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Abstract: Mitral valve prolapse (MVP) associated with severe mitral regurgitation is a debilitating
disease with no pharmacological therapies available. MicroRNAs (miRNA) represent an emerging
class of circulating biomarkers that have never been evaluated in MVP human plasma. Our aim was
to identify a possible miRNA signature that is able to discriminate MVP patients from healthy subjects
(CTRL) and to shed light on the putative altered molecular pathways in MVP. We evaluated a plasma
miRNA profile using Human MicroRNA Card A followed by real-time PCR validations. In addition,
to assess the discriminative power of selected miRNAs, we implemented a machine learning analysis.
MiRNA profiling and validations revealed that miR-140-3p, 150-5p, 210-3p, 451a, and 487a-3p were
significantly upregulated in MVP, while miR-223-3p, 323a-3p, 340-5p, and 361-5p were significantly
downregulated in MVP compared to CTRL (p ≤ 0.01). Functional analysis identified several biological
processes possible linked to MVP. In addition, machine learning analysis correctly classified MVP
patients from CTRL with high accuracy (0.93) and an area under the receiving operator characteristic
curve (AUC) of 0.97. To the best of our knowledge, this is the first study performed on human plasma,
showing a strong association between miRNAs and MVP. Thus, a circulating molecular signature
could be used as a first-line, fast, and cheap screening tool for MVP identification.

Keywords: mitral valve disease; plasma; human; circulating signature; machine learning

1. Introduction

Mitral valve prolapse (MVP) is a debilitating disease that, to date, has affected more
than 176 million people worldwide with a prevalence of 2–3% in the general popula-
tion [1,2]. The main cause of MVP is an alteration of the well-organized leaflet structure
due to a myxomatous degeneration, which is characterized by distinctive histological
changes with elongated and redundant chordal apparatus [3]. Based on clinical patterns,
echocardiographic findings, and gross surgical appearances, the degenerative mitral valve
disease has been divided into Barlow’s disease (BW) and fibro-elastic deficiency (FED),
which were originally described by Carpentier [4–6]. An excessive and diffuse accumula-
tion of glycosaminoglycans is the main feature of BW disease, whereas FED is characterized
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by extremely thin leaflets and chordae [7]. Up to now, two-dimensional (2D) echocardio-
graphy represents the benchmark for MVP diagnosis and the assessment of the disease
severity [8,9]. In addition, the combination of 2D with 3D echocardiography provides
detailed morphological and functional assessment [10–13]. Unfortunately, there are no
medical therapies able to prevent or treat patients affected by this frequent pathology;
therefore, the surgical or, more recently, percutaneous interventions are the only available
options when the prolapse causes severe regurgitation and symptoms occur [8].

In clinical practice, biomarkers represent an important tool for a better diagnosis
and prognosis of a specific pathological condition [14]. To date, there are no specific
circulating biomarkers for MVP identification. In this context, researchers have found a
possible association between osteoprotegerin [15,16], haptoglobin, platelet basic protein,
complement component C4b levels [17], and MVP. However, none of these biomarkers is
specific for the pathology.

Recently, a new class of circulating biomarkers, called microRNAs (miRNAs), has
emerged. MiRNAs are short noncoding RNAs, which negatively regulate gene expres-
sion at the post-transcriptional level by inhibiting the protein translation or promoting
the mature RNA (mRNA) degradation [18]. In the last few years, the role of miRNAs
has been assessed in different pathological conditions including cardiovascular diseases
(e.g., coronary artery diseases, cardiomyopathy, myocardial infarction, and aortic valve
stenosis) [19–23]. Concerning MVP, two studies evaluated circulating miRNAs in animal
models [24,25], and recently, Bulent Vatan et al. [26] analyzed plasma miRNAs in patients
with mitral chordae tendineae rupture, which is a condition closely linked to MVP but not
necessarily to myxomatous degeneration. Thus, our aim was to evaluate the circulating
miRNA profile in human MVP, identifying a possible miRNA signature that is able to
discriminate MVP patients from healthy subjects with high accuracy and shed light on
putative altered molecular pathways in MVP.

2. Results
2.1. Circulating miRNA Linked to Mitral Valve Prolapse

To investigate possible differences between MVP patients (n = 4) and matched healthy
subjects (CTRL; n = 4), we conducted an initial screening of 384 miRNAs. Out of the
384 miRNAs screened, 201 were detectable in both groups. We identified forty miRNAs
differentially expressed between the two cohorts (p < 0.05; Table S1). In particular, five miR-
NAs were upregulated, while thirty-five were downregulated in MVP patients compared
to CTRL (Figure 1).

2.2. Validation Phase

Following the screening phase, we performed the real-time PCR (qPCR) in a larger
cohort of MVP patients (n = 43) and CTRL (n = 34). We analyzed nine interesting miRNAs
differentially expressed between the two groups, as well as two not significantly differ-
ent miRNAs, such as miR-340-5p and miR-210-3p, which are known to be involved in
other cardiovascular diseases. In particular, platelet-derived miR-340-5p is upregulated
in patients with coronary artery disease as compared to healthy controls [27]. Mean-
while, in other pathological conditions, such as ischemic stroke, miR-340-5p appears to be
downregulated [28]. Regarding miR-210-3p, researchers have reported its involvement in
atherosclerosis, acute coronary syndrome, valvular heart diseases, and pulmonary arterial
hypertension [29].



Int. J. Mol. Sci. 2021, 22, 2102 3 of 14Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. Circulating microRNAs (miRNA) linked to mitral valve prolapse. Volcano plot repre-
sents the differential expression of circulating miRNAs between healthy subjects (CTRL; n = 4) and 
mitral valve prolapsed patients (MVP; n = 4). The vertical lines correspond to fold changes of -0.7 
(downregulation) and +0.7 (upregulation). The horizontal lines indicate a p-value of 0.05. The pur-
ple points denote downregulated miRNAs, while the green points denote the upregulated miR-
NAs with statistical significance in comparison to healthy subjects. The bold black crosses depict 
not differentially expressed miRNAs investigated in the validation phase. 
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no correlation between the two techniques (R = 0.01, p = 0.975; Figure S2A). However, a 
strong correlation between the two techniques was obtained when miR-487a-3p was ex-
cluded (R = 0.92, p = 0.0005; Figure S2B). In addition, we performed an unsupervised hier-
archical clustering analysis, generating a specific heatmap (Figure 2B). The results under-
lined that all validated miRNAs allow us to discriminate MVP and CTRL. 

Figure 1. Circulating microRNAs (miRNA) linked to mitral valve prolapse. Volcano plot represents
the differential expression of circulating miRNAs between healthy subjects (CTRL; n = 4) and
mitral valve prolapsed patients (MVP; n = 4). The vertical lines correspond to fold changes of −0.7
(downregulation) and +0.7 (upregulation). The horizontal lines indicate a p-value of 0.05. The purple
points denote downregulated miRNAs, while the green points denote the upregulated miRNAs
with statistical significance in comparison to healthy subjects. The bold black crosses depict not
differentially expressed miRNAs investigated in the validation phase.

Our results confirmed that nine miRNAs were statistically different in the MVP group
in comparison to CTRL subjects (Figure 2A), while two miRNAs were similar in the two
cohorts (Figure S1). However, we found that miR-487a-3p was downregulated in the
screening phase, while it was upregulated in the validation phase. This discrepancy could
be explained by the small sample size of the screening phase. This is corroborated by the
log2 fold change (log2FCs) of the validated miRNAs calculated in the screening and the
validation sets (Figure S2). When miR-487a-3p was included in this analysis, there was no
correlation between the two techniques (R = 0.01, p = 0.975; Figure S2A). However, a strong
correlation between the two techniques was obtained when miR-487a-3p was excluded
(R = 0.92, p = 0.0005; Figure S2B). In addition, we performed an unsupervised hierarchical
clustering analysis, generating a specific heatmap (Figure 2B). The results underlined that
all validated miRNAs allow us to discriminate MVP and CTRL.
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Figure 2. Circulating miRNA validation. (A) Validation analysis confirmed that miR-487a-3p, miR-
150-5p, miR-140-3p, miR-451a, and miR-210-3p were significantly upregulated in the mitral valve 
prolapsed group (MVP, n = 43) compared with healthy subjects (CTRL, n = 34). Instead, miR-340-
5p, miR-323a-3p, miR-361-5p, and miR-223-3p were significantly downregulated in the MVP 
group compared with the CTRL group. Data are depicted as box-and-whisker plots of –delta–delta 
cycle threshold (−ΔΔCt). (B) The heatmap shows that the nine miRNAs differentially expressed in 
both the screening and the validation cohorts discriminated healthy subjects (CTRL; red squares) 
from patients with mitral valve prolapse (MVP; blue squares). MiRNAs expression levels were 
expressed as standardized values and displayed as a color gradient from dark red (i.e., highest 
expression level) to dark green (i.e., lowest expression level). 

Figure 2. Circulating miRNA validation. (A) Validation analysis confirmed that miR-487a-3p, miR-
150-5p, miR-140-3p, miR-451a, and miR-210-3p were significantly upregulated in the mitral valve
prolapsed group (MVP, n = 43) compared with healthy subjects (CTRL, n = 34). Instead, miR-340-5p,
miR-323a-3p, miR-361-5p, and miR-223-3p were significantly downregulated in the MVP group
compared with the CTRL group. Data are depicted as box-and-whisker plots of –delta–delta cycle
threshold (−∆∆Ct). (B) The heatmap shows that the nine miRNAs differentially expressed in both
the screening and the validation cohorts discriminated healthy subjects (CTRL; red squares) from
patients with mitral valve prolapse (MVP; blue squares). MiRNAs expression levels were expressed
as standardized values and displayed as a color gradient from dark red (i.e., highest expression level)
to dark green (i.e., lowest expression level).
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2.3. Functional Analysis

To gain further insights into the potential biological functions of these nine miRNAs,
we applied a guilt-by-association in silico approach [30] to identify which genes, cell types,
and tissues were potentially involved in MVP pathophysiology.

MiRNA–mRNA target prediction revealed that 171 genes are potentially modulated
by the nine differentially expressed miRNAs (Figure 3A). However, since we took into
account only experimental validated interactions and miR-323 did not have any, it was
excluded in this analysis. The modulated mRNAs are mainly represented in fibroblast and
myofibroblast and in vascular smooth muscle and CD34+ cells to a lesser extent (Figure 3B).
Regarding the location of these cells, the main cardiovascular tissues involved were the
heart ventricles and atriums, the pericardium, and the cardiac muscle fibers as well as the
heart valves (Figure 3C).
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Figure 3. miRNA–mRNA target prediction. (A) mRNA transcripts potentially modulated by the nine differentially
expressed miRNAs between healthy subjects (CTRL) and mitral valve prolapsed patients (MVP). Enrichment analysis
showing which cell types (B) and tissues (C) express the modulated mRNA transcripts. The axis values represent the
combined score computed by taking the log of the p-value from the Fisher exact test and multiplying that by the z-score of
the deviation from the expected rank.

The functional analyses showed that genes regulated by these miRNAs are implicated
in several cellular processes. In particular, the main downregulated processes, identified by
the upregulated miRNAs, were the intrinsic apoptotic signaling pathways, the regulation
of endothelial and smooth muscle cell proliferation, the signal transduction in response to
DNA damage, and the erythroblastic oncogene B (ERBB) signaling pathway (Figure 4).
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Figure 4. Functional analysis of the upregulated miRNAs. Signaling pathways directly modulated
by upregulated miRNAs in mitral valve prolapsed patients (MVP) in comparison to healthy subjects
(CTRL). The node color indicates different pathways while node size is proportional to the gene-set
size. Edge thickness is proportional to the similarity between two gene-sets. ERBB: erythroblastic
oncogene B.

Conversely, the main upregulated processes were the cellular response to reactive
oxygen species, the receptor signaling pathway via janus kinase-signal transducer and acti-
vator of transcription protein (JAK-STAT), and the regulation of endothelial cell migration
and differentiation (Figure 5).
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Figure 5. Functional analysis of the downregulated miRNAs. Signaling pathways directly modulated
by downregulated miRNAs in mitral valve prolapsed patients (MVP) in comparison to healthy
subjects (CTRL). The node color indicates different pathways, while the node size is proportional to
the gene-set size. Edge thickness is proportional to the similarity between two gene sets. JAK-STAT:
janus kinase-signal transducer and activator of transcription protein.
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2.4. Mitral Valve Prolapse Circulating miRNA Signature Strength

Among the validated miRNAs, we further selected the most statistically significant
miRNAs (p-value < 0.001), namely miR-150-5p, miR-451a, and miR-487a-3p, and we as-
sessed their capability to identify MVP patients and CTRL as two distinct groups. The
3D scatter plot in Figure 6A underlined that these miRNAs allowed us to differentiate
MVP patients from CTRL. Furthermore, we performed a machine learning analysis, and
taking into account the prediction model, we were able to correctly classify 93% of samples
belonging to the independent test set with an area under the receiving operator charac-
teristic (AUC) curve of 0.97, a sensitivity of 0.89, and a specificity equal to 1 (Figure 6B).
Together, these data highlighted that the model based on miR-150-5p, -451a, and -487a-3p
correctly identified MVP patients from CTRL with high accuracy. To ensure that the miRNA
signature was specific to MVP and not secondary to other differences between MVP pa-
tients and CTRL, we performed a logistic regression associating the model comprising
the three miRNAs to the class of interest (MVP vs. CTRL) and to the variables signifi-
cantly related with the disease (see patient population section); namely, sex, hypertension,
angiotensin-converting enzyme (ACE) inhibitors, and beta-blocker therapy. This analysis
suggests a strong association of the three miRNAs with MVP (p = 0.0011), while there was
no significant association considering sex (p = 0.16), hypertension (p = 0.28), ACE inhibitors
(p = 0.47), nor beta-blocker therapy (p = 0.15).
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Figure 6. Mitral valve prolapse circulating miRNA signature robustness. (A) Scatter plot based on
the most statistically significant (p < 0.001) miRNAs: miR-150-5p, -451a, and -487a-3p. The red dots
represent healthy subjects (CTRL), while the blue dots represent the mitral valve prolapsed patients
(MVP). (B) Performances of the classification model on an independent test set in terms of accuracy,
specificity, sensitivity (i.e., recall), positive predictive value (PPV), negative predictive value (NPV;
i.e., precision), and the area under the receiving operator characteristic (AUC) curve.

Furthermore, considering the two MVP subgroups (fibro-elastic deficiency, FED and
Barlow’s disease, BW; for patients characteristics, see Table S2), differential analysis under-
lined that miR-150-5p represented the only miRNA statistically different between FED and
BW patients (Table 1).
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Table 1. miRNA expression levels in FED and BW patients.

FED vs. BW

miRNAs logFC p-value

miR-140-3p 0.12 0.74
miR-150-5p −1.2 0.03
miR-210-3p 1 0.1
miR-223-3p 0.29 0.39
miR-27a-3p 0.11 0.87
miR-30c-5p 0.22 0.56

miR-323a-3p −0.59 0.48
miR-340-5p −0.16 0.71
miR-361-5p −0.42 0.43
miR-451a −1.07 0.1

miR-487a-3p 0.41 0.6
BW: Barlow’s disease patients; FED: fibro-elastic deficiency patients; logFC: log2 fold change.

3. Discussion

To the best of our knowledge, this is the first study performed on human plasma
from MVP patients, showing a strong association between several circulating miRNAs and
MVP pathology. The myxomatous degeneration of the mitral valve is the most common
cause of mitral valve prolapse, which required surgical intervention when the prolapse
causes severe regurgitation and symptoms occur [8]. Echocardiography is the only clinical
reliable tool for MVP diagnosis, and circulating biomarkers could provide valuable insights
into MVP etiology as well as patient stratification. In this context, Deroyer et al. [31]
showed that apolipoprotein-A1 was an independent predictor of mitral regurgitation
(MR) severity. In addition, in a comparative proteomic study [17], the authors underlined
reduced plasma levels of haptoglobin, platelet basic protein, and complement component
C4b in the MVP patients with MR compared to matched control cases. However, the clinical
relevance is unclear, in part because most of the identified biomarkers had moderate AUC.
Recently, our group showed an altered systemic oxidative stress homeostasis as well as
increased osteoprotegerin (OPG) plasma levels in MVP patients [15]. In addition, in a
multivariable regression model combining OPG with oxidative stress markers, we were able
to discriminate MVP patients from healthy subjects with high accuracy and precision [16].
However, none of these biomarkers has a high specificity for the MVP pathology.

In the last years, microRNAs represent an emerging class of circulating biomarkers
widely studied in different pathological conditions including cardiovascular diseases [19–23].
Concerning MVP, a limited number of studies investigated circulating microRNAs but only
in animal models. In particular, Hulanicka et al. [24] analyzed the miRNAs expression in
the plasma of Dachshunds with myxomatous mitral valve disease (MMVD). They identified
downregulation of two miRNAs (cfa-miR-30b and cfa-miR-133b) that regulate connective
tissue growth factor, which is a key molecule in fibrotic processes linked to canine mitral
valve diseases development and progression. A second study reported that eleven miRNAs
were differentially expressed in the serum of dogs at a different stage of MMVD and
congestive heart failure (CHF) compared to normal dogs [25]. Interestingly, the miRNA
expression changes were greater as disease severity progressed. An additional study,
through next-generation sequencing, highlighted eight circulating miRNAs differentially
expressed between normal dogs and dogs with CHF secondary to MMVD [32].

Concerning human studies, Bulent Vatan et al. [26] evaluated plasma miRNA expres-
sion in patients with mitral chordae tendineae rupture (MCTR) without MVP. Researchers
have reported downregulation of twenty-two miRNAs in MCTR patients in comparison to
control subjects. In addition, the putative targets of these microRNAs were related to the
MCTR pathophysiology. Our study revealed a different miRNA plasma profile with nine
validated miRNAs differentially expressed between MVP patients and healthy subjects.
In both studies, miR-150-5p was significantly upregulated in patients compared to the
respective controls. However, miR-223-3p was statistically different between patients and
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controls but in the opposite direction. The differences are probably due to the patient
population enrolled in each study. Indeed, we took into consideration posterior MVP
patients who underwent surgical procedure due to severe regurgitation, regardless of
chordae rupture. Nonetheless, considering our results, we were able to develop a putative
circulating microRNA signature, taking into account three miRNAs (miR-150-5p, -451a,
and -487a-3p).

Another important issue that should be taken into account is the role of biome-
chanics in determining chordae rupture and anterior, posterior, or both leaflets prolapse.
Several studies have performed finite element analysis evaluating mechanical forces
interplay [33,34]. However, the correlation between these forces and circulating miRNAs
has not been investigated yet. Thus, future studies focusing on these particular aspects
could unveil biological insights directly linked to normal and pathological forces on the
mitral valve structure.

In our study, cell type enrichment analysis, based on validated miRNAs, recognized
specific cell populations belonging to different cardiovascular tissues, including the mitral
valve. In addition, the functional analysis underlined distinct pathways associated with
MVP. In particular, we identified well-characterized signaling pathways such as endothelial
cell migration and proliferation [15,35,36], cell response to oxygen reactive species [15],
and deregulation of the extracellular matrix homeostasis [37–39]. Instead, the newly identi-
fied erythroblastic oncogene B (ERBB) and janus kinase-signal transducer and activator
of transcription protein (JAK-STAT) signaling pathways could unveil new mechanisms
involved in MVP progression.

Based on echocardiographic findings, degenerative mitral valve disease can be classi-
fied into myxomatous MVP, alternatively known as Barlow’s disease (BW), and fibro-elastic
deficiency (FED). Chen et al. [40] identified a cluster of tissue miRNAs that differentially
express between BW and FED with putative target genes crucial for valvular extracellular
matrix homeostasis. Our results can indicate that distinct molecular mechanisms are impli-
cated in BW and FED pathophysiology and it could be identified in the systemic circulation.
Indeed, we found that FED and BW patients showed a different expression of miR-150-5p,
which is known to be involved in several processes, including proliferation [41–43].

This study has different limitations. First, in the validation phase, we have not evalu-
ated possible differences in terms of miRNA expression between FED and BW patients,
since the subject number in the two MVP subgroups is limited. Second, for the same reason,
we could not investigate if the identified classification model is able to distinguish BW
patients from FED. Lastly, our cohort is based on patients eligible for mitral valve surgery
with MVP and severe regurgitation. Thus, we did not assess if our miRNA signature is
able to identify patients with MVP and mild or moderate mitral regurgitation.

4. Materials and Methods
4.1. Patient Population

The study was approved by the Institutional Review Board and by the Ethical Com-
mittee of Centro Cardiologico Monzino (IRCCS) in accordance with the principles outlined
in the Declaration of Helsinki (1964). Written informed consent to participate in this study
was obtained from all the participants.

Preoperative inclusion criteria were the need for an elective, isolated surgical pro-
cedure, over 18 years of age, an ejection fraction of >30%, normal sinus rhythm, and no
history of atrial fibrillation. Exclusion criteria were the presence of a bicuspid aortic valve,
premature menopause and/or osteoporosis, prior aortic or mitral valve surgery, rheumatic
heart disease, endocarditis, active malignancy, chronic liver failure, calcium regulation
disorders (hyperparathyroidism, hyperthyroidism, and hypothyroidism), and chronic or
acute inflammatory states (sepsis, autoimmune disease, and inflammatory bowel disease).
Forty-three patients, requiring mitral valve replacement due to posterior MVP with severe
regurgitation, were enrolled in the study. In all patients, blood collection was performed
before coronary angiography. Age-matched CTRL (n = 34) with normal sinus rhythm, no
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electrocardiographic alterations, and no history of atrial fibrillation were screened from
those referred to Centro Cardiologico Monzino, IRCCS for cardiovascular health-screening
evaluation. Blood samples were collected at a scheduled visit. The demographic and
clinical features of the two study groups are listed in Table 2.

Table 2. Demographic and clinical variables of MVP patients and CTRL subjects.

Variables CTRL (n = 34) MVP (n = 43) p-Value

Age (years) 53.5 ± 9.4 54.3 ± 9.9 0.701
Male subjects, n (%) 16 (47) 34 (79) 0.004

BMI 25.2 ± 4.9 24.4 ± 3.3 0.390
Diabetes, n (%) 2 (6) - -

Hypertension, n (%) 5 (15) 16 (37) 0.039
Dysplidemia n (%) 15 (44) 19 (44) 1.000

Smokers 5 (15) 13 (30) 0.175
Total Cholesterol (mg/dL) 215.4 ± 45.9 202.5 ± 34.2 0.203

Triglycerides (mg/dL) 114.9 ± 50.6 102.4 ± 52.5 0.317
HDL (mg/dL) 65.3 ± 36.0 58.0 ± 13.5 0.315
LDL (mg/dL) 129.4 ± 38.5 124.3 ± 32.5 0.568

Drug Therapies

Antiplatelets, n (%) 2 (6) 6 (14) 0.291
Angiotensin II receptor blockers, n (%) 1 (3) 5 (12) 0.220

Angiotensin-converting enzyme
inhibitors, n (%) 1 (3) 13 (30) 0.002

Calcium channel blockers, n (%) 1 (3) 1 (2) 1.000
Beta-blockers, n (%) 3 (9) 13 (30) 0.026

Statins, n (%) 3 (9) 6 (14) 0.723

Echocardiographic data

LVEF (%) 62.5 ± 8.3 63.8 ± 6.2 0.465
Left Ventricular Diastolic Volume (mL) 96.8 ± 28.5 146.0 ± 52.5 <0.001
Left Ventricular Systolic Volume (mL) 37.0 ± 17.3 41.9 ± 16.2 <0.001

Left Atrial Area (cm2) 18.2 ± 3.9 28.0 ± 7.0 <0.001
PAPs 26.4 ± 3.7 34.5 ± 7.9 <0.001

EROA (cm2) - 0.5 ± 0.2 -
Values are mean ± SD or n (%). CTRL: healthy subjects; EROA: effective regurgitant orifice area; LVEF: left
ventricular ejection fraction; MVP: mitral valve prolapse patients; PAPs: pulmonary artery systolic pressure.

4.2. Blood Sampling

Peripheral blood samples were drawn from patients and healthy subjects while fasting
into tubes containing ethylenediaminetetraacetic acid (EDTA). Anti-coagulated blood was
centrifuged at 2000× g for 10 min at 4 ◦C within 15 min after being drawn. Plasma was
separated, and aliquots were stored at −80 ◦C until analysis.

4.3. TaqMan Human miRNA Card A Arrays

RNA extraction was performed from plasma using the Total RNA Purification Plus Kit
(Norgen Biotek Corp., Thorold, ON, Canada) according to the manufacturer’s instructions.
The TaqMan Human microRNA Card A Arrays version 3.0 (Thermo Fisher Scientific,
Waltham, MA, USA) was used for evaluating the expression of a total of 384 miRNAs. The
megaplex pool primers were used for reverse transcription (RT), pre-, and amplification
steps and performed according to the manufacturer’s protocol on a 7900HT Real-Time
PCR System (Thermo Fisher Scientific, Waltham, MA, USA). Then, 350 ng of RNA were
retro-transcribed with 40 cycles at 16 ◦C for 2 min, 42 ◦C for 1 min, and 50 ◦C for 1 s,
followed by incubation at 85 ◦C for 5 min. The pre-amplification was performed by a serial
incubation at 95 ◦C for 10 min, 55 ◦C for 2 min, 72 ◦C for 2 min, 12 cycles at 95 ◦C for 15 s
and 60 ◦C for 4 min, followed by incubation at 99.9 ◦C for 10 min. Finally, the samples were
loaded into the run plate and incubated at 50 ◦C for 2 min, 94.5 ◦C for 10 min, 40 cycles at
97 ◦C for 30 s, and 59.7 ◦C for 1 min.
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We filtered out miRNA that did not pass the quality controls. The excluded miRNAs
had one or more of the following features: low signal in linear phase; bad passive reference
signal (ROX); low quantification cycle (Cq) confidence; threshold cycle (Ct) algorithm
failed; exponential algorithm failed; and thresholding algorithm failed. In addition, we
considered only miRNAs that were expressed and passed the quality tests in all the samples.
miR-186-5p was used as a housekeeping gene. The expression value of each miRNA is
reported as log2 fold change (logFC) considering relevant the log2 fold change greater or
lower than 0.7 compared to healthy subjects and a p-value < 0.05.

4.4. Reverse Transcription and Real-Time PCR

Total RNA was converted into cDNA using a TaqMan Advanced miRNA cDNA Syn-
thesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) followed by an amplification step
according to the manufacturer’s protocol. This synthesis kit uses a universal reverse tran-
scription (RT) chemistry to prepare the cDNA template for use with TaqMan™ Advanced
miRNA Assays (Thermo Fisher Scientific, Waltham, MA, USA) for the detection and quan-
tification of mature miRNAs in biological samples. The specific assays’ identification (ID)
are reported in Table S3. qPCR was carried out on an ABI Prism 7900 HT (Thermo Fisher
Scientific, Waltham, MA, USA), according to the manufacturer’s instructions, and analysis
was performed using software SDS2.4 (Thermo Fisher Scientific, Waltham, MA, USA).
miR-186-5p was used as a housekeeping gene and the data were reported as logFC.

4.5. MiRNA–mRNA Target Prediction

To evaluate miRNA–mRNA interactions, we used CyTargetLinker [44], which is a
Cytoscape (v3.7.1) [45] plug-in that builds complex miRNA–mRNA association networks,
exploiting the ‘miRTarBase’ database [46]. To be as reliable and conservative as possible,
we discarded mRNA targets without “strong experimental evidence”.

4.6. Functional and Cell Type Enrichment Analyses

The predicted mRNA targets were fed into ClueGO [47], which is a Cytoscape app that
performs the function analysis on a pre-selected set of genes, exploiting the hypergeometric
test. The Gene Ontology Biological Processes (GO-BP) database has been selected as
the reference [48]. Finally, in order to assess which tissues and cell types are potentially
involved in the pathophysiology, the web application ‘EnrichR’ was used to perform
enrichment analysis, exploiting the ARCHS4 repository [49]. Pathways with an associated
p-value < 0.05 were deemed as significant.

4.7. Machine Learning Analysis

To assess the discriminative power of selected miRNAs, we implemented a supervised
machine learning analysis. First, we randomly split the dataset (43 MVP and 34 CTRL)
into two subsets: a balanced set (24 MVP and 25 CTRL), called the “learning dataset”,
and an “independent test set” (19 MVP and 9 CTRL). Then, we applied a 5-fold cross-
validation strategy to the learning dataset that was iteratively divided into training sets
(19 MVP and 20 CTRL), which were used to build a random forest classifier, and into
validation sets (5 MVP and 5 CTRL), which were used to test the classifier performance.
For each fold, the accuracy, specificity, sensitivity (i.e., recall), positive predictive value
(PPV), negative predictive value (NPV; i.e., precision), and the area under the receiving
operator characteristic (ROC) curve (AUC) were calculated for each validation set [50].
Finally, based on the highest AUC, we chose the best model (i.e., the best combination
of hyperparameters) that was successively tested on the independent test set, measuring
accuracy, specificity, sensitivity, PPV, NPV, and AUC [51]. The analysis was implemented
exploiting the ‘ROCR’, ‘caret’, ‘randomForest’, ‘car’, and ‘cluster’ R packages.
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4.8. Statistical Analysis

Statistical analysis was accomplished by implementing the Shapiro–Wilk test to assess
the normality of the data distributions and the two-tailed Student’s t-test in R environment
(http://www.R-project.org/) as well as in Prism (GraphPad 7). Differences were deemed
significant if the p-value was < 0.05. We developed the heat map performing an unsuper-
vised hierarchical clustering analysis based on validated miRNAs. The correlation distance
matrix was calculated to determine the clustering distance, and the hierarchical clustering
method was the ‘Average Linkage’.

5. Conclusions

To the best of our knowledge, this is the first study performed on human plasma
obtained from posterior MVP patients, showing a strong association between miRNAs
and MVP pathology. Further studies are required to understand if the identified signaling
pathways directly modulate the MVP pathophysiology. In addition, other studies are
needed to identify the possible role of circulating miR-150-5p in order to evaluate its causal
relationship with different MVP pathophysiology (FED and BW).

Taken together, these data (1) open new possibilities that could allow us to identify
new possible pharmacological targets to slow down or even halt MVP progression and
(2) indicate that circulating molecular signatures could be identified and possibly used in
clinical practice as a first-line, fast, and cheap screening tool for MVP patients’ identification.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/4/2102/s1, Supplementary Table S1. miRNAs differentially expressed in the screening
phase between MVP patients and healthy subjects. Supplementary Table S2. Demographic and
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Supplementary Figure S1. Quantitative reverse transcription polymerase chain reaction validation.
Supplementary Figure S2. Person’s correlation of the log2FCs for the validated miRNAs between the
screening and validation phases.
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