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CHERN NUMBERS OF UNIRULED THREEFOLDS

STEFAN SCHREIEDER AND LUCA TASIN

Abstract. In this paper we show that the Chern numbers of a smooth Mori fibre space

in dimension three are bounded in terms of the underlying topological manifold. We

also generalise a theorem of Cascini and the second named author on the boundedness

of Chern numbers of certain threefolds to the case of negative Kodaira dimension.

1. Introduction

One of the most basic numerical invariants of a compact complex manifold are its Chern

numbers. While these numbers depend only on the topological type of the complex

structure of the tangent bundle, they are in general not invariants of the underlying

topological manifold, but really depend on the complex structure. In fact, answering a

question of Hirzebruch from 1954, all linear combinations of Chern and Hodge numbers

which are topological invariants of smooth complex projective varieties have recently

been determined in [9, 10, 11].

Generalising Hirzebruch’s question, Kotschick asked [8] (see also [12]) whether the

topology of the underlying smooth manifold determines the Chern numbers of smooth

complex projective varieties at least up to finite ambiguity. In [19], we have shown that in

dimension at least four, this question has in general a negative answer. That is, there are

smooth real manifolds that carry infinitely many complex algebraic structures such that

the corresponding Chern numbers are unbounded, except for cn, c1cn−1 and c
2
2 which are

known to be bounded (see [14] for the non-trivial one c1cn−1). This result left however

open the case of threefolds, where it remains unknown whether c31 is determined up to

finite ambiguity by the underlying smooth manifold.

In [2], Cascini and the second named author started to investigate the boundedness

question for Chern numbers via methods from the minimal model program, see also

[16, 20] for further developments. In dimension three, the approach in [2] is motivated by

the Miyaoka–Yau inequality, which implies that for a minimal smooth complex projective

threefold of non-negative Kodaira dimension, c31 can be bounded in terms of the Betti

numbers of X , see e.g. [20, Proposition 9]. This observation makes it natural to approach

the boundedness of c31(X) by trying to bound the effect on c31(X) of the steps in the

minimal model program for X . This leads to a positive answer for the boundedness
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2 STEFAN SCHREIEDER AND LUCA TASIN

question for many smooth projective threefolds of non-negative Kodaira dimension whose

minimal model program is a composition of blow-downs to points and smooth curves in

smooth loci, see [2, Corollary 1.5].

In this paper we focus on the case of threefolds of negative Kodaira dimension. The

main difficulty that we face in this case is that the aforementioned Miyaoka–Yau inequal-

ity, which was essential for the case of non-negative Kodaira dimension, does not hold

any longer. It is also known by examples of LeBrun [13], that the boundedness does not

hold in the non-Kähler case. Nonetheless, for any smooth Kähler threefold X we can

run a minimal model program thanks to [6, 7]. If X is uniruled then we arrive at a Mori

fibre space Y → B, i.e. a Kähler threefold Y with at most terminal singularities together

with a morphism of relative Picard rank one with connected fibres to a complex Kähler

variety B of smaller dimension whose general fibre is Fano.

The first result of this paper is the following.

Theorem 1. Let (Xi)i≥0 be a sequence of Mori fibre spaces, where Xi are smooth Kähler

threefolds. If each Xi is homeomorphic to X0, then the sequence of Chern numbers c31(Xi)

is bounded.

The above result should be compared to the fact that all known examples of sequences

of homeomorphic varieties with unbounded Chern numbers are Mori fibre spaces, and

in fact projective bundles (see [19]). We therefore believe that together with the afore-

mentioned results from [2], the above theorem puts forward strong evidence for the

conjecture that the Chern numbers of smooth projective threefolds are determined up to

finite ambiguity by the underlying smooth manifold.

If X → B is a Mori fibre space and X is a smooth Kähler threefold, then there are

three main cases to consider, depending on the dimension of B. If B is a point, then

X is a Fano variety and we conclude because Fano varieties of fixed dimension form a

bounded family. If B is a curve, then it is smooth projective and X is also projective.

Since the Pontryagin classes are up to torsion homeomorphism invariants by Novikov’s

theorem [17], [20, Proposition 26] proves the above theorem in case all but finitely many

of the Xi are Mori fibre spaces over points or curves. Using Novikov’s theorem [17] once

again, Theorem 1 thus follows from the following more precise result about Mori fibre

spaces over surfaces, where we denote by H∗
tf(X,Z) the quotient of H∗(X,Z) by the

subgroup of all torsion classes.

Theorem 2. Let (Xi)i≥0 be a sequence of smooth Kähler threefolds admitting a conic

bundle structure fi : Xi
//Si of relative Picard number 1 over a smooth Kähler surface

Si. If there is an isomorphism of graded rings H∗
tf(Xi,Z) ≃ H∗

tf (X0,Z) which respects

the first Pontryagin classes, then the sequence of Chern numbers c31(Xi) is bounded.
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In view of Theorem 1, it is therefore natural to wonder if we can also bound the Chern

numbers of certain threefolds of negative Kodaira dimension which are not necessarily

Mori fibre spaces themselves. Our next result achieves this by generalising [2, Corollary

1.5] to the case of negative Kodaira dimension. To state it, recall that for any smooth

complex projective threefold X , there is a cubic form FX on H2(X,Q), given by cup

product. For technical reasons, we will assume that the discriminant ∆FX
of the cubic

form is non-zero.

Theorem 3. Let X be a smooth complex projective threefold which is uniruled and let FX

be its associated cubic. Assume that ∆FX
6= 0 and that there exists a birational morphism

f : X → Y onto a Mori fibre space Y , which is obtained as a composition of divisorial

contractions to points and blow-downs to smooth curves in smooth loci.

Then there exists a constant D depending only on the topology of the 6-manifold un-

derlying X such that

|K3
X | ≤ D.

A major step in proving Theorem 3 is Proposition 8 (cf. [2, Theorem 1.3(2)]), where

we show that in the assumptions of Theorem 3, most of the topological invariants of Y

are determined (up to finite ambiguity) a priori by the smooth manifold underlying X .

It would be interesting to understand to what extend this is true in general (see [4] for

the case of Betti numbers):

Question 4. Let X be a smooth complex projective threefold with cubic form FX and first

Pontryagin class p1(X). Let P be the set of pairs (FY , p1(Y )), taken up to isomorphism,

such that there exists an MMP X 99K Y . Is the set P determined by the pair of invariants

(FX , p1(X)) of X up to finite ambiguity?

1.1. Conventions. All manifolds are closed and connected. A Kähler manifold is a

complex manifold which admits a Kähler metric. For any (Kähler) manifold X , we

denote by H∗
tf (X,Z) the quotient H∗(X,Z)/H∗(X,Z)tors, where H

∗(X,Z)tors denotes

the torsion subgroup of H∗(X,Z).

2. Mori fibre spaces over surfaces

The starting point of our investigation is the following lemma.

Lemma 5. ([21, Sec. 7.1]) Let f : X → S be a Mori fibre space such that X is a smooth

projective threefold and S is a surface. Then

(i) f : X → S is a standard (i.e. relative Picard number 1) conic bundle and S is

smooth;
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(ii) the discriminant D ⊂ S of f is either empty or a reduced curve with at worst

ordinary double points;

(iii) e(X) = 2(e(S)− pa(D) + 1), b1(X) = b1(S) and b3(X) = 2(b1(X) + pa(D)− 1);

(iv) D ≡ −f∗K2
X/S and −4KS ≡ f∗K

2
X +D.

We will also use the following lemma.

Lemma 6. Let f : X → S be a Mori fibre space such that X is a smooth projective

threefold and S is a surface. Then,

f∗p1(X) ≡ −3D,

where p1(X) is the first Pontryagin class of X and D ⊂ S denotes the discriminant curve

of f .

Proof. Since S is smooth projective by Lemma 5, the Néron–Severi group of S is gener-

ated by very ample curves. Hence, it suffices to compute the intersection product with a

general smooth projective curve C ⊂ S. The preimage R := f−1(C) is then the blow-up

of a minimal ruled surface over C in C.D many points. The normal bundle of R in X is

given by NR/X = f ∗OS(C)|R. Since TX |R = TR ⊕NR/X , we get

(1 + c1(X)|R + c2(X)|R)(1− c1(NR/X) + c21(NR/X)) = 1 + c1(R) + c2(R).

Hence, using OX(R) = f ∗OS(C), we get

f∗c2(X).C = c2(X).R

= c2(X)|R

= c2(R)− c21(NR/X) + c1(NR/X)c1(X)|R

= c2(R)− f ∗OS(C)
3 + f ∗OS(C)

2c1(X)

= 2− 4g(C) + 2 + C.D + C2 · c1(P
1)

= −2KS.C − 2C2 + C.D + 2C2

= −2KS.C + C.D.

By Lemma 5, f∗c
2
1(X) ≡ −4KS −D. Using p1 = c21 − 2c2, we get

f∗p1(X).C = f∗c
2
1(X).C − 2f∗c2(X).C

= −4KS.C −D.C + 4KS.C − 2D.C

= −3D.C,

which proves the lemma. �
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Proof of Theorem 2. By [15, Theorem 1.1], any standard conic bundle f : X → S, where

X is a smooth Kähler threefold, has an algebraic deformation. To bound K3
Xi

it thus

suffices to assume that Xi and Si are projective for any i.

By assumptions, there is an isomorphism H2
tf (Xi,Z) ≃ H2

tf(X0,Z) which respects the

trilinear forms given by cup products. We use this isomorphism to identify degree two

cohomology classes of Xi with those of X0 (up to torsion). Using Poincaré duality, we

further identify classes of H4
tf(Xi,Z) with linear forms on H2

tf (Xi,Z) ≃ H2
tf(X0,Z).

The codimension one linear subspace fi
∗P(H2(Si,Q)) of P(H2(X0,Q)) is contained in

the cubic hypersurface {α | α3 = 0}. Passing to a suitable subsequence we can therefore

assume that

f ∗
i H

2(Si,Q) ⊂ H2(X0,Q)

does not depend on i. Let ℓi ∈ H4
tf (X0,Z) be the class of a fibre of fi. The linear form

determined by this class onH2(X0,Q) has kernel f ∗
i H

2(Si,Q), and so ℓi·Q is independent

of i. Since ℓi is an integral class with KXi
.ℓi = −2, we may after possibly passing to

another subsequence assume that ℓi = ℓ does not depend on i.

Since the natural cup product pairing on H2(Si,Q) can be recovered from the pairing

f ∗
i H

2(Si,Q)× f ∗
i H

2(Si,Q) // ℓQ,

we get that the pairing on H2(Si,Q) is determined by the cubic form on H2(X0,Q) and

so it does not depend on i.

Since f ∗
i H

2(Si,Q) ⊂ H2(X0,Q) does not depend on i, the same holds for the homo-

morphism

ψi : H
2(Si,Q) //Q, α ✤

// p1(Xi).f
∗
i α

By the projection formula, we have p1(Xi).f
∗
i α = (fi)∗p1(Xi).α. Lemma 6 thus yields

ψi(α) = −3Di.α,

where Di is the discriminant curve of fi. This shows that the linear form determined

by [Di] ∈ H2(Si,Q) on H2(Si,Q) does not depend on i. Since the natural pairing

H2(Si,Q) ×H2(Si,Q) → Q is perfect by Poincaré duality, we get that the class [Di] ∈

H2(Si,Q) does not depend on i. Using again the fact that we know the pairing on

H2(Si,Q), we finally get that the self-intersection D2
i does not depend on i.

For any class y ∈ H2(X0,Q), which does not lie in fi
∗H2(Si,Q), we have

H2(X0,Q) = fi
∗H2(Si,Q)⊕ y ·Q and H4(X0,Q) = fi

∗H2(Si,Q) · y ⊕ ℓ ·Q.

In particular, y2 = uy + λℓ for some λ ∈ Q and u ∈ fi
∗H2(Si,Q). Replacing y by a

suitable multiple of y − 1
2
u, we may thus assume that

y.ℓ = −2 and y2 ∈ fi
∗H4(Si,Q) = ℓ ·Q.
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For any Xi, we then get

KXi
= y + f ∗

i zi

for some zi ∈ H2(Si,Z). Since

K3
Xi

= y3 − 6z2i ,

it suffices to prove the boundedness of z2i .

Since y · ℓ = −2, the pushforward of 2yf ∗
i zi via fi yields −4zi. Lemma 5 therefore

implies that

(fi)∗K
2
Xi

≡ −4zi ≡ −4KSi
−Di.

Hence,

16z2i = 16K2
Si
+ 8KSi

Di +D2
i .

Since D2
i does not depend on i and K2

Si
is bounded in terms of the Betti numbers of Si,

the statement follows from the fact that pa(Di) is bounded by Lemma 5. �

3. Uniruled threefolds

Before we turn to the proof of Theorem 3, we state few preliminary facts about terminal

Q-factorial threefolds.

3.1. Invariant triples. Let X be a terminal Q-factorial threefold.

There exists a well-defined class c2(X) ∈ H2(X,Z)∨ = Hom(H2(Z,Z),Z) obtained in

the following way (see page 411 in [22]). For any α ∈ H2(X,Z) set

c2(X).α = c2(X̃).f ∗α,

where f : X̃ → X is a resolution of X .

We then define the Pontryagin class p1(X) ∈ H2(X,Q)∨ in terms of c1(X) and c2(X)

in the same way as in the smooth case, where c1(X) is the class of −KX in H2(X,Q):

p1(X) := c1(X)2 − 2c2(X).

We also associate to X its cubic form FX ∈ S3H2(X,Z)∨, which is induced by the cup

product onH2(X,Z). In this way we can associate toX the triple (H2
t.f.(X,Z), FX , p1(X)).

When X is smooth, this triple encodes many geometrical properties of the 6-manifold

underlying X (see for instance [18] and [1]).

Definition 7. We call (H2
t.f.(X,Z), FX , p1(X)) the invariant triple of X. Two triples

(H,F, p) and (H ′, F ′, p′), where H (resp. H ′) is a free abelian group, F ∈ S3H∨ (resp.

F ∈ S3H ′∨) is a cubic form and p is a linear form on H⊗Q (resp. p′ is a linear form on

H ′⊗Q) are isomorphic if there exists a linear isomorphism T : H → H ′ which identifies

F with F ′ and its Q-extension identifies p with p′.
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3.2. Terminal singularities. We now recall few known facts about terminal singulari-

ties in dimension three.

Let (X, p) be the germ of a three-dimensional terminal singularity. The index of p is

the smallest positive integer r such that rKX is Cartier. It follows from the classification

of terminal singularities, that there exists a deformation of (X, p) into a space with h ≥ 1

terminal singularities p1, . . . , ph which are isolated cyclic quotient singularities of index

r(pi) (for details see [22, Remark 6.4]). The set {p1, . . . , ph} is called the basket B(X, p)

of singularities of X at p. As in [5, Section 2.1], we define

Ξ(X, p) =

h
∑

i=1

r(pi).

Thus, if X is a projective variety of dimension 3 with terminal singularities and SingX

denotes the finite set of singular points of X , we may define

Ξ(X) =
∑

p∈SingX

Ξ(X, p).

3.3. Proof of Theorem 3. The following result is interesting by itself and leads natu-

rally to the problem of understanding what kind of topological invariants are determined

up to finite ambiguity during a running of an MMP, see Question 4.

Proposition 8. [Cf. [2, Theorem 1.3(2)]] Let H be a finitely generated free abelian group

of rank n + 1, F ∈ S3H∨ be a cubic form such that ∆F 6= 0 and p a linear form on H.

Consider the set P of invariant triples (H ′, F ′, p′) up to isomorphism, such that there

exist

(1) a terminal Q-factorial threefold X with associated triple (H,F, p);

(2) a terminal Q-factorial threefold Y with associated triple (H ′, F ′, p′);

(3) a birational morphism f : X → Y which is a divisorial contraction to a point or

to a smooth curve contained in the smooth locus of Y .

Then the set P is finite.

Proof. Note that the proof of this case works also for ∆F = 0. Consider the set A of

primitive elements α ∈ H such that α is proportional to the exceptional divisor E of

some divisorial contraction to a point f : X → Y as in the statement. The elements

of A are points of rank 1 for the Hessian of the cubic form F and so they are finite

by [2, Proposition 3.3]. It follows from [2, Proposition 4.7] that for any sub-module

H ′ = f ∗H2
t.f.(Y,Z) →֒ H there is α ∈ A such that α2.H ′ = 0 and such that the index of

H ′⊕Zα in H is at most rn, where r = |α3|. This implies that for all possible contractions

to points f : X → Y as in the statement, the inclusion f ∗H2
t.f.(Y,Z) →֒ H2

t.f.(X,Z) is

determined up to finite ambiguity. This determines also F ′ up to finite ambiguity just

restricting F to H ′.
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To prove the finiteness of p′ consider a divisorial contraction to a point f : X → Y

and write

c1(X) = f ∗c1(Y )− cE,

where c is the discrepancy of the exceptional divisor E. Since c2(X) = f ∗c2(Y ) we have

that

p1(X) = f ∗p1(Y )− 2cf ∗c1(Y ).E + c2E2

and so p1(Y ) is given by the restriction of p1(X) to f ∗H2
t.f.(Y,Q). This means that also

p′ is determined up to finite ambiguity and we are done.

We now look at divisorial contractions to curves. Consider E the set of pairs (E,H ′)

where E is a primitive element in H and H ′ ⊂ H is a submodule such that

H = Z[E]⊕H ′

and the cubic F assumes the form

F = ax30 +
n

∑

i=1

bix
2
0xi + F ′(x1, . . . , xn)(1)

with respect to any basis E, α1, . . . , αn with α1, . . . , αn ∈ H ′.

By [2, Thm. 3.1] there are only finitely many possible non-equivalent reduced forms for

F . In particular, up to finite ambiguity, we can assume that the coefficients of F in the

expression (1) are fixed. Since the isotropy group of a cubic with non-zero discriminant

is finite ([18, Thm. 4]), we deduce that E is finite.

If f : X → Y is a divisorial contraction which contracts a divisor E to a smooth curve

C in the smooth locus of Y , then (see [18, Proposition 14] and [2, Proposition 4.8])

H2(X,Z) = Z[E]⊕ f ∗H2(Y,Z)

and

p1(X) = f ∗(p1(Y )) + E2 − 2f ∗(C).

Recalling that E2.f ∗(α) = −C.α for any α ∈ H2(Y,Z) we deduce that p1(Y ) is

determined by p1(X), E2 and by the inclusion f ∗H(Y,Z) →֒ H2(X,Z) and we conclude

using the finiteness of E . �

Proposition 9. Let (Xi)i≥0 be a sequence of terminal Q-factorial threefolds admitting

a conic bundle structure fi : Xi
//Si of relative Picard number 1 over a surface Si.

Assume that

(1) the Euler characteristics χ(Xi,OXi
) are bounded and b2(Xi) = 2;

(2) the invariant triples of X0 and Xi are isomorphic for any i;

(3) the sequence Ξ(Xi) is bounded.

Then the sequence of Chern numbers c31(Xi) is bounded.
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Proof. Let h be an ample generator of Pic(S0) and let x ∈ H2(X0,Z) be a primitive class

proportional to f ∗
0h. Then x

3 = 0, x2 6= 0 and letting y = c1(X0) we can write

H2(X0,Q) = x ·Q⊕ y ·Q.

From now on we will use the isomorphism H2(Xi,Q) ≃ H2(X0,Q) to think about

x and y as basis elements of H2(Xi,Q). Note that x2y 6= 0 since already x3 = 0 and

x2 6= 0. Moreover, the space of elements in H2(X0,C) with zero cube is a union of three

lines (through 0) and so we may assume without loss of generality that for each i, the

pullback of the generator of H2(Si,Z) to Xi is a multiple of x. In particular, x2 is a

multiple of the class of the general fibre of Xi
//Si for all i.

We have

c1(Xi) = ai · x+ bi · y,

for some ai, bi ∈ Q. Since Ξ(Xi) is bounded, there is a positive integer r such that rKXi

is Cartier for any i. In particular, rai, rbi ∈ Z. Since KXi
.C = −2 where C is a general

fibre, we deduce that the sequence of bi is bounded.

We are going to bound the sequence of ai. By the singular version of Riemann–Roch

[22, Corollary 10.3] we get

48χ(Xi,OXi
) = c1(Xi).p1(Xi)− c1(Xi)

3 + Ti

where

Ti =
∑

pα

(

r(pα)−
1

r(pα)

)

,

and the sum runs over all the points of all the baskets of Xi. Note that Ti is a bounded

sequence since Ξ(Xi) is bounded. This implies that

48χ(Xi,OXi
) = −3a2i bix

2y + aix(2p1(Xi)− 3b2i y
2) + b3i y

3 + biyp1(Xi) + Ti

and so the ai are also bounded, since bix
2y 6= 0 and χ(Xi,OXi

) are bounded. �

Proof of Theorem 3. Let f : X → Y be the birational contraction as in Theorem 3.

By the proof of [2, Corollary 1.5], we know that |K3
X − K3

Y | is bounded by a constant

depending only on the Betti numbers of X and on the cubic form FX . To conclude we

need to bound K3
Y in terms of the topology of X .

Since Y is a Mori fibre space and ∆FY
6= 0, we deduce that either Y is a Fano variety or

Y has a conic bundle structure over a surface with second Betti number 1 (otherwise there

would be an element in H2(X,C) with square zero, which would imply that {F = 0}

has a singular point and so ∆FY
= 0). Since terminal Fano threefolds are bounded, we

are left with the conic bundle case.

Proposition 8 assures us that the invariant triple of Y is determined up to finite

ambiguity by the invariant triple of X . Moreover, the Euler characteristic χ(Y,OY ) =
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χ(X,OX) is bounded in terms of the Betti numbers of X and by [3, Prop. 3.3] we

also have a bound for Ξ(Y ) depending only on b2(X). The result follows then from

Proposition 9. �
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[6] A. Höring and T. Peternell, Mori fibre spaces for Kähler threefolds, J. Math. Sci. Univ. Tokyo 22

(2015), no. 1, 219–246.
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