − k variables y1 =
⊕

(X1), y2 =
⊕

(X2), . . . ,

yn−k
⊕

(Xn−k) and each
⊕

(Xi) is a xor whose input is a set of variables Xi with

Xi ⊆ {x1, x2, . . . , xn}. Note that
⊕

(Xi) can be a single variable, i.e., Xi = {xj} and

121

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

Figure 4.2: Synthesis process, when autosymmetry test is applied to an autosymmet-

ric function f .

⊕
(Xi) = xj .

The autosymmetry test consists of finding the value of k, the restriction fk, and

each single xor with its input variables Xi, i.e., the reduction equations. Note that

a degenerate function, i.e., a function that does not depend on all the variables in

the current Boolean space, is autosymmetric. The restriction fk is “equivalent” to,

but smaller than f , and has |S(f)|
2k

minterms only, where S(f) denotes the support

of f , and thus |S(f)| is the number of minterms of f . The synthesis of f can be

reduced to the synthesis of its restriction fk, which can be identified in polynomial

time. As the new n− k variables are xor combinations of some of the original ones,

the reconstruction of f from fk can be obtained with an additional logic level of xor

gates, whose inputs are the original variables, and the outputs are the new n − k

variables and their complements given as inputs to a circuit for fk. The restricted

function fk can be synthesized in any framework of logic minimization (for example,

in XAG form).

The synthesis flow, with autosymmetric test, is depicted in Figure 4.2. The aim is

to find the XAG for the Boolean function f with the minimum number of and gates,

i.e., min(f). Directly synthesizing function f can be computationally hard, because it

is an exponential time process. Instead, if f is autosymmetric, it is possible to reduce

f to the restriction fk and decrease the synthesis time. Note that the autosymmetric

test can be computed in polynomial time, while the last step calculating min(f) from

min(fk) and the reduction equations is a linear time process.

Example 4.1.2. Consider the Boolean function f , the Karnaugh map of which is

depicted in Figure 4.3.

122

4.1.1 Autosymmetric functions

x4x5

x2x3
00 01 11 10

00

01

11

10

0 0 01

0 1 11

0 1 11

1 1 10

(a) x1 = 0

x4x5

x2x3
00 01 11 10

00

01

11

10

0 1 11

1 1 10

1 1 10

1 0 00

(b) x1 = 1

Fig. 2. Karnaugh map of the second output of rd57 depending on the 5 Boolean variables x1, x2, x3, x4, x5.

y3y4

y1y2
00 01 11 10

00

01

11

10

0 0 01

0 1 11

0 1 11

1 1 10

Fig. 3. Karnaugh map of the restriction of the second output of rd57
depending on the 4 Boolean variables y1, y2, y3, y4.

Proof. First recall that the multiplicative complexity of a XAG
implementation for a function f provides an upper bound for
the multiplicative complexity of the function itself. Thus, the
thesis follows since we can construct a XAG for f with exactly
M(fk) AND nodes. This can be done adding to a XAG for
fk, containing a minimum number M(fk) of AND nodes, a
layer consisting only of XOR nodes, as shown in Figure 4.

Actually, a much stronger result holds: f and fk have
exactly the same multiplicative complexity. To prove this
result, we need to recall some properties of autosymmetric
functions and of their restrictions.

As shown in [7], [8], any k-autosymmetric function f is
associated to a k-dimensional vector space Lf , defined as
the set of all minterms w s.t. f(v) = f(v � w) for all
v 2 {0, 1}n. The k variables that are truly independent onto
Lf , i.e., the variables that assume all the possible combinations
of {0, 1} values in the minterms in Lf , are called canonical
variables and are used to construct the restriction fk. In
fact, fk corresponds to the projection of f onto the subspace
{0, 1}n�k where all the canonical variables assume value 0
(see [7], [8] for more details).

Consider for instance the 1-autosymmetric benchmark rd53

(second outoput) discussed in Section II-C. Its associated
vector space is the 1-dimensional space Lf = {00000, 11111},
whose canonical variable is x1 (all other variables must be
equal to x1 on Lf), and the restriction corresponds to the
projection of the function onto the space where x1 = 0, as it
can be noted from Figures 2 and 3.

Exploting this characterization for the restriction of an
autosymmetric function, we can prove the following theorem.

Theorem 1: Let f be a k-autosymmetric function, and let
fk be its restriction. Then,

M(f) = M(fk) .

Proof. We have proved in Lemma 1 that M(f)  M(fk).
Thus, it is enough to show that M(f) � M(fk).

By contradiction suppose that the multiplicative complexity
of the whole function f is strictly less than the multiplicative
complexity of its restriction fk, i.e., M(f) < M(fk). This
assumption means that any XAG for fk requires strictly
more than M(f) AND nodes, i.e., MX(fk) > M(f), where
MX(fk) denotes the multiplicative complexity of a XAG for
fk.

Since the restriction fk corresponds to the projection of f
onto the subspace {0, 1}n�k where all the canonical variables
of f have value 0, we can derive a XAG representation for fk

starting from a XAG for f and substituting all canonical input
variables with the constant value 0. Note that the constant
value 0 can be obtained computing the XOR of any non-
canonical variable with itself. Such a transformation can only
decrease the number of ANDs in the original XAG, as all AND
nodes that receive in input the constant value 0 can be removed
from the circuit, and substituted with the value 0. Therefore, if
we start from a XAG implementation of f with the minimum
number MX(f) = M(f) of AND nodes, we can derive a
XAG implementation for fk with MX(fk)  M(f) ANDs,
in contradiction with the initial assumption M(f) < M(fk).

Since the restriction fk is a smaller function, depending
on less variables, computing a XAG representation and mini-

Figure 4.3: Karnaugh map of a Boolean function that depends on 5 Boolean variables

x1, x2, x3, x4, x5.

The regularity of the function is highlighted by the colors in the figure. The au-

tosymmetry degree of f is 1 (i.e., k = 1) and the reduction equations are y1 = x1⊕x2,

y2 = x1⊕x3, y3 = x1⊕x4, y4 = x1⊕x5. Thus, the restriction f1 depends on 4 variables

and it is depicted in Figure 4.4.

Note that each point of the restriction corresponds to two points of the original

function, as indicated by the colors in the maps. For example, the point (0, 0, 0, 0)

in the Karnaugh map of Figure 4.4 corresponds to the two points (0, 0, 0, 0, 0) and

(1, 1, 1, 1, 1) in the Karnaugh map of Figure 4.3. This is due to the reduction equa-

tions, because considering the point (x1, x2, x3, x4, x5) = (0, 0, 0, 0, 0) and through the

reduction equations (y1, y2, y3y4) = (x1⊕x2, x1⊕x3, x1⊕x4, x1⊕x5) = (0, 0, 0, 0). Ex-

actly the same holds for the point (x1, x2, x3, x4, x5) = (1, 1, 1, 1, 1). It is easy to verify

that it is possible to perform a similar computation for any couple of corresponding

points depicted in Figure 4.3, obtaining the Karnaugh map in Figure 4.4.

Autosymmetric functions are just an exponentially smallest subset of the total

number of Boolean functions. Indeed, while the number NB of the Boolean functions

of n variables is NB = 22n , the number of autosymmetric ones is NA = (2n − 1)22n−1

[20].

The interest on autosymmetric functions is motivated mostly by their compact

representation in terms of number of and gates, which consists of a xor layer that is

the input to a XAG for the restriction. Moreover, in the classical sets of benchmark

functions, the frequency of autosymmetric functions is relevant. Indeed, for example,

in ESPRESSO benchmark suite [121] about 24% of the functions have at least one

truly (i.e. non degenerate) autosymmetric outputs.

123

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

Figure 4.4: Karnaugh map of the restriction of the Boolean function in Figure 4.3,

which depends on 4 Boolean variables y1, y2, y3, y4.

x4x5

x2x3
00 01 11 10

00

01

11

10

0 0 01

0 1 11

0 1 11

1 1 10

(a) x1 = 0

x4x5

x2x3
00 01 11 10

00

01

11

10

0 1 11

1 1 10

1 1 10

1 0 00

(b) x1 = 1

Fig. 2. Karnaugh map of the second output of rd57 depending on the 5 Boolean variables x1, x2, x3, x4, x5.

y3y4

y1y2
00 01 11 10

00

01

11

10

0 0 01

0 1 11

0 1 11

1 1 10

Fig. 3. Karnaugh map of the restriction of the second output of rd57
depending on the 4 Boolean variables y1, y2, y3, y4.

Proof. First recall that the multiplicative complexity of a XAG
implementation for a function f provides an upper bound for
the multiplicative complexity of the function itself. Thus, the
thesis follows since we can construct a XAG for f with exactly
M(fk) AND nodes. This can be done adding to a XAG for
fk, containing a minimum number M(fk) of AND nodes, a
layer consisting only of XOR nodes, as shown in Figure 4.

Actually, a much stronger result holds: f and fk have
exactly the same multiplicative complexity. To prove this
result, we need to recall some properties of autosymmetric
functions and of their restrictions.

As shown in [7], [8], any k-autosymmetric function f is
associated to a k-dimensional vector space Lf , defined as
the set of all minterms w s.t. f(v) = f(v � w) for all
v 2 {0, 1}n. The k variables that are truly independent onto
Lf , i.e., the variables that assume all the possible combinations
of {0, 1} values in the minterms in Lf , are called canonical
variables and are used to construct the restriction fk. In
fact, fk corresponds to the projection of f onto the subspace
{0, 1}n�k where all the canonical variables assume value 0
(see [7], [8] for more details).

Consider for instance the 1-autosymmetric benchmark rd53

(second outoput) discussed in Section II-C. Its associated
vector space is the 1-dimensional space Lf = {00000, 11111},
whose canonical variable is x1 (all other variables must be
equal to x1 on Lf), and the restriction corresponds to the
projection of the function onto the space where x1 = 0, as it
can be noted from Figures 2 and 3.

Exploting this characterization for the restriction of an
autosymmetric function, we can prove the following theorem.

Theorem 1: Let f be a k-autosymmetric function, and let
fk be its restriction. Then,

M(f) = M(fk) .

Proof. We have proved in Lemma 1 that M(f)  M(fk).
Thus, it is enough to show that M(f) � M(fk).

By contradiction suppose that the multiplicative complexity
of the whole function f is strictly less than the multiplicative
complexity of its restriction fk, i.e., M(f) < M(fk). This
assumption means that any XAG for fk requires strictly
more than M(f) AND nodes, i.e., MX(fk) > M(f), where
MX(fk) denotes the multiplicative complexity of a XAG for
fk.

Since the restriction fk corresponds to the projection of f
onto the subspace {0, 1}n�k where all the canonical variables
of f have value 0, we can derive a XAG representation for fk

starting from a XAG for f and substituting all canonical input
variables with the constant value 0. Note that the constant
value 0 can be obtained computing the XOR of any non-
canonical variable with itself. Such a transformation can only
decrease the number of ANDs in the original XAG, as all AND
nodes that receive in input the constant value 0 can be removed
from the circuit, and substituted with the value 0. Therefore, if
we start from a XAG implementation of f with the minimum
number MX(f) = M(f) of AND nodes, we can derive a
XAG implementation for fk with MX(fk)  M(f) ANDs,
in contradiction with the initial assumption M(f) < M(fk).

Since the restriction fk is a smaller function, depending
on less variables, computing a XAG representation and mini-

4.1.2 D-reducible functions

In this Section, we present the Dimension Reducible Boolean functions (DRed

functions) and some of their major properties.

D-reducible functions are Boolean functions whose minterms are all contained in

an affine space A strictly smaller than the whole Boolean space {0, 1}n (see Section

2.1.1 for definitions). More precisely, a Boolean function f : {0, 1}n → {0, 1} is D-

reducible if f ⊆ A, where A ⊂ {0, 1}n is an affine space of dimension strictly smaller

than n.

The minimal affine space A containing a D-reducible function f is unique, and it

is called the associated affine space of f . The function f can be represented in the

following way: f = χA · fA, where fA ⊆ {0, 1}dimA is the projection of f onto A and

χA is the characteristic function of A.

Moreover, as shown in [46], an affine space can be represented by a simple ex-

pression, called pseudoproduct, consisting in an and of xors of literals. In particular,

an affine space of dimension dimA can be represented by a pseudoproduct containing

(n− dimA) xor factors.

Example 4.1.3. Consider the function f : {0, 1}4 → {0, 1} with on-set {0001, 0110, 1101}
represented in the Karnaugh map on the left side of Figure 4.5.

The smallest affine space containing the on-set of f , depicted with dotted circles on

the map, is A = {0001, 0110, 1010, 1101}. This affine space has dimension dimA = 2

and can be represented by the pseudoproduct (x1⊕x2⊕ x̄3)(x1⊕x2⊕x4) that contains

exactly (n − dimA) = 2 xor factors. If we project f onto the smaller space A, we

obtain the function fA = {00, 01, 11}, represented in the Karnaugh map on the right

side of the figure.

124

4.1.3 Mockturtle tool

Figure 4.5: Karnaugh maps of a D-reducible function f and its corresponding pro-

jection fA.

The D-reducibility of a function f can be exploited in the minimization process.

The projection fA is minimized instead of f . This approach requires two steps: (i)

deriving the affine space A and the projection fA; (ii) minimizing fA in any logic

framework. The D-reducibility test, which establishes whether a function f is D-

reducible, and the computation of A have polynomial complexity [15].

4.1.3 Mockturtle tool

Mockturtle is a C++ library and part of the EPFL logic synthesis libraries [108].

This library provides generic logic synthesis algorithms and logic network data struc-

tures. The main philosophy of Mockturtle is that all algorithms are generic in the

sense that they are independent from the implementation of the logic network data

structure. In order to achieve this, Mockturtle makes use of concept-based design

using some modern C++-17 language features.

It can be integrated with other EPFL libraries, expanding its potential. For

example, it allows to read various format files, when integrated with the library

Lorina, and it can be augmented with SAT using the exact synthesis library Percy.

For our work, we are interested in Mockturtle because it is a state-of-the-art tool that

can be used to support and build algorithms for the optimization of the multiplicative

complexity [112, 114].

The Mockturtle is based on a principle of 4 layers that depend on each other in a

linear order. The bottom layer is provided by the Network interface API. It defines

naming conventions for types and methods in classes that implement network inter-

faces, some of which are mandatory while others are optional. The network interface

125

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

API does not provide any implementations for a network though. Algorithms, the

second layer, are implemented in terms of generic functions that takes as input an

instance of some hypothetical network type and require that type to implement all

mandatory and some optional interfaces. The algorithms do however make no as-

sumption on the internal implementation of the input network. For instance, they

make no assumption on how gates of the network are internally represented. The

third layer consists of actual network implementations for some network types that

implement the network interface API, e.g., And-inverter graphs, Majority-inverter

graphs, or k-LUT networks. Algorithms from the second layer can be called on in-

stances of these network types, if they implement the required interfaces. Static

compile time assertions are guaranteeing that compilation succeeds only for those

network implementations that do provide all required types and methods. Finally,

to improve the performance, some algorithmic details may be specialized for some

network types based on their internal implementation. This can be done for each

network individually, without affecting the generic algorithm implementation nor the

implementation of other network types.

4.2 Multiplicative Complexity of Autosymmetric

Functions: Theory and Applications to Secu-

rity

In this Section we investigate some properties that Boolean functions assume

when their multiplicative complexity is explored [13]. In particular, we study a spe-

cific structure regularity of Boolean functions, called autosymmetry, and exploit it

to decrease the number of ands in xor -and Graphs (XAGs), i.e., Boolean networks

composed by ands, xors, and inverters. The interest in autosymmetric functions is

motivated by the fact that a considerable amount of standard Boolean functions of

practical interest presents this regularity. Indeed, about 24% of the functions in the

classical Espresso benchmark suite have at least one autosymmetric output.

4.2.1 Multiplicative Complexity of Autosymmetric Functions

In this Section we study the relationships between the multiplicative complexity

of an autosymmetric function and the multiplicative complexity of its restriction.

First of all, observe that a XAG representation of a k-autosymmetric function f

can be easily obtained composing a XAG for the restriction fk with an additional

layer of xor gates implementing the reduction equations. The inputs to the new

126

4.2.1 Multiplicative Complexity of Autosymmetric Functions

XAG for fk

EXOR layer implementing the
reduction equations

f

y1 y2 yn-k

x1 x2 xn

.

.

XAG for f

Figure 4.6: A XAG for an autosymmetric function f obtained adding a xor level

implementing the reduction equations to a XAG for the restriction fk.

layer are the original variables x1, x2, . . . , xn and the outputs are the new variables

y1, y2, . . . , yn−k, that become the inputs to the XAG for fk, as shown in Figure 4.6.

Since the new layer contains only xor gates, we immediately conclude that M(f) ≤
M(fk), as formally stated in the following lemma.

Lemma 4.2.1. The multiplicative complexity of an autosymmetric function f is less

or equal to the multiplicative complexity of its restriction fk.

Proof. First recall that the multiplicative complexity of a XAG implementation for a

function f provides an upper bound for the multiplicative complexity of the function

itself. Thus, the thesis follows since we can construct a XAG for f with exactly M(fk)

and nodes. This can be done adding to a XAG for fk, containing a minimum number

M(fk) of and nodes, a layer consisting only of xor nodes, as shown in Figure 4.6.

Actually, a much stronger result holds: f and fk have exactly the same multiplica-

tive complexity. To prove this result, we need to recall some properties of autosym-

metric functions and of their restrictions. As shown in [17, 21], any k-autosymmetric

function f is associated to a k-dimensional vector space Lf , defined as the set of all

minterms w s.t. f(v) = f(v ⊕ w) for all v ∈ {0, 1}n. The k variables that are truly

127

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

independent onto Lf , i.e., the variables that assume all the possible combinations of

{0, 1} values in the minterms in Lf , are called canonical variables and are used to

construct the restriction fk. In fact, fk corresponds to the projection of f onto the

subspace {0, 1}n−k where all the canonical variables assume value 0 (see [17, 21] for

more details).

Consider for instance the 1-autosymmetric benchmark rd53 (second output) that

correspond to the case discussed in Example 4.1.2. Its associated vector space is

the 1-dimensional space Lf = {00000, 11111}, whose canonical variable is x1 (all

other variables must be equal to x1 on Lf), and the restriction corresponds to the

projection of the function onto the space where x1 = 0, as it can be noted from

Figures 4.3 and 4.4.

Exploiting this characterization for the restriction of an autosymmetric function,

we can prove the following theorem.

Theorem 4.2.2. Let f be a k-autosymmetric function and let fk be its restriction.

Then,

M(f) = M(fk) .

Proof. We have proved in Lemma 4.2.1 that M(f) ≤ M(fk). Thus, it is enough to

show that M(f) ≥ M(fk). By contradiction suppose that the multiplicative com-

plexity of the whole function f is strictly less than the multiplicative complexity of

its restriction fk, i.e., M(f) < M(fk). This assumption means that any XAG for fk

requires strictly more than M(f) and nodes, i.e., MX(fk) > M(f), where MX(fk)

denotes the multiplicative complexity of a XAG for fk. Since the restriction fk cor-

responds to the projection of f onto the subspace {0, 1}n−k where all the canonical

variables of f have value 0, we can derive a XAG representation for fk starting from

a XAG for f and substituting all canonical input variables with the constant value

0. Note that the constant value 0 can be obtained computing the xor of any non-

canonical variable with itself. Such a transformation can only decrease the number of

ands in the original XAG, as all and nodes that receive in input the constant value

0 can be removed from the circuit and substituted with the value 0. Therefore, if we

start from a XAG implementation of f with the minimum number MX(f) = M(f) of

and nodes, we can derive a XAG for fk with MX(fk) ≤M(f) ands, in contradiction

with the initial assumption M(f) < M(fk).

Since the restriction fk is a smaller function, depending on less variables, com-

puting a XAG representation and minimizing the number of ands become easier

problems, whose solutions allow to better assess the actual multiplicative complex-

ity of the original function f . For instance, for our running example concerning the

benchmark rd53 (second output), we can derive the XAG representation shown in

128

4.2.2 Experimental results

⊕ ⊕

⋀⊕

⋀

⊕

⊕ ⊕ ⊕ ⊕

x1 x3x2 x4 x5

f

Reduction
equations

y1 y2 y3 y4

XAG for fk

Figure 4.7: XAG representation for the benchmark rd53 (second output), derived

exploiting the autosymmetry of the function.

Figure 4.7 simply adding four xor nodes to the XAG for fk of Figure 4.1 (that is, the

XAG representation of its reduction), that contains 4 xors and only 2 ands. Notice

that the direct XAG minimization of rd53 performed using the software from [112]

would produce a bigger circuit, with 12 ands and 23 xors.

4.2.2 Experimental results

The approach presented above has been applied to the Espresso and LGSynth’89

benchmark suite [120], running on a Pentium INTEL(R) CORE(TM) i5-5200U 2.20

GHz processor with 4.00 GB RAM, on a virtual machine running OS Ubuntu 64-bit.

The experiments consider the subset of single outputs that are autosymmetric. The

main aim of the experiments is to compare the synthesized XAG computed start-

ing from an autosymmetric function f and the synthesized XAG computed starting

from the corresponding restriction fk, after the autosymmetry test. Recall that the

autosymmetry test computes the autosymmetry degree k of a Boolean function and

outputs: 1) the reduction equations, which form the xor layer, and 2) the corre-

sponding restriction fk. We performed the autosymmetry test described in [17, 21]

considering the on-set of the benchmarks. The functions f and fk are synthesized in

XAG form using the heuristic approach proposed in [112] and described at the end of

Section 4.1. We then compare the number of and nodes of the XAGs for f and fk in

order to understand how the autosymmetry test can enable the XAG minimization

129

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

Table 4.1: Experimental comparison of autosymmetric benchmarks, considering a

XAG after the autosymmerty test and the standard XAG computed without the

autosymmetry test.

standard XAG XAG with autosym. test

Benchmark in k MX(f) time (s) MX(fk) time (s) gain

add6(0) 12 11 3 0.01 0 0.01 100%

bcc(32) 26 11 26 17.15 21 19.45 19%

bcc(33) 26 11 61 56.00 54 85.34 11%

exep(1) 30 18 17 7.33 15 9.36 12%

in5(3) 24 5 31 14.13 27 12.46 13%

in7(1) 26 10 21 15.68 15 11.48 29%

in7(5) 26 5 34 24.94 30 35.27 12%

mainpla(27) 27 3 180 147.01 147 130.00 18%

mish(4) 94 91 2 0.01 2 0.01 0%

opa(24) 17 11 9 2.15 5 1.98 44%

opa(25) 17 2 39 26.51 31 22.84 21%

pdc(13) 16 8 108 8.67 7 2.96 94%

pdc(26) 16 2 25 22.57 12 6.16 52%

t1(19) 21 18 5 0.18 2 0.04 60%

t2(6) 17 4 17 12.49 14 11.6 18%

t2(9) 17 10 21 14.87 18 10.35 14%

vg2(6) 25 11 17 12.15 15 8.37 12%

x2dn(33) 82 79 2 0.01 2 0.01 0%

x6dn(0) 39 11 82 62.37 66 54.57 20%

x6dn(4) 39 10 93 74.83 82 77.12 12%

x7dn(1) 66 51 20 10.64 20 9.26 0%

xparc(0) 41 17 105 84.82 93 75.19 11%

130

4.2.2 Experimental results

Table 4.2: Summary of the experimental evaluation, considering the number of

ands in the XAGs for autosymmetric functions and non-degenerate autosymemtric

functions.

MX(fk) < MX(f) MX(fk) = MX(f) MX(fk) > MX(f)

autosymmeric functions 11.34% 68.2% 20.46%

non-degenerate autosymmeric functions 74.2% 19.35% 6.45%

of autosymmetric functions.

For the sake of briefness, we report in Table 4.1 only a significant subset of the

results. The first column reports the name of the function considered (benchmark

function and output number). The following one provides its input size. Next column

refers to the autosymmetry degree (i.e., k) of the function. The following two pairs

of columns report the multiplicative complexity of the XAG (MX) after applying the

heuristic in [112] and the time in seconds required to obtain it, for the entire function

f (first couple) and for the corresponding restriction fk (second couple). Finally, the

last column reports the gain in applying the autosymmetry test before XAG synthesis.

Table 4.2 shows a summary of the overall experimental results. We first consider

the set of all autosymmetric functions (degenerate* and non-degenerate), we then

study the truly autosymmetric (i.e., the non-degenerate) ones. In Table 4.2, we denote

with MX(fk) < (=, >, resp.) MX(f) the number of benchmarks where the number of

ands of the XAG for fk is less than (equal to, greater than, resp.) the number of ands

of the XAG for f . We notice that the XAG minimization algorithm proposed in [112]

is sensible to degenerate functions as shown in the first row of Table 4.1, where the

number of benchmarks where fk and f have the same number of ands is the majority

(i.e., about 68%). Nevertheless, if we concentrate on non-degenerate autosymmetric

functions (i.e., second row of the table) we notice that the number of benchmarks

where MX(fk) < MX(f) is about 74%. Moreover, in this set the average gain is

about 61%, while the overall gain in the entire set of autosymmetric functions (in the

case MX(fk) < MX(f)) is about 31%. Finally, the results on computational times

are not very interesting, since the two compared approaches have similar synthesis

times.

From these experiments, we can conclude that, when a function is truly autosym-

metric (i.e., non-degenerate), we can obtain better results computing the XAG on

the restriction fk instead of computing the XAG directly on the function f .

*Recall that degenerate functions are, by definition, autosymmetric.

131

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

4.3 Multiplicative Complexity of Regular Functions

This work [14] is an extended version of the conference paper presented in Section

4.2, with an added investigation of the properties of the D-reducible functions in

the context of the multiplicative complexity. Moreover, all the experimental results

reached in here are computed making use of a the newer mockturtle’s version [114].

With the new tool, for tested autosymmetric functions, we are able to get a better

estimate of the multiplicative complexity in about 52% of the studied cases, with

an average reduction of the number of ands of about 44%. The experiments for D-

reducible functions show that the XAG minimization can benefit from the D-reducible

decomposition of the function in about the 43% of the D-reducible benchmarks, with

an average reduction of the number of ands of about 35%. Moreover, the computa-

tional time for XAG synthesis is reduced in average by the 24%. Finally, for functions

that are both autosymmetric and D-reducible, we get a better estimate of the mul-

tiplicative complexity in about 90% of the cases, with an average reduction of the

number of ands of about 24%.

4.3.1 Multiplicative Complexity of D-reducible Functions

In this Section we focus on the class of D-reducible functions with the aim of

verifying if the decomposition that characterizes these functions can be exploited

to estimate their multiplicative complexity, in analogy to what we have seen for

autosymmetric functions.

Recall, from Section 4.1, that a D-reducible function f , with associated affine

space A, can be decomposed in the form

f = χA · fA

where χA is the characteristic function of A and fA ⊆ {0, 1}dimA is the projection of

f onto A. Thus, an XAG representation for f can be derived combining, via an and

gate, an XAG representation for the affine space A with an XAG representation for

fA (as shown in Figure 4.8).

This decomposition immediately allows to upper bound the multiplicative com-

plexity of f with the sum of the multiplicative complexity of χA and of fA. More

precisely we have:

M(f) ≤M(χA) +M(fA) + 1 , (4.1)

where we also account for the and gate on top of the overall XAG for f .

The advantages of this approach should derive from the fact that fA is a function

that depends on fewer variables, so we can reasonably expect its XAG representation

to be more compact, and also easier to derive from a computational point of view.

132

4.3.1 Multiplicative Complexity of D-reducible Functions

XAG for A

f

x1
x2 xn.

. . .

XAG for f

AN
D

XAG for fA

Figure 4.8: An XAG representation for a D-reducible function f obtained combining

an XAG for the affine space A with a XAG for the projection fA. Notice that only

dimA of the n input variables are actual inputs for fA.

Moreover, χA is not just any function, but the characteristic function of an affine

space, thus we can take advantage of its structural properties to derive an XAG

possibly optimal in number of and gates. While the first aspect can only be verified

and evaluated experimentally, the XAG representation of affine spaces can be fully

investigated from a theoretical point of view.

To this aim, we first mention a result concerning the relation between the multi-

plicative complexity of a function and its algebraic degree. Recall that any function f

depending on n binary variables can be represented as a multilinear polynomial over

F2, i.e., a xor of conjunctions of literals.

This representation, which is unique, can be obtained taking the modulo 2 sum

of all the minterms in the on-set of the function, each represented as a conjunction

of literals (see [117] for more details). Literals corresponding to negated variables are

replaced with the modulo-2 sum of the variable and the constant 1, e.g., xi = (1⊕xi).

Definition 4.3.1. The algebraic degree deg(f) of a Boolean function f is the degree

of the unique multilinear polynomial that represents f over F2.

Observe that deg(f) corresponds to the number of variables in the longest products

of this polynomial.

Consider for instance the function f : {0, 1}4 → {0, 1} with on-set {0001, 0110, 1101}

133

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

represented in the Karnaugh map on the left side of Figure 4.5. The polynomial rep-

resentation of f over F2 is given by the expression f = x4 ⊕ x1x4 ⊕ x2x3 ⊕ x2x4 ⊕
x3x4 ⊕ x1x2x3 ⊕ x1x3x4 ⊕ x1x2x3x4. Thus, f has algebraic degree deg(f) = 4.

The algebraic degree turns out to be related to several complexity measures, and

in particular to the multiplicative complexity [29, 102].

Lemma 4.3.2. ([102]) Any circuit computing a Boolean function f over the basis

{and, xor, not} contains at least deg(f)− 1 and gates with fan-in 2.

Corollary 4.3.3. ([102]) If a function f has algebraic degree deg(f), then its multi-

plicative complexity is at least deg(f)− 1.

Let us now focus on the multiplicative complexity of affine spaces. Consider

an affine subspace A of {0, 1}n. As discussed in [16, 45], we can partition the set of

binary variables {x1, x2, . . . , xn} into two subsets: the subset of the canonical variables

and the subset of the non-canonical variables. The canonical variables are the truly

independent variables in the space A, in the sense that they can assume all possible

combinations of 0-1 values, and their number is exactly dimA. On the contrary, the

remaining n− dimA non-canonical variables are not independent of A because they

can be defined as linear combinations (i.e., xors) of the canonical ones. This fact is

clearly expressed by the characteristic function χA of the affine space A, which can

always be represented by a special pseudoproduct containing exactly (n−dimA) xor

factors such that

� each non-canonical variable appears in exactly one xor factor,

� each xor factor is composed by one non-canonical variable and possibly some

canonical ones.

This particular pseudoproduct representation is called the canonical (CEX) expres-

sion of A.

Consider, for example, the function f represented in Figure 4.5, and its affine

space A = {0001, 0110, 1010, 1101}. We can observe that the first two variables, x1

and x2 assume on A all possible combinations of values, i.e., 00, 01, 10, and 11. On

the contrary, x3 and x4 can be defined on A in terms of x1 and x2 as follows:

x3 = x1 ⊕ x2

x4 = x1 ⊕ x2 .

Thus, the two canonical variables of A are x1 and x2, while the non-canonical ones

are x3 and x4. The CEX expression of this affine space is given by the pseudoproduct

(x1⊕x2⊕x3)(x1⊕x2⊕x4), that encodes the two linear combinations defining x3 and

134

4.3.1 Multiplicative Complexity of D-reducible Functions

x4 on A. Indeed, this pseudoproduct states that on A the two factors (x1 ⊕ x2 ⊕ x3)

and (x1 ⊕ x2 ⊕ x4) must be equal to 1, i.e., x1 ⊕ x2 ⊕ x3 = 1 and x1 ⊕ x2 ⊕ x4 = 1,

from which we can immediately derive the two equalities (1) and (2). Note that each

non-canonical variable occurs in one and only one xor factor.

We now show how the CEX expression allows to precisely characterize the multi-

plicative complexity of any affine space.

Theorem 4.3.4. The multiplicative complexity of the characteristic function χA of

an affine subspace A ⊆ {0, 1}n is exactly M(χA) = n− dimA− 1.

Proof. We first prove that M(χA) ≥ n−dimA−1. To this aim, let us consider a CEX

representation for A. This expression is composed by an and of n−dimA xor factor.

Each xor factor contains a different non-canonical variable. Thus, the polynomial

representation of χA, that can be immediately derived from the CEX expression, has

degree deg(χA) = n−dimA since it certainly contains the term corresponding to the

product of all the non-canonical variables. Thus, Corollary 4.3.3 immediately implies

that M(χA) ≥ n− dimA− 1. Now, observe that we can immediately derive an XAG

representation from the CEX expression: we use xor gates for each xor factor, and

then exactly n − dimA − 1 and gates to compute the product of all factors. Thus,

we have M(χA) ≤ n− dimA− 1, and the thesis immediately follows.

Thus, in the overall XAG representation for D-reducible functions proposed in

Figure 4.8, we can always represent the affine space A with the XAG derived from its

CEX expression, which is optimal in the number of and gates. We therefore derive the

following upper bound for the multiplicative complexity of any D-reducible function:

Corollary 4.3.5. Let f : {0, 1}n → {0, 1} be a D-reducible function with affine space

A, and let fA be its projection onto A. Then

M(f) ≤ n− dimA+M(fA) .

Proof. Follows immediately from Equation (4.1) since, by Theorem 4.3.4, we have

M(χA) = n− dimA− 1.

Given a D-reducible function f and an XAG representation for its projection fA,

with MX(fA) and gates, we can then exploit the decomposition of Figure 4.8 to derive

the estimate

Mdec(f) = M(χA) +MX(fA) + 1 = n− dimA+MX(fA) (4.2)

for the multiplicative complexity of f .

135

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

4.3.2 Multiplicative complexity of D-reducible autosymmet-

ric functions

In this section we provide an analysis of the multiplicative complexity of Boolean

functions that are both D-reducible and autosymmetric. First of all, we prove that if

a function f is autosymmetric and D-reducible with associated affine space A, then

its projection onto A is also autosymmetric.

Theorem 4.3.6. Let f be a k-autosymmetric Boolean function depending on n binary

variables. If f is D-reducible with associate affine space A, then the projection fA of

f onto A is k-autosymmetric.

Proof. Recall that any k-autosymmetric function f is associated to a k-dimensional

vector space Lf , defined as the set of all minterms α s.t. f(x) = f(x ⊕ α) for

all x ∈ {0, 1}n. We prove that fA is k-autosymmetric by showing that for any

α ∈ Lf it holds that fA(y ⊕ αA) = fA(y) for all y ∈ {0, 1}dimA, where αA denote

the projections of α onto A, i.e., the minterm obtained from α by keeping only the

literals corresponding to the canonical variables of A.

First of all, we observe that the set Lf is a subspace of the linear vector space V

associated to A. Indeed, let α ∈ Lf , and let x be any on-set minterm of f . Then,

f(x⊕α) = f(x) = 1, and therefore both x and x⊕α ∈ A. This in turns implies that

α ∈ (x⊕ A), i.e., α ∈ V , since x⊕ A = V for any x ∈ A (we refer the reader to [45]

for more details on affine spaces and their properties).

Since Lf ⊆ V , we have that for all x ∈ {0, 1}n and for all α ∈ Lf , x ∈ A if and

only if x⊕ α ∈ A. Indeed,

x ∈ A ⇔ x = a⊕ v , for some a ∈ A and some v ∈ V
⇔ x⊕ α = a⊕ v ⊕ α
⇔ x⊕ α ∈ A

since v ⊕ α ∈ V .

Now, let α be any vector in Lf . Then, for all x ∈ {0, 1}n, we have f(x⊕α) = f(x),

i.e.,

χA(x⊕ α)fA(xA ⊕ αA) = χA(x)fA(xA) ,

where xA and αA denote the projections of x and α onto A. If we consider only the

vectors x ∈ A, the fact that x⊕α is also in A implies χA(x) = χA(x⊕α) = 1. Thus,

we have

fA(xA ⊕ αA) = fA(xA) ,

which in turns implies that αA ∈ LfA .

136

4.3.3 Experimental results

This result is very interesting from a practical point of view, indeed it implies that

we can run the autosymmetry test onto fA instead of f , with a reduced computational

effort guaranteed by the fact that fA depends on less variables than f .

As for the estimation of the multiplicative complexity of f , we can observe that,

since f is autosymmetric and D-reducible, we can upper bound its multiplicative

complexity by first projecting f onto A, and then by estimating the multiplicative

complexity of the restriction fA,k of fA. Indeed, we have that

M(f) = M(fk) ≤ (n− dimA) +M(fA) ,

and, since M(fA) = M(fA,k), we finally obtain

M(f) ≤ (n− dimA) +M(fA,k) .

Thus, we can estimate the multiplicative complexity of f by computing and minimiz-

ing the restriction fA,k of fA in XAG form. Since fA,k contains |S(f)|/2k minterms

only (recall that |S(f)| is the number of minterms of f), and depends on dimA−k <
n−k variables only, its XAG minimization should be easier and might provide a final

circuit with a reduced number of and gates. This expectation has been confirmed by

our experiments.

4.3.3 Experimental results

In this section we report and discuss the experimental results of the evaluation

of the multiplicative complexity of the two classes of autosymmetric and D-reducible

functions*.

4.3.3.1 Autosymmetric functions

The approach presented in Section 4.2.1 has been applied to the Espresso and

LGSynth’89 benchmark suite [120] and to some functions from cryptography bench-

marks in the context of multi-party computation (MPC) and fully homomorphic

encryption (FHE) [114, 112]. Notice that autosymmetry is a property of single out-

puts, i.e., different outputs of the same benchmark can have different autosymmetry

degrees. Thus, we perform the autosymmetry test on each single output of the con-

sidered benchmark suites. Finally, in ESPRESSO benchmark suite about 24% of the

functions have at least one truly (i.e. non degenerate) autosymmetric outputs, while

*A GitHub repository with the experimental data can be found at

https://github.com/MariaChiaraMC/IEEETC-experiments

137

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

in the cryptographic benchmark the percentage is about the 50% of the tested func-

tions. Due to a current limitations in terms of scalability on larger benchmarks, the

tested cryptographic functions are a small part of the whole benchmark (about 9%).

The experiments have been run on a Pentium INTEL(R) CORE(TM) i5-5200U

2.20 GHz processor with 4.00 GB RAM, on a virtual machine running OS Ubuntu

64-bit.

The experiments consider the subset of single outputs that are autosymmetric.

The main aim of the experiments is to compare the synthesized XAG computed start-

ing from an autosymmetric function f and the synthesized XAG computed starting

from the corresponding restriction fk, after the autosymmetry test. Recall that the

autosymmetry test computes the autosymmetry degree k of a Boolean function and

outputs: 1) the reduction equations, which form the xor layer, and 2) the correspond-

ing restriction fk.

We performed the autosymmetry test described in [19, 21] considering the on-

set of the benchmarks. The functions f and fk are first minimized in SOP form

(using Espresso [84]), and then synthesized in XAG form using the heuristic approach

proposed in [114] and briefly described at the end of Section 4.1.3.

We then compare the number of and nodes of the XAGs for f and fk in or-

der to understand how the autosymmetry test can enable the XAG minimization of

autosymmetric functions.

For the sake of briefness, we report in Table 4.3 only a significant subset of the

results. The first column reports the name of the function considered (benchmark

function and output number). The following one provides its input size. Next column

refers to the autosymmetry degree (i.e., k) of the function. The following two pairs

of columns report the multiplicative complexity of the XAG (MX) after applying

the heuristic in [114] and the time in seconds required to obtain it, for the entire

function f (first couple) and for the corresponding restriction fk (second couple).

Finally, the last column reports the gain in applying the autosymmetry test before

XAG synthesis. Note that there are also some (rare) cases in which the application of

the autosymmetry test before the XAG synthesis does not imply a gain. In Table 4.3,

two representative functions are reported, i.e., p1(6) and pdc(10). This unexpected

result is due to the heuristic nature of the XAG minimizer.

Table 4.4 shows a summary of the overall results, i.e., the results obtained for

all the circuits that have been processed in our experimental evaluation. We first

consider the set of all autosymmetric functions (degenerate and non-degenerate),

we then study the truly autosymmetric (i.e., the non-degenerate) ones. Recall that

degenerate functions are, by definition, autosymmetric. In Table 4.4, we denote with

MX(fk) < (=, >, resp.) MX(f) the number of benchmarks where the number of ands

138

4.3.3 Experimental results

Table 4.3: Experimental comparison of autosymmetric benchmarks, considering an

XAG after the autosymmerty test and the standard XAG computed without the

autosymmetry test.

standard XAG XAG with autosym. test

Benchmark in k MX(f) time (s) MX(fk) time (s) gain

add6(5) 12 1 8 0.97 5 1.77 38%

addm4(5) 9 2 32 3.98 32 3.93 0%

amd(0) 14 2 53 10.19 53 10.03 0%

apla(5) 10 1 11 0.96 8 0.68 27%

b2(15) 16 1 118 22.00 118 22.32 0%

ex5(21) 8 1 7 0.59 6 0.43 14%

exep(46) 30 9 20 0.92 20 0.87 0%

exps(19) 8 1 10 2.30 6 0.45 40%

in0(3) 15 1 14 3.03 14 2.77 0%

mainpla(20) 27 5 119 21.37 119 21.80 0%

max46(1) 10 2 36 6.74 10 1.80 72%

max46(5) 10 1 305 50.10 156 26.22 49%

opa(26) 17 9 16 2.51 16 2.44 0%

opa(48) 17 3 22 4.21 22 5.74 0%

p1(6) 8 1 6 1.03 8 0.79 -33%

pdc(10) 16 3 12 2.05 14 1.66 -17%

rd53(1) 5 1 5 0.38 2 0.11 60%

spla(39) 16 3 16 1.27 12 0.80 25%

tial(2) 14 2 174 29.69 174 29.83 0%

xparc(6) 41 16 83 10.90 21 1.80 75%

z5xp1(6) 7 3 2 0.00 0 0.00 100%

ctrl(13) 7 3 3 0.02 3 0.02 0%

dec(39) 8 1 6 0.53 6 0.42 0%

voting N 2 M 2(1) 8 1 81 9.88 22 3.04 73%

voting N 2 M 3(1) 16 1 9261 739.29 5208 468.86 44%

int2float(6) 11 2 8 0.59 8 0.55 0%

Table 4.4: Summary of the experimental evaluation, considering the number of

ands in the XAGs for autosymmetric functions and non-degenerate autosymmetric

functions.

MX(fk) < MX(f) MX(fk) = MX(f) MX(fk) > MX(f)

autosymmeric functions 6.06% 92.31% 1.63%

non-degenerate autosymmeric functions 52.09% 40.10% 7.81%

139

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

of the XAG for fk is less than (equal to, greater than, resp.) the number of ands of

the XAG for f .

We notice that the XAG minimization algorithm proposed in [114] is sensible

to degenerate functions as shown in the first row of Table 4.4, where the number of

benchmarks where fk and f have the same number of ands is the majority (i.e., about

92.31%) and only 6.06% of them is such that MX(fk) is less than MX(f). However,

when we concentrate on non-degenerate autosymmetric functions (i.e., second row

of the table), we notice that the number of benchmarks where MX(fk) < MX(f)

considerably increases, reaching about the 52.09%, and the number of benchmarks

where fk and f have the same number of ands remains high (about 40.1%). Moreover,

in this set the average gain is about 44%. Interestingly enough, the two compared

approaches have similar synthesis times.

From these experiments, we can conclude that, when a function is truly autosym-

metric (i.e., non-degenerate), we can obtain better results computing the XAG on

the restriction fk instead of computing the XAG directly on the function f .

4.3.3.2 D-reducible functions

We now analyze the experimental results conducted in order to evaluate the mul-

tiplicative complexity of D-reducible functions exploiting the XAG decomposition

discussed in Section 4.3.1.

The experiments have been run on a CPU Intel i7 2.60GHz processor, with a

virtual machine running Ubuntu 18.04, and benchmarks are taken from the Espresso

and LGSynth’89 benchmark suite [120]. We considered each output as a separate

Boolean function, and analyzed a total of 406 D-reducible functions. As before, the

functions and their projections have been synthesized in XAG form using the heuristic

approach proposed in [114].

We report in Table 4.5 a significant subset of functions as representative indicators

of our experiments. The first two columns report the name and the number of the

considered output of each benchmark, and the number of its input variables. The fol-

lowing pair of columns reports the multiplicative complexity of the XAG for the entire

function f (MX(f)), obtained running the heuristic in [114], and the time in seconds

required to obtain it. The next group of four columns reports (i) the multiplica-

tive complexity of the XAG for the projection fA (MX(fA)); (ii) the multiplicative

complexity of the affine space χA computed applying Theorem 4.3.4 (M(χA)); (iii)

the overall estimate of the multiplicative complexity of f (Mdec(f)) derived using

Equation (4.2); and (iv) the time in seconds required to obtain this overall estimate.

Finally, the last column reports the gain (or loss) in applying the proposed decom-

position method.

140

4.3.3 Experimental results

Table 4.5: Experimental comparison of D-reducible benchmarks, considering XAGs

computed exploting the D-reducibility property with standard XAGs.

standard XAG XAG with D-red. test

Benchmark in MX(f) time (s) MX(fA) M(χA) Mdec(f) time (s) gain

alu2(6) 10 6 2.69 5 0 6 2.29 0%

amd(15) 14 6 2.51 0 5 6 2.33 0%

amd(16) 14 7 2.47 0 6 7 2.28 0%

apla(8) 10 17 3.97 4 2 7 2.31 59%

b10(2) 15 17 3.78 13 4 18 3.19 -6%

dk48(16) 15 16 3.58 1 10 12 2.20 25%

in2(6) 19 66 9.19 48 1 50 6.27 24%

in5(8) 24 46 8.09 47 0 48 7.66 -4%

m181(6) 15 8 2.89 6 1 8 2.56 0%

newcond(1) 11 2 2.28 0 1 2 2.22 0%

spla(2) 16 14 2.90 0 13 14 2.24 0%

spla(16) 16 10 2.95 1 8 10 2.26 0%

spla(29) 16 19 3.47 5 9 15 2.33 21%

spla(42) 16 10 2.88 0 6 7 2.19 30%

t1(1) 21 10 3.89 9 0 10 3.08 0%

t2(0) 17 14 3.44 12 1 14 3.14 0%

t2(4) 17 5 2.65 3 1 5 2.44 0%

t3(2) 12 16 3.72 9 1 11 3.10 31%

t4(0) 12 17 3.87 5 0 6 2.42 65%

vg2(2) 25 30 4.26 14 5 20 3.34 33%

Table 4.6: Summary of the experimental evaluation, considering the number of ands

in the XAGs for D-reducible functions.

Mdec(f) < MX(f) Mdec(f) = MX(f) Mdec(f) > MX(f)

D-reducible functions 42.61% 49.02% 8.37%

141

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

Table 4.7: Summary of the experimental evaluation, considering the number of ands

in the XAGs for autosymmetric and D-reducible functions.

MX(fk) < MX(f) MX(fk) = MX(f) MX(fk) > MX(f)

autosymmeric and D-reducible functions 89.54% 3.27% 7.19%

In Table 4.6, we report a summary of the overall experimental results conducted

on all the 406 D-reducible benchmarks’ outputs. We denote with Mdec(f) < MX(f),

Mdec(f) = MX(f), and Mdec(f) > MX(f) the number of benchmarks’ outputs where

the number of ands obtained applying the decomposition based on the D-reducibility

property is less than, equal to, and greater than the number of ands of the XAG

for f . The number of functions where the XAG minimization can benefit from the

D-reducible decomposition is about the 43% of the whole set of functions, with an

average reduction of the number of ands of about 35%. The number of functions

where the estimates of the multiplicative complexity are the same is about 49%,

while for the remaining 8% of the functions the method provides a worst estimate.

We finally observe how the proposed decomposition method guarantees a reduc-

tion of the average computational time for XAG synthesis of about 24%.

4.3.3.3 Autosymmetric and D-reducible functions

We conclude this experiments section analysing the results reached applying both

the autosymmetry test and the D-reducible decomposition to Boolean functions in

the benchmarks from Espresso and LGSynth’89 benchmark suite [120]. These last

experiments have been run on a Pentium INTEL(R) CORE(TM) i5-5200U 2.20 GHz

processor with 4.00 GB RAM, on a virtual machine running OS Ubuntu 64-bit.

Table 4.7 shows a summary of the results for functions that are both autosym-

metric and D-reducible (about 9% on the total). We applied the autosymmetry test

to the D-reducible functions discussed in Section 4.3.3.2. We note that we did not

find D-reducible benchmarks that are also non-degenerate and autosymmetric.

From Table 4.7, we note that the functions where the XAG minimization can ben-

efit from autosymmetry and D-reducibility are about 90%, with an average reduction

of the number of ands of about 24%. The number of functions where the estimates

of the multiplicative complexity are the same is about 3%, while for the remaining

7% of the functions the method provides a worst result.

142

4.4. Conclusion and further works

4.4 Conclusion and further works

In this Chapter we present our research in the context of logic synthesis. In

particular, since we are interested in the cryptographic-related applications (e.g. in

the multi-party computation), we work on the reduction of the number of and nodes

in XAG graphs. With this aim, we propose two articles in which we investigate

how the properties of autosymmetry and D-reducibility can be exploited to better

estimate the multiplicative complexity of the Boolean functions. We have conducted

our experimentations on a wide set of standard Boolean benchmarks. We plan to

extend the autosymmetry algorithms to detect all linear structures of a function,

thus generalizing our approach. We also will work on the current limitations in terms

of scalability on lager functions.

143

Chapter 4. Multiplicative complexity, autosymmetric and dimension reducible
Boolean functions

144

CHAPTER 5

MULTIPLE-VALUED LOGIC

In Section 2.1.5 we introduce the Boolean logic: the truth values true (corre-

sponding to the binary value 1) and false (corresponding to the binary value 0) can

be combined by the operations not, and, or and xor. In this Chapter, we present the

concept of Multiple-valued logic (MVL), i.e., a logic in which more than two elements

are managed. The most studied in literature, and then also in this work, is the three-

valued logic (3VL): this is a logic with one element more than true (1) and false (0),

called unknown (2). In Section 5.1, we propose an overview on the state of the art

about this topic. In Section 5.2, we present some new results: a new reasoning about

the 3VL and the proof of xor free transfer in the MVL context.

5.1 State of the art

Until the beginning of the 20-th century, logic was almost mostly viewed as binary,

but mathematicians, logicians and philosophers needed to represent uncertainty and

error, so they started investigating systems that allowed more options than just true

or false. Their aim was to solve some logical paradoxes, looking for a third or more

truth values, and applied them to problems related to representability of functions.

After a first push during the 1920s (with Emil Post and Jan Lukasiewicz), several

mathematicians, logicians and philosophers (Godel, Bochvar, Kleene as example)

started working with this concept and developed several forms of MVL during the

1930s [63].

145

Chapter 5. Multiple-valued logic

5.1.1 MVL as generalization of the Boolean Logic

Multiple-valued logics are similar to Boolean logic because they accept the princi-

ple of truth-functionality, i.e., the truth of a compound sentence is determined by the

truth values of its component sentences. But they differ from Boolean logic by the

fundamental fact that they do not restrict the number of truth values to only two, but

they allow for a larger set of values. Indeed, considering the natural generalization

of the classical Boolean logic, it is possible to define a MVL as follows: let Pi be the

finite subset of natural numbers Pi = {0, 1, . . . , |Pi| − 1} with |Pi| > 1, and x ∈ Pi is

a truth variable of this MVL [86, 56]. Note that, if |Pi| = 2, the MVL coincides with

the Boolean logic, if |Pi| = 3 it is a 3 valued logic, and so on.

A multiple-valued function F is a function such that F : P1, P2, . . . , Pn → PF . In

particular, when P1 = P2 = · · · = Pn = PF = P we have that F : P n → P . Note

that, in this case, there are |P ||P |n possible different MVL functions.

In this case, MVL gates are a direct generalization of standard Boolean gates. The

number of two-input gates grows exponentially with the dimension of P . In particular,

the standard one and two-inputs Boolean operations in the multiple-valued logic are

reported in Table 5.1 [86].

Name Notation Definition

Not ¬x (|P | − 1)− x
Min x · y x if x < y, y otherwise

Max x+ y x if x > y, y otherwise

Mod-sum x⊕ y (x+ y)mod|P |

Mod-difference x	 y (x− y)mod|P |

Truncated sum x+t y min(|P | − 1, x+ y)

Table 5.1: Two-inputs MVL operations.

Note that the and gate corresponds to the Min operation, the or gate can be

generalized to the Max or to the Truncated sum, the xor gate can be generalized to

the Mod-sum or to the Mod-difference. A MVL circuit is a circuit composed by MVL

gates.

This is not the only one possible definition of multiple-valued logic, but many

other forms have been developed and studied in the last century, mostly when 3

truth values are taken into account.

 Lukasiewicz’s logics. The first multiple-valued logic was proposed by Jan Lukasiewicz

in the 1920s [82]. His first intention was to use a third, additional truth value for

146

5.1.1 MVL as generalization of the Boolean Logic

“possible”, and to model in this way the modalities “it is necessary that” and “it is

possible that”. Starting from these investigations, he defined his three-valued logic

L3, with the truth values 0,1
2
,1, on which operate the following functions:

¬Lu = 1− u
u→L v = min{1, 1− u+ v}

The outcomes of these investigations are, however, the two Lukasiewicz systems Lm

and L∞. The former is defined on some finite set of rationals within the real unit

interval, i.e., in the set { k
m−1
|0 ≤ k ≤ m− 1}. The latter is defined on the whole unit

interval, i.e., in the set [0, 1] = {x ∈ R|0 ≤ x ≤ 1}. In both the systems, 1 is the only

designated truth value. In addition to negation and implication just defined for L3,

other two operations are given:

u & v = max{0, u+ v − 1}
u ∧ v = min{u, v}

Moreover, two disjunction connectives are defined in terms of & and ∧, via the usual

de Morgan laws using ¬. Finally, the two quantifiers ∀ and ∃ are the infimum and

the supremum of all the values in a considered subset, respectively.

Gödel’s logics. In the 1930s, Kurt Gödel tried to understand intuitionistic logic

in terms of many truth values [62]. The outcome was the family of Gödel systems

Gm and G∞. The former is defined on the finite set of rationals within the real

unit interval, i.e., { k
m−1
|0 ≤ k ≤ m − 1}, and the latter on the whole unit interval

[0, 1] = {x ∈ R|0 ≤ x ≤ 1}. The value 1 is the only designed as truth value. The two

main functions on the elements in these sets are

u ∧ v = min{u, v}
u ∨ v = max{u, v}

while the implication and negation operations are

u→ v =

{
1 if u ≤ v

v if u > v

¬u =

{
1 if u = 0

0 if u 6= 0

The two quantifiers ∀ and ∃ are the infimum and the supremum of all the values in

a considered subset, respectively.

147

Chapter 5. Multiple-valued logic

Kleene’s (strong) logic. A mathematical application of 3-valued logic to partial

functions and relations was proposed by the American logician Stephen Cole Kleene

[48]. The Kleene’s (strong) logic K3 introduce to the set of Boolean values true (T)

and false (F) a third element undefined (called also indeterminate) (I). The functions

of negation (¬), conjunction (∧), disjunction (∨) and implication (→K) are given in

Figure 5.1.

¬
T F

I I

F T

∧ T I F

T T I F

I I I F

F F F F

∨ T I F

T T T T

I T I I

F T I F

→K T I F

T T I F

I T I I

F T T T

Figure 5.1: Operations in the Kleene’s logic K3.

In Kleene’s logic, only T is a designed truth value, and is interpreted as being

underdetermined (neither true nor false). Similar to the Kleen’s logic, the Graham

Priest logic P3 has the same set of values {T,F,I} and the same operations, but both

T and I are considered with true value, and I is interpreted as overdeterminated (both

true and false).

Bochvar’s logic. A philosophical application of 3-valued logic to the discussion of

paradoxes was proposed by the Russian logician D.A. Bochvar [27]. His logic B3 (also

called Kleene’s weak three-valued logic), has the same negation as Kleene’s strong

logic, but all the other tables are different (Figure 5.2).

¬
T F

I I

F T

∧B3 T I F

T T I F

I I I I

F F I F

∨B3 T I F

T T I T

I I I I

F T I F

→B3 T I F

T T I F

I I I I

F T I T

Figure 5.2: Operations in the Bochvar’s logic B3.

The main difference between the Kleene’s strong logic and the weak one is that in

the Bochvar’s logic the intermediate truth value propagates in a formula regardless

of the value of any other variables.

Belnap’s 4-valued logic. This 4-valued system has an interesting interpretation

in the context of information bases stored in a computer, which was explained by

Nuel Belnap [12]. Its truth values set is {∅, {⊥}, {>}, {⊥,>}}, and the elements in

148

5.1.1 MVL as generalization of the Boolean Logic

the set are interpreted as indicating (e.g. with respect to a database query for some

particular state of affairs) that there is: no information concerning this state of affairs

(∅), information saying that the state of affairs fails ({⊥}), information saying that

the state of affairs obtains ({>}), conflicting information saying that the state of

affairs obtains as well as fails ({⊥,>}).

This set of truth values has two natural (lattice) orderings: a truth ordering which

has {>} on the top, {⊥} on the bottom and incomparable ∅ and {⊥,>} (Figure 5.3,

on the left), and an information ordering which has {⊥,>} on the top, ∅ on the

bottom and incomparable {⊥} and {>} (Figure 5.3, on the right).

Figure 5.3: Orders of the truth values in Belnap’s logic.

The negation function is determined exchanging the values {>} and {⊥}, and

which leaves the degrees {⊥,>} and ∅ fixed. Moreover, given the infimum and the

supremum under the truth ordering, conjunction and disjunction operations can be

defined (Figure 5.4). Actually, there is no standard candidate for the implication, and

the choice depends on the intended applications: for computer science applications,

it is natural to have {>} as the only designated degree, for applications to relevance

logic, the choice of {>}, {⊥,>} as designated degrees proved to be adequate. The

choice of suitable entailment relations is still an open research topic.

149

Chapter 5. Multiple-valued logic

∧B4 {>} {⊥,>} ∅ {⊥}
{>} {>} {⊥,>} ∅ {⊥}
{⊥,>} {⊥,>} {⊥,>} {⊥} {⊥}
∅ ∅ {⊥} ∅ {⊥}
{⊥} {⊥} {⊥} {⊥} {⊥}

¬
{>} {⊥}
{⊥,>} {⊥,>}
∅ ∅
{⊥} {>}

∨B4 {>} {⊥,>} ∅ {⊥}
{>} {>} {>} {>} {>}
{⊥,>} {>} {⊥,>} {>} {⊥,>}
∅ {>} {>} ∅ ∅
{⊥} {>} {⊥,>} ∅ {⊥}

Figure 5.4: Operations in the Kleene’s logic K3.

5.1.2 Lindell and Yanai’s 3VL approach

In [80], the authors present a 3 valued logic approach (called FTU) based on

the Kleene’s logic. Then, the set of the truth values is {true, false, unknown}, and

unknown is the result of a sort of uncertainty in the inference process. The 3VL

inference rules as in the FTU approach are presented in Figure 5.5, where F, T, U

refers to false, true, unknown respectively. Note that substantially the operations

not, and and or are the same as in Figure 5.1, substituting I (indeterminate) with U

(unknown) and with the adjunct of the xor operation.

¬′3
F T

U U

T F

∧′3 F U T

F F F F

U F U U

T F U T

∨′3 F U T

F F U T

U U U T

T T T T

⊕′3 F U T

F F U T

U U U U

T T U F

Figure 5.5: Operations in the 3VL with the FTU approach.

The main idea in [80] is to try to find encodings in the FTU-3VL that are better

than the naive garbling, that is described below. Let g3 be a 3VL gate with inputs

x, y and output z, where each wire takes a value in {T,F,U}. Following the basic

garbling scheme by Yao et Al. [122], for each wire α ∈ {x, y, z}, the random keys

kT
α , kF

α , k
U
α . Then, for every combination of βx, βy ∈ {F,T,U} the encryption f

g(βx,βy)
z

with the keys κβxx , k
βy
y is computed. The complete garbled table of gate g is reported

in Table 5.2, where E notation refers to the encryption function. This garbled table

has 9 rows, and then the cost to garble in this way a 3VL gate is proportional to it.

150

5.1.2 Lindell and Yanai’s 3VL approach

1 EkT
x
(EkT

y
(k
g(T,T)
z)) 4 EkF

x
(EkT

y
(k
g(F,T)
z)) 7 EkU

x
(EkT

y
(k
g(U,T)
z))

2 EkT
x
(EkF

y
(k
g(T,F)
z)) 5 EkF

x
(EkF

y
(k
g(F,F)
z)) 8 EkU

x
(EkF

y
(k
g(U,F)
z))

3 EkT
x
(EkU

y
(k
g(T,U)
z)) 6 EkF

x
(EkU

y
(k
g(F,U)
z)) 9 EkU

x
(EkU

y
(k
g(U,U)
z))

Table 5.2: Naive garbling for a 3VL gate.

Since the aim of Lindell et Al. is to find ways to garble 3VL functions more

efficiently than the naive method, they propose an encoding method that implies first

an encoding function from 3VL to the Boolean domain, the application of the state

of the art garbling schemes for Boolean functions [97, 124], and then a decoding from

Boolean to 3VL. These garbling schemes have the property that and gate is garbled

using three ciphertexts, and xor is garbled for free. This allows a faster and cheaper

communication of garbled gates, as show in [78].

The notation is shown in Figure 5.6:

1. F3 is the set of all 3VL functions (i.e., all functions of the form {F,T,U}* →
{F,T,U}*) and F2 is the set of all Boolean functions (i.e., all functions of the

form {0, 1}* → {0, 1}*).

2. Tr2→3 is the set of transformations from the set of all elements in the 3VL to

those in Boolean logic, and Tr3→2 the set of inverse transformations. A transfor-

mation can be functional, namely at each element in the 3VL corresponds to a

couple of Boolean values, or non-functional, namely at each element in the 3VL

can correspond more than one couple of Boolean values. Any transformation

must be injective, to allow the definition of the inverse.

3. TrF is the set of all transformations from operations in F3 to operations in F2.

4. Observe that ∀f2 ∈ F2 ∃f3 ∈ F3, tr2→3 ∈ Tr2→3 such that, ∀x

tr2→3(f2(tr3→2(x))) = f3(x) (5.1)

Three different encodings are described in [80]: a natural encoding, an encoding

through a functional relation and a non-functional one. These encodings belong in

the set of those with the minimum number of ands in F2, as explained in [80].

Natural encoding. This encoding is defined by the input transformation

(xL, xR) = tr3→2(x) =


(0, 1) x = T

(0, 0) x = F

(1, 0) x = U

151

Chapter 5. Multiple-valued logic

Figure 5.6: Encoding steps.

and it is called natural because ”naturally” transform a 3VL value x in a couple of

Boolean values (xL, xR), such that xL signals whether the value is known or unknown,

and xR signals whether the value is true or false.

This transformation translates each function in F3 to a function in F2 as follows.

1. Operation ¬′3 is translated in

TrF (¬′3) = ¬2(xL, xR) = (xL,¬xR).

2. Operation ∧′3 is translated in

TrF (∧′3) = ∧2(xL, xR, yL, yR) = ((xL ∧ yL) ∨ (xL ∧ yR) ∨ (xR ∧ yL), xR ∧ yR).

3. Operation ⊕′3 is translated in

TrF (⊕′3) = ⊕2(xL, xR, yL, yR) = (xL ∨ yL, xR ⊕ yR)

The cost of each operation in Boolean logic is shown in Table 5.3. Note that,

thanks to the De Morgan’s law, a∨ b = ¬((¬a)∧ (¬b)), and then ∨ costs 3 · ¬+ 1 · ∧.

From Table 5.4, it is then clear that ⊕′3 costs 1 ∧, 1 ⊕ and 3 ¬, thus it cannot be

evaluated for free.

About the efficiency of this encoding, when using the garbling scheme of [124]

that incorporates free-xor and requires two ciphertexts for ∧ and ∨ gates, the cost

of garbling ∧′3 is 12 ciphertexts, and the cost of garbling ⊕′3 is 2 ciphertexts. In

comparison, recall that the naive garbling scheme requires 8 ciphertexts for both ∧′3
and ⊕′3. To see which is better, let C be a 3VL circuit and denote by C∧ and C⊕

the number of ∧′3 and ⊕′3 gates in C, respectively. Then, the natural 3VL-Boolean

encoding is better than the naive approach if and only if 12·C∧+2·C⊕ < 8·C∧+8·C⊕,

which holds if and only if C∧ < 1.5 · C⊕.

152

5.1.2 Lindell and Yanai’s 3VL approach

Table 5.3: FTU approach: cost of each translated operations in the Boolean logic, in

case of the natural encoding.

3VL Function cost

¬′3 1 · ¬
∧′3 6 · ∧+ 6 · ¬
⊕′3 1 · ∧+ 1 · ⊕+ 3 · ¬

Functional encoding. This encoding is defined by the input transformation

(xL, xR) = tr3→2(x) =


(1, 1) x = T

(0, 0) x = F

(1, 0) x = U

This transformation translates each function in F3 to a function in F2 as follows.

1. Operation ¬′3 is translated in

TrF (¬′3) = ¬2(xL, xR) = (¬xR,¬xL).

2. Operation ∧′3 is translated in

TrF (∧′3) = ∧2(xL, xR, yL, yR) = (xL ∧ yL, xR ∧ yR).

3. Operation ⊕′3 is translated in

TrF (⊕′3) = ⊕2(xL, xR, yL, yR) = (z′L ⊕ aux, z′R ⊕ aux)

where z′L = (xL ⊕ yL)⊕ ((xL ⊕ xR) ∧ (yL ⊕ yR)) and z′R = xR ⊕ yR and aux =

¬z′L ∧ z′R.

The cost of each operation in Boolean logic is shown in Table 5.4. Also in this

case it is possible to note that ⊕′3 cannot be evaluated for free.

About the efficiency of this encoding, when using the garbling scheme of [124]

that incorporates free-xor and requires two ciphertexts for ∧ and ∨ gates, the cost

of garbling ∧′3 is 4 ciphertexts, and the cost of garbling ⊕′3 is 4 ciphertexts. This

is far more efficient than the naive garbling for all gate types. Next, recall that

the natural encoding previously presented required 12 ciphertexts for ∧3 gates and

2 ciphertexts for ⊕′3 gates. Thus, denoting by C∧ and C⊕ the number of ∧′3 and ⊕′3

153

Chapter 5. Multiple-valued logic

Table 5.4: FTU approach: cost of each translated operations in the Boolean logic, in

case of the functional encoding.

3VL Function cost

¬′3 2 · ¬
∧′3 2 · ∧
⊕′3 2 · ∧+ 7 · ⊕

gates, respectively, in a 3VL circuit C, we have that the scheme in this section is

more efficient if and only if 4 ·C∧ + 4 ·C⊕ < 12 ·C∧ + 2 ·C⊕, which holds if and only

if C⊕ < 4 · C∧. Thus, the natural encoding is only better if the number of ⊕′3 gates

is over four times the number of ∧3 gates in the circuit.

Non-functional encoding. This encoding is such that value U is encoded with both

(1,0) and (0,1). This means that it is defined by two input transformations, both

mapping T to (1, 1) and F to (0, 0); one of them maps U to (1, 0) the other maps U

to (0, 1).

tr1
3→2(x) =


(1, 1) x = T

(0, 0) x = F

(0, 1) x = U

tr2
3→2(x) =


(1, 1) x = T

(0, 0) x = F

(1, 0) x = U

The function transformation TrF needs to work for both the input transformations

tr1
3→2 and tr2

3→2; The transformation TrF for each gate type is given below.

1. Operation ¬′3 is translated in

TrF (¬′3) = ¬2(xL, xR) = (¬xL,¬xR).

2. Operation ∧′3 is translated in

TrF (∧′3) = ∧2(xL, xR, yL, yR) = (xL∧yL, (xR∧yR)⊕((xL⊕xR)∧(yL⊕yR)∧(¬(xR⊕yL))).

3. Operation ⊕′3 is translated in

TrF (⊕′3) = ⊕2(xL, xR, yL, yR) = ((xL⊕ yL)⊕ ((xL⊕ xR)∧ (yL⊕ yR)), xR⊕ yR).

The cost of each operation in Boolean logic is shown in Table 5.5. Also in this

case it is possible to note that ⊕′3 cannot be evaluated for free.

154

5.1.2 Lindell and Yanai’s 3VL approach

Table 5.5: FTU approach: cost of each translated operations in the Boolean logic, in

case of the non-functional encoding.

3VL Function cost

¬′3 2 · ¬
∧′3 4 · ∧+ 4 · ⊕+ 1 · ¬
⊕′3 1 · ∧+ 5 · ⊕

About the efficiency of this encoding, when using the garbling scheme of [124] that

incorporates free-xor, the cost of garbling ∧′3 is 8 ciphertexts, and the cost of garbling

⊕′3 is 2 ciphertexts. Denote by C∧ and C⊕ the number of ∧′3 and ⊕′3 gates in the 3VL

circuit, then the encoding of this section is better than the functional one if and only

if 8 ·C∧+ 2 ·C⊕ < 4 ·C∧+ 4 ·C⊕ which holds if and only if C⊕ > 2 ·C∧. Observe also

that the non-functional encoding is always at least as good as the natural encoding.

In particular, it has the same cost for ⊕′3 gates and is strictly cheaper for ∧′3 gates.

No free-xor transmission. In [80], the authors show that no one among all the possi-

ble encodings in their FTU approach from the 3VL to the Boolean logic can exploit

the free-xor optimization, because each one translates ⊕′3 in a Boolean function that

involves at least one ∧. Indeed, they prove that any garbling scheme for 3VL-xor can

be used to garble Boolean-and gates at the exact same cost. This result descends

from the fact that the truth table for ⊕′3 embeds the truth table of both the Boolean

logic operations ∧,∨,⊕ (in Figures 5.7 and 5.8 the tables of the embedded Boolean

operations are circled). Now, [124] proved that at least 2 ciphertexts are required for

garbling and gates using any linear garbling method. By reducing to this result, they

show that 3VL-xor cannot be garbled with less than two ciphertexts using any linear

garbling method (with the FTU approach).

Figure 5.7: Embedded and and or. Figure 5.8: Embedded xor.

155

Chapter 5. Multiple-valued logic

5.1.3 Cimato at Al.’s 3VL approach

In [43], the authors present a 3 valued logic approach (called 012), that descends

from the natural generalization of the Boolean logic, with 3 truth values [86]. In this

approach, 0 corresponds to the false value and 1 to the true value, as in the Boolean

logic, and 2 corresponds to the unknown value. In Figure 5.9 the gates operations

for this 3VL approach are reported. In particular, for the xor gate the mod-sum

operation is chosen, and for the or gate the max operation.

¬3

0 2

1 1

2 0

∧3 0 1 2

0 0 0 0

1 0 1 1

2 0 1 2

∨3 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

⊕3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Figure 5.9: Operations in the 3VL with the 012 approach.

The main result in [43] is that, since this approach descends from the Boolean

logic, also the property described for the transmission of xor gates for free in [78]

is valid. Indeed, following the model of proof also reported in Section 2.4.2.3, the

authors in [43] prove that the xor gate can be sent for free also in their 3VL.

Let G be a xor gate with two input wires Wa and Wb and output wire Wc. Garble

the wire values as follows. Randomly choose w0
a, w

0
b , R1, R2 ∈ 0, 1, 2, such that

R1⊕R2 = 0, R1⊕R1 = R2 and R2⊕R2 = R1. Set w0
c = w0

a ⊕w0
b , and ∀i ∈ {a, b, c}:

w1
i = w0

i ⊕ R1 and w2
i = w0

i ⊕ R2. Then, the garbled output can be simply obtained

by summing the garbled gate inputs:

w0
c = w0

a ⊕ w0
b = (w0

a ⊕R1)⊕ (R2 ⊕ w0
b) = w1

a ⊕ w2
b = (w0

a ⊕R2)⊕ (R1 ⊕ w0
b) =

= w2
a ⊕ w1

b

w1
c = w0

c ⊕R1 = w0
a ⊕ (w0

b ⊕R1) = w0
a ⊕ w1

b = (w0
a ⊕R1)⊕ w0

b = w1
a ⊕ w0

b =

= (w0
a ⊕R1 ⊕R1)⊕ (R2 ⊕ w0

b) = w2
a ⊕ wab

w2
c = w0

c ⊕R2 = w0
a ⊕ (w0

b ⊕R2) = w0
a ⊕ w2

b = (w0
a ⊕R2)⊕ w0

b = w2
a ⊕ w0

b =

= (w0
a ⊕R2 ⊕R2)⊕ (R1 ⊕ w0

b) = w1
a ⊕ w1

b

156

5.2. A Multiple Valued Logic Approach for the Synthesis of Garbled Circuits

5.2 A Multiple Valued Logic Approach for the Syn-

thesis of Garbled Circuits

We submitted the work presented in this Section to IEEE Transactions on Infor-

mation Forensics & Security. In this paper we focus on the Garbled Circuit technique

and explore the possibility to extend the design and the representation of the circuits

considering multiple valued logic, that is a generalization of the Boolean logic [32, 57].

Indeed, instead of considering {0, 1} values, we allow variables to assume values in the

finite domain P = {0, 1, . . . , |P | − 1}. Reasoning in the extended domain, usually al-

lows a more compact representation of the circuit and in a more efficient evaluation.

The process of transforming values from one domain to the other is called encod-

ing, and in some cases it allows some optimizations that directly affect the overall

efficiency of the garbling process [43].

In particular, we first focus on 3 − valued logic (3V L), where variables assume

values in {0, 1, 2} and operations are consequently defined. One of our main goals is to

find “good” encodings of 3-valued logic that allow efficient garbling of the associated

Boolean representation. We study the possible encodings, in the same spirit of the

approach described in Lindell et Al. [80], but we achieve different results. The overall

contribution of our work can be summarized as follows:

- We explore alternative 3-valued logic representations for garbling circuits;

- We define different encodings from our construction in the 3VL setting to the

Boolean logic, elaborating a comparison with the state of the art paradigms;

- We give an exhaustive description of the obtained results, defining also some

metrics to choose the best encodings;

- We show that some optimizations for garbling work also in the multiple val-

ued logic, focusing on the xor -free property and proving its validation in our

multiple-valued logic setting;

- We define the new Mixed Logic, that allows to drastically reduce the costs

needed to garble a 3VL circuit;

- We present an exhaustive case in which our proposed encodings and logic are

applied to a well known circuit, analysing the more convenient solution in the

costs’ context.

157

Chapter 5. Multiple-valued logic

5.2.1 Multiple Valued approaches: a comparison

In classical Boolean logic, the truth values are generally denoted by True and

False, which correspond to the Boolean Algebra elements 1 and 0, respectively. It

is possible to extend this algebra including a third element and creating a 3-valued

logic. The semantic values set can be {False, True, Unknown} or {0, 1, 2}, a subset

of N. We focus our attention on two different extensions, namely the approach in [80]

that we call FTU, and the approach in [43] that we call 012. These approaches have

been presented in Sections 5.1.

It is possible to develop a comparison between these two approaches, matching

the logic elements through the following bijective map:

f : {False, Unknown, True} → {0, 1, 2}
False 7→ 0

Unknown 7→ 1

True 7→ 2

(5.2)

This map implies that all the coded operations with three values are the same in the

two approaches, except the xor definitions (see the definitions of ⊕3 and ⊕′3 in Figures

5.9 and 5.5). Indeed, we can note that 1 ⊕3 1 = 2 and 1 ⊕3 2 = 0, but U ⊕′3 U = U

and U ⊕′3 T = U .

5.2.1.1 Free xor gates

As already discussed in Section 5.1, in order to reduce the cost of a garbled Boolean

circuit, paper [78] defines a new starting point that allows to reduce drastically the

amount of shared information exploiting xor gates. In the multiple valued context,

papers [43] and [80] analyze xor gates, leading to two different conclusions.

Indeed, the 012 approach leads to define the operation ⊕3 in P3 = {0, 1, 2} that

allows a free evaluation of it in garbled circuits. On the other hand, FTU approach

does not allow any free evaluation of the proposed ⊕′3 operation, as described in [80].

5.2.1.2 Encodings in the FTU approach

In [80] the authors show a method that implies first an encoding function from

3VL to the Boolean domain, the application of the state of the art garbling schemes

for Boolean functions [97, 124], and then a decoding from Boolean to 3VL. We present

it in Section 5.1.2.

Until now, the encoding from 3VL to the Boolean domain has been studied only

in the context of FTU approach. We discuss now, for the first time, encodings for

the 012 approach.

158

5.2.2 Encodings in the 012 approach

Table 5.6: A comparison between multiple valued approaches.

Method MV approach for Secure TPC Free xor gates MV logic Encoding Mixed encoding

012 yes yes three valued no no

FTU yes no three valued yes no

our method yes yes multiple valued yes yes

5.2.2 Encodings in the 012 approach

In order to compare the FTU and 012 approaches, in this section we study all the

possible encodings for the 012 approach. First of all, we observe that the encoding

steps are the ones described in Figure 5.6, but for the 012 approach the 3VL set

is {0, 1, 2} (instead of {T, F, U}). Second, we can notice that there are 24 possible

functional encodings tr3→2, which are listed in Table 5.7. In this table, P3 = {0, 1, 2}
and 0L, 0R, 1L, 1R, 2L, 2R ∈ P2 = {0, 1}.

For each tr3→2, our aim is to identify the transformations in TF for the three

operations ⊕3, ∧3 and ¬3, such that ⊕2,∧2 and ¬2 have the minimum number of ∧s.

We work on this step making use of logic synthesis toolbox presented in [114], which

minimizes the number of ∧s in a logic network composed of ∧, ⊕ and ¬ gates. For

small Boolean functions (i.e., with few input variables), this tool gives the exact result

with the minimum number of ∧s. Indeed, for Boolean function with at most six inputs,

the database for logic rewriting in [114] reports the exact representation in terms of

multiplicative complexity, because based on [111, 35]. Since we are working with

functions with at most four inputs, this allows us to find the exact transformations

with the less multiplicative complexity for all of them.

In detail, for each tr3→2 in Table 5.7 and for each operation ?3 ∈ F3, we define the

correspondent ?2 ∈ F2 such that, if z = ?3(x, y) with x, y, z ∈ {0, 1, 2}, then

tr3→2(z)side = ?side2 (tr3→2(x), tr3→2(y))

where side is equal to L or R. This step is computed trough the ABC software [31],

which, starting from the truth table of a Boolean function, creates a Boolean circuit

implementing it. Then, we minimize the number of ∧s in all these circuits thanks to

the tool in [114]. The outcomes of this process lead us to the following results.

Result 1. For all tr3→2, it is always possible to define ¬2 = (¬L2 ,¬R2) (image of ¬3)

without any ∧.

Result 2. For all tr3→2, there exists an ∧2 = (∧L2 ,∧R2) (image of ∧3) such that both

∧L2 and ∧R2 have only one ∧. (The total number of ∧ gates is 2.)

159

Chapter 5. Multiple-valued logic

Table 5.7: Tr3→2 functions, describing all functional encoding in the 012 approach.

{0, 1, 2} 7→ { (0L, 0R), (1L, 1R), (2L, 2R) }
{0, 1, 2} 7→ { (0, 0), (0, 1), (1, 0) }
{0, 1, 2} 7→ { (0, 0), (0, 1), (1, 1) }
{0, 1, 2} 7→ { (0, 0), (1, 0), (0, 1) }
{0, 1, 2} 7→ { (0, 0), (1, 0), (1, 1) }
{0, 1, 2} 7→ { (0, 0), (1, 1), (0, 1) }
{0, 1, 2} 7→ { (0, 0), (1, 1), (1, 0) }
{0, 1, 2} 7→ { (0, 1), (0, 0), (1, 0) }
{0, 1, 2} 7→ { (0, 1), (0, 0), (1, 1) }
{0, 1, 2} 7→ { (0, 1), (1, 0), (0, 0) }
{0, 1, 2} 7→ { (0, 1), (1, 0), (1, 1) }
{0, 1, 2} 7→ { (0, 1), (1, 1), (0, 0) }
{0, 1, 2} 7→ { (0, 1), (1, 1), (1, 0) }
{0, 1, 2} 7→ { (1, 0), (0, 0), (0, 1) }
{0, 1, 2} 7→ { (1, 0), (0, 0), (1, 1) }
{0, 1, 2} 7→ { (1, 0), (0, 1), (0, 0) }
{0, 1, 2} 7→ { (1, 0), (0, 1), (1, 1) }
{0, 1, 2} 7→ { (1, 0), (1, 1), (0, 0) }
{0, 1, 2} 7→ { (1, 0), (1, 1), (0, 1) }
{0, 1, 2} 7→ { (1, 1), (0, 0), (0, 1) }
{0, 1, 2} 7→ { (1, 1), (0, 0), (1, 0) }
{0, 1, 2} 7→ { (1, 1), (0, 1), (0, 0) }
{0, 1, 2} 7→ { (1, 1), (0, 1), (1, 0) }
{0, 1, 2} 7→ { (1, 1), (1, 0), (0, 0) }
{0, 1, 2} 7→ { (1, 1), (1, 0), (0, 1) }

160

5.2.2 Encodings in the 012 approach

Result 3. For all tr3→2, there exists an unique ⊕2 = (⊕L2 ,⊕R2) (image of ⊕3) such

that both ⊕L2 and ⊕R2 have only one ∧. (The total number of ∧ gates is 2.)

This means that, for each functional encoding, both ∧3 and ⊕3 operations in the

3VL can be transformed in some Boolean logic expressions with at least two ∧. That

has consequence in how much is advantageous to transform a circuit (or a gate) from

the 3VL to the Boolean logic, because a comparison between ∧3(⊕3) cost and two ∧
cost in the Boolean logic is necessary.

Example 5.2.1 (An example of encoding in 012 approach). Considering the fourth

encoding in Table 5.7, the transformation function is:

(xL, xR) = tr3→2(x) =


(0, 0) x = 0

(1, 0) x = 1

(1, 1) x = 2

(5.3)

1. Operation ¬3 is translated in

TrF (¬3) = ¬2(xL, xR) = (¬xR,¬xL)

2. Operation ∧3 is translated in

TrF (∧3) = ∧2(xL, xR, yL, yR)

= (∧L2 (xL, xR, yL, yR),∧R2 (xL, xR, yL, yR))

There are three possible ∧L2 with only one and :

� ∧L2 (xL, xR, yL, yR) = xL ∧ yL
� ∧L2 (xL, xR, yL, yR) = ¬yL ∧ (xL ⊕ yR)⊕ xL
� ∧L2 (xL, xR, yL, yR) = xL ∧ (xR ⊕ yL)⊕ xR

There are three possible ∧R2 with only one and :

� ∧R2 (xL, xR, yL, yR) = xR ∧ yR
� ∧R2 (xL, xR, yL, yR) = yR ∧ ¬(xR ⊕ yL)

� ∧R2 (xL, xR, yL, yR) = xR ∧ ¬(xL ⊕ yR)

3. Operation ⊕3 is translated in

TrF (⊕3) = ⊕2(xL, xR, yL, yR)

= (⊕L2 (xL, xR, yL, yR),⊕R2 (xL, xR, yL, yR))

where⊕L2 (xL, xR, yL, yR) = ¬(¬(xL⊕yL)∧¬(xR⊕yL⊕yR)) and⊕R2 (xL, xR, yL, yR) =

(xL ⊕ yR) ∧ (xR ⊕ yL)

161

Chapter 5. Multiple-valued logic

Table 5.8: 012 approach: cost of translated ⊕3 operation in the Boolean logic, in case

of the example functions.

Function cost

¬3 2 · ¬
∧3 2 · ∧
⊕3 2 · ∧+ 5 · ⊕+ 3 · ¬

The cost for each operation is reported in Table 5.8. For ∧3 we choose ∧L2 and ∧R2
without any ⊕.

5.2.2.1 Encodings’ equivalences

The encodings in Table 5.7 can be divided into couples, such that for each couple

the following Proposition holds.

Proposition 5.2.2. Let {(0L, 0R), (1L, 1R), (2L, 2R)} and {(0∗L, 0∗R), (1∗L, 1
∗
R), (2∗L, 2

∗
R)}

be two encodings.

Let ?3 be an operation in the set {∧3,⊕3,¬3}, and (?L2 , ?
R
2) the couple of trans-

formations from 3VL to Boolean logic for the first encoding, (?∗L2 , ?∗R2) the couple of

transformations for the second encoding.

If, for the two encodings and ∀a ∈ {0, 1, 2}, the following equalities hold:

a∗L = aR (5.4)

a∗R = aL (5.5)

then the couples of transformations (?L2 , ?
R
2) and (?∗L2 , ?∗R2) are such that

?∗L2 (xL, xR, yL, yR) = ?R2 (xR, xL, yR, yL) (5.6)

?∗R2 (xL, xR, yL, yR) = ?L2 (xR, xL, yR, yL) (5.7)

Proof. Equations 5.4 and 5.5 imply that, for the two considered encodings,

(0∗L, 0
∗
R) = (0R, 0L)

(1∗L, 1
∗
R) = (1R, 1L)

(2∗L, 2
∗
R) = (2R, 2L).

162

5.2.2 Encodings in the 012 approach

Then, if for the encoding {(0L, 0R), (1L, 1R), (2L, 2R)} the transformation TrF (?3) is

described through the equations

zL = ?L2 (xL, xR, yL, yR)

zR = ?R2 (xL, xR, yL, yR)

then for the encoding {(0∗L, 0∗R), (1∗L, 1
∗
R), (2∗L, 2

∗
R)} the transformation TrF (?∗3) is such

that

zL = ?∗L2 (xL, xR, yL, yR) = ?R2 (xR, xL, yR, yL)

zR = ?∗R2 (xL, xR, yL, yR) = ?L2 (xR, xL, yR, yL)

Example 5.2.3 (Encodings’ couple). The first and third encodings in Table 5.7,

denoted as {(0, 0), (0, 1), (1, 0)} and {(0, 0), (1, 0), (0, 1)} respectively, are such that

(0L, 0R) = (0∗R, 0
∗
L), (1L, 1R) = (1∗R, 1

∗
L) and (2L, 2R) = (2∗R, 2

∗
L). For the first encoding,

¬3 operation is transformed as follows:

¬L2 (xL, xR) = ¬(xL ⊕ xR)

¬R2 (xL, xR) = xR

while, for the second encoding:

¬∗L2 (xL, xR) = xL = ¬R2 (xR, xL)

¬∗R2 (xL, xR) = ¬(xR ⊕ xL) = ¬L2 (xR, xL)

For the first encoding, ∧3 operation is transformed as follows:

∧L2 (xL, xR, yL, yR) = xL ∧ yL
∧R2 (xL, xR, yL, yR) = (xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR)⊕ xR

while, for the second encoding:

∧∗L2 (xL, xR, yL, yR) = (xL ⊕ yL) ∧ ¬(xL ⊕ yR ⊕ yL)⊕ xL
= ∧R2 (xR, xL, yR, yL)

∧∗R2 (xL, xR, yL, yR) = xR ∧ yR
= ∧L2 (xR, xL, yR, yL)

For the first encoding, ⊕3 operation is transformed as follows:

⊕L2 (xL, xR, yL, yR) = ¬(xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)

⊕R2 (xL, xR, yL, yR) = ¬(xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)

163

Chapter 5. Multiple-valued logic

while, for the second encoding:

⊕∗L2 (xL, xR, yL, yR) = ¬(xR ⊕ yR) ∧ (xL ⊕ yR ⊕ yL)

= ⊕R2 (xR, xL, yR, yL)

⊕∗R2 (xL, xR, yL, yR) = ¬(xL ⊕ yL) ∧ (xR ⊕ yR ⊕ yL)

= ⊕L2 (xR, xL, yR, yL)

5.2.2.2 More convenient encodings

In previous sections we show that, for each functional encoding tr3→2 and for all

operations ⊕3, ∧3 and ¬3, there is at least one transformation in TF such that the

number of ∧ in ⊕2, ∧2, ¬2 is minimized. Among them, we are also interested to

define which encoding tr3→2 requires the minimum number of ¬ and ⊕. Indeed, even

if ⊕ and ¬ gates cost 0 in the garbled circuits context, it would be better to reduce

the overall number of gates. In Tables 5.9, 5.10 and 5.11 the number of Boolean

gates needed to describe each operation is reported. The last column shows the total

number of gates needed for both left and right encoding. For some encodings, there

are more expressions that define the left or right part of an operation in Boolean logic

with only one ∧. In these cases, among them we consider the expression containing

the minimum number of ⊕ and ¬.

Depending on the number and type of gates in a 3VL function, we choose an

encoding rather than another one, to ensure not only a low number of ∧, but also the

minimum number of ⊕ and ¬ (see Section 5.2.4).

Remark 5.2.4. In Tables 5.9, 5.10 and 5.11 stands out that all the encodings can be

divided into couples, such that the encodings in each couple have the same number

of ⊕ and ¬ in all the Tables. This feature descends directly from the considerations

pointed out in Proposition 5.2.2.

Example 5.2.5 (Encodings’ couple - same number of ¬ and ⊕). For this Example,

we consider the same encodings presented in Example 5.2.3, i.e., {(0, 0), (0, 1), (1, 0)}
and {(0, 0), (1, 0), (0, 1)}. From Tables 5.9, 5.10 and 5.11, we recover that for both of

them:

� in transformation ¬2, the total number of ¬ is 1 and of ⊕ is 1,

� in transformation ∧2 the total number of ¬ is 1 and of ⊕ is 4,

� in transformation ⊕2 the total number of ¬ is 2 and of ⊕ is 6.

164

5.2.2 Encodings in the 012 approach

Table 5.9: Boolean gates needed to compute the operation ∧2 for every functional

encoding.

∧L2 ∧R2 ∧2

∧ ⊕ ¬ ∧ ⊕ ¬ ∧ ⊕ ¬
000110 1 0 0 1 4 1 2 4 1

000111 1 0 0 1 0 0 2 0 0

001001 1 4 1 1 0 0 2 4 1

001011 1 0 0 1 0 0 2 0 0

001101 1 4 0 1 0 0 2 4 0

001110 1 0 0 1 4 0 2 4 0

010010 1 0 0 1 0 3 2 0 3

010011 1 0 0 1 4 0 2 4 0

011000 1 4 0 1 0 3 2 4 3

011011 1 0 0 1 4 1 2 4 1

011100 1 4 1 1 0 3 2 4 4

011110 1 0 0 1 0 3 2 0 3

100001 1 0 3 1 0 0 2 0 3

100011 1 4 0 1 0 0 2 4 0

100100 1 0 3 1 4 0 2 4 3

100111 1 4 1 1 0 0 2 4 1

101100 1 0 3 1 4 1 2 4 4

101101 1 0 3 1 0 0 2 0 3

110001 1 0 3 1 4 1 2 4 4

110010 1 4 1 1 0 3 2 4 4

110100 1 0 3 1 0 3 2 0 6

110110 1 4 0 1 0 3 2 4 3

111000 1 0 3 1 0 3 2 0 6

111001 1 0 3 1 4 0 2 4 3

165

Chapter 5. Multiple-valued logic

Table 5.10: Boolean gates needed to compute the operation ⊕2 for every functional

encoding.

⊕L2 ⊕R2 ⊕2

∧ ⊕ ¬ ∧ ⊕ ¬ ∧ ⊕ ¬
000110 1 3 1 1 3 1 2 6 2

000111 1 2 0 1 3 3 2 5 3

001001 1 3 1 1 3 1 2 6 2

001011 1 3 3 1 2 0 2 5 3

001101 1 2 0 1 3 3 2 5 3

001110 1 3 3 1 2 0 2 5 3

010010 1 2 2 1 3 1 2 5 3

010011 1 3 2 1 3 2 2 6 4

011000 1 2 2 1 3 1 2 5 3

011011 1 3 3 1 2 3 2 5 6

011100 1 3 2 1 3 2 2 6 4

011110 1 3 3 1 2 3 2 5 6

100001 1 3 1 1 2 2 2 5 3

100011 1 3 2 1 3 2 2 6 4

100100 1 3 1 1 2 2 2 5 3

100111 1 2 3 1 3 3 2 5 6

101100 1 3 2 1 3 2 2 6 4

101101 1 2 3 1 3 3 2 5 6

110001 1 3 1 1 2 1 2 5 2

110010 1 2 1 1 3 1 2 5 2

110100 1 3 1 1 2 1 2 5 2

110110 1 3 3 1 3 3 2 6 6

111000 1 2 1 1 3 1 2 5 2

111001 1 3 3 1 3 3 2 6 6

166

5.2.2 Encodings in the 012 approach

Table 5.11: Boolean gates needed to compute the operation ¬2 for every functional

encoding.

¬L2 ¬R2 ¬2

∧ ⊕ ¬ ∧ ⊕ ¬ ∧ ⊕ ¬
000110 0 1 1 0 0 0 0 1 1

000111 0 0 1 0 0 1 0 0 2

001001 0 0 0 0 1 1 0 1 1

001011 0 0 1 0 0 1 0 0 2

001101 0 0 0 0 1 1 0 1 1

001110 0 1 1 0 0 0 0 1 1

010010 0 0 0 0 0 0 0 0 0

010011 0 1 0 0 0 0 0 1 0

011000 0 0 0 0 1 1 0 1 1

011011 0 1 0 0 0 0 0 1 0

011100 0 0 0 0 1 1 0 1 1

011110 0 0 0 0 0 0 0 0 0

100001 0 0 0 0 0 0 0 0 0

100011 0 0 0 0 1 0 0 1 0

100100 0 1 1 0 0 0 0 1 1

100111 0 0 0 0 1 0 0 1 0

101100 0 1 1 0 0 0 0 1 1

101101 0 0 0 0 0 0 0 0 0

110001 0 1 0 0 0 0 0 1 0

110010 0 0 0 0 1 0 0 1 0

110100 0 0 1 0 0 1 0 0 2

110110 0 0 0 0 1 0 0 1 0

111000 0 0 1 0 0 1 0 0 2

111001 0 1 0 0 0 0 0 1 0

167

Chapter 5. Multiple-valued logic

5.2.3 Free xor Evaluation in Multiple Valued Logic

From work by Kolesnikov et Al. [78], in which free transfer for xor gates in GC

protocol is established, to find some improvements in this sense has been a fruitful

area. Indeed, in a later work by Cimato et Al. [43], the authors declare that also

transfer xors in the 3-valued logic with 012 approach has no cost. Now, we finally

prove that this holds for any multiple valued logic with truth values in the set P =

{0, 1, . . . , |P | − 1}.

Theorem 5.2.6. Let G have two input wires wa and wb and output wire wc. Garble

the wire values as follows: randomly choose w0
a, w

0
b , {R1, . . . , Rn−1} and i, j, h ∈ Zn,

with the properties that

� Ri ⊕Rj = 0, if [i+ j]mod(n) = 0

� Ri ⊕Rj = Rm, otherwise, where m = [i+ j]mod(n)

Set w0
c = w0

a ⊕ w0
b , and ∀k ∈ (a, b, c): wmk = w0

k ⊕Rm.

It is easy to see hat the garbled gate output is simply obtained by Xoring garbled

gate inputs:

� if m = 0 then

w0
c = w0

a ⊕ w0
b = (w0

a ⊕Ri)⊕ (w0
b ⊕Rj) = wia ⊕ wjb

where [i+ j]mod(n) = 0

� if m 6= 0 then

wmc = w0
c ⊕Rm = w0

a ⊕ w0
b ⊕Rm =

= (w0
a ⊕Ri)⊕ (w0

b ⊕Rj) = wia ⊕ wjb =

= (w0
a ⊕Rj)⊕ (w0

b ⊕Ri) = wja ⊕ wib

where [i+ j]mod(n) = m

Example 5.2.7 (n = 6). Let P6 = {0, 1, 2, 3, 4, 5} be the set of multi-valued variables

with n = 6, and ⊕6 the xor function in it. The ⊕6 inference rules are shown in Table

5.12.

We give now some examples about how it is possible to garble for free the xor

gates also in a multiple valued logic (in this case, a 6-valued logic), as proved in

Theorem 5.2.6.

168

5.2.4 From 3VL to Boolean logic: costs comparison

Table 5.12: Definition of ⊕6 using a truth table.

⊕6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

If m = 0 then:

w0
c = w0

a ⊕6 w
0
b = (w0

a ⊕6 R1)⊕6 (w0
b ⊕6 R5) = w1

a ⊕6 w
5
b

= (w0
a ⊕6 R2)⊕6 (w0

b ⊕6 R4) = w2
a ⊕6 w

4
b

= (w0
a ⊕6 R3)⊕6 (w0

b ⊕6 R3) = w3
a ⊕6 w

3
b

= (w0
a ⊕6 R4)⊕6 (w0

b ⊕6 R2) = w4
a ⊕6 w

2
b

= (w0
a ⊕6 R5)⊕6 (w0

b ⊕6 R1) = w5
a ⊕6 w

1
b

If m 6= 0, let us take m = 2, as an instance:

w2
c = w0

c ⊕6 R2 = (w0
a ⊕6 R0)⊕6 (w0

b ⊕6 R2) = w0
a ⊕6 w

2
b

= (w0
a ⊕6 R1)⊕6 (w0

b ⊕6 R1) = w1
a ⊕6 w

1
b

= (w0
a ⊕6 R2)⊕6 (w0

b ⊕6 R0) = w2
a ⊕6 w

0
b

= (w0
a ⊕6 R3)⊕6 (w0

b ⊕6 R5) = w3
a ⊕6 w

5
b

= (w0
a ⊕6 R5)⊕6 (w0

b ⊕6 R3) = w5
a ⊕6 w

3
b

= (w0
a ⊕6 R4)⊕6 (w0

b ⊕6 R4) = w4
a ⊕6 w

4
b

5.2.4 From 3VL to Boolean logic: costs comparison

The results in [43], generalized in Section 5.2.3, show that garbling a ⊕3 gate in

the 012 approach has no cost. This allows to conclude that, in the 3VL with 012

approach, garbling ⊕3 costs 0 and ∧3 costs 8 rows of the garbled table [97].

In Section 5.2.2 we show that, for each of the 24 functional encodings in Table

5.7, the operations ∧3 and ⊕3 can be transformed in the functions ∧2 and ⊕2 with

two ∧ both (at least).

169

Chapter 5. Multiple-valued logic

Given these assumptions, we note that it is more convenient to garble ⊕3 in the

3VL, since this does not imply any cost, while it is better to translate ∧3 from the

3VL (where it costs 8 rows) to Boolean logic (where it costs 6 rows, 3 for each ∧ in

∧2).

Since the garbled protocol is a software implementation, it implies the concept

of circuits but does not involve the physical construction of them. Moreover, in the

garbled protocol all garbled tables are generated and transferred from A player to B

player one-by-one. Starting from this assumption, we give a definition of a new logic.

Definition 5.2.8 (Mixed Logic (ML)). The Mixed Logic (ML) is a logic in which

some gates are represented in the 3VL, and some other in the Boolean logic. In

particular, for our purpose, we work with ⊕3 and ¬3 in the 3VL, while we translate

∧3 in its Boolean logic form ∧2.

Summarizing, when the A player has to garble a 3VL function, in the ML for each

gate she computes the following:

� if the operation is ⊕3 or ¬3, she garbles the gate in the 3VL, since she can send

its garbled table for free;

� if the operation is ∧3, she chooses a cheap encoding from the 3VL to the Boolean

logic and transforms the gate in its Boolean form ∧2, decreasing the cost to send

the correspondent garbled table.

Starting from this analysis, in this Section we define the cost functions in the three

possible scenarios: 1) garbling the circuit in the 3VL, 2) garbling the circuit in the

Boolean logic, 3) garbling the circuit in the Mixed Logic.

Definition 5.2.9 (Cost functions). The cost necessary to transfer each gate in the

garble circuit protocol is the number of rows in the corresponding garbled table.

The number of rows for each gate in the three scenarios are reported in Table

5.13.

Example 5.2.10 (garbling costs). Consider the 3VL function f :

y = f(x1, x2, x3) = x1 ⊕3 (¬3x2 ∧3 x3).

where x1, x2, x3 ∈ {0, 1, 2}. It is easy to define the correspondent circuit in 3VL

(Figure 5.10).

1. Cost of garbling the circuit in 3VL. The cost of the garbled protocol in 3VL is

the sum of the costs of all the gates, i.e., 8 rows (first column in Table 5.14).

170

5.2.4 From 3VL to Boolean logic: costs comparison

Table 5.13: Number of rows in the garbled tables for each gate (columns) in all the

three scenarios (rows).

⊕ ∧ ¬
Boolean logic 0 3 0

3-Valued logic 0 8 0

Mixed Logic 0 6 0

Figure 5.10: Synthesis of function f in a 3VL circuit.

2. Cost of garbling the circuit in Boolean logic. This time, we transform all the

gates from 3VL to Boolean logic through the encoding tr3→2 in Eq. 5.3 (Figure

5.11). From the example in Section 5.2.1, we know that translation of ¬3 cost

as two ¬, ∧3 as two ∧ and ⊕3 as two ∧, five ⊕ and three ¬ (see Table 5.8). In

this case, garbling the circuit costs a total of 12 rows (second column in Table

5.14).

3. Cost of garbling the circuit in the Mixed Logic. In this case, we apply tr3→2

only to ∧3, since this is the single case when the transformation produces a

gain. Garbling the circuit costs 6 rows, and it is clear that this case is the one

with minimum cost (third column in Table 5.14).

Table 5.14: Comparison of costs.

3VL Bool. logic ML

⊕3 0 6 0

∧3 8 6 6

¬3 0 0 0

Tot. 8 12 6

171

Chapter 5. Multiple-valued logic

Figure 5.11: Synthesis of function f in the Boolean logic, after the application of the

encoding in Eq. 5.3. In each dashed circle, there is an operation among ¬2, ∧2 or ⊕2.

Figure 5.12: Synthesis of function f in the Mixed logic, after the application of the

encoding in Eq. 5.3 only for the gate ∧3, that is transformed into ∧2 (dashed circle).

172

5.2.5 Applied case: Adder

Figure 5.13: Full Adder circuit: function FA3 has as inputs Ci−1, Ai and Bi, and as

outputs Si and Ci.

5.2.5 Applied case: Adder

In this section, we describe the Adder function in the 3VL, comparing the costs

in the three scenarios (3VL, Boolean logic and Mixed Logic), considering different

encodings.

Let A = An−1An−2...A0 and B = Bn−1Bn−2...B0 are such that Ai, Bj ∈ {0, 1, 2}
∀i, j ∈ {0, 1, ..., n− 1}.

The result of the Adder function is a sequence S = Sn−1Sn−2...S0 of elements

in the 3VL set. In computations we exploit the carry sequence C = Cn−1Cn−2...C0

(assuming C−1 = 0).

We describe the adder in the 3VL through the Full Adder function FA3 in Figure

5.13 and the Half Adder function HA3 in Figure 5.14. In particular,

FA3 : (Ai, Bi, Ci−1) 7→ (Si, Ci)

HA3 : (α, β) 7→ (σ, χ)

where

σ = α⊕3 β

χ = [
(
¬3(α⊕3 β)

)
∧3

(
α ∨3 β

)
] ∧3

[(
¬3(α⊕3 β) ∨3 (α ∨3 β)

)
⊕3 2

]
and i refers to the i-th iteration of the function needed to complete the sum in 3VL.

Example 5.2.11. Let us consider the sum 15+17 = 32 between two natural numbers

in N. In the 3VL, 15 corresponds to the sequence A = 0120 and 17 to the sequence

B = 0122. To compute the sum between A and B, we perform the computations

reported in table 5.15. We denote as σ1, χ1 and χ2 the intermediate values of FA3.

The final result of computation is the sequence S = 1012, that corresponds to the

natural number 32.

173

Chapter 5. Multiple-valued logic

Figure 5.14: Half Adder circuit: function HA3 has as inputs α and β, and as outputs

σ and χ.

Table 5.15: Steps performed to sum the sequences A = 0120 and B = 0122.

i Ai Bi σ1 χ1 χ2 Si Ci

0 0 2 2 0 0 2 0

1 2 2 1 1 0 1 1

2 1 1 2 0 1 0 1

3 0 0 0 0 0 1 0

174

5.2.5 Applied case: Adder

5.2.5.1 Costs for garbling the Full Adder circuit

Let us analyze and compare the cost for garbling the circuit in Fig 5.13, in all the

three considered scenarios. For this purpose, since we are considering circuits on the

basis {and, xor, not}, we replace any x∨3y with the equivalent formula ¬3(¬3a∧3¬3b).

1) Cost of garbling the circuit in the 3VL: in this case, ¬3 and ⊕3 have cost 0.

In the HA3 function there are 4 ∧3, then the total cost to garble this function is

4 · 8 = 32 rows. In the FA3 there are 2 HA3 and ∧3. Thus, the cost is 2 · 32 + 8 = 72

rows.

2) Cost of garbling the circuit in the Boolean logic: in this case, any minimal

encoding we choose, the cost for both ⊕2 and ∧2 is 6 rows (see Tables 5.10 and 5.9).

In the HA3 function there are 4 ∧2 and 2 ⊕2, then the total cost to garble this

function is 4 · 6 + 2 · 6 = 36. In the FA3 there are 2 HA3 and a ∧2, then the total

cost is 2 · 36 + 6 = 78 rows.

3) Cost of garbling the circuit in the Mixed logic: in order to compute the total

cost, we sum only the cost of the ∧2. In the HA3 function there are 4 ∧2, and then

the cost is 4 · 6 = 24. In the FA3 there are 2 HA3 and a ∧2, then the total cost is

2 · 24 + 6 = 54 rows.

5.2.5.2 More convenient encodings for the Full Adder

Also for the Adder function, among all the encodings that allow the minimum

cost after the transformation of circuits from the 3VL to the Boolean logic, we are

also interested to find those composed of the minimum number of gates (then also ¬
and ⊕).

For this purpose, we give to all the gates a rate, i.e., for the ∧ gate we give 3

points (it costs in the garbling process), for the ⊕ gate 2 points (it is for free in the

garbling process, but it costs in sense of area), for the ¬ gate 1 point (it is for free,

and it is also small in sense of area).

In Table 5.16, for each encoding tr3→2 is reported the total points computed

summing the points assigned to each gate, when the Adder function is completely

translated from the 3VL to the Boolean logic.

In the same way as done in Section 5.2.2.2, if there are more expressions that

define the left or right part of an operation in Boolean logic with only one ∧, we

consider the expression with also the less number of ⊕ and ¬.

From Table 5.16 we note that, through our analysis, the best encodings that

transform the Adder function from 3VL to Boolean logic are 001110 and 100001.

Remark 5.2.12. Note that in Table 5.16 the subdivision of encodings in couples (dis-

cussed in Section 5.2.2.1) is evident: indeed, the points assigned to the two encodings

175

Chapter 5. Multiple-valued logic

Table 5.16: Total points awarded to the Half Adder and the Full Adder, for each

encoding, following the rule: 1 point to a ¬ gate, 2 points to a ⊕ gate and 3 points

to an ∧ gate.

Encoding HA points FA points

000110 121 266

000111 76 164

001001 121 266

001011 76 164

001101 115 253

001110 115 253

010010 74 157

010011 114 248

011000 127 280

011011 118 257

011100 137 301

011110 80 169

100001 74 157

100011 114 248

100100 127 280

100111 118 257

101100 137 301

101101 80 169

110001 118 259

110010 122 268

110100 98 214

110110 130 283

111000 98 214

111001 130 283

176

5.2.6 Appendix: Cheapest transformations for all the functional encodings

in a couple for both HA and FA are equal, because the Boolean operations in the

transformed circuits are the same.

5.2.6 Appendix: Cheapest transformations for all the func-

tional encodings

In this appendix we report, for all the functional encodings in Table 5.7, the

transformations in TF for the three operations ⊕3, ∧3 and ¬3, such that ⊕2, ∧2 and

¬2 have the minimum number of ∧ (see Section 5.2.2).

Each functional encoding tr2→3 is notated as 0L0R1L1R2L2R, such that:

0L0R1L1R2L2R : {0, 1, 2} 7→ {(0L, 0R), (1L, 1R), (2L, 2R)}

where 0L, 0R, 1L, 1R, 2L, 2R ∈ P2.

Tables for ¬3. The operation y = ¬3x in P3 is transformed in the operation:

(yL, yR) = (¬L2 (xL, xR),¬R2 (xL, xR))

For each functional encoding, we write in Table 5.17 all the transformations ¬2 =

(¬L2 ,¬R2) where both ¬L2 and ¬R2 have only one ∧.

Tables for ∧3. The operation z = x ∧3 y in P3 is transformed in the operation:

(zL, zR) = (∧L2 (xL, xR, yL, yR),∧R2 (xL, xR, yL, yR))

For each functional encoding, we write in Tables 5.18 - 5.19 all the transformations

∧2 = (∧L2 ,∧R2) where both ∧L2 and ∧R2 have only one ∧.

Tables for ⊕3. The operation z = x⊕3 y in P3 is transformed in the operation:

(zL, zR) = (⊕L2 (xL, xR, yL, yR),⊕R2 (xL, xR, yL, yR))

For each functional encoding, we write in Table 5.20 all the transformations ⊕2 =

(⊕L2 ,⊕R2) where both ⊕L2 and ⊕R2 have only one ∧.

5.3 Conclusion and further works

In this Chapter we present our work in the context of the Multiple-valued logic.

We present an exhaustive comparison between two state-of-arts three-valued logics,

proving that one of them, once extended to more then three truth elements, can

177

Chapter 5. Multiple-valued logic

Table 5.17: Cheapest transformations for ¬3.

0L0R1L1R2L2R ¬2

000110 zL = ¬(xL ⊕ xR)

zR = xR

000111 zL = ¬xR
zR = ¬xL

001001 zL = xL
zR = ¬(xL ⊕ xR)

001011 zL = ¬xR
zR = ¬xL

001101 zL = xL
zR = ¬(xL ⊕ xR)

001110 zL = ¬(xL ⊕ xR)

zR = xR

010010 zL = xR
zR = xL

010011 zL = xL ⊕ xR
zR = xR

011000 zL = xL
zR = ¬(xL ⊕ xR)

011011 zL = xL ⊕ xR
zR = xR

011100 zL = xL
zR = ¬(xL ⊕ xR)

011110 zL = xR
zR = xL

100001 zL = xR
zR = xL

100011 zL = xL
zR = xL ⊕ xR

100100 zL = ¬(xL ⊕ xR)

zR = xR

100111 zL = xL
zR = xL ⊕ xR

101100 zL = ¬(xL ⊕ xR)

zR = xR

101101 zL = xR
zR = xL

110001 zL = xL ⊕ xR
zR = xR

110010 zL = xL
zR = xL ⊕ xR

110100 zL = ¬xR
zR = ¬xL

110110 zL = xL
zR = xL ⊕ xR

111000 zL = ¬xR
zR = ¬xL

111001 zL = xL ⊕ xR
zR = xR

178

5.3. Conclusion and further works

Table 5.18: Cheapest transformations for ∧3, for encodings with 0L = 0.

0L0R1L1R2L2R ∧2

000110 zL = xL ∧ yL
zL = xL ∧ (xR ⊕ yL)

zL = yL ∧ (xL ⊕ yR)

zR = (xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR)⊕ xR
000111 zL = xL ∧ yL

zL = xL ∧ ¬(xR ⊕ yL)

zL = yL ∧ ¬(xL ⊕ yR)

zR = xR ∧ yR
zR = xR ∧ (xL ⊕ yR)⊕ xL
zR = ¬yR ∧ (xR ⊕ yL)⊕ xR

001001 zL = (xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR)⊕ xL
zR = yR ∧ (xR ⊕ yL)

zR = xR ∧ (xL ⊕ yR)

zR = xR ∧ yR
001011 zL = xL ∧ yL

zL = ¬yL ∧ (xL ⊕ yR)⊕ xL
zL = xL ∧ (xR ⊕ yL)⊕ xR
zR = yR ∧ ¬(xR ⊕ yL)

zR = xR ∧ ¬(xL ⊕ yR)

zR = xR ∧ yR
001101 zL = (xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)⊕ xL

zR = xR ∧ yR
zR = xR ∧ (xL ⊕ yR)⊕ xL
zR = ¬yR ∧ (xR ⊕ yL)⊕ xR

001110 zL = xL ∧ yL
zL = ¬yL ∧ (xL ⊕ yR)⊕ xL
zL = xL ∧ (xR ⊕ yL)⊕ xR
zR = (xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)⊕ xR

010010 zL = xL ∧ yL
zL = xL ∧ (xR ⊕ yL)

zL = yL ∧ (xL ⊕ yR)

zR = ¬(¬xR ∧ ¬yR)

zR = yR ∧ ¬(xR ⊕ yL)⊕ xR
zR = ¬(¬xR ∧ ¬(xL ⊕ yR)⊕ xL)

010011 zL = xL ∧ yL
zL = yL ∧ ¬(xL ⊕ yR)

zL = xL ∧ ¬(xR ⊕ yL)

zR = (xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)⊕ xR
011000 zL = (xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)⊕ xL

zR = ¬(¬xR ∧ ¬yR)

zR = yR ∧ ¬(xR ⊕ yL)⊕ xR
zR = ¬(¬xR ∧ ¬(xL ⊕ yR)⊕ xL)

011011 zL = xL ∧ yL
zL = ¬yL ∧ ¬(xL ⊕ yR)⊕ xL
zL = xL ∧ ¬(xR ⊕ yL)⊕ xR
zR = (xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR)⊕ xR

011100 zL = (xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR)⊕ xL
zR = ¬(¬xR ∧ ¬yR)

zR = ¬(¬yR ∧ ¬(xR ⊕ yL))

zR = ¬(¬xR ∧ ¬(xL ⊕ yR))

011110 zL = xL ∧ yL
zL = ¬yL ∧ ¬(xL ⊕ yR)⊕ xL
zL = xL ∧ ¬(xR ⊕ yL)⊕ xR
zR = ¬(¬yR ∧ (xR ⊕ yL))

zR = ¬(¬xR ∧ (xL ⊕ yR))

zR = ¬(¬xR ∧ ¬yR)

179

Chapter 5. Multiple-valued logic

Table 5.19: Cheapest transformations for ∧3, for encodings with 0L = 1.

0L0R1L1R2L2R ∧2

100001 zL = ¬(¬xL ∧ ¬yL)

zL = yL ∧ ¬(xL ⊕ yR)⊕ xL
zL = ¬xL ∧ ¬(xR ⊕ yL)⊕ xR
zR = yR ∧ (xR ⊕ yL)

zR = xR ∧ (xL ⊕ yR)

zR = xR ∧ yR
100011 zL = (xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)⊕ xL

zR = yR ∧ ¬(xR ⊕ yL)

zR = xR ∧ ¬(xL ⊕ yR)

zR = xR ∧ yR
100100 zL = ¬(¬xL ∧ ¬yL)

zL = yL ∧ ¬(xL ⊕ yR)⊕ xL
zL = ¬xL ∧ ¬(xR ⊕ yL)⊕ xR
zR = (xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)⊕ xR

100111 zL = (xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR)⊕ xL
zR = xR ∧ yR
zR = ¬yR ∧ ¬(xR ⊕ yL)⊕ xR
zR = ¬(xR ∧ ¬(xL ⊕ yR)⊕ xL)

101100 zL = ¬(¬xL ∧ ¬(xR ⊕ yL))

zL = ¬(¬xL ∧ ¬yL)

zL = ¬(¬yL ∧ ¬(xL ⊕ yR))

zR = (xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR)⊕ xR
101101 zL = ¬(¬xL ∧ ¬yL)

zL = ¬(¬yL ∧ (xL ⊕ yR))

zL = ¬(¬xL ∧ (xR ⊕ yL))

zR = xR ∧ yR
zR = ¬yR ∧ ¬(xR ⊕ yL)⊕ xR
zR = ¬(xR ∧ ¬(xL ⊕ yR)⊕ xL)

110001 zL = ¬(¬xL ∧ ¬yL)

zL = yL ∧ (xL ⊕ yR)⊕ xL
zL = ¬xL ∧ (xR ⊕ yL)⊕ xR
zR = (xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR)⊕ xR

110010 zL = (xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR)⊕ xL
zR = ¬(¬xR ∧ ¬yR)

zR = yR ∧ (xR ⊕ yL)⊕ xR
zR = ¬xR ∧ (xL ⊕ yR)⊕ xL

110100 zL = ¬(¬xL ∧ ¬yL)

zL = yL ∧ (xL ⊕ yR)⊕ xL
zL = ¬xL ∧ (xR ⊕ yL)⊕ xR
zR = ¬(¬xR ∧ ¬yR)

zR = ¬(¬yR ∧ ¬(xR ⊕ yL))

zR = ¬(¬xR ∧ ¬(xL ⊕ yR))

110110 zL = (xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)⊕ xL
zR = ¬(¬yR ∧ (xR ⊕ yL))

zR = ¬(¬xR ∧ (xL ⊕ yR))

zR = ¬(¬xR ∧ ¬yR)

111000 zL = ¬(¬xL ∧ ¬(xR ⊕ yL))

zL = ¬(¬xL ∧ ¬yL)

zL = ¬(¬yL ∧ ¬(xL ⊕ yR))

zR = ¬(¬xR ∧ ¬yR)

zR = yR ∧ (xR ⊕ yL)⊕ xR
zR = ¬xR ∧ (xL ⊕ yR)⊕ xL

111001 zL = ¬(¬xL ∧ ¬yL)

zL = ¬(¬yL ∧ (xL ⊕ yR))

zL = ¬(¬xL ∧ (xR ⊕ yL))

zR = (xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)⊕ xR

180

5.3. Conclusion and further works

Table 5.20: Cheapest transformations for ⊕3.

0L0R1L1R2L2R ⊕2

000110 zL = ¬(xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)

zR = ¬(xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)

000111 zL = (xL ⊕ yR) ∧ (xR ⊕ yL)

zR = ¬(¬(xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR))

001001 zL = ¬(xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)

zR = ¬(xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)

001011 zL = ¬(¬(xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR))

zR = (xL ⊕ yR) ∧ (xR ⊕ yL)

001101 zL = (xL ⊕ yR) ∧ (xR ⊕ yL)

zR = ¬(¬(xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR))

001110 zL = ¬(¬(xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR))

zR = (xL ⊕ yR) ∧ (xR ⊕ yL)

010010 zL = ¬(xL ⊕ yR) ∧ ¬(xR ⊕ yL)

zR = ¬(xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)

010011 zL = ¬(xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR)

zR = ¬(¬(xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR))

011000 zL = ¬(xL ⊕ yR) ∧ ¬(xR ⊕ yL)

zR = ¬(xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)

011011 zL = ¬(¬(xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR))

zR = ¬(¬(xL ⊕ yR) ∧ ¬(xR ⊕ yL))

011100 zL = ¬(xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR)

zR = ¬(¬(xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR))

011110 zL = ¬(¬(xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR))

zR = ¬(¬(xL ⊕ yR) ∧ ¬(xR ⊕ yL))

100001 zL = ¬(xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)

zR = ¬(xL ⊕ yR) ∧ ¬(xR ⊕ yL)

100011 zL = ¬(¬(xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR))

zR = ¬(xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR)

100100 zL = ¬(xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)

zR = ¬(xL ⊕ yR) ∧ ¬(xR ⊕ yL)

100111 zL = ¬(¬(xL ⊕ yR) ∧ ¬(xR ⊕ yL))

zR = ¬(¬(xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR))

101100 zL = ¬(¬(xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR))

zR = ¬(xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR)

101101 zL = ¬(¬(xL ⊕ yR) ∧ ¬(xR ⊕ yL))

zR = ¬(¬(xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR))

110001 zL = ¬(xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)

zR = ¬((xL ⊕ yR) ∧ (xR ⊕ yL))

110010 zL = ¬((xL ⊕ yR) ∧ (xR ⊕ yL))

zR = ¬(xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)

110100 zL = ¬(xL ⊕ yL) ∧ (xR ⊕ yL ⊕ yR)

zR = ¬((xL ⊕ yR) ∧ (xR ⊕ yL))

110110 zL = ¬(¬(xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR))

zR = ¬(¬(xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR))

111000 zL = ¬((xL ⊕ yR) ∧ (xR ⊕ yL))

zR = ¬(xR ⊕ yR) ∧ (xL ⊕ yL ⊕ yR)

111001 zL = ¬(¬(xR ⊕ yR) ∧ ¬(xL ⊕ yL ⊕ yR))

zR = ¬(¬(xL ⊕ yL) ∧ ¬(xR ⊕ yL ⊕ yR))

181

Chapter 5. Multiple-valued logic

allows the transmission of xor gates for free. In the context of software computations

for the Garbled circuit protocol, we also propose the new Mixed Logic, which reduces

the transfer circuit’s cost. In future we’ll work on some other applications of this

logic to more complex 3VL circuits, and on a deeper analysis of the MVL case, i.e.,

when more then three truth elements are considered.

182

CHAPTER 6

CONCLUSION AND OPEN PROBLEMS

In this thesis, we discuss how to protect cryptographic circuits. In particular,

we identify two different types of attacker, i.e., external and internal. Following

this reasoning, we divided the work in two parts, depending on the two natures of

malicious entities in a cryptographic system: protecting the secret from an external

attacker (Part I) and protecting the secret during computation (Part II).

In the first part, the attacker is external to the communication, and she tries

to steal some sensitive information when the other entities send each other secret

messages. In this context, probing a circuit is an useful technique through which

an attacker can derive information correlated with the secret manipulated by the

cryptographic circuit. Probing security is the branch of research of which we discussed

in Chapter 3. In particular, the treatment of the argument is divided into two cases,

when physical defaults that can happen in a circuit (as glitches) are not taken into

account (Section 3.1.1) or when they are considered (Section 3.1.2). About this topic,

we present many original works. For all of them, we define the conclusions and some

future works.

� A relation calculus for reasoning about t-probing security. We originally started

this research to extend our understanding of t-probing security. We have dis-

covered a new relation calculus of shares which exploits the conventional Walsh

transform. This calculus is precise enough to prove and extend known composi-

tional properties without much semi-formal or verbal ratiocination. We believe

that the underlying linear algebra, while providing a more intuitive understand-

ing, but will allow for an easier mechanization of probing security proofs. We

believe that more work must still be done towards an unifying approach that en-

compasses circuit glitches and new composability definitions such as the t-PINI

183

Chapter 6. Conclusion and open problems

condition [42].

� On the spectral features of robust probing security. This work provided an alter-

native yet comprehensive view of robust probing security which, we argue, ad-

dresses more clearly the issues associated with composability of robust-probing

secure gadgets. To achieve our goal, we introduced further distinctions for deal-

ing with extended probes; in particular, these must be admitted to participate in

a unique way during composition much like conventional outputs. We believe we

have provided sufficient evidence that this new mathematical framework could

work for analysis and synthesis of such gadgets. Further work is needed to make

the underlying computations more efficient as they are based on computation of

the Walsh spectrum which incurs exponential cost. We believe that sparse ma-

trix representation might be a tool worth investigating to improve correlation

matrix computation. Another possible further extension of this work could be

modeling t-PINI as well as inquiring about the minimum number of randoms re-

quired to achieve robust t-strong non interference and/or investigating whether

the ring structure of multiplication gadgets can be replaced by potentially more

efficient refresh layers.

� On robust strong-non-interferent low-latency multiplications. In this work, we

have derived a new robust t-SNI construction for multiplying two secrets in a

robust strongly non interferent way. The novel construction has 1-cycle input-

to-output latency and, for low security degrees t, the randomness complexity

is comparable with conventional, 2-cycle-latency approaches. As a future work,

we plan to study the use of the proposed gadget in the S-boxes of known cryp-

tographic algorithms as well as the randomness requirements for higher t. In

particular, preliminary work shows that a scheme that involves 42 randoms for

t = 5 is possible, but we believe this not to be lowest bound achievable.

� ADD-based Spectral Analysis of Probing Security. In this work, we propose a

new methodology that allows to exactly verify strong-non-interference proper-

ties of a gadget; our approach combines both hash maps and ADDs and provides,

on a standard set of use cases, a median speed-up of 1.88x against other exact

methods. Timing-wise, the results are also not dramatically far from non-exact

approaches appeared in literature. We reserve for the future the more detailed

inspection about the improvement’s gap between Keccak and DOM algorithms

with mapi method. Another possible future work is the application of our tool

to more complex gadgets, with higher security levels and by exploiting paral-

lelization. Moreover, also we expect to include the verification of other probing

security properties (i.g. PINI [64]).

184

In the second part, the malicious entity is internal to the communication: each

participant is interested to protect own sensitive information from all the others. In

particular, two parties secure computation is the theory developed when the involved

parties are only two. A solution that allows to protect secrets when the entities are

two is the garbled circuit protocol. Correlated to the garbled circuit protocol, in this

work we develop two main branches. The former, is the study of multiplicative com-

plexity of Boolean functions, in particular autosymmetric and D-reducible (Chapter

4). The latter, is the application of multiple-valued logic theory to the involved cir-

cuits (Chapter 5). Also in this case, we present some original works, and we define

brief conclusions and some future works.

� Multiplicative Complexity of Autosymmetric Functions: Theory and Applica-

tions to Security. In this paper we have considered the class of autosymmetric

functions and we have shown how autosymmetry can be exploited to better esti-

mate their multiplicative complexity. Moreover, the experimental results show

that autosymmetry test can enable the XAG minimization of autosymmetric

functions. We show that xor nodes are costless in multiparty computation.

In general, the computation between parties can be applied to any Boolean

functions; for this reason, we have conducted our experimentation on a wide

set of standard Boolean benchmarks. As a future work, we plan to investigate

benchmarks related to more general security and cryptographic applications.

� Multiplicative Complexity of XOR Based Regular Functions. In this paper we

have considered the classes of autosymmetric and D-reducible functions and we

have shown how these regularities can be exploited to better estimate their mul-

tiplicative complexity. Moreover, the experimental results show that these tests

of regularity can enable the XAG minimization of Boolean functions. In this

work, we have considered xor -based regularities that are frequent in classical

benchmark functions. Nevertheless, it would be interesting to study the multi-

plicative complexity of other regular functions such as, for example, symmetric

Boolean functions or self-dual functions, to better understand the multiplicative

complexity and further improve the XAG minimization. Moreover, we plan to

extend the autosymmetry algorithms to detect all linear structures of a func-

tion, thus generalizing our approach to all the functions with linearity dimension

strictly less than n. This could further enable the XAG minimization of the cor-

responding circuits. All proposed methods could be extended to multi-output

functions, potentially sharing the xor layer among multiple outputs. Finally, we

will work on the current limitations in terms of scalability on larger functions,

that mostly impacted when testing the cryptographic benchmarks.

185

Chapter 6. Conclusion and open problems

� A Multiple Valued Logic Approach for the Synthesis of Garbled Circuits. In

this paper we have given a comparison between two different 3-valued logic

approaches. We have extended one of them, for which we have defined, in the

context of the garbled circuit protocols, some functional encodings that allow

to transform values and functions from the 3-valued logic to the Boolean logic.

We have then studied the costs in both logics, leading to the definition of the

(new) Mixed Logic: this new logic allows to exploit the cheapest solution in all

the garbling situations. We also have proved that, in the multiple valued logic

as defined in one of the two studied approaches, the xor can be evaluated for

free, i.e. without any transfer cost in a GC protocol. In future we’ll work on

some other applications of the Mixed Logic to more complex 3VL circuits, such

as the S-boxes of current cryptographic solutions. Moreover, a deeper analysis

of the MVL case (with more than 3 elements) can be a prolific area to explore,

especially now that we have proved the free transfer of the xor gate.

186

BIBLIOGRAPHY

[1] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,

and Michael Zohner. Ciphers for mpc and fhe. In Elisabeth Oswald and Marc

Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages 430–454,

Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[2] Henrik Reif Andersen. An Introduction to Binary Decision Diagrams. 1996.

[3] Kuhn M. Anderson, R. Tamper resistance - a cautionary note. 2nd Workshop

on Electronic Commerce.

[4] D. W. Archer, D. Bogdanov, B. Pinkas, and P. Pullonen. Maturity and perfor-

mance of programmable secure computation. IEEE Security Privacy, 14(5):48–

56, 2016.

[5] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico

Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and

their applications, 1993.

[6] Gilles Barthe, Sonia Beläıd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin

Grégoire, and François-Xavier Standaert. maskVerif: Automated Verification

of Higher-Order Masking in Presence of Physical Defaults, pages 300–318. 09

2019.

[7] Gilles Barthe, Sonia Beläıd, Pierre-Alain Fouque, and Benjamin Grégoire.

maskVerif: automated analysis of software and hardware higher-order masked

implementations. Technical Report 562, 2018.

187

BIBLIOGRAPHY

[8] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, and

Benjamin Grégoire. Compositional verification of higher-order masking: Ap-

plication to a verifying masking compiler. IACR Cryptology ePrint Archive,

2015:506, 2015.

[9] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-

interference and type-directed higher-order masking. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, CCS

’16, page 116–129, New York, NY, USA, 2016. Association for Computing Ma-

chinery.

[10] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order mask-

ing. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –

EUROCRYPT 2015, pages 457–485, Berlin, Heidelberg, 2015. Springer Berlin

Heidelberg.

[11] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. Sleuth:

Automated verification of software power analysis countermeasures. In Guido

Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and Em-

bedded Systems - CHES 2013, pages 293–310, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg.

[12] Nuel Belnap. How a computer should think. In G. Ryle, editor, Contemporary

Aspects of Philosophy. Oriel Press, 1977.

[13] Anna Bernasconi, Stelvio Cimato, Valentina Ciriani, and Maria Chiara Molteni.

Multiplicative complexity of autosymmetric functions: Theory and applications

to security. In 57th ACM/IEEE Design Automation Conference, DAC 2020,

San Francisco, CA, USA, July 20-24, 2020, pages 1–6. IEEE, 2020.

[14] Anna Bernasconi, Stelvio Cimato, Valentina Ciriani, and Maria Chiara Molteni.

Multiplicative complexity of xor based regular functions. IEEE Transactions

on Computers, pages 1–1, 2022.

[15] Anna Bernasconi and Valentina Ciriani. Dimension-reducible boolean functions

based on affine spaces. ACM Trans. Des. Autom. Electron. Syst., 16(2), April

2011.

188

BIBLIOGRAPHY

[16] Anna Bernasconi and Valentina Ciriani. Dimension-Reducible Boolean Func-

tions Based on Affine Spaces. ACM Trans. Design Autom. Electr. Syst.,

16(2):13:1–13:21, 2011.

[17] Anna Bernasconi, Valentina Ciriani, Fabrizio Luccio, and Linda Pagli. Three-

Level Logic Minimization Based on Function Regularities. IEEE Trans. on

CAD of Integrated Circuits and Systems, 22(8):1005–1016, 2003.

[18] Anna Bernasconi, Valentina Ciriani, Fabrizio Luccio, and Linda Pagli. Ex-

ploiting regularities for boolean function synthesis. Theory Comput. Syst.,

39(4):485–501, 2006.

[19] Anna Bernasconi, Valentina Ciriani, Fabrizio Luccio, and Linda Pagli. Ex-

ploiting regularities for boolean function synthesis. Theory Comput. Syst.,

39(4):485–501, 2006.

[20] Anna Bernasconi, Valentina Ciriani, Fabrizio Luccio, and Linda Pagli. Synthesis

of autosymmetric functions in a new three-level form. Theory Comput. Syst.,

42(4):450–464, 2008.

[21] Anna Bernasconi, Valentina Ciriani, Fabrizio Luccio, and Linda Pagli. Synthesis

of autosymmetric functions in a new three-level form. Theory Comput. Syst.,

42(4):450–464, 2008.

[22] Anna Bernasconi, Valentina Ciriani, Gabriella Trucco, and Tiziano Villa.

Boolean minimization of projected sums of products via boolean relations. IEEE

Trans. Computers, 68(9):1269–1282, 2019.

[23] Guido Bertoni, Marco Martinoli, and Maria Chiara Molteni. A methodology for

the characterisation of leakages in combinatorial logic. J. Hardw. Syst. Secur.,

1(3):269–281, 2017.

[24] Tim Beyne. Block cipher invariants as eigenvectors of correlation matrices (full

version). Cryptology ePrint Archive, Report 2018/763, 2018.

[25] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg

Stütz. Threshold implementations of all 3 Ö3 and 4 Ö4 s-boxes. In Emmanuel

Prouff and Patrick Schaumont, editors, Cryptographic Hardware and Embedded

Systems – CHES 2012, pages 76–91, Berlin, Heidelberg, 2012. Springer Berlin

Heidelberg.

189

BIBLIOGRAPHY

[26] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Man-

gard, and Johannes Winter. Formal verification of masked hardware imple-

mentations in the presence of glitches. In EUROCRYPT (2), pages 321–353.

Springer, 2018.

[27] Dmitri A Bochvar. Ob odnom trechznacnom iscislenii i ego primenenii k analizu

paradoksov klassiceskogo funkcional’nogo iscislenija. Mat. Sbornik, 4(46):287–

308, 1938. [English translation: Bochvar, D.A., On a three-valued logical calcu-

lus and its application to the analysis of the paradoxes of the classical extended

functional calculus, History and Philosophy of Logic 2, 87-112.].

[28] Dan Bogdanov, Liina Kamm, Sven Laur, Pille Pruulmann-Vengerfeldt, Riivo

Talviste, and Jan Willemson. Privacy-preserving statistical data analysis on

federated databases. In Bart Preneel and Demosthenes Ikonomou, editors, Pri-

vacy Technologies and Policy, pages 30–55, Cham, 2014. Springer International

Publishing.

[29] Joan Boyar, Magnus Gausdal Find, and René Peralta. On various nonlinearity

measures for boolean functions. Cryptogr. Commun., 8(3):313–330, 2016.

[30] Joan Boyar and Rene Peralta. Tight bounds for the multiplicative complexity

of symmetric functions. (396), 2008-04-28 00:04:00 2008.

[31] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength

verification tool. In Tayssir Touili, Byron Cook, and Paul Jackson, editors,

Computer Aided Verification, pages 24–40, Berlin, Heidelberg, 2010. Springer

Berlin Heidelberg.

[32] Robert K Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Al-

bert R Wang. Mis: A multiple-level logic optimization system. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 6(6):1062–

1081, 1987.

[33] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis

with a leakage model. In Lecture Notes in Computer Science, volume 3156,

pages 135–152. Springer Berlin / Heidelberg, 2004.

[34] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Comput. Surv., 24(3):293–318, September 1992.

[35] Cagdas Calik, Meltem Sonmez, and Rene Peralta. The multiplicative complex-

ity of 6-variable boolean functions. 2018-04-03 2018.

190

BIBLIOGRAPHY

[36] Claude Carlet. Vectorial boolean functions for cryptography. Boolean Models

and Methods in Mathematics, Computer Science, and Engineering, 12 2006.

[37] Claude Carlet. Boolean functions for cryptography and error correcting codes.

11 2007.

[38] Claude Carlet. Vectorial Boolean Functions for Cryptography. In Yves Crama

and Peter L. Hammer, editors, Boolean Models and Methods in Mathemat-

ics, Computer Science, and Engineering, pages 398–470. Cambridge University

Press, Cambridge, 2010.

[39] G. Cassiers, B. Gregoire, I. Levi, and F.-X. Standaert. Hardware Private Cir-

cuits: From Trivial Composition to Full Verification. IEEE Transactions on

Computers, page (Preprint), 2020.

[40] Gaëtan Cassiers, Sebastian Faust, Maximilian Orlt, and François-Xavier Stan-

daert. Towards Tight Random Probing Security. Technical Report 880, 2021.

[41] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently com-

posing masked gadgets with probe isolating non-interference. IEEE Trans. Inf.

Forensics Secur., 15:2542–2555, 2020.

[42] Gaëtan Cassiers and François-Xavier Standaert. Towards globally optimized

masking: From low randomness to low noise rate: or probe isolating mul-

tiplications with reduced randomness and security against horizontal at-

tacks. IACR Transactions on Cryptographic Hardware and Embedded Systems,

2019(2):162–198, Feb. 2019.

[43] Stelvio Cimato, Valentina Ciriani, Ernesto Damiani, and Maryam Ehsanpour.

A multiple valued logic approach for the synthesis of garbled circuits. In 2017

IFIP/IEEE 25th International Conference on Very Large Scale Integration,

VLSI-SoC 2017, ABU Dhabi, UAE, October 22-25, 2017, pages 232–236, 2017.

[44] Stelvio Cimato, Valentina Ciriani, Ernesto Damiani, and Maryam Ehsanpour.

An obdd-based technique for the efficient synthesis of garbled circuits. In Sjouke

Mauw and Mauro Conti, editors, Security and Trust Management - 15th In-

ternational Workshop, STM 2019, Luxembourg City, Luxembourg, September

26-27, 2019, Proceedings, volume 11738 of Lecture Notes in Computer Science,

pages 158–167. Springer, 2019.

[45] V. Ciriani. Synthesis of SPP Three-Level Logic Networks using Affine Spaces.

IEEE Trans. on CAD of Integrated Circuits and Systems, 22(10):1310–1323,

2003.

191

BIBLIOGRAPHY

[46] Valentina Ciriani. Synthesis of SPP three-level logic networks using affine

spaces. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 22(10):1310–

1323, 2003.

[47] Thomas De Cnudde, Oscar Reparaz, Begul Bilgin, Svetla Nikova, Ventzislav

Nikov, and Vincent Rijmen. Masking aes with d+1 shares in hardware. In

CHES, pages 194–212. Springer, 2016.

[48] Stephen Cole Kleene. On notation for ordinal numbers. Journal Symbolic Logic,

(3):150–155, 1938.

[49] Irving M. Copilowish. Matrix development of the calculus of relations. The

Journal of Symbolic Logic, 13(04):193–203, December 1948.

[50] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.

Higher-order side channel security and mask refreshing. IACR Cryptology ePrint

Archive, 2015:359, 2015.

[51] Jean-Sébastien Coron. Formal verification of side-channel countermeasures via

elementary circuit transformations. In Bart Preneel and Frederik Vercauteren,

editors, Applied Cryptography and Network Security - 16th International Con-

ference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings, volume

10892 of Lecture Notes in Computer Science, pages 65–82. Springer, 2018.

[52] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.

Higher-Order Side Channel Security and Mask Refreshing. In Shiho Moriai,

editor, Fast Software Encryption, Lecture Notes in Computer Science, pages

410–424. Springer Berlin Heidelberg, 2014.

[53] Joan Daemen, René Govaerts, and Joos Vandewalle. Correlation matrices. In

Bart Preneel, editor, Fast Software Encryption, Lecture Notes in Computer

Science, pages 275–285. Springer Berlin Heidelberg, 1995.

[54] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-

vanced Encryption Standard. 01 2002.

[55] Brandon Dravie, Jérémy Parriaux, Philippe Guillot, and Gilles Millérioux. Ma-

trix representations of vectorial boolean functions and eigenanalysis. Cryp-

tography and Communications - Discrete Structures, Boolean Functions and

Sequences, 8(4):555–577, October 2016.

[56] Elena Dubrova. Multiple-Valued Logic Synthesis and Optimization, pages 89–

114. Springer US, Boston, MA, 2002.

192

BIBLIOGRAPHY

[57] Elena Dubrova. Multiple-valued logic synthesis and optimization. In Soha

Hassoun and Tsutomu Sasao, editors, Logic Synthesis and Verification, pages

89–114. 2002.

[58] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of

software countermeasures against side-channel attacks. ACM Trans. Softw.

Eng. Methodol., 24(2), December 2014.

[59] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,

and François-Xavier Standaert. Composable masking schemes in the presence

of physical defaults and the robust probing model. IACR Transactions on

Cryptographic Hardware and Embedded Systems, 2018(3):89–120, Aug. 2018.

[60] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,

and François-Xavier Standaert. Composable masking schemes in the presence of

physical defaults & the robust probing model. IACR Trans. Cryptogr. Hardw.

Embed. Syst., 2018(3):89–120, 2018.

[61] M. Fujita, J. Chih-Yuan Yang, E.M. Clarke, Zudong Zhao, and P. McGeer.

Fast spectrum computation for logic functions using binary decision diagrams.

In Proceedings of IEEE International Symposium on Circuits and Systems -

ISCAS ’94, volume 1, pages 275–278, London, UK, 1994. IEEE.

[62] K. Gödel. Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der

Wissenschaften in Wien, 69:65–66, 1932.

[63] Siegfried Gottwald. Many-valued logic. Stanford Encyclopedia of Philosophy,

03 2015.

[64] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud.

Probing security through input-output separation and revisited quasilinear

masking. IACR Transactions on Cryptographic Hardware and Embedded Sys-

tems, 2021(3):599–640, Jul. 2021.

[65] Dahmun Goudarzi and Matthieu Rivain. On the multiplicative complexity of

boolean functions and bitsliced higher-order masking. In CHES, pages 457–478.

Springer, 2016.

[66] Hannes Gross and Stefan Mangard. A unified masking approach. Journal of

Cryptographic Engineering, 8(2):109–124, June 2018.

[67] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking:

Compact masked hardware implementations with arbitrary protection order. In

193

BIBLIOGRAPHY

Proceedings of the 2016 ACM Workshop on Theory of Implementation Security,

TIS ’16, page 3, New York, NY, USA, 2016. Association for Computing Ma-

chinery.

[68] Hannes Gross, David Schaffenrath, and Stefan Mangard. Higher-Order Side-

Channel Protected Implementations of Keccak. Technical Report 395, 2017.

[69] Ivo Hálecek, Petr Fiser, and Jan Schmidt. Towards AND/XOR balanced syn-

thesis: Logic circuits rewriting with XOR. Microelectron. Reliab., 81:274–286,

2018.

[70] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An aes smart card

implementation resistant to power analysis attacks. In Jianying Zhou, Moti

Yung, and Feng Bao, editors, Applied Cryptography and Network Security, pages

239–252, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[71] Ivo Háleček, Petr Fǐser, and Jan Schmidt. Are xors in logic synthesis really

necessary? In 2017 IEEE 20th International Symposium on Design and Diag-

nostics of Electronic Circuits Systems (DDECS), pages 134–139, 2017.

[72] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge

University Press, Cambridge; New York, 1994.

[73] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-

ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology -

CRYPTO 2003, pages 463–481, Berlin, Heidelberg, 2003. Springer Berlin Hei-

delberg.

[74] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Automated

generation of masked hardware. IACR Transactions on Cryptographic Hardware

and Embedded Systems, 2022(1):589–629, Nov. 2021.

[75] David Knichel, Pascal Sasdrich, and Amir Moradi. Silver - statistical indepen-

dence and leakage verification. 2020.

[76] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle

1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley

Professional, 12th edition, 2009.

[77] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In

Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 388–

397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

194

BIBLIOGRAPHY

[78] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor

gates and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,

Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,

Automata, Languages and Programming, pages 486–498, Berlin, Heidelberg,

2008. Springer Berlin Heidelberg.

[79] Yehuda Lindell. Secure multiparty computation (mpc). Cryptology ePrint

Archive, Report 2020/300, 2020.

[80] Yehuda Lindell and Avishay Yanai. Fast garbling of circuits over 3-valued logic.

pages 620–643, 2018.

[81] Fabrizio Luccio and Linda Pagli. On a new boolean function with applications.

IEEE Trans. Comput., 48(3):296–310, March 1999.

[82] Jan Lukasiewicz. O logice trójwartociowej. Studia Filozoficzne, 270(5), 1988.

[83] Stefan Mangard, Maria Elisabeth Oswald, and Thomas Popp. Power Analysis

Attacks - Revealing the Secrets of Smart Cards. Springer, 1 edition, 2007. XXIII,

337 S.

[84] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincentelli.

Espresso-Signature: A New Exact Minimizer for Logic Functions. IEEE

Transactions on VLSI, 1(4):432–440, 1993.

[85] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating Security

Notions in Hardware Masking. IACR Transactions on Cryptographic Hardware

and Embedded Systems, pages 119–147, May 2019.

[86] D. Michael Miller and Mitchell Aaron Thornton. Multiple Valued Logic - Con-

cepts and Representations, volume 12 of Synthesis lectures on digital circuits

and systems. Morgan & Claypool Publishers, 2008.

[87] James S. Milne. Fields and galois theory (v4.51), 2015. Available at

www.jmilne.org/math/.

[88] Maria Chiara Molteni, Jürgen Pulkus, and Vittorio Zaccaria. On robust strong-

non-interferent low-latency multiplications. IET Information Security.

[89] Maria Chiara Molteni and Vittorio Zaccaria. On the spectral features of robust

probing security. IACR Transactions on Cryptographic Hardware and Embedded

Systems, pages 24–48, August 2020.

195

BIBLIOGRAPHY

[90] Maria Chiara Molteni and Vittorio Zaccaria. A relation calculus for reasoning

about t-probing security. Journal of Cryptographic Engineering, February 2022.

[91] J. Donald Monk. Mathematical Logic, pages 141–161. Springer New York, 1976.

[92] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.

Glitch-resistant masking revisited: or why proofs in the robust probing model

are needed. IACR Transactions on Cryptographic Hardware and Embedded Sys-

tems, 2019(2):256–292, Feb. 2019.

[93] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler

assisted masking. In Emmanuel Prouff and Patrick Schaumont, editors, Cryp-

tographic Hardware and Embedded Systems – CHES 2012, pages 58–75, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg.

[94] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-

mentations against side-channel attacks and glitches. In Information and Com-

munications Security, pages 529–545. Springer, December 2006.

[95] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Imple-

mentation of Nonlinear Functions in the Presence of Glitches. volume vol. 24,

pages 292–322. Springer, 2011.

[96] Jérémy Parriaux, Philippe Guillot, and Gilles Millérioux. Towards a spectral

approach for the design of self-synchronizing stream ciphers. Cryptography and

Communications, 3(4):259–274, December 2011. C.

[97] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.

Secure two-party computation is practical. In Mitsuru Matsui, editor, Advances

in Cryptology – ASIACRYPT 2009, pages 250–267, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg.

[98] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-

bauwhede. Consolidating masking schemes. In Rosario Gennaro and Matthew

Robshaw, editors, Advances in Cryptology – CRYPTO 2015, pages 764–783,

Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[99] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking

of AES. Technical Report 441, 2010.

[100] Ronald L. Rivest. Cryptography. In Jan van Leeuwen, editor, Handbook of

Theoretical Computer Science, Volume A: Algorithms and Complexity, pages

717–755. Elsevier and MIT Press, 1990.

196

BIBLIOGRAPHY

[101] Francisco Rodŕıguez-Henŕıquez, Arturo Dı́az Pérez, Nazar Abbas Saqib, and

Çetin Kaya Koç. Cryptographic Algorithms on Reconfigurable Hardware. 2007.

[102] Claus-Peter Schnorr. The multiplicative complexity of boolean functions. In

Teo Mora, editor, Applied Algebra, Algebraic Algorithms and Error-Correcting

Codes, 6th International Conference, AAECC-6, Rome, Italy, July 4-8, 1988,

Proceedings, volume 357 of Lecture Notes in Computer Science, pages 45–58.

Springer, 1988.

[103] Adel S. Sedra and Kenneth C. Smith. Microelectronic Circuits. Oxford Univer-

sity Press, fifth edition, 2004.

[104] P. Selinger. A Survey of Graphical Languages for Monoidal Categories. In

Bob Coecke, editor, New Structures for Physics, volume 813, pages 289–355.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[105] Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech.

J., 27(3):379–423, 1948.

[106] Peter Snyder. Yao’s garbled circuits: Recent directions and implementations,

2014.

[107] Mathias Soeken, Luca Gaetano Amarù, Pierre-Emmanuel Gaillardon, and Gio-

vanni De Micheli. Exact synthesis of majority-inverter graphs and its appli-

cations. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 36(11):1842–1855, 2017.

[108] Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno

Schmitt, Giulia Meuli, Fereshte Mozafari, and Giovanni De Micheli. The epfl

logic synthesis libraries, 2019.

[109] Fabio Somenzi. Binary decision diagrams. In Calculational System Design,

volume 173 of NATO Science Series F: Computer and Systems Sciences, pages

303–366. IOS Press, 1999.

[110] Fabio Somenzi. Cudd: Cu decision diagram package - release 2.4.1, 2005.

[111] Meltem Sonmez and Rene Peralta. The multiplicative complexity of boolean

functions on four and five variables. Lightweight Cryptography for Security and

Privacy (Lecture Notes in Computer Science), Istanbul, -1, 2015-03-17 2015.

[112] Eleonora Testa, Mathias Soeken, Luca G. Amarù, and Giovanni De Micheli.

Reducing the multiplicative complexity in logic networks for cryptography and

197

BIBLIOGRAPHY

security applications. In Proceedings of the 56th Annual Design Automation

Conference 2019, DAC 2019, Las Vegas, NV, USA, page 74, 2019.

[113] Eleonora Testa, Mathias Soeken, Luca Gaetano Amarù, and Giovanni De

Micheli. Logic synthesis for established and emerging computing. Proc. IEEE,

107(1):165–184, 2019.

[114] Eleonora Testa, Mathias Soeken, Heinz Riener, Luca Amaru, and Giovanni De

Micheli. A logic synthesis toolbox for reducing the multiplicative complexity

in logic networks. In 2020 Design, Automation Test in Europe Conference

Exhibition (DATE), pages 568–573, 2020.

[115] Elena Trichina. Combinational logic design for aes subbyte transformation on

masked data, 2003. Not published elsewhere. e.v.trichina@samsung.com 12368

received 11 Nov 2003.

[116] Elena Trichina, Tymur Korkishko, and Kyung Hee Lee. Small size, low power,

side channel-immune aes coprocessor: Design and synthesis results. In Advanced

Encryption Standard – AES, pages 113–127, Berlin, Heidelberg, 2005. Springer.

[117] Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons, 1987.

[118] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

[119] G. Z. Xiao and J. L. Massey. A spectral characterization of correlation-immune

combining functions. IEEE Transactions on Information Theory, 34(3):569–

571, May 1988.

[120] S. Yang. Logic synthesis and optimization benchmarks user guide version 3.0.

User guide, Microelectronic Center, 1991.

[121] Saeyang Yang. Logic synthesis and optimization benchmarks user guide version

3.0, 1991.

[122] Andrew C. Yao. Protocols for secure computations. In Proceedings of the

23rd Annual Symposium on Foundations of Computer Science, SFCS ’82, page

160–164, USA, 1982. IEEE Computer Society.

[123] Vittorio Zaccaria, Filippo Melzani, and Guido Bertoni. Spectral features of

higher-order side-channel countermeasures. IEEE Trans. Computers, 67(4):596–

603, 2018.

198

BIBLIOGRAPHY

[124] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole. In

Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EURO-

CRYPT 2015, pages 220–250, Berlin, Heidelberg, 2015. Springer Berlin Heidel-

berg.

[125] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. Scinfer: Refinement-based

verification of software countermeasures against side-channel attacks. In Hana

Chockler and Georg Weissenbacher, editors, Computer Aided Verification, pages

157–177, Cham, 2018. Springer International Publishing.

199

BIBLIOGRAPHY

200

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Cimato Stelvio, who helps and supports

me during my PhD. My gratitude extends to Prof.s Zaccaria Vittorio and Valentina

Ciriani, for their advices and professionalism. Work with them has been a pleasure.

Additionally, I would like to thank the reviewers of this thesis, Amarù Luca, Beläıd

Sonia and Lionel Brunie. They gave me constructive comments to improve it, making

this work something for which I feel proud.

My appreciation also goes out to my family and friends, for their encouragement

and support all through my studies.

201

	Introduction
	Outline of Contents
	Scientific Contributions

	Cryptography and secret management
	Mathematical context
	Binary Field and Boolean Space
	Boolean functions
	Fourier transform and Walsh transform

	Vectorial Boolean function
	Walsh matrix

	Tensor product between matrices
	String diagram
	Binary Decision Diagrams
	Manipulation of BDDs
	Algebraic Decision Diagrams

	Cryptographic algorithms
	Advanced Encryption Standard
	Circuits

	Protecting secrets from an external attacker
	Side-channel attacks
	Power Analysis Attacks
	Countermeasures

	Physical Defaults

	Protecting secrets during computations
	Secure computation
	Garbled circuit
	Oblivious transfer protocol
	Cost of gates' transfer
	Send xor gates for free
	Reduction rows in the encrypted table

	I Protecting secrets from an external attacker
	Probing security
	State of the art
	Probing security
	The composability problem

	Robust probing security
	The robust composability problem

	Verification tools

	A relation calculus for reasoning about t-probing security
	A relation calculus for shares
	Application to t-probing security
	Proving general patterns of compositional security
	Extending the approach to F2kn: the AES inversion
	Shares encoded over F2kn
	Proof of strong non-interference

	Appendix
	A: Properties of the Walsh transform
	B: Formal definition of shares' relation matrix
	C: Relevant theorems and proofs - Section 3.2.2

	On the Spectral Features of Robust Probing Security
	Probing security as a relation calculus
	The vulnerability profile of a function
	Composition of vulnerability profiles
	Extended probes

	Definition of robustness
	Revisiting the probing security of CMS
	Achieving Robust Strong non-Interference for CMS

	Analysis of the robust probing security of DOM-indep
	On enabling general reasoning about non-interference
	Computational complexity and scalability of the proposed approach

	On robust strong-non-interferent low-latency multiplications
	Overcoming the latest constructions
	A provably robust-t-SNI, 1-cycle-latency CMS-like scheme
	Saving randomness for t4

	Applications

	ADD-based Spectral Analysis of Probing Security
	Methodology
	Reading and "unfolding" the circuit description
	Computing the Walsh Spectrum and the corresponding relation matrix
	Interference check

	Experimental results

	Conclusion and further works

	II Protecting secrets during computations
	Multiplicative complexity, autosymmetric and dimension reducible Boolean functions
	State of the art
	Autosymmetric functions
	D-reducible functions
	Mockturtle tool

	Multiplicative Complexity of Autosymmetric Functions: Theory and Applications to Security
	Multiplicative Complexity of Autosymmetric Functions
	Experimental results

	Multiplicative Complexity of Regular Functions
	Multiplicative Complexity of D-reducible Functions
	Multiplicative complexity of D-reducible autosymmetric functions
	Experimental results
	Autosymmetric functions
	D-reducible functions
	Autosymmetric and D-reducible functions

	Conclusion and further works

	Multiple-valued logic
	State of the art
	MVL as generalization of the Boolean Logic
	Lindell and Yanai's 3VL approach
	Cimato at Al.'s 3VL approach

	A Multiple Valued Logic Approach for the Synthesis of Garbled Circuits
	Multiple Valued approaches: a comparison
	Free xor gates
	Encodings in the FTU approach

	Encodings in the 012 approach
	Encodings' equivalences
	More convenient encodings

	Free xor Evaluation in Multiple Valued Logic
	From 3VL to Boolean logic: costs comparison
	Applied case: Adder
	Costs for garbling the Full Adder circuit
	More convenient encodings for the Full Adder

	Appendix: Cheapest transformations for all the functional encodings

	Conclusion and further works

	Conclusion and open problems
	Bibliography

