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Abstract. We characterize commutative idempotent involutive residu-
ated lattices as disjoint unions of Boolean algebras arranged over a dis-
tributive lattice. We use this description to introduce a new construc-
tion, called gluing, that allows us to build new members of this variety
from other ones. In particular, all finite members can be constructed
in this way from Boolean algebras. Finally, we apply our construction
to prove that the fusion reduct of any finite member is a distributive
semilattice, and to show that this variety is not locally finite.
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1. Introduction

Residuated lattices are algebraic structures that provide an algebraic seman-
tics for substructural logics [4]. The variety RL of residuate lattices originated
in the 1930s [10], and includes well-known classes of algebras such as Heyting
algebras and lattice-ordered groups.

In this paper we study the variety CIdInRL of commutative idempotent
involutive residuated lattices. From a logical perspective, commutative involu-
tive residuated lattices are the algebraic semantics of multiplicative additive
linear logic (MALL). Notable subvarieties of CIdInRL include the classes of
Boolean algebras and Sugihara monoids, introduced as an algebraic seman-
tics of the relevance logic RMt. Some structural results about idempotent
residuated lattices that are not necessarily commutative or involutive can be
found in [5].

We obtain a structural characterization for all the finite members of
CIdInRL, or equivalently, all finite idempotent MALL-algebras. We reach our
goal by describing the members of CIdInRL as disjoint unions of Boolean alge-
bras under the distributive lattice order given by the commutative idempotent
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monoidal operation of our residuated lattices, with involution as complemen-
tation within each Boolean algebra. We give a procedure to construct from
two algebras in CIdInRL a new member of CIdInRL. Moreover, we show that
this procedure can be reversed for the finite members of CIdInRL, giving us
the structural description.

The structure of this paper is as follows: in Section 2, we introduce the
basic definitions necessary for the rest of the paper. In Section 3, we show
that each algebra in CIdInRL is a disjoint union of Boolean algebras such
that this union forms a distributive lattice. In Section 4 we investigate the
congruences and filters of algebras in CIdInRL, laying the groundwork for
the gluing construction. In Section 5 we outline the gluing construction and
in Section 6 we prove that every finite member of CIdInRL can be obtained
as a gluing of smaller members, resulting in the structural characterization.
Lastly, in Section 7 we mention two applications of this characterization.

2. Preliminaries

In this section we collect basic properties and definitions for the algebraic
structures that we need in our investigation. A (pointed) residuated lattice is
a tuple A = 〈A,∧,∨, ·, \, /, 1, 0〉 such that 〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉 is a
monoid, and · is residuated in the underlying lattice order with residuals \
and /, i.e. for x, y, z ∈ A,

x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

We call A idempotent if x ·x = x for all x ∈ A. We say that A is commutative
if x · y = y · x for all x, y ∈ A. In this case, the two residuals coincide, e.g.
x\y = y/x for all x, y ∈ A, and we replace \ and / in the signature with a
single implication arrow x → y := x\y. The linear negations are defined by
−x := 0/x and ∼x := x\0. We call A involutive if ∼−x = x = −∼x for all
x ∈ A, whence it follows that −1 = ∼1 = 0.

In this paper, we focus on the class of commutative idempotent invo-
lutive residuated lattices, denoted CIdInRL. This class can be equationally
defined over that of residuated lattices and hence forms a variety.1

Note that for any idempotent involutive residuated lattice A, we have
the following equivalence for any x, y ∈ A:

x ≤ −y ⇐⇒ x · y ≤ 0 ⇐⇒ y ≤ ∼x.

Moreover, the residuals are definable in terms of fusion and involution, namely
x\y = ∼(−y · x) and y/x = −(x · ∼y). This suggests that we can drop the
residuals from the signature, which is indeed the case. An InRL-semiring is

1We say that a residuated lattice is cyclic if −x = ∼x for all x ∈ A. Clearly, any commu-
tative residuated lattice is cyclic. It was shown by José Gil-Férez in unpublished work that

the converse also holds in the context of idempotent involutive residuated lattices. So the
class CIdInRL coincides with the class of cyclic idempotent involutive residuated lattices.
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an algebra A = 〈A,∨, ·, 1,∼,−〉 such that 〈A,∨〉 is a semilattice, 〈A, ·, 1〉 is
a monoid, ∼−x = x = −∼x for all x ∈ A, and for all x, y ∈ A,

x ≤ −y ⇐⇒ x · y ≤ −1 ⇐⇒ y ≤ ∼x.

Theorem 2.1 ([4, §3.3.5]). InRL-semirings are term equivalent to involutive
residuated lattices.

The element −1 is denoted by 0, and it follows that 0 = ∼1. Since ·
distributes over ∨ from the left and right in all residuated lattices, this also
holds for InRL-semirings (as would be expected for semirings; note however
that for InRL-semirings 0 is in general not an absorbing element). We call
an InRL-semiring idempotent if x · x = x for all x ∈ A and commutative if
x · y = y · x for all x, y ∈ A.

For a commutative idempotent residuated lattice A, the fusion operator
· defines a semilattice order v where x v y :⇔ x·y = x. We sometimes refer to
the order v as the monoidal order. Note that for a commutative idempotent
residuated lattice A, v is a meet-semilattice order with 1 as its top element.
This allows for a graphical representation of any A ∈ CIdInRL. To represent
A, it suffices to draw the Hasse diagrams of the lattice order ≤ and monoidal
order v and define the involution. The division operators can be derived from
this information.

Example 2.2. Consider the algebra A1 ∈ CIdInRL as shown in Figure 1. Note
that −⊥ = > and −0 = 1.

〈A1,≤〉

>

c

1

0
b

−a

−b

−c
a

⊥

〈A1,v〉
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0

c

b −b

−c>

−aa

⊥

Figure 1. The two orders v and ≤ of an algebra A1 ∈ CIdInRL.

Example 2.3. A well-known subclass of CIdInRL is the variety SM of Sugi-
hara monoids, introduced as the algebraic semantics for the relevance logic
RMt [1]. Here, a Sugihara monoid is a commutative idempotent involutive
residuated lattice for which the underlying lattice order is distributive. In
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fact, Dunn showed that all Sugihara monoids are also semilinear [1, §29.4],
i.e., they are the subdirect product of totally ordered members of CIdInRL
or, equivalently, satisfy the equation ((x→ y) ∧ 1) ∨ ((y → x) ∧ 1) = 1. Note
that A1 in Figure 1 is neither distributive nor does it satisfy the equation for
semilinearity (consider x = a and y = −b). Hence, CIdInRL satisfies neither
distributivity nor semilinearity and so SM is a proper subclass of CIdInRL.

Given a residuated lattice A, the set A+ := {x ∈ A | 1 ≤ x} is called
the positive cone of A and its members are called positive elements of A,
whereas the set A− := {x ∈ A | x ≤ 1} is called the negative cone of A
and its members negative elements of A. The following lemma summarizes a
number of elementary properties of members of CIdInRL without proof, used
throughout the paper without explicit reference to this lemma.

Lemma 2.4. Let A ∈ CIdInRL. Then the following properties hold for all
x, y ∈ A:

(1) x ≤ y if and only if −y ≤ −x (5) −(x ∧ y) = −x ∨ −y
(2) x ∧ y ≤ x · y ≤ x ∨ y (6) −(x ∨ y) = −x ∧ −y
(3) if x, y ∈ A+, then x · y = x ∨ y (7) −1 = 0 ≤ 1 = −0
(4) if x, y ∈ A−, then x · y = x ∧ y

3. Boolean Partition

In this section, we show that any A ∈ CIdInRL can be partitioned into Boolean
algebras such that these Boolean algebras form a distributive lattice. For each
x ∈ A, we define elements 1x := x ∨ −x and 0x := x ∧ −x and consider the
interval Bx := {y ∈ A | 0x v y v 1x}.

Lemma 3.1. Let A ∈ CIdInRL. Then for each x ∈ A,

(1) −0x = 1x;
(2) 0x = x · −x;
(3) 0x ≤ 0 ≤ 1 ≤ 1x and 0x v 1x;
(4) for y, z ∈ Bx, y · z = y ∧ z.

Proof. (1) By De Morgan laws.

(2) The inequality 0x ≤ x · −x follows by idempotence. For the other
direction, note that from −x ≤ −x we obtain x·−x·−x = x·−x ≤ 0 and thus
x · −x ≤ x by residuation. Similarly, x · −x ≤ −x and therefore x · −x ≤ 0x.

(3) By (2) and residuation, we obtain 0x = x · −x ≤ 0 and so 1 = −0 ≤
−0x = 1x by (1). Moreover, 0x · 1x = 0x · (x ∨ −x) = (0x · x) ∨ (0x · −x) =
0x ∨ 0x = 0x.

(4) Consider any y, z ∈ Bx. The inequality y ∧ z ≤ y · z follows by
idempotence. For the other inequality, note that as 0x · y = 0x ≤ 0 by (3)
and y ∈ Bx, we obtain y ≤ −0x = 1x and so y · z ≤ 1x · z = z as z ∈ Bx.
Analogously, we get y · z ≤ y and so y · z ≤ y ∧ z. �
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Note that by (4) of Lemma 3.1 above, inside any interval Bx the lattice
and monoidal order coincide. That is, for y, z ∈ Bx, y v z if and only if y ≤ z.
The following lemma establishes that each Bx is closed under involution.

Lemma 3.2. Let A ∈ CIdInRL and x ∈ A.

(1) For all y ∈ Bx, −y = y → 0x.
(2) For all y ∈ Bx, −y ∈ Bx.
(3) For all y ∈ Bx, 0y = 0x.

Proof. (1) As −y · y · 1x = −y · y ≤ 0 by y v 1x, we obtain −y · y ≤ −1x = 0x
by residuation and so −y ≤ y → 0x. For the other direction, note that
y · (y → 0x) ≤ 0x ≤ 0 and so y → 0x ≤ −y.

(2) We first show that 0x v y → 0x. Note that 0x ·(y → 0x) = 0x ·y ·(y →
0x) ≤ 0x · 0x = 0x. Moreover, y · 0x = 0x ≤ 0x, i.e. 0x ≤ y → 0x. This gives
0x = 0x · 0x ≤ 0x · (y → 0x). Hence 0x · (y → 0x) = 0x, i.e. 0x v y → 0x.
Secondly, we show that y → 0x v 1x. From y · (y → 0x) · 1x ≤ 0x · 1x = 0x,
we obtain (y → 0x) · 1x ≤ y → 0x. Moreover, y → 0x = (y → 0x) · 1 ≤ (y →
0x) · 1x. Therefore, (y → 0x) · 1x = y → 0x and hence y → 0x v 1x. By (1),
we are done.

(3) Reasoning as in (1), we have 0y = −y · y ≤ 0x. Now, as y ∈ Bx, we
have 0x · y = 0x ≤ 0 and so 0x ≤ −y. By (2), we also have −y ∈ Bx and so
0x · −y = 0x ≤ 0, i.e. 0x ≤ y. Therefore, 0x ≤ y ∧ −y = 0y. �

Theorem 3.3. Let A ∈ CIdInRL and x ∈ A. Then 〈Bx, ·,∨,−, 0x, 1x〉 is a
Boolean algebra.

Proof. First we observe that Bx is closed under all the operations. It is closed
under − by Lemma 3.2(2). Since · is the meet for v, Bx is closed under ·. Clo-
sure under ∨ then follows by De Morgan and Lemma 3.1. By Lemma 3.2(1)
〈Bx, ·,−, 0x〉 is a pseudocomplemented semilattice, i.e. y · z = 0x if and only
if z v −y for any y, z ∈ Bx. By [3], a pseudocomplemented lattice satisfying
−−x = x is a Boolean algebra. So indeed, 〈Bx, ·,∨,−, 0x, 1x〉 is a Boolean
algebra. �

Proposition 3.4. Let A ∈ CIdInRL. Then the collection {Bx | x ∈ A} parti-
tions A.

Proof. Note that by Lemma 3.2(3), we have that for all x, y ∈ A, if y ∈ Bx,
then Bx = By. We are left to show that x ∈ Bx. By idempotence, we have
that 0x = x · −x v x. Moreover, −x · x · 1x = 0x · 1x = 0x ≤ 0 implies that
x · 1x ≤ x and 1 ≤ 1x implies that x ≤ x · 1x. Hence x v 1x. �

We have now obtained a partition of A in terms of the intervals {Bx |
x ∈ A}. We show that the set {0x | x ≤ 0} forms a distributive lattice.

Theorem 3.5. Let A ∈ CIdInRL. Then {0x | x ∈ A} = {x ∈ A | x ≤ 0}
and {1x | x ∈ A} = A+. The algebra 〈{0x | x ∈ A}, ·,∨, 0〉 is a distribu-
tive sublattice of A with maximum element 0, and it is dually isomorphic to
〈A+,∧,∨, 1〉.
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Proof. That {0x | x ∈ A} = {x ∈ A | x ≤ 0} holds, follows from 0x ≤ 0 as
well as that x ≤ 0 implies x · −x = x for all x ∈ A. It then also follows that
{1x | x ∈ A} = A+.

It is easy to see that 〈{x ∈ A | x ≤ 0},∧,∨, 0〉 is a sublattice of A
with maximum element 0. Now note x ∧ y = x · y for all x, y ∈ A− and
so 〈{x ∈ A | x ≤ 0}, ·,∨, 0〉 is indeed a distributive sublattice of A with
maximum element 0. The dual isomorphism follows from the De Morgan
laws. �

Example 3.6. The algebra A1 in Figure 1 contains three Boolean algebras
whose universes are Ba = {⊥,>, a,−a}, Bb = {b,−b, c,−c} and B0 = {0, 1}.
Note that 0a = ⊥ and 0b = −c.

Finally, we list a number of properties showing how the distributive
lattice {0x | x ∈ A} sits inside the algebra A.

Lemma 3.7. Let A ∈ CIdInRL. For all x, y ∈ A, x v y implies 0x v 0y.

Proof. Consider x, y ∈ A such that x v y. It suffices to show that 0x ≤ 0y, as
0x ·0y = 0x∧0y. Since x v y, we have y·0x = y·x·−x = x·−x = 0x. Therefore,
0x ≤ −y by 0x · y = 0x ≤ 0 and residuation, and 0x = 0x · y ≤ 1 · y = y. So
0x ≤ y ∧ −y = 0y, as required. �

Lemma 3.8. Let A ∈ CIdInRL and x, y ∈ A. Then the following properties
hold:

(1) 0x · 0y = 0x·y;
(2) 1x · 1y = 1x·y.

Proof. (1) Note that−x·−y·x·y = −x·x·−y·y ≤ 0·0 = 0, so−x·−y ≤ −(x·y).
Hence x · −x · y · −y = x · y · −x · −y ≤ x · y · −(x · y), i.e. 0x · 0y ≤ 0x·y.
For the other direction, note that y · −(x · y) ≤ −x as x · y · −(x · y) ≤ 0.
Therefore x · y · −(x · y) ≤ x · −x, i.e. 0x·y ≤ 0x. An analogous proof shows
that 0x·y ≤ 0y and so 0x·y ≤ 0x ∧ 0y = 0x · 0y.

(2) This follows from (1) and the De Morgan laws. �

Note that Lemma 3.8 proves that the equivalence relation ≡A that par-
titions A, defined as x ≡A y :⇔ 0x = 0y, is compatible with ·. Compatibility
with − follows by each Bx being closed under −. One might think that ≡A is
a congruence. This is not the case, however. In particular, ≡A might fail to
be compatible with the join ∨, as is witnessed by the algebra A1 in Figure 1.
Note that > ≡A1 a as well as −c ≡A1 −c. But, −c ∨ > = > and −c ∨ a = b,
so −c ∨ > 6≡A1

−c ∨ a.

4. Congruences and Monoidal Filters

In this section, we study the sets {x ∈ A | a v x} for a negative element
a ∈ A−. They will be instrumental in the gluing construction given in the
next section. To motivate the prominent place these sets have, we show that
they arise naturally when studying congruences for the variety CIdInRL.
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Consider an algebra A ∈ CIdInRL. We call a subset S ⊆ A convex if for
all x, y ∈ S, z ∈ A, x ≤ z ≤ y implies z ∈ S. We say that a subset S ⊆ A
is a 0-free subuniverse of A if S is closed under all operations ∧,∨, ·,→ and
1 ∈ S, but does not necessarily contain 0. Note that this means that S is not
necessarily closed under −. We say that S is a pointed subuniverse if it is a
0-free subuniverse with 0 ∈ S.

It is well-known that for commutative pointed residuated lattices, there
exists a one-to-one correspondence between the lattice of congruences Con(A)
and the lattice of convex 0-free subuniverses C(A). Furthermore, such convex
0-free subuniverses in turn correspond to convex submonoids of the negative
cone. We denote the lattice of all such convex submonoids of A− by CM(A−).
We refer to [4] for details.

Theorem 4.1 ([4], Theorem 3.47). Let A ∈ CIdInRL. Then

Con(A) ∼= C(A) ∼= CM(A−),

as witnessed by the following isomorphisms

Con(A)→ C(A); Θ 7→ HΘ := [1]Θ

C(A)→ Con(A); H 7→ ΘH := {(x, y) ∈ A2 | there exists h ∈ H
such that h · x ≤ y and h · y ≤ x}

C(A)→ CM(A−); H 7→ SH := H−

CM(A−)→ C(A); S 7→ HS := {x ∈ A | a ≤ x ≤ a→ 1 for some a ∈ S}.

As was noted by Stanovský in [8], the convex submonoids of the negative
cone of a commutative idempotent residuated lattice are exactly the filters
of the negative cone. Formally, a subset F ⊆ A of an A ∈ CIdInRL is called a
filter if it is upwards closed under the lattice order ≤ as well as closed under
∧. Let Fil(A−) denote the lattice of filters on A−. The result by Stanovský
then states that CM(A−) = Fil(A−) and hence, Con(A) ∼= Fil(A−).

In this work we are particularly interested in the case when A is finite.
In such case, each filter F ∈ Fil(A−) is principal, i.e., generated by the single
element

∧
F , and we obtain Con(A) ∼= (A−)∂ , the dual of A−. In light of the

isomorphisms from Theorem 4.1 above, this means in particular that each set
{x ∈ A | a ≤ x ≤ a → 1} for a ∈ A− corresponds to a congruence. The rest
of this section will be dedicated to the study of these intervals. To start off,
the following lemma gives two alternative characterizations.

Lemma 4.2. Let A ∈ CIdInRL and a ∈ A−. Then for all x ∈ A,

a ≤ x ≤ a→ 1 ⇐⇒ a ≤ x ≤ 1a ⇐⇒ a v x.

Proof. First note that 0a = a · 0. One direction follows as a ≤ 1 implies
0 ≤ −a and so a · 0 ≤ a · −a = 0a. The other direction follows from the
fact that 0a ≤ 0 and 0a ≤ a imply 0a ≤ a ∧ 0 = a · 0. This means that
1a = −(a · 0) = a→ 1.

For the other equivalence, we show that a v x if and only if a ≤ x ≤
a → 1. Suppose that a v x. Then a = a · x ≤ x as well as a · x = a ≤ 1, so
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x ≤ a → 1. For the opposite direction, suppose that a ≤ x ≤ a → 1. From
a ≤ x we obtain that a = a · a ≤ a · x. From x ≤ a→ 1, we obtain a · x ≤ 1
and so a · x = a · a · x ≤ a. Hence, a · x = a and so a v x. �

From here on out we will freely switch between these equivalent formulations
without mention of this lemma.

By the isomorphisms in Theorem 4.1 we already know that for a filter
F ∈ Fil(A−), the set {x ∈ A | a v x for some a ∈ F} is a convex 0-free
subuniverse of A. We characterize exactly when this set forms a pointed
subuniverse.

Lemma 4.3. Let A ∈ CIdInRL and a ∈ A−. Then,

a ≤ 0 ⇐⇒ for all x ∈ A, a v x implies a v −x.

Proof. For the left-to-right direction, note that for a ≤ 0, 0a = a. Then
0a = a ≤ x ≤ 1a implies 0a = −1a ≤ −x ≤ −0a = 1a.

For the other direction, note that from a v a, we obtain a v −a, so
0a = a · −a = a and hence a ≤ 0. �

Corollary 4.4. Let A ∈ CIdInRL and F ⊆ A− be a filter of A−. Then the set
HF = {x ∈ A | b v x for some b ∈ F} is a pointed subuniverse if and only if
0 ∈ F . In particular, if A is finite and a ∈ A− then the set {x ∈ A | a v x}
is a pointed subuniverse of A if and only if a ≤ 0.

In light of the construction outlined in the next section, the case where
a ∈ A− but a 6≤ 0 is of interest. In this case, Lemma 4.3 above implies that

{x | a v x ∈ A} ∩ {−x | a v x ∈ A} = ∅.
We show that the sets {x | a v x ∈ A} and {−x | a v x ∈ A} are in
bijection with one another and show a number of preservation properties of
these bijections. Apart from the obvious order-reversing bijection x 7→ −x,
we show that the following functions are order-preserving bijections.

( ) ∧ −a : {x | a v x ∈ A} → {−x | a v x ∈ A}
( ) ∨ a : {−x | a v x ∈ A} → {x | a v x ∈ A}.

Lemma 4.5. Let A ∈ CIdInRL, a ∈ A−, and x ∈ A. If x ≤ −a, then (x ∨
a) ∧ −a = x ∨ 0a. Furthermore, if a v x, then (−x ∨ a) ∧ −a = −x and
(x ∧ −a) ∨ a = x.

Proof. Suppose that x ≤ −a for a ∈ A−. Then it easily follows that x∨ 0a ≤
−a∨ 0a = −a and x∨ 0a ≤ x∨ a and so x∨ 0a ≤ (x∨ a)∧−a. For the other
direction, consider any z ∈ A such that z ≤ (x ∨ a) ∧ −a, i.e. z ≤ x ∨ a and
z ≤ −a. From z ≤ −a we deduce that z · a ≤ −a · a = 0a and x ≤ −a implies
that x · a ≤ −a · a = 0a. Then z ≤ x ∨ a implies that

z · x ≤ (x ∨ a) · x = x ∨ (a · x) ≤ x ∨ 0a,

so

z = z · z ≤ z · (x ∨ a) = (z · x) ∨ (z · a) ≤ (x ∨ 0a) ∨ 0a = x ∨ 0a.
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So indeed, (x∨a)∧−a = x∨0a. If a v x, then 0a ≤ −x ≤ −a by Lemma 4.2.
Replacing x by −x, it follows that (−x ∨ a) ∧ −a = −x ∨ 0a = −x. By the
De Morgan laws, we then also get (x ∧ −a) ∨ a = x. �

We list a number of preservation properties here, which will turn out to
be useful in the constructions.

Lemma 4.6. Let A ∈ CIdInRL and a ∈ A−.

(1) For all x, y ∈ A such that x, y ≤ 1a, (x · y) ∨ a = (x ∨ a) · (y ∨ a).
(2) For all x, y ∈ A such that a v x and a v y, (x · y) ∧ −a = (x ∧ −a) ·

(y ∧ −a).

Proof. (1) Note that as x ≤ 1a = a→ 1, x · a ≤ 1 and so x · a = x · a · a ≤ a.
Similarly, a · y ≤ a. So it follows that

(x ∨ a) · (y ∨ a) = (x · y) ∨ (x · a) ∨ (a · y) ∨ (a · a)

= (x · y) ∨ (x · a) ∨ (a · y) ∨ a
= (x · y) ∨ a.

(2) Firstly note that (x ∧ −a) · a ≤ −a · a = 0a ≤ a and similarly
(y ∧ −a) · a ≤ a. Hence, by Lemma 4.5,

x · y = [(x ∧ −a) ∨ a] · [(y ∧ −a) ∨ a]

= [(x ∧ −a) · (y ∧ −a)] ∨ [(x ∧ −a) · a] ∨ [(y ∧ −a) · a] ∨ [a · a]

= [(x ∧ −a) · (y ∧ −a)] ∨ a.

As also 0a ≤ (x ∧ −a) · (y ∧ −a) ≤ −a, Lemma 4.5 gives

(x · y) ∧ −a = [(x ∧ −a) · (y ∧ −a) ∨ a] ∧ −a
= (x ∧ −a) · (y ∧ −a). �

5. Gluing Construction

In this section we outline a construction to obtain a new member A ⊕ϕ B
of CIdInRL from two algebras A,B ∈ CIdInRL. In the next section we show
how to reverse this construction for each finite C ∈ CIdInRL, allowing for a
structural characterization of all finite members of CIdInRL, the main result
of this paper.

Intuitively, we can think of the construction as follows: two algebras A
and B are eligible for the construction if an upset of 〈A,vA〉 and a downset
of 〈B,vB〉 (satisfying some properties) are isomorphic, implemented by a
map ϕ. The monoidal semilattice of A⊕ϕB is then constructed by “placing
〈B,vB〉 on top of 〈A,vA〉, connected through ϕ”. The lattice order is slightly
more complicated, but is best expressed by “wrapping the lattice of B inside
the lattice of A”, again connected through ϕ in some way. The involution of
A ⊕ϕ B is simply the union of that of A and B. For a visual example, we
refer to Figure 2.

Formally, the ingredients are as follows:
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• two members A = 〈A,∧A,∨A, ·A,→A, 1A, 0A〉 and B = 〈B,∧B ,∨B , ·B ,
→B , 1B , 0B〉 of CIdInRL such that A ∩B = ∅;
• an element a ∈ A− such that a � 0A;
• an element b ∈ B−;
• a function ϕ : {x ∈ A | a vA x} → {y ∈ B | y vB b} such that

◦ ϕ is a bijection;
◦ ϕ preserves the fusion, i.e. ϕ(x ·A y) = ϕ(x) ·B ϕ(y);
◦ ϕ preserves the join operation, i.e. ϕ(x ∨A y) = ϕ(x) ∨B ϕ(y);
◦ 0b = ϕ(a ∨A 0A).

Notice that B must necessarily be bounded as we require ϕ to be a bijection.
Also note that the domain of ϕ is closed under ∨A by Lemma 4.2. Similarly,
a ∨A 0A is in the domain of ϕ since 0a ≤ a ≤ 1A implies 0A = −1A ≤ −0a =
1a, hence a ≤ a ∨A 0A ≤ 1a, or equivalently by Lemma 4.2, a v a ∨A 0A.

With the ingredients as listed, we define a new algebra A ⊕ϕ B :=
〈A ∪ B,∧,∨, ·,→,−, 1, 0〉, referred to as the gluing of A and B, where the
necessary operations are defined as follows for x, y ∈ A ∪B

x · y = y · x =


x ·A y x, y ∈ A
x ·B y x, y ∈ B
x ·A ϕ−1(y ·B b) x ∈ A, y ∈ B

x ∨ y = y ∨ x =


x ∨A y x, y ∈ A
x ∨B y x, y ∈ B
ϕ(x ∨A a) ∨B y x ∈ A, y ∈ B, x ≤A −Aa
x ∨A ϕ−1(y ·B b) x ∈ A, y ∈ B, x 6≤A −Aa

−x =

{
−Ax x ∈ A
−Bx x ∈ B

, 0 = 0B , 1 = 1B

and the termdefinable connectives x → y = −(−y · x) as well as x ∧ y =
−(−x∨−y). Note that in the case when x ≤A −Aa, the bijection ϕ is defined
for all x∨A a, since a ≤ x∨A a ≤ −Aa∨ a = 1a. Also, y ·B b is in the domain
of ϕ−1 because y ·B b v b.

The goal of this section is to show that A⊕ϕB is a member of CIdInRL.
To do so, we show that 〈A∪B,∨, ·, 1,−〉 is a commutative idempotent InRL-
semiring. First we show that ∨ is indeed a join operation and deduce the
order from this.

Lemma 5.1. The operations · and ∨ are associative, commutative and idem-
potent.

Proof. It is easy to see that ·,∨ are idempotent and commutative, since this
holds for ·A, ·B ,∨A and ∨B . To show that · is associative, consider x, y, z ∈
A ∪ B. We distinguish cases based on x, y, z being members of A or B. If
x, y, z ∈ A or x, y, z ∈ B then this follows from ·A and ·B being associative.
Commutativity implies that (x · y) · z = x · (y · z) implies z · (y ·x) = (z · y) ·x,
hence we only have to check four cases.
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Case x, y ∈ A, z ∈ B: (x·y)·z = (x·Ay)·Aϕ−1(z·Bb) = x·A(y·Aϕ−1(z·Bb))
= x·(y·z).

Case x ∈ A, y, z ∈ B: (x · y) · z = (x ·A ϕ−1(y ·B b)) ·A ϕ−1(z ·B b)
= x ·A ϕ−1(y ·B z ·B b) = x · (y · z) where we made use of the fact that ϕ−1

preserves · since it is the inverse of a ·-homomorphism.
The remaining cases x, z ∈ A, y ∈ B and y ∈ A, x, z ∈ B are similar.
For the associativity of ∨ we proceed similarly, but the four cases are

doubled or quadrupled depending on whether the members of A are less-or-
equal to −a or not. We cover two of the cases that are less straightforward.

Suppose that x, z ∈ A, y ∈ B, x ≤A −a and z 6≤A −a. Note that ϕ−1

preserves the join operation since ϕ is a join homomorphism, and for any
w ∈ B we have w ·B b vB b, hence a ≤A ϕ−1(w ·B b). Thus

(x ∨ y) ∨ z = (ϕ(x ∨A a) ∨B y) ∨ z
= ϕ−1((ϕ(x ∨A a) ∨B y) ·B b) ∨A z
= ϕ−1(ϕ(x ∨A a) ·B b ∨B y ·B b) ∨A z
= ϕ−1(ϕ(x ∨A a) ∨B y ·B b) ∨A z
= ϕ−1ϕ(x ∨A a) ∨A ϕ−1(y ·B b) ∨A z
= x ∨A a ∨A ϕ−1(y ·B b) ∨A z
= x ∨A ϕ−1(y ·B b) ∨A z
= x ∨A (y ∨ z)
= x ∨ (y ∨ z).

Suppose that x ∈ A, y, z ∈ B, x 6≤A −a. Then again using the fact that
ϕ−1 preserves the join,

(x ∨ y) ∨ z = (x ∨A ϕ−1(y ·B b)) ∨ z
= x ∨A ϕ−1(y ·B b) ∨A ϕ−1(z ·B b)
= x ∨A ϕ−1(y ·B b ∨B z ·B b)
= x ∨A ϕ−1((y ∨B z) ·B b)
= x ∨ (y ∨B z)
= x ∨ (y ∨ z). �

Now that we have shown that ∨ is a join operation, it is easily verified
that the corresponding lattice order ≤ can be expressed as follows:

x ≤ y ⇐⇒


x ≤A y x, y ∈ A
x ≤B y x, y ∈ B
ϕ(x ∨A a) ≤B y and x ≤A −Aa x ∈ A, y ∈ B
ϕ−1(x ·B b) ≤A y and y �A −Aa x ∈ B, y ∈ A.

The fact that · distributes over ∨ follows from residuation. Hence, we are left
to show the residuation law. For this proof, we need two small facts.
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Lemma 5.2. (1) For all x ∈ B, y ∈ A, ϕ−1(x ·B b) ·A y ≤A −a iff y ≤A −a.
(2) For all z ∈ A, z ≤ 0 iff z ≤A 0A.

Proof. (1) As a vA ϕ−1(x ·B b), we have that ϕ−1(x ·B b) ·A y ≤A −a is
equivalent to a ·A y = a ·A ϕ−1(x ·B b) ·A y ≤A 0A, i.e. y ≤A −a.

(2) For the left-to-right direction, suppose that z ≤ 0, that is, ϕ(z ∨A
a) ≤B 0B and z ≤A −a. As ϕ(z ∨A a) vB b and b ≤B 1B ,

ϕ(z ∨A a) = ϕ(z ∨A a) ·B b ≤B 0B ·B b ≤B −b ·B b = 0b.

Therefore, because 0b = ϕ(0A∨Aa) and ϕ reflects the lattice order, z∨Aa ≤A
0A∨A a. Hence, z ≤ (z∨A a)∧A−a ≤A (0A∨A a)∧A−a = 0A by Lemma 4.5.

For the right-to-left direction, suppose that z ≤A 0A. Then z ≤A 0A ≤A
−a (since a ≤A 1A is a standing assumption) as well as z∨A a ≤ 0A∨A a. We
note that for z ≤A 0A, we have a v z∨Aa because a ≤A z∨Aa ≤A −a∨Aa =
1a, and similarly a v 0A ∨A a hence ϕ is defined at z ∨A a and 0A ∨A a. As
ϕ preserves the lattice order, ϕ(z ∨A a) ≤A ϕ(0A ∨A a) = 0b ≤B 0B and so
z ≤ 0. �

Finally, we show the required residuation property.

Lemma 5.3. For all x, y ∈ A ∪B,

x · y ≤ 0 ⇐⇒ x ≤ −y.

Proof. Consider x, y ∈ A ∪ B. Again, we prove by cases. The case when
x, y ∈ A follows from Lemma 5.2(2) together with residuation in A. The case
for x, y ∈ B follows directly from residuation in B.

Next, suppose that x ∈ A and y ∈ B. Then x · y = x ·A ϕ−1(y ·B b), so

x · y ≤ 0 ⇐⇒ ϕ((x ·A ϕ−1(y ·B b)) ∨A a) ≤B 0B

and x ·A ϕ−1(y ·B b) ≤A −a
and

x ≤ −y ⇐⇒ ϕ(x ∨A a) ≤B −y and x ≤A −a
⇐⇒ y ·B ϕ(x ∨A a) ≤B 0B and x ≤A −a.

Note that by Lemma 5.2(1), we have that

x ·A ϕ−1(y ·B b) ≤A −a ⇐⇒ x ≤A −a.
So assume that x ≤A −a. Since also a vA ϕ−1(y ·B b), Lemma 4.6(1) implies
that

(x ·A ϕ−1(y ·B b)) ∨A a = (x ∨A a) ·A (ϕ−1(y ·B b) ∨A a)

= (x ∨A a) ·A ϕ−1(y ·B b).
Applying ϕ to both sides then gives

ϕ((x ·A ϕ−1(y ·B b)) ∨A a) = ϕ((x ∨A a) ·A ϕ−1(y ·B b))
= ϕ(x ∨A a) ·B (y ·B b)
= ϕ(x ∨A a) ·B y,
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proving the required equivalence.

Finally, suppose y ∈ A and x ∈ B. Then x · y ∈ A, hence x · y ≤ 0 is
equivalent to x · y ≤A 0A by Lemma 5.2(2). By definition of ·, we also have
x · y = y ·A ϕ−1(x ·B b).

By definition of ≤ we have x ≤ −y if and only if ϕ−1(x ·B b) ≤A −y
and −y �A −a. The first condition is equivalent to y ·A ϕ−1(x ·B b) ≤A 0A,
and we claim that it subsumes −y �A −a. Suppose to the contrary that
−y ≤A −a, i.e., a ≤ y. Since we also have a ≤ ϕ−1(x ·B b) ≤ 1a, it follows
that a = a · a ≤ y · ϕ−1(x ·B b) ≤ 0A. This is a contradiction since a � 0A is
one of the ingredients of the A⊕ϕ B construction. �

We have shown that A⊕ϕB satisfies all required properties of a commu-
tative idempotent InRL-semiring. By the term equivalence from Theorem 2.1,
we obtain the following theorem.

Theorem 5.4. The algebra A⊕ϕ B is a member of CIdInRL.

Example 5.5. A non-trivial example of the gluing construction as outlined
here is given in Figure 2, where the algebra A ⊕ϕ B is obtained by gluing
the algebra A with universe A = {x ∈ A ∪ B | x v 1u} and the algebra B
with universe B = {y ∈ A∪B | 0v v y}. The bijection ϕ, depicted by dashed
lines in 〈A ⊕ϕ B,v〉, is defined by ϕ(1u) = b, ϕ(u) = 0b, ϕ(1a) = v, and
ϕ(a) = 0v.

〈A⊕ϕ B,v〉
0w

−w w

1w0a

−a a

1a0u

−u u

1u

0v

v −v
1v0b

b

−b

1b

ϕ

〈A⊕ϕ B,≤〉
0w

0a

0u

−u

−a
−w

w

a

u

1u

1a

1w

0v

−v

v

1v

0b

b

−b

1b

Figure 2. A depiction of the algebra A⊕ϕ B from Example 5.5.
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6. Decomposition

In this section we outline how to reverse the gluing construction given in the
previous section for any finite member of CIdInRL. The main result, Theo-
rem 6.8, is that we can construct any finite member of the variety CIdInRL
starting from all finite Boolean algebras.

Consider any C ∈ CIdInRL. To reverse the construction from Section 5,
we find two algebras A,B ∈ CIdInRL such that C = A ⊕ϕ B. A crucial
role is reserved for the atoms of the distributive lattice 〈C+,∧,∨, 1〉 from
Theorem 3.5. Recall that an atom is an element a ∈ C+ such that for any
b ∈ C+ such that 1 ≤ b ≤ a, either b = 1 or b = a. For an arbitrary member of
CIdInRL, such atoms need not exist. In particular, if C is a Boolean algebra,
C+ = {1} and therefore C+ contains no atoms. Moreover, if C is infinite,
atoms of C+ also need not exist. For example, consider an infinite version
of the algebras An constructed in the next section, depicted in Figure 4.
Therefore we consider C to be finite and not a Boolean algebra and let
c ∈ C+ be such an atom. As 〈C+,∧,∨, 1〉 is distributive and c is an atom,
there exists a (unique) element c∗ ∈ C+ such that

{x ∈ C+ | x v c} ∪ {x ∈ C+ | c∗ v x} = C+

and

{x ∈ C+ | x v c} ∩ {x ∈ C+ | c∗ v x} = ∅
(see [9, Theorem 6]). These two elements c and c∗ can then be used to par-
tition C into two subsets: {x ∈ C | x v c} and {y ∈ C | −c∗ v y}. We
summarize some properties of these two intervals. Note that c = 1c and
−c∗ = 0c∗ .

Lemma 6.1. Let c and c∗ be as defined above.

(1) for all x ∈ C, −c∗ v x if and only if x 6v c;
(2) 〈{x ∈ C | x v c},∧,∨, ·,→, c,−c〉 and 〈{y ∈ C | −c∗ v y},∧,∨, ·,
→, 1, 0〉 are a subalgebra and pointed subalgebra of C, respectively.

Proof. (1) Consider x ∈ C. For the left-to-right direction, suppose that −c∗ v
x. For a contradiction, suppose that x v c. But then −c∗ v c, contradicting
that {x ∈ C+ | x v c}∩{x ∈ C+ | c∗ v x} = ∅. For the right-to-left direction
suppose that x 6v c. Since x v 1x, we have 1x 6v c and, by choice of c∗,
c∗ v 1x. It follows from Lemma 3.7 that −c∗ v 0x and hence −c∗ v 0x v x.

(2) This is an instance of a more general fact: for any A ∈ CIdInRL and
x, y ∈ A such that 1x v 1y (or, equivalently, 0x v 1y), {z ∈ A | 0x v z v 1y}
forms a subalgebra, with constants 0y and 1y. Indeed, closure under · and ∨
is straightforward, and closure under − follows from the fact that {z ∈ A |
0x v z v 1y} =

⋃
{Bz | 1x v z v 1y}. The residuation law can be easily

checked. �

We now define algebras A := 〈{x ∈ C | x v c},∧,∨, ·,→, c,−c〉 and
B := 〈{y ∈ C | −c∗ v y},∧,∨, ·,→, 1, 0〉, elements a := c · −c∗ and b :=
(c ∧ −a) ∨ −c∗ and maps
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• ϕ : {x ∈ C | a v x v c} → {y ∈ C | −c∗ v y v b} where ϕ(x) :=
(x ∧ −a) ∨ −c∗;
• ϕ−1 : {y ∈ C | −c∗ v y v b} → {x ∈ C | a v x v c} where ϕ−1(y) :=
y · c.
The rest of the section is dedicated to proving that C = A ⊕ϕ B. We

start by showing that the defined elements and map satisfy the prerequisites
of the construction.

Lemma 6.2. For the elements a and b as defined above,

(1) a ∈ A− and a � 0A;
(2) b ∈ B−, c · 0 = −c ∨ a and 0 ≤ b.

Proof. (1) We have a ≤ 1A = c since a = c · −c∗ ≤ c · 0 ≤ c · 1 = c. For the
other claim, assume for a contradiction that a ≤ 0A = −c. By residuation
a · c ≤ 0, hence c · −c∗ = c · c · −c∗ = c · a ≤ 0, which implies c ≤ c∗, a
contradiction.

(2) Note that b ≤ 1 is equivalent to c ∧ −a ≤ 1 together with −c∗ ≤ 1.
The latter inequality follows as −c∗ ≤ 0 ≤ 1. For the former, note that −c
is a coatom in {0x | x ∈ C} by Theorem 3.5, hence 0 = 0c ∨ 0c∗ = −c ∨ −c∗
and it follows that

0 = 1 · 0 ≤ c · 0 = c · (−c∨−c∗) = (c ·−c)∨ (c ·−c∗) = −c∨ (c ·−c∗) = −c∨a.
Therefore c∧−a ≤ 1. To show 0 ≤ b, we note that (c · 0)∨ c = c · (0∨ 1) = c,
hence 0 = −c ∨ −c∗ ≤ −(c · 0) ∨ −c∗ = (c ∧ −a) ∨ −c∗ = b. �

We need a couple of technical properties, which we prove in a separate
lemma.

Lemma 6.3. (1) For all y ∈ B, ϕ(y · c) = y · b.
(2) For all x ∈ A, y ∈ B, x ≤ −a if and only if x ∨ y ∈ B.

Proof. (1) Consider y ∈ B. Then,

ϕ(y · c) = ((y · c) ∧ −a) ∨ −c∗

=
(
(y · [(c ∧ −a) ∨ a]) ∧ −a

)
∨ −c∗

=
(
[(y · (c ∧ −a)) ∨ (y · a)] ∧ −a

)
∨ −c∗

=
(
[(y · (c ∧ −a)) ∨ a] ∧ −a

)
∨ −c∗

= (y · (c ∧ −a)) ∨ −c∗

= (y · (c ∧ −a)) ∨ y · −c∗

= y · [(c ∧ −a) ∨ −c∗]
= y · b.

The fourth equality follows as y · a = y · c · −c∗ = c · −c∗ = a. The fifth
equality follows since y · (c∧−a) = ((y · (c∧−a))∨ a)∧−a by an application
of Lemma 4.5.

(2) As −c∗ · (x ∨ y) = (−c∗ · x) ∨ (−c∗ · y) = (−c∗ · x) ∨ −c∗, it always
holds that −c∗ ≤ −c∗ · (x ∨ y). So −c∗ v x ∨ y is in turn equivalent to
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−c∗ · (x ∨ y) ≤ −c∗, which is equivalent to −c∗ · x ≤ −c∗. Via residuation,
this is equivalent to a · x = −c∗ · c · x = −c∗ · x = c∗ · −c∗ · x ≤ 0 which by
residuation again is equivalent to x ≤ −a. �

Lemma 6.4. The functions ϕ and ϕ−1 as defined above are well-defined.

Proof. To show that ϕ−1 is well-defined, we assume y ∈ C satisfies −c∗ v
y v b, and we need to show that a v ϕ−1(y) v c. It is immediate that
ϕ−1(y) = y · c v c. Moreover, a · y · c = c · −c∗ · y · c = c · −c∗ = a hence
a v ϕ−1(y).

To prove that ϕ(x) = (x ∧ −a) ∨ −c∗ is well-defined, we assume x ∈
C satisfies a v x v c and show that −c∗ v ϕ(x) v b. Firstly note that
since −c∗ ≤ 1, −c∗ v ϕ(x) is equivalent to −c∗ ≤ ϕ(x) ≤ 1−c∗ = c∗ by
Lemma 4.2. It is immediate that −c∗ ≤ (x ∧ −a) ∨ −c∗ = ϕ(x). Moreover,
note that ϕ(x) ≤ c∗ is equivalent to −c∗ ≤ c∗ together with x ∧ −a ≤ c∗.
Obviously −c∗ ≤ c∗ holds. For the other statement, note that 1 ≤ c implies
that −c∗ ≤ c · −c∗ = a. It follows that −a ≤ c∗ and so x ∧ −a ≤ −a ≤ c∗ as
required.

To show that ϕ(x) v b, we consider ϕ(x) · b.

ϕ(x) · b = [(x ∧ −a) ∨ −c∗]·[(c ∧ −a) ∨ −c∗]
= [(x ∧ −a)·(c ∧ −a)] ∨ [(x ∧ −a)·−c∗] ∨ [(c ∧ −a)·−c∗] ∨ [−c∗·−c∗]
= [(x ∧ −a)·(c ∧ −a)] ∨ −c∗

= [(x · c) ∧ −a] ∨ −c∗

= [x ∧ −a] ∨ −c∗

= ϕ(x).

The third equality follows from the fact that (x ∧ −a) · −c∗ ≤ −a · −c∗ ≤
c∗ ·−c∗ = −c∗, and similarly, (c∧−a) ·−c∗ ≤ −c∗. The fourth equality follows
from Lemma 4.6(2). �

Lemma 6.5. The function ϕ is a bijection with ϕ−1 as its inverse, i.e.,

(1) for a v x v c, ϕ−1(ϕ(x)) = x;
(2) for −c∗ v y v b, ϕ(ϕ−1(y)) = y.

Proof. (1) Let a v x v c. Then,

ϕ−1(ϕ(x)) = ϕ−1((x ∧ −a) ∨ −c∗)
= [(x ∧ −a) ∨ −c∗] · c
= ((x ∧ −a) · c) ∨ (−c∗ · c)
= ((x ∧ −a) · c) ∨ a
= (x ∧ −a) ∨ a
= x.

The fifth equality follows from the observation that, since A is closed under
∧, x ∧ −a v c. The last equality holds by Lemmas 4.5 and 6.2(1).
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(2) The desired result follows from Lemma 6.3(1) and y v b, because
ϕ(ϕ−1(y)) = ϕ(y · c) = y · b = y. �

Lemma 6.6. The functions ϕ and ϕ−1 satisfy all prerequisites of the construc-
tion, i.e.,

(1) ϕ and ϕ−1 preserve ∨;
(2) ϕ and ϕ−1 preserve ·;
(3) ϕ(−c ∨ a) = 0b.

Proof. Firstly note that as we have already shown that ϕ is a bijection with
inverse ϕ−1, it suffices to show that ϕ−1 preserves ∨ and ·. The function ϕ−1

preserves ∨ as

ϕ−1(y ∨ z) = (y ∨ z) · c = (y · c) ∨ (z · c) = ϕ−1(y) ∨ ϕ−1(z).

The function ϕ−1 preserves · as

ϕ−1(y · z) = y · z · c = (y · c) · (z · c) = ϕ−1(y) · ϕ−1(z).

For the last item, note that by Lemma 6.2(2), 0 ≤ b ≤ 1 so 0b = 0. Therefore,
ϕ−1(0b) = ϕ−1(0) = c · 0 = −c ∨ a and hence ϕ(−c ∨ a) = 0b. �

We have now shown that A ⊕ϕ B is well-defined. It remains to show
that indeed A⊕ϕ B and C coincide.

Lemma 6.7. C = A⊕ϕ B.

Proof. It is obvious that the universes of the two algebras coincide. It easily
follows that the involution − and the constants coincide as well.

For the fusion operation, the interesting case is to show that x · y =
x · ϕ−1(y · b) for x ∈ A, y ∈ B. Note that by Lemma 6.3(1), x · ϕ−1(y · b) =
x · ϕ−1(ϕ(y · c)) = x · y · c = x · y since x v c.

For the join operation, the two interesting cases are when x ∈ A and
y ∈ B. Firstly suppose that x ≤ −a. Then

ϕ(x ∨ a) ∨ y = ([(x ∨ a) ∧ −a] ∨ −c∗) ∨ y
= (x ∨ 0a) ∨ −c∗ ∨ y
= x ∨ −c∗ ∨ y
= x ∨ y.

The second equality follows by Lemma 4.5 and the third by Lemma 4.2, since
a v c∗, hence c∗ ≤ 1a and therefore 0a ≤ −c∗. The last equality follows from
−c∗ = −c∗ · y ≤ 1 · y = y.

For the other case, suppose that x 6≤ −a. By Lemma 6.3(2), this is
equivalent to x ∨ y /∈ B, hence x ∨ y ∈ A. Then, by Lemma 6.3(1),

x ∨ ϕ−1(y · b) = x ∨ ϕ−1(ϕ(y · c))
= x ∨ (y · c)
= (x · c) ∨ (y · c)
= (x ∨ y) · c
= x ∨ y. �
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We can now state the sought-after structural characterization result.
For any finite member A of CIdInRL, either A is a Boolean algebra or A
can be decomposed into two strictly smaller members of CIdInRL by the
decomposition method outlined in this section. Repeated application of this
decomposition procedure proves the following theorem.

Theorem 6.8. Any finite member A of CIdInRL can be constructed using the
gluing construction outlined in Section 5 starting from all finite Boolean al-
gebras.

As mentioned at the start of this section, the reversal of the gluing con-
struction as outlined cannot be applied to the algebra B∗ from Figure 4. How-
ever, as will be shown, B∗ can be constructed using the gluing construction
from Section 5, albeit by an infinite number of applications. Characterizing
exactly which subclasses of CIdInRL can be constructed using the gluing con-
struction from Section 5 is left for future work. As the reverse decomposition
only depends on the underlying distributive lattice A+ being finite, a slight
generalization of the theorem above can nonetheless be obtained without
further effort.

Corollary 6.9. Any member A ∈ CIdInRL such that A+ is finite can be con-
structed using the gluing construction in Section 5 starting from all Boolean
algebras.

Another noteworthy observation is that for the algebras in the preceding
corollary the multiplicative order uniquely determines the lattice order and
vice versa, hence it suffices to present the simpler multiplicative order. A
special case of the gluing construction is the multiplicative ordinal sum A⊕ϕ0

B, where ϕ0 is the unique map from {1A} to {0B}. This map is a valid gluing
if and only if 0A 6= 1A in A (since the element a = 1A in a gluing must satisfy
a � 0A) and B is Boolean. For brevity we denote ⊕ϕ0

simply by ⊕.

A subdirectly irreducible C ∈ CIdInRL satisfies 0A = 1A (called odd
in the context of Sugihara monoids) if and only if C ∼= A ⊕ 1 for some
A ∈ CIdInRL, where 1 is the one-element algebra. All finite Sugihara monoids
can be obtained from the one- and two-element Boolean algebra 2 by the use
of (iterated) ordinal sums and direct products (but the variety of Sugihara
monoids is not closed under ordinal sums of nonlinear members such as 22⊕
1). In Figure 3 we list multiplicative orders of some small members of CIdInRL,
as well as some semilattices that are not the multiplicative order of any
CIdInRL.

7. Applications

In this section we discuss two applications of the structural characterization
result from Theorem 6.8.
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22⊕1 2⊕22 22⊕22

1y

0=1

1x

0x
0y

(22⊕1)×(2⊕ 1)

1y

0=1

1x

0x 0y

Figure 3. Multiplicative semilattices that can (top) and
cannot (bottom) support a CIdInRL

7.1. Distributivity

Recall from Example 2.3 (Fig. 1) that for members A of CIdInRL, the lattice
order does not satisfy the distributive law in general. In this section we apply
the structural characterization result from Theorem 6.8 to show that for each
finite A ∈ CIdInRL, the monoidal semilattice 〈A,v〉 is distributive. Note that
for such a finite A, 〈A,v〉 is a lattice. But since we have no elegant definition
of the join, we work with the notion of distributivity of a semilattice. We say
that the semilattice 〈A,v〉 is distributive if for all x, y, z ∈ A,

x ·y v z =⇒ there exists x′, y′ ∈ A such that x v x′, y v y′, and z = x′ ·y′.
Note that a lattice is distributive in the usual sense exactly when it is dis-
tributive as a semilattice in this sense (see e.g. [2]).

Lemma 7.1. Let A,B ∈ CIdInRL with elements a ∈ A−, b ∈ B− and function
ϕ such that their gluing A⊕ϕ B is well-defined. If 〈A,vA〉 and 〈B,vB〉 are
distributive, then so is the monoidal semilattice 〈A ∪B,v〉 of A⊕ϕ B.

Proof. Suppose that 〈A,vA〉 and 〈B,vB〉 are distributive. To show that also
〈A∪B,v〉 is distributive, we consider any x, y, z ∈ A∪B such that x · y v z.
We consider a number of cases. If x · y ∈ B, then x, y, z ∈ B and the required
property follows since 〈B,vB〉 is distributive. So suppose that x · y ∈ A. We
consider the cases when x ∈ A, y ∈ B, in which case x · y v z means that
x ·A ϕ−1(y ·B b) v z. The other cases are easier or similar.

Suppose that z ∈ A. Then x·y v z means that x·Aϕ−1(y·Bb) vA z. Since
〈A,vA〉 is distributive, we get x′, y′ ∈ A such that x v x′, ϕ−1(y ·B b) v y′

and x′ ·A y′ = z. Note that a v ϕ−1(y ·B b) v y′, so we apply the fact that
〈B,vB〉 is distributive to y ·B b vB ϕ(y′) to get b′, y′′ ∈ B such that b v b′,
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y v y′′, and ϕ(y′) = b′ · y′′. But then ϕ(y′) = b ·ϕ(y′) = b · b′ · y′′ = b · y′′. We
then have x v x′, y v y′′ and

x′ · y′′ = x′ ·A ϕ−1(y′′ ·B b) = x′ · ϕ−1(ϕ(y′)) = x′ · y′ = z.

Now suppose that z ∈ B. Then x · y v z means that x ·A ϕ−1(y ·B b) vA
ϕ−1(z ·B b). Using distributivity of 〈A,vA〉 we obtain x′, y′ ∈ A such that
x v x′, ϕ−1(y ·B b) v y′, and x′ ·A y′ = ϕ−1(z ·B b). Then y ·B b v ϕ(y′) and
so ϕ(x′) · y = ϕ(x′) · b · y v ϕ(x′) · ϕ(y′). Moreover,

ϕ(x′) · ϕ(y′) = ϕ(x′ · y′) = ϕ(ϕ−1(z ·B b)) = z ·B b vB b

and hence ϕ(x′) ·B y v z. Distributivity of 〈B,vB〉 then gives x′′, y′′ ∈ B
such that x v x′ v ϕ(x′) v x′′, y v y′′, and z = x′′ · y′′. �

The next result now follows from Theorem 6.8 and the fact that any
Boolean algebra is distributive. We conjecture that this result holds for any
member of CIdInRL, not only the finite ones.

Theorem 7.2. For any finite A ∈ CIdInRL, 〈A,v〉 is a distributive semilattice.

7.2. Locally Finiteness

For another application of Theorem 6.8, in this section we construct a se-
quence of 1-generated members of CIdInRL with increasing cardinality, show-
ing that the variety CIdInRL is not locally finite. This is in contrast with two
well-known subvarieties of CIdInRL, namely Boolean algebras and Sugihara
monoids that are both locally finite varieties (see [7, Theorem 1] for the latter
case).

For every i ∈ N, we define Bi to be the four-element Boolean alge-
bra with universe {0i, xi,−xi, 1i}. Given two such (disjoint) algebras Bi and
Bi+1, we define two types of gluing: one that glues Bi+1 “on the left of Bi”
if i is even, and one that glues Bi+1 “on the right of Bi” if i is odd. That is,

for even i, ϕi is defined by 1i 7→ −xi+1 and xi 7→ 0i+1;

for odd i, ϕi is defined by 1i 7→ xi+1 and −xi 7→ 0i+1.

Moreover, let 2 denote the 2-element Boolean algebra, with universe {0, 1},
and let Bi ⊕ψi 2 be the gluing given by ψi : Bi → 2 where ψi(1i) = 0. For
example, we can now express A1 from Figure 1 as B0 ⊕ϕ0 B1 ⊕ψ 2, where
a = x0 and b = x1. In general, define the algebras, depicted in Figure 4:

An := B0 ⊕ϕ0
B1 ⊕ϕ1

· · · ⊕ϕn−1
Bn ⊕ψn

2.

Note that by direct computation, we obtain

1j = −xj−1 ∨ 1 0j = xj−1 ∧ 1

xj = xj−1 ∧ 1j −xj = −xj−1 ∨ 0j

for any j ≥ 1, and so An is generated by the single element x0. Moreover,
it follows by iterated application of Theorem 5.4 that An indeed belongs to
CIdInRL.

Proposition 7.3. The variety CIdInRL is not locally finite.
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