Multi-level Meta-reasoning with
Higher-Order Abstract Syntax

Alberto Momigliano and Simon J. Ambler

Department of Mathematics and Computer Science, University of Leicester,
Leicester, LE1 TRH, U.K.

A.Momigliano@mcs.le.ac.uk, S.Ambler@mcs.le.ac.uk

Abstract. Combining Higher Order Abstract Syntax (HOAS) and (co)-
induction is well known to be problematic. In previous work [I] we
have described the implementation of a tool called Hybrid, within Is-
abelle HOL, which allows object logics to be represented using HOAS,
and reasoned about using tactical theorem proving and principles of
(co)induction. Moreover, it is definitional, which guarantees consistency
within a classical type theory. In this paper we describe how to use it
in a multi-level reasoning fashion, similar in spirit to other meta-logics
such FOXNT and Twelf. By explicitly referencing provability, we solve
the problem of reasoning by (co)induction in presence of non-stratifiable
hypothetical judgments, which allow very elegant and succinct specifica-
tions. We demonstrate the method by formally verifying the correctness
of a compiler for (a fragment) of Mini-ML, following [I0]. To further ex-
hibit the flexibility of our system, we modify the target language with
a notion of non-well-founded closure, inspired by Milner & Tofte [16]
and formally verify via co-induction a subject reduction theorem for this
modified language.

1 Introduction

Higher Order Abstract Syntax (HOAS) is a representation technique, dating
back to Church, where binding constructs in an object logic are encoded within
the function space provided by a meta-language based on a A-calculus. This
specification is generic enough that sometimes HOAS has been identified [12]
merely with a mechanism to delegate a-conversion to the meta-language. While
this is important, it is by no means the whole story. As made clear by the LF
and AProlog experience, further benefits come when, for an object logic type i,
this function space is taken to be i = i, or a subset of it. Then object-logic sub-
stitution can be rendered as meta-level 8-conversion. A meta-language offering
this facility is a step up, but there is still room for improvement. Experiments
such as the one reported in [I7] suggest that the full benefits of HOAS can only
be enjoyed when it is paired with hypothetical and parametric judgments. A
standard example is the full HOAS encoding of type-inference in which the type
environment of a term is captured abstractly without any reference to a list of
variable/type pairs. Though this is appealing, such judgments are generally not

A.D. Gordon (Ed.): FOSSACS 2003, LNCS 2620, pp. 375-B91] 2003.
© Springer-Verlag Berlin Heidelberg 2003

376 Alberto Momigliano and Simon J. Ambler

inductive since they may contain negative occurrence of the predicate being de-
fined. This raises the question of how we are going to reason on such encodings,
in particular, are there induction and case analysis principles available?

A solution that has emerged in the last five years is that specification and
(inductive) meta-reasoning should be dealt with in a single system but at differ-
ent levels. One such meta-logic is Miller & McDowell FONAT [T4]; it is is based
on higher-order intuitionistic logic augmented with definitional reflection [8] —
to provide support for case analysis — and induction on natural numbers. Con-
sistency is ensured by cut-elimination. Inside this meta-language they develop a
specification logic (SL) which in turn it is used to specify the object-logic (OL)
under study. This partition solves the problem of meta-reasoning in the pres-
ence of negative occurrences, since hypothetical judgments are now encapsulated
within the OL and therefore not required to be inductive. The price to pay is
this additional layer where we explicitly reference provability and the necessity
therefore of a sort of meta-interpreter (the SL logic) to access it.

Very recently, Felty [0] has suggested that, rather than implementing an
interactive theorem prover for FOAAI from scratch, the latter can be simulated
within an existing system (Coq in that case); in particular, definitional reflection
is mimicked by the elimination rules of inductive types. Nevertheless, this is
not quite enough, as reasoning by inversion crucially depends on simplifying in
the presence of constructors. Since some of the higher-order ones may be non-
inductive, Felty recurs to the assumption of a set of axioms stating the freeness
and extensionality properties of constructors in the given signature. Under those
conditions the author shows, in the example of the formalization of subject
reduction for Mini-ML, how it is possible to replicate, in an well-understood and
interactive setting, the style of proofs typical of FOXNY; namely the result is
proven without “technical” lemmas foreign to the mathematics of the problem.

In previous work [1] we have described the implementation of a higher-order
meta-language, called Hybrid, within Isabelle HOL, which provides a form of
HOAS for the user to represent object logics. The user level is separated from
the infrastructure, in which HOAS is implemented definitionally via a de Bruijn
style encoding.

In this paper we adopt most of Felty’s architecture, with the notable differ-
ence of using Hybrid rather than Coq as the basic meta-language. A graphical
depiction of the proposed architecture is in Figure [l Moreover, we take a further
departure in design: we suggest to push at the OL only those judgments which
would not be inductive, and to leave the rest at the Isabelle HOL level. We claim
that this framework has several advantages:

— The system is more trustworthy: freeness of constructors and more impor-
tantly extensionality properties at higher types are not assumed, but proven
via the related properties of the infrastructure, see Subsection Bl

— The mixing of meta-level and OL judgments makes proofs more easily mech-

anizable and allows us to use co-induction which is still unaccounted for in
a logic such as FONAN

Multi-level Meta-reasoning with Higher-Order Abstract Syntax 377

Syntax: lam z. F z, fix . F x...

)) Semantics: typing I' - F : T,
‘ Object logic compilation n - F « e
))) Sequent calculus: @ >, G,
Specification logic prog clauses, induction on height
) Meta-language: “Datatype”
Hybrid ’ for a A-calculus

’ Tactics/Simplifier

(Isabelle/Hol HOL (co)induction

Fig. 1. Multi-Level Architecture

— More in general, there is a fruitful interaction between (co)-induction prin-
ciples, Isabelle HOL datatypes, classical reasoning and hypothetical judg-
ments, which tends to yield more automation than in a system such as Coq.

Our approach is also comparable with Twelf [21] (see Section[d]), but is has a low
mathematical overhead, as it simply consists of a package on top of Isabelle HOL.
In a sense, we could look at Hybrid as a way to “compile” HOAS meta-proofs,
such as Twelf’s, into the well-understood setting of higher-order logic.

We demonstrate the method by formally verifying the correctness of (part
of) a compiler for a fragment of Mini-ML, following [T0]. To further exhibit the
flexibility of our system, we modify the target language with a notion of non-
well-founded closure, inspired by Milner & Tofte’s paper [16] and formally verify,
via co-induction, a subject reduction theorem for this new language.

The paper is organized as follows: in the next Section [Z] we introduce at the
informal level the syntax and semantics of our case study. Section [3 recalls some
basics notion of Hybrid and its syntax-representing techniques. In Section E] we
introduce the multi-level architecture, while Section Blis the heart of the paper,
detailing the formal verification of compiler correctness. We conclude with a few
words on related and future work (Section [l and [7]).

We use a pretty-printed version of Isabelle HOL concrete syntax; a rule
(a sequent) with conclusion C' and premises Hj...H, will be represented
as [Hy;...;H, | = C. An Isabelle HOL type declaration has the form
s :i:[ty,...t,] = t. Isabelle HOL connectives are represented via the usual log-
ical notation. Free variables (upper-case) are implicitly universally quantified.
The sign “==" (Isabelle meta-equality) is used for equality by definition, /\ for
Isabelle universal meta-quantification. The keyword M C-Theorem denotes a
machine-checked theorem, while (Co)Inductive introduces a (co)inductive rela-
tion in Isabelle HOL. We have tried to use the same notation for mathematical
and formalized judgments. To facilitate the comparison with the Hannan & Pfen-
ning’s approach, we have used the same nomenclature and convention as [I8].

378 Alberto Momigliano and Simon J. Ambler

2 The Case Study

Compiler verification can be a daunting task, but it is a good candidate for
mechanization. Restricting to functional languages (see [I1] for issue related to
compilation of Java for example), some first attempts were based on denota-
tional semantics [3,[T3]. Using instead operational semantics has the advantage
that the meaning of both high and low level languages can be expressed in a
common setting. In particular, operational semantics and program translations
can be represented using deductive systems. This approach started in . Other
papers, for example [9], have explored aspects of higher-order encoding of ab-
stract machines and compilation and [I0] contains the first attempt to carry
formal verification of compiler correctness in LF. Only recently the notion of
regular world introduced in [21] provides a satisfying foundation for the theory
of mode, termination and coverage checking [19], which has been developed to
justify using LF for meta-reasoning.

We follow the stepwise approach to compilation in [10]; however, for reason
of space, we limit ourselves to the verification of the correspondence between
the big-step semantics of a higher-order functional language and the evaluation
to closure of its translation into a target language of first-order expressions.
For interest, though, we add a co-inductive twist due to Milner & Tofte [T6] in
the treatment of fix points, which is analogous to the semantics of letrec in the
original formulation of Mini-ML.

The language we utilize here is a strict lambda calculus augmented with a
fix point operator, although it could be easily generalized to the rendition of
Mini-ML in [1§]. This fragment is sufficient to illustrate the main ideas without
cluttering the presentation with too many details. The types and terms of the
source language are given respectively by:

Types T =:=1| 71 arrow T
Terms e:=x |lamz.e|le@e' |[fixz. e

The rules for call-by-value operational semantics (e |} v) and type inference (I" -
e : 7) are standard and are omitted — see Subsection 2] for the implementation.
The usual subject reduction for this source language holds.

2.1 Compilation

We start the compilation process by translating the higher-order syntax into a
first-order one. Terms are compiled into a simple calculus with explicit substi-
tutions, where de Bruijn indexes are represented by appropriate shifting on the
1 numeral:

dB Terms F :=1| F1 |lam’ F | F @ F' | fix' F

1 A partial verification via first-order encoding can be found in [2.

Multi-level Meta-reasoning with Higher-Order Abstract Syntax 379

Then we introduce environments and closures:

Environments nu=-|mqW |n+ F
Values W :={n, F'}

In this setting the only possible values are closures, yet the presence of fix-
points requires environments to possibly contain unevaluated expressions, via
the environment constructor ‘+’. We will see in Subsection how this can be
refined using a notion of non-well-founded closure.

The operational semantics of this language (judgment n H F < W) uses
environments to represent mappings of free variables to values and closures for
terms whose free variables have values in the environment. We remark that due
to the presence of unrestricted fix points, the rule fev_17T in not just a look-up,
but requires the evaluation of the body of the fix point.

nkEF—W g
———————fev.1 — ev_]
pWhEl—W nW'EFl—W
nkF—W N nEF—W N
—fev_.l ; fev_1
n+FE1—W n+FFFl—W
n+fix’ FFF—W
fev_lam’ fev_fix’
nklam’ F — {n,lam’ F} nkfix’ F—W

nk Fy — {7,]Jam’ F}} Nk Fy— W, niWak Fl =W
nEF @ Fy—W

fev_@Q’

The judgment n - F < e (Figure[d) elegantly accomplishes the translation
to the dB language using parametric and hypothetical judgments for the binding
constructs: for the fix point, we assume we have extended the environment with
a new expression parameter f;in the function case, the parameter w ranges over
values and the judgment is mutually recursive with value translation, W < wv.
As remarked in [18], this translation is total, but can be non-deterministic, when
1 and e are given and F' is computed.

The verification of compiler correctness can be graphically represented as:

e “— v

nkEF —e W s

nkEF—W

We discuss the statement and the proof once we provide the mechanization in
Section

380 Alberto Momigliano and Simon J. Ambler

U _u
wE T nkfea
nwkF «—e n+fFF—e
tr_lam™*" tr_fix/ @
nklam' F < lam z. e nkfix Fofixa. e
Wee nkF<e
—_— Y tr1 —tr 7
mWhE1—e mWhEFl—e
FF«— FE nkEF e
nitr_l'*‘ —tr_TJr
n+FF1l<e 7]+F/|—FT<—>€
nkEF < e nk Fy < ez nl—lam/F<—>lamx.e
tr_app vtr_lam
Nk F Q Fy < e@ ey {n,lam’F}@lamx.e

Fig. 2. Translation to modified dB terms and values

2.2 Compilation via Non-Well-Founded Closures

In order to illustrate the flexibility of our approach we now depart from [I8]
and draw inspiration from [16] to give a different and simplified treatment of fix
points. First, we take up the SML-like restriction that the body of a fix point is
always a lambda. Then the idea is simply to allow a fix point to evaluate to a
“circular” closure, where, intuitively, the free variable points to the closure itself.
This means swapping the following rule for fev_fix’ and dropping rules fev_1+
and fev_]T. The analogous rules in the translation are also dropped.

cl = {(n;cl),lam’ F}
n 'k fix' (lam’ F) < cl

fev_fix’ *

This amounts to a non-well-founded notion of closure. Other versions are possi-
ble, viz. recursive environments, see [4] for a discussion.

To exemplify the style of co-inductive reasoning entailed, we adapt the proof
of subject reduction for closures in [16]. First we introduce typing for dB terms:

A F - At F T
—ftp_1 7Tftp_T ftp_lam’
Ark1:7 AT R T AFlam’ F : 7 arrow 7/
AirHE T AF Fy 7' arrow 7 AFFy: 7
= fpfiX ftp @’
AFfix' F:r AFF,Q Fy:7

Typing of closures can be seen as taking the greatest fix point of the following
rules, where we refer the reader to ibid. for motivation and examples:

Multi-level Meta-reasoning with Higher-Order Abstract Syntax 381

AFlam’ F: 7 n: A W:r n: A
tpc etp- etp;
{n,Jam’ F} : 7 . (W) (A7)

We note the “circularity” of rule tpc and etp;, where the former requires well-
typedness of value environment w.r.t. type environment.

Theorem 1 (Subject reduction for closures [16]).
Letn! A. Ifnt F—W and AFF:7, then W : 7.

3 Hybrid Infrastructure

We briefly recall that the theory Hybrid [I] provides support for a deep em-
bedding of higher-order abstract syntax within Isabelle HOL. In particular, it
provides a model of the untyped A-calculus with constants. Let con denote a
suitable type of constants. The model comprises a type ezpr together with func-
tions

CON :: con = expr $$:: expr = expr = expr

VAR :: nat = expr lambda :: (expr = expr) = expr

and two predicates proper :: expr = bool and abstr :: (expr = expr) = bool.
The elements of expr which satisfy proper are in one-to-one correspondence with
the terms of the untyped A-calculus modulo a-equivalence. The function CON
is the inclusion of constants into terms, VAR is the enumeration of an infinite
supply of free variables, and $$ is application. The function lambda is declared
as a binder and we write LAM v. e for lambda (Av.e).

For this data to faithfully represent the syntax of the untyped A-calculus, it
must be that CON, VAR, $$ are injective on proper expressions and furthermore,
lambda is injective on some suitable subset of expr = expr. This cannot the
whole of expr = expr for cardinality reasons. In fact, we need only a small
fragment of the set. The predicate abstr identifies those functions which are
sufficiently parametric to be realized as the body of a A-term, and lambda is
injective on these. This predicate can be seen as a full HOAS counterpart of
the valid; judgment in [5], but it must be defined at the de Bruijn level, since
a higher-order definition would require a theory of n-ary abstractions, which is
the object of current research.

There is a strong tradition in the HOL community of making extensions by
definition wherever possible. This ensures the consistency of the logic relative
to a small axiomatic core. Hybrid is implemented in a definitional style using a
translation into de Bruijn notation. The type expr is defined by the grammar

expr ::= CON con | VAR var | BND bnd | expr $$ expr | ABS expr

The translation of terms is best explained by example. Let Top = AV;. AV5. Vy V3
be an expression in the concrete syntax of the A-calculus. This is rendered in
Hybrid as Ty = LAM v;. (LAM vy. (v1 $$ VAR 3)) — note the difference between
the treatment of free variables and of bound variables. Expanding the binder,

382 Alberto Momigliano and Simon J. Ambler

this expression is by definition lambda (A v;. (lambda Avs. (v1 $$ VAR 3))), where
Av; is meta-abstraction. The function lambda :: (ezpr = expr) = expr is de-
fined so as to map any function satisfying abstr to a corresponding proper de
Bruijn expression. Again, it is defined as an inductive relation on the underlying
representation and then proven to be functional. The expression Ty is reduced
by higher-order rewriting to the de Bruijn term ABS (ABS (BND 1 $$ VAR 3)).
Given these definitions, the essential properties of Hybrid expressions can be
proved as theorems from the properties of the underlying de Bruijn representa-
tion: for instance, the injectivity of lambda

[abstr E; abstr F'] = (LAMv. Ev =LAMv. Fv) = (E=F) INJ

and extensionality [abstr E; abstr F; Vi.E (VAR i) = F (VAR ()| = E = F.
Several principles of induction over proper expressions are also provable.

3.1 Coding the Syntax of OL System in Hybrid

We begin by showing how to represent (a fragment of) Mini-ML in Hybrid. In
order to render the syntax of the source language in HOAS format we need con-
stants for abstraction, application and fix point, say cAPP, cABS and cFIX.
Recall that in the meta-language application is denoted by infix $$, and abstrac-
tion by LAM. Then the source language corresponds to the grammar:

e:=v|cABS $$ (LAMuv.ev) | cAPP $$ €1 $$ e | cFIX $$ (LAMv. ev)

Thus, we declare these constants to belong to con and then make the following
definitions:

Q@ :: [exp,exp| = exp lam :: (exp = exp) = exp
e1 @ey = CON cAPP $$e; $$es lam x. E 2 =— CON cABS $$ LAMz.e FE

and similarly for the fix point, where lam (resp. fix) is indeed an Isabelle HOL
binder. For example, the “real” underlying form of fix z. lam y. x @Q y is

CON ¢FIX $$ (LAMz.CON cABS $$ LAMy. (CON cAPP $$ = $$ y)

It is now possible to prove the freeness properties of constructors.

MC-Theorem 1. The constructors have distinct images; for example,

lam z. E z # fix x. E' x. Furthermore, every binding constructor is injec-
tive on abstractions; for ezample, [abstr E; abstr B’ | = (fix . E x =
fixx. F' z)=(FE=F).

This is proven via Isabelle HOL’s simplification, using property IN.J.
Although dB expressions are strictly first-order, we still need to encode them
as Hybrid expressions. In fact, we will use for compilation a judgment which is
parametric in (higher-order) terms, dB expression and values. Therefore they all
have to be interpreted via the SL universal quantification and consequently need

Multi-level Meta-reasoning with Higher-Order Abstract Syntax 383

to be synonymous to Hybrid (proper) terms, to make the universal quantification
consistentd. The encoding is trivial and the details omitted.

The informal definition of environments and closure is by mutual recursion.
Since our aim here is also to show how Hybrid expressions can coexist with
regular Isabelle HOL ones, we will use Isabelle HOL mechanism for mutually
inductive datatypes. This brings about the declaration of a datatype of poly-
morphic environments, intended to be instantiated with a value. Environments
can be now mutually recursive with closures, where the type synonymous exp’
is retained for forward compatibility with Subsection BT}

datatype (v env) == - | (o env) ; a| (a env) + exp’
and « clos := mk_clo (a env) exp’

Then we introduce in con a constructor, say ¢CLO (val clos), which encapsulates
a Isabelle HOL closure. Finally, we can define a Hybrid closure as a constant of
type [(val env), exp’| = wval, defined as {n, F} = CON (¢CLO (mkclo nF)).
Thanks to this rather cumbersome encoding, we can establish freeness properties
of closures as in Theorem [II.

4 Multi-level Architecture

In previous work [T, [T7], we chose to work in a single level, implementing every
judgment as a (co)inductive definition in Isabelle HOL, but exploiting the form
of HOAS that our package supports. While the tool seemed successful in dealing
with predicates over closed terms, say evaluation, we had to resort to a more
traditional encoding, i.e. via explicit environments, with respect to judgments
involving open ones such as typing. As we have mentioned earlier, a two-level
approach solves this dilemma.

4.1 Encoding the Specification Logic

We introduce our specification logic, namely a fragment of second-order heredi-
tary Harrop formulae, which is sufficient for the encoding of our case-study.

Clauses D ::= A| Dy and Dy | G imp A | tt | allz. D
Goals G == A |Gy and G2 | Aimp G | tt] allz. G

This syntax translates immediately in a Isabelle HOL datatype:
datatype oo ::=tt | (atm) | oo and oo | atm imp oo | all (prpr = 00)

where (_) coerces atoms into propositions. The universal quantifier is intended
to range over all proper Hybrid terms. In analogy with logic programming, it will
be left implicit in clauses.

2 This is because Hybrid, in its current formulation, provides only what amounts to
an untyped meta-language. This is being addressed in the next version

384 Alberto Momigliano and Simon J. Ambler

This logic is so simple that its proof-system can be modeled with a logic
programmer interpreter; in fact, for such a logic, uniform provability [15] (of a
sequent-calculus) is complete. We give the following definition of provability:

Inductive _t>__ = [nat, (atmlist), oo] = bool
= O, tt
[P Gy Py Go | = P>yt (Gr and Ga)
[Ve. P>, (G 2)] = Py (allz. G x)
[2,A>, G] = P >py1 (A imp G)
[AcP] = D>, (4)
[A—G; P>, G] = P>y (A)
Note the following:

— Only atomic antecedent are required in implications which therefore yield
only atomic contexts.

— Atoms are provable either by assumptions or via backchaining over a set of
Prolog-like rules, which encode the properties of the object-logic in question.
The suggestive notation A «— G corresponds to an inductive definition of a
set prog of type [atm, 00| = bool, see Subsection 2] The sequent calculus
is parametric in those clauses and so are its meta-theoretical properties.

— Sequents are decorated with natural numbers which represent the height of
a proof; this measure allows reasoning by complete induction.

— For convenience we define @ > G iff dn. &>, G and > G iff - > G.

— The very fact that provability is inductive makes available inversion princi-
ples as elimination rules of the aforementioned definition. In Isabelle HOL
(as well as in Coq) case analysis is particularly well-supported as part of the
datatype/inductive package. For example the inversion theorem that analy-
ses the shape of a derivation ending in an atom from the empty context is
obtained simply with a call to the built-in mk_cases function, which special-
izes the elimination principle to the given constructors:

[->i(A); NGjlA—G; >;Gi=j+1]=P]=P
— The adequacy of the encoding of the SL can be established as in [14].

MC-Theorem 2 (Structural Rules). The following rules are provable:

1. Weakening for numerical bounds: [@ >, G; n<m] = &>, G
2. Context weakening: [P>G; P C P | = ' > G
3. (Atomic) cut: [$,A>G; P> (A)] = o> G

Proof.

1. The proof, by structural induction on sequents, consists of a one-line call
to an automatic tactic using the elimination rule for successor (from the
Isabelle HOL library) and the introduction rules for the sequent calculus.
This compared to the much longer proof of the same statement in Coq
reported in [G].

Multi-level Meta-reasoning with Higher-Order Abstract Syntax 385

2. By a similar fully automated induction on the structure of the sequent deriva-
tion.
3. Cut is a corollary of the following lemma:

[@ > G; & =set (B,A); P>, (A)] = P>t G

easily proven by induction on the structure of the derivation of @' >; G, using
library facts relating set and list memberships.

4.2 Encoding the Object Logic

We introduce a datatype atm to encode the atomic formulae of the OL, which
in this case study includes

datatype atm = exp : tp | exp | exp | (val env) - exp’ — exp | val < exp

We can now give the clauses for the OL deductive systems; we start with
typing and evaluation:

Inductive - «— _:: [atm, 0o] = bool
= (E1 Q E3) : T «— (Ey : (T" arrow T)) and (Fy : T")
[abstr E | = (lam x. E x) : (11 arrow Tb) «— allz. (z : T1) imp ((E z) : Ty)
[abstr F] = (fixx. Ex): T «— allz. (z:T) imp (E x) : T)

[abstr E] = lam z. Ez | lam z. E x «— tt
[abstr B{] = E1 Q E; | V «+—

(E1 ylam z. Ef z) and (Es | V5) and ((E] Va2) || V)
[abstr E] = fixz. Ex |V «— (F (fixz. Ex) | V)

Note the presence of the abstraction annotations as Isabelle HOL premises in
rules mentioning binding construct. This in turn allows to simulate definitional
reflection via the built-in elimination rules of the prog inductive definition with-
out the use of additional axioms. For example inversion on the function typing
rule is:

[lam z. E x:7 «— G;/\F,Tl,Tg. [abstr F;G=allz. (x : T7) imp (F z : T2));
lambda E=lambda F';7=(T1 —T) [= P |=P

Note also how the inversion principle has an explicit equation lambda £ =
lambda F' (whereas definitional reflection employs unification) and those are solv-
able under the assumption that the body of a lambda term is well-behaved, i.e. an
abstraction.

Now we can address the meta-theory, starting, for example, with the subject
reduction theorem:

MC-Theorem 3 (OL Subject Reduction).
Vn. (Do, EYV)=VT.(> E:T)— (> V:T).

386 Alberto Momigliano and Simon J. Ambler

Proof. The proof is by complete induction on the height of the derivation of
evaluation, analogously to [6] (except with an appeal to Theorem [rather than
to the distinctness axioms).

As we remarked, the main reason to reference provability is the intrinsic incom-
patibility of induction with hypothetical (non-stratifiable) judgments. Since the
definition of evaluation makes no use of hypothetical judgments, it is perfectly
acceptable at the meta-level, that is, we can directly give an inductive definition

for it.
Inductive _ 1} _ = [exp, exp] = bool

[Ey | lam z. E' x; abstr F';
By | Vo (B V2)llV]] (B1 @ Ep) 4V
[[abstrE]]:>1amx Ezxzllamz. F x
[abstr B; (F (fixz. E) | V]=fixz. E|V

Moreover, it is easy to show (formally) the two encodings equivalent:

MC-Theorem 4. E |V iff - >, E | V.

Proof. Left-to-right holds by structural induction. The converse is by complete
induction.

This suggest we delegate to the OL level only those judgments, such as typing,
which would not be inductive at the meta-level. This has the benefit of limiting
the indirect-ness of using an explicit SL. Moreover, it has the further advantage
of replacing complete with structural induction, which is better behaved from
a proof-search point of view. Complete induction, in fact, places an additional
burden to the user by requiring him/her to provide the correct instantiation for
the height of the derivation in question. Thus subject reduction at the meta-level
has the form:

MC-Theorem 5 (Meta-level Subject Reduction).
EUV=VT.(> E:T)— (> V:T).

Proof. By structural induction on evaluation, using only inversion principles on
provability and OL typing.

5 Formal Verification of Compilation

Similarly, we implement evaluation to closures n = F' < W at the meta-level as
a straightforward (i.e. entirely first-order) inductive definition, whose rules we
omit. Compilation to dB expressions and values is instead represented at the OL
level.
:>7’]|_(F1 Q’ F2)<—>(E1 @E2)<—
<7’] + Fl — E1> and <’I7 [F2 g E2>
[abstr E] = ntlam’ F < (lam z. F z) «—
allw.allz.w < x imp ((n;w) - F < (E x))

Multi-level Meta-reasoning with Higher-Order Abstract Syntax 387

[abstr E] = nFfixX F < (fixaz. Ex) «—
all f.alle.nbk f—xzimp ((n+ f)F F < (E 2))
= (W)Fl— E«— (W& E)
= mW)FFle B« (nF F < E)
[abstr E] = {n,lam’ F} & lam z. F 2 «— (n+lam’ F < lam z. E x)

We can now tackle the verification of compiler correctness:

MC-Theorem 6 (Soundness of Compilation).
EJV=VannF(>y,nFF<E)—-3WngkF—=WAMPWeV)

Proof. The informal proof proceeds by lexicographic induction on the pair con-
sisting of the derivation D of E | V and C of n - F < FE. We examine
one case, both formally and informally to demonstrate the use of hypothetical
judgments and its realization in the system. Let D end in ev_app and assume
nt F < e; @ ey. Inversion on the latter yields three cases. Let’s consider only
the last one, where F = F; Q' Iy such that n+ Fy < e; and n = Fy < es. By
IH, n - Fy — W5 and Wa < vy. Moreover, n = Fy < Wi and Wp < lam z. €.
By inversion, Wy = {n;,lam’ F{} and m; F lam’ F| < lam z. ¢|. By a further
inversion we have a proof of n;w + F| < e} under the parametric assump-
tion w < x. Now substitute Wy for w and vy for x: since Wy < vo holds, we
infer n1; Wa F F| < [va/z]e}. We can now apply the IH once more yielding
n;Wa B F| — W5 and W3 < v. The case is finished with an appeal to rule
feval_app.

In the formal development we proceed by a nested induction, the outermost
on the structure of £ || V and the innermost by complete induction on n,
representing the height of the SL’s proof of n = F' < E. Let
IHE,V)=Vnn F. >, (nFF—E)—-3WnktF—WA> (W<&V)and
G=3aW.nk F, Q" Fy, — W A> (W < V). Then the case for application from
the outermost induction is, omitting the innermost ITH which is not used here:

Eilam z. E' x; IH(Ey,lam z. E; z); abstr E'; Ey |} Vo; TH(Es, Va);
1
(E' Vo) 4 V; TH((E' Vo), V); ->p (nbE Fy < Ep) and (n Fy < Ey) | = G

Eliminating the SL conjunction “and” and applying twice the TH, we get:
[...3WnEF > WA> (Welamz. E z); Wk B —>WA...] =G
Now we perform inversion on W < lam z. E' z and simplification:

[...00 (nFlam’' F{ < lamz. E] z)...] = G

More inversion on n; F lam’ F} < lam «. E{ z, plus Hybrid injectivity to solve
lambda E = lambda E’:

[...nF Fy — {m,lam’ F|}; n+ Fy — Wy > (Wy & Va);
> allw.allz. (w < z imp (ng; wk F| < (E] 7))] = G

388 Alberto Momigliano and Simon J. Ambler

We now invert on the (proof of the) parametric and hypothetical judgment and
then instantiate w with Wy and x with V5s:

[...nE FL— {m,lam’ F{}; nk Fy — Wy > (Wa & Va);
Wy & Vo (n;We b Fi < (B} Vo))] = G

After a cut we can apply the TH to n1; Wa = F| < (E7 Va) yielding ny; Ws
F| < W. Then the proof is concluded with the introduction rule for application.

The converse does not contribute any new ideas and we leave it to the on-line
documentation:

MC-Theorem 7 (Completeness of Compilation).
nEF—>W=VnE.(>y,ntF—E) —-3WV.E|VA>W&V

Proof. By structural induction on n = F' < W and inversion on -t>,n - F «— E.

5.1 Implementation of Subject Reduction for Closures

We now turn to the co-inductive part. Ideally, we would implement closures and
environment as a co-datatype; indeed, this is possible in Isabelle/ZF, but not at
the moment in Isabelle HOL. We then resort to a definitional approach where we
introduce a Hybrid constant {_, -}°° :: [(val env), exp’ | = val and we prove it to
be injective as usual. There are alternatives; for example we have implemented
on operational semantics with recursive closures, but we present here the above
to be faithful to [T6]. On the other hand, as remarked in Subsection [Z2] since
we will not need the + environment constructor anymore, nothing prevents us
from encoding here dB expressions with a Isabelle HOL datatype:

datatype exp’ =1 | exp’ 7| lam’ exp’ | exp’ Q' exp’ | fix’ exp’
We only mention the new “circular” rule:

Inductive -+ _— _ = [(val env), exp’, val] = bool
[cl={(n;cl),lam’ F}**] = n+ fix' (lam’ F) < cl

We declare a standard HOL datatype for types environments tenv and we encode
the judgment A - F' : 7 with an inductive definitions of type [tenv, exp’, tp | =
bool, whose rules are obvious and again omitted. More interestingly, we introduce
typing of closures and type consistency of value and type environments as a
mutually co-inductive definition:

Coinductive _: _ :: [val, tp] = bool

_ i [(val enw), tenv] = bool

[Arlam’ F:7;n! A] = {n,lam’ F}* : 7
— ..

[Wem ! Al = (n; W) (4;7)

Multi-level Meta-reasoning with Higher-Order Abstract Syntax 389

MC-Theorem 8. n+ F —>W —=VI.n!'! A— (A-F:7—>W:71)

Proof. By structural induction on evaluation, where each case is proven with
an appeal to an automatic tactic, which uses appropriate elimination rules. The
only delicate case is the fix point, where we need to prove:

[cl={(n;cl),lam’ F}*; n:' A; AFfix' (lam’ F):7]=¢cl:7

In Isabelle HOL (co)induction is realized set theoretically via the Knaster-
Tarski’s construction and the user provides the right set to be checked for density
w.r.t. the rule set. Since our definition is by mutual co-induction, the greatest
fix point is constructed as a disjoint sum. Thus, the right set turns out to be

{Inr(n;cl), Inl(A;7)}.

6 Related Work

We have so far concentrated on FOATV | but the other major contender in the
field is the Twelf project [20]. Meta-reasoning can be carried over in two comple-
mentary styles. In an interactive one [19], LF is used to specify a meta-theorem
as a relation between judgments, while a logic programming-like interpretation
provides the operational. Finally, external checks (termination, moded-ness, to-
tality) verify that the given relation is indeed a realizer for that theorem. The
second approach is built on the idea of devising an explicit meta-meta-logic
for reasoning (inductively) about logical frameworks, in a fully automated way.
M, is a constructive first-order logic, whose quantifiers range over possibly open
LF object over a signature. By the adequacy of the encoding, the proof of the
existence of the appropriate LF object(s) guarantees the proof of the correspond-
ing object-level property. It must be remarked that Twelf is not programmable
by tactics, nor does it support co-induction.

Other architectures are essentially one level. For lack of space, we refer to the
review in [I], but we just mention Honsell et al.’s framework [12], which embraces
an axiomatic approach to meta-reasoning with HOAS. It consists of higher-order
logic extended with a set of axioms parametric to a HOAS signature, including
the reification of key properties of names akin to freshness. A limited form of
recursion over HOAS syntax is also assumed. Similarly the FM approach [7]
alms to be a foundation of programming and reasoning with names in a one-
level architecture. It would be interesting to look at using a version of the “New”
quantifier in the specification logic, especially for those applications where the
behavior of the object-logic binder is not faithfully mirrored by a traditional
universal quantification at the SL-level, for example the m-calculus.

7 Conclusions and Future Work

We have presented a multi-level architecture to allow (co)inductive reasoning
about objects defined via HOAS in a well-known environment such as Isabelle
HOL. Similarly to [6] this has several benefits:

390 Alberto Momigliano and Simon J. Ambler

— It is possible to replicate in an well-understood and interactive setting the
style of proof of FOAI | so all results are proven without “technical” lem-
mas foreign to the mathematics of the problem.

— Results about the specification logic, such as cut elimination, are proven once
and for all, if we are happy with that logic. Otherwise, different logics (say
linear) can be employed, without changing infrastructure. This would allow,
for example, the utilization of the most elegant encodings of the meta-theory
of functional programming with references proposed, for instance, in .

Differently to [6], our architecture is based not directly on a standard proof-
assistant, but on a package which builds a HOAS meta-language on top of such
a system. This allows us not to rely on any axiomatic assumptions, such as
freeness of HOAS constructors and extensionality properties at higher types,
which are now theorems. Another difference is the mixing of meta-level and OL
specifications, which we have shown makes proofs more easily mechanizable and
allows us to use co-induction which is still unaccounted for in FOANAN | Finally,
by the simple reason that the Hybrid system sits on top of Isabelle HOL, we
benefit of the higher degree of automation of the latter.

As far as future work is concerned, we plan to further pursue our case study
by finally compiling our target language into a CAM-like abstract machine, as
in [T0]. We shall also investigate co-inductive issues in compilation, starting with
verifying the equivalence between the standard operational semantics and the
one with non-well founded closures.

Note that in this case study we only needed to induct — either directly,
or on the height of derivations — over closed terms, although we extensively
reasoned in presence of hypothetical judgments. Inducting HOAS-style over open
terms is a major challenge [21]); in this setting generic judgments are particularly
problematic, but can be dealt with by switching to a more expressive SL, based
on a eigenvariable encoding [14]. While it is already simple enough to implement
such a logic, the new theory of m-ary abstractions which underlines the next
version of the Hybrid infrastructure will directly support this syntax, as well
as a form of Isabelle HOL-like datatypes over HOAS signatures. With that in
place, we will be able, for example, to revisit in a full HOAS style the material
in [17].

Source files for the Isabelle HOL code can be found at
www.mcs.le.ac.uk/ amomigliano/isabelle/2Levels/Compile/main.html

Acknowledgments This paper has benefited from referees comments and
discussions with Roy Crole, Dale Miller, Frank Pfenning, Carsten Schiirmann
and Amy Felty, who kindly made available to us the Coq proof script of [6].

References

[1] S. Ambler, R. Crole, and A. Momigliano. Combining higher order abstract syntax
with tactical theorem proving and (co)induction. In V. A. Carreno, editor, Pro-
ceedings of the 15th International Conference on Theorem Proving in Higher Order
Logics, volume 2342 of LNCS. Springer Verlag, 2002.

Multi-level Meta-reasoning with Higher-Order Abstract Syntax 391

[2] S. Boutin. Proving correctness of the translation from mini-ML to the CAM with
the Coq proof development system. Technical Report RR-2536, Inria, Institut Na-
tional de Recherche en Informatique et en Automatique, 1995.

[3] B. Ciesielski and M. Wand. Using the theorem prover Isabelle-91 to verify a simple
proof of compiler correctness. Technical Report NU-CCS-91-20, College of Computer
Science, Northeastern University, Dec. 1991.

[4] J. Despeyroux. Proof of translation in natural semantics. In Proceedings of LICS’86,
pages 193205, Cambridge, MA, 1986. IEEE Computer Society Press.

[5] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq.
In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the International
Conference on Typed Lambda Calculi and Applications, pages 124-138, Edinburgh,
Scotland, Apr. 1995. Springer-Verlag LNCS 902.

[6] A. Felty. Two-level meta-reasoning in Coq. In V. A. Carreno, editor, Proceedings
of the 15th International Conference on Theorem Proving in Higher Order Logics,
volume 2342 of LNCS. Springer Verlag, 2002.

[7] M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In
G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic in Computer
Science (LICS’99), pages 214-224, 1999. IEEE Computer Society Press.

[8] L. Hallnas. Partial inductive definitions. T'CS, 87(1):115-147, July 1991.

[9] J. Hannan and D. Miller. From operational semantics to abstract machines. Math-
ematical Structures in Computer Science, 2(4):415-459, 1992.

[10] J. Hannan and F. Pfenning. Compiler verification in LF. In A. Scedrov, editor,
Seventh Annual IEEE Symposium on Logic in Computer Science, pages 407-418,
Santa Cruz, California, June 1992.

[11] P. H. Hartel and L. Moreau. Formalizing the safety of Java,the Java Virtual
Machine, and Java Card. ACMCS, 33(4):517-558, Dec. 2001.

[12] F.Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning
on systems in higher-order abstract syntax. In Proc. ICALP’01, number 2076 in
LNCS, pages 963-978. Springer-Verlag, 2001.

[13] D. Lester and S. Mintchev. Towards machine-checked compiler correctness for
higher—order pure functional languages. In L. Pacholski and J. Tiuryn, editors,
Computer Science Logic, pages 369-381. Springer-Verlag LNCS 933, 1995.

[14] R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a
logical framework. ACM Transactions on Computational Logic, 3(1):80-136, 2002.
[15] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foun-

dation for logic programming. Annals of Pure and Applied Logic, 51:125-157, 1991.

[16] R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical Com-
puter Science, 87:209-220, 1991.

[17] A. Momigliano, S. Ambler, and R. Crole. A Hybrid encoding of Howe’s method
for establishing congruence of bisimilarity. ENTCS, 70(2), 2002.

[18] F. Pfenning. Computation and Deduction. Cambridge University Press, 2000. In
preparation. Draft from April 1997 available electronically.

[19] F. Pfenning and E. Rohwedder. Implementing the meta-theory of deductive sys-
tems. In D. Kapur, editor, Proceedings of the 11th International Conference on
Automated Deduction, pages 537-551. Springer-Verlag LNAT 607.

[20] F. Pfenning and C. Schirmann. System description: Twelf — a meta-logical
framework for deductive systems. In H. Ganzinger, editor, Proceedings of CADE 16,
pages 202—206. Springer LNAI 1632.

[21] C. Schiirmann. Automating the Meta-Theory of Deductive Systems. PhD thesis,
Carnegie-Mellon University, 2000. CMU-CS-00-146.

	Multi-level Meta-reasoning withHigher-Order Abstract Syntax
	Introduction
	The Case Study
	Compilation
	Compilation via Non-Well-Founded Closures

	Hybrid Infrastructure
	Coding the Syntax of OL System in Hybrid

	Multi-level Architecture
	Encoding the Specification Logic
	Encoding the Object Logic

	Formal Verification of Compilation
	Implementation of Subject Reduction for Closures

	Related Work
	Conclusions and Future Work

