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Abstract Dentate nuclei (DNs) segmentation is helpful for assessing their potential
involvement in neurological diseases. Once DNs have been segmented, it becomes
possible to investigate whether DNs are microstructurally affected, through analysis
of quantitativeMRI parameters, such as those derived from diffusion weighted imag-
ing (DWI). This study developed a fully automated segmentation method using the
non-DWI (b0) images from a DWI dataset to obtain DN masks inherently registered
with parameter maps. Three different automatic methods were applied to healthy
subjects: registration to SUIT (a spatially unbiased atlas template of the cerebellum
and brainstem), OPAL (Optimized Patch Match for Label fusion) and CNN (Con-
volutional Neural Network). DNs manual segmentation was considered the gold
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standard. Results show that SUIT results have a Dice Similarity Coefficient (DSC)
of 0.4907±0.0793 between automatic and gold standard masks. Comparing OPAL
(DSC = 0.7624±0.1786) and CNN (DSC = 0.8658±0.0255), showed that a better
performance was obtained with CNN. OPAL and CNN were optimised on high spa-
tial resolution data from the Human Connectome Project. The three methods were
then used to segment DNs of subjects with Temporal Lobe Epilepsy (TLE) from a
3T MRI research study with DWI data acquired with a coarser resolution. In TLE,
SUIT performed similarly, with a DSC = 0.4145±0.1023. OPAL performed worse
than using HCP data with a DSC of 0.4522±0.1178. CNN was able to extract the
DNs without need for retraining and with a DSC = 0.7368±0.0799. Statistical com-
parison of quantitative parameters from DWI analysis, as well as volumes, revealed
altered and lateralised changes in TLE patients compared to healthy controls. The
proposed CNN is a viable option for accurate extraction of DNs from b0 images of
DWI data with different resolutions and acquired at different sites.

1 Introduction

Cerebellar nuclei (CNs) have a fundamental role in the central nervous system; they
are the main output channels of the cerebellum towards the supratentorial brain and
the spinal cord [1]. The dentate nuclei (DNs) are the CNs with the largest volume
(measuring about 2 cm in the anterior-posterior direction and 1 cm in transverse
plane and coronal plane) [2]. Histologically, the DNs have the shape of an irregularly
pleated grey foil, very thin and with a longitudinal section appearing as a curved line
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that contains white matter inside. The DNs are known mainly for their involvement
with the sensorimotor system, although recently studies are suggesting a role in
procedural memory, emotional and cognitive functions [3].

Several studies have shown that DN morphological properties can be altered
in different neurological pathologies [4, 5]. In human, there are general reports
of cerebellar atrophy in Temporal Lobe Epilepsy (TLE) patients [6], while animal
models have shown a direct involvement of the DNs: in particular, experimental
studies have shown that electrical stimulation of the DNs shortened and inhibited the
onset of seizures [7–9].

T1-weithed (T1-w) images are structural scans generally used for segmenting
brain regions. The DNs, unfortunately, do not show contrast on T1-w scans, while
they are visible on T2-weighted (T2-w) images [10]. Currently, DNs manual seg-
mentation is still considered the gold standard [11–13], but it is time-consuming
and suffers from inter- and intra-rater variability. A fully automatic segmentation is
therefore desirable.

A recently published pilot study [14] proposes a fully automatic method using
DWI, requiring time-consuming information from tractography. Another piece of
work [15], proposes a deep learning approach using as input multiple data including
T1-w, T2-w images and Fractional Anisotropy (FA) maps. Using quantitative maps
such as FA, though, introduces a circular bias and should be avoided.

In reference [16] the authors propose a fusion technique based on explicit shape
modelling, starting from high-resolution 7T quantitative susceptibility mapping
(QSM) of the cerebellum. In a recent piece of work [17] a multi-atlas method was
developed to segment iron-rich deep grey matter nuclei (including the DNs). How-
ever, QSM is not standard acquired in clinical settings.

The purpose of this study is to segment the DNs for microstructure quantification
of metrics acquired using the EPI readout as for DWI data. Segmentation masks of
the DNs can be used to extract average values of quantitative metrics to be com-
pared between populations of subjects, to assess correlations with clinical scores or
to monitor disease progression over time. Among the most interesting metrics there
are parameters derived from clinically feasible Diffusion Tensor Imaging (DTI) or
from advanced methods including Diffusion Kurtosis Imaging (DKI) [18] and Neu-
rite Density and Orientation Dispersion Imaging (NODDI) [19]. Given the typical
resolution of DWI scans at 3T (2 × 2 × 2 mm3) and the low number of voxels
included in segmentation masks of small structures such as the DNs, it is highly
desirable to reduce the data manipulation due to post-processing steps (e.g. regis-
tration) and to have region segmented directly in DWI-space. It is essential that any
automatic method is applicable with good performance to images of different quality
and acquired with different scanners.

Here we developed a method to automatically segment DNs from non-diffusion
weighted (b0) images, acquired as part of DWI scans. We specifically investigated
three different approaches using high-resolution data derived from the Human Con-
nectome Project [20]: (1) atlas registration; (2) patch-matching; (3) a deep learning
network-based method. Masks obtained with each of these methods were compared
to the gold standard manual segmentation of DNs. The methods were tested in a sec-
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ond dataset of subjects from a TLE study. The resulting best approach was employed
to compare DN volumes and average DWI metrics between patients and healthy
controls (HC), in view of future clinical studies.

2 Methods

2.1 Subjects

HCP dataset Pre-processed images of 100 healthy subjects scanned for the Human
Connectome Project (HCP) were downloaded [20]. 24 subjects were discarded for
cerebellar artefacts. The 76 remaining subjects (43 Females, 29.41±3.62 years) were
used to develop the automatic DNs segmentation.

TLE dataset A second dataset of 84 subjects, recruited for an Italian multi-centre
research project on TLE, were selected as clinical test data: 34 HC (16 Females,
31.97±7.73 years), 21 patients with left TLE (LTLE; 13 Females, 33.294±11.68
years) and 29 with right TLE (RTLE; 17 Females, 37.97±9.86 years).

2.2 MRI Protocol

HCP dataset MR images were acquired on a Siemens 3T Connectome Skyra scan-
ner (diffusion: Gmax = 100 mT/m), a 32-channel receive head coil and standard
shim coils. DWI data had minimal pre-processing, co-registered with T1-w data at
a resolution of 1.25 × 1.25 × 1.25 mm3 and matrix size of 145 × 174 × 145 [21].
Data included 18 volumes with b = 0 s/mm2.

TLE dataset MR images were acquired using a Siemens 3T MAGNETOM Skyra
scanner with standard gradients and a 32-channel receive coil.

DWI: spin-echo EPI, 90 volumes with b-value = 1000/2000 s/mm2 (45 DW gra-
dient directions per b-value) and 9 volumes with b = 0 s/mm2; spatial resolution =
2.24 × 2.24 × 2 mm3 and matrix size of 100 × 100 × 66.

T1-w: high-resolution 3DT1-w (T1w) volume with spatial resolution = 1 × 1 ×
1 mm3.

2.3 DWI Processing

For each subject, the mean of the b0 volumes was calculated (b0). For TLE subjects,
quantitative metrics were extracted using DESIGNER (https://github.com/NYU-
DiffusionMRI/DESIGNER): Axial Diffusivity (AD), Radial Diffusivity (RD),Mean

https://github.com/NYU-DiffusionMRI/DESIGNER
https://github.com/NYU-DiffusionMRI/DESIGNER
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Diffusivity (MD) and FA from DTI fitting [22] and Axial Kurtosis (AK), Radial
Kurtosis (RK) and Mean Kurtosis (MK) from DKI fitting [18].

2.4 DNs Segmentation

b0 images of HCP subjects were used for developing the DN segmentation method.
Manual segmentation was used as ground truth (GT). Automatic DN masks, from
three different automatic segmentation methods, were compared to the GT masks
and applied to the TLE dataset. Performance against GT was assessed by calculat-
ing three scores: Dice Similarity Coefficient (DSC), True Positive Rate (TPR) and
Positive Predictive Value (PPV) (see paragraph 2.6).

GroundTruth (GT)—manual segmentation b0 images ofHCP subjectswereman-
ually segmented by rater 1 usingMango (http://ric.uthscsa.edu/mango/mango.html).
In order to assess the automaticmethods’ performance against inter-raters variability,
a second rater, rater 2, segmented the same data using Jim (http://www.xinapse.com/
j-im-8-software). DSC scores were calculated first between manual segmentation
masks from raters 1 and 2 for each HCP subject and then averaged over all 76 HCP
subjects. 6 subjects were also segmented twice rater 1 on different days to calculate
the intra-rater variability. For the TLE dataset, rater 1 manually segmented the b0 of
18 subjects (6 for each group) to have a GT (GTT LE ) for this independent dataset.

Atlas-based method: SUIT The toolbox SUIT (A spatially unbiased atlas template
of the cerebellum and brainstem) is an open source extension of SPM (Statistical
Parametric Mapping, https://www.fil.ion.ucl.ac.uk/spm/) available for Matlab (The
MathWorks, Inc., Natick, MA, United States of America).

SUIT [10] is an atlas-based method for cerebellar segmentation that performs a
non-linear registration between a template (standard space) and the image to segment.
The resulting transformation is then applied to an atlas defined in standard space and
its labels are warped into the subject space. One of the labels is for the DNs. SUIT
requires registering T1w images of each subject to the template; the inverse transfor-
mation is then used to warp DN labels from standard-space to subject-space. As the
T1w images of the HCP dataset are already co-registered with the respective DWI,
the DN segmentations obtained with SUIT are already in DWI space.

Pre-processing (OPAL and CNN) In order to segment DNs with OPAL and CNN
we applied two pre-processing steps: (1) Intensity normalization: mean signal inten-
sity and standard deviationwere calculated for each subject’s b0 volume, considering
only brain voxels, to obtain zero mean and standard deviation equal to 1 for all sub-
jects; (2) Cropping: to reduce the computational time, images were cropped around
the cerebellum reducing axial slices to 86x71 voxels.

http://ric.uthscsa.edu/mango/mango.html
http://www.xinapse.com/j-im-8-software
http://www.xinapse.com/j-im-8-software
https://www.fil.ion.ucl.ac.uk/spm/
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Patch-matching method: OPAL OPAL (Optimized Patch Match for Label fusion)
[23] joins information from different templates to obtain the desired segmentation.
OPAL is an evolutionof thePatchMatch algorithm [24], implemented inC++ (https://
github.com/KCL-BMEIS/NiftySeg/).

We built up a database of 46 subjects providing: b0 images, the corresponding
masks of the cerebellum and the DNGTs. This database was intended as a collection
of reference templates. TheDNs segmentation of each new subject was performed by
dividing images into patches and comparing each patchwith those from the reference
templates, looking for the most locally similar match. The output is a probabilistic
map of the DNs. We divided the remaining 30 subjects into validation and testing
sets. We used the validation set to select the probability threshold (0.1, 0.2, 0.3, 0.4,
0.5) for binarizing the DN masks, where a lower threshold corresponds to larger DN
masks. For each threshold and for each validation subject we calculated the DSC
between the DN masks and the GTs. We selected the threshold that maximised the
mean DSC and we assessed the performance of OPAL on the remaining 15 test sub-
jects for an unbiased performance estimate.

Deep-learning method: CNN A CNN (Convolutional Neural Network) was imple-
mented with Matlab19a using the Deep Learning Toolbox.

CNN architecture—The architecture used here was inspired to the one used for
segmenting the spinal cord grey matter [25]. This architecture was based on dilated
convolutions and on removal of pooling layers, responsible for information loss.
This type of convolution expanded receptive fields without increasing the number of
parameters [26]. The network implemented required as input a two-dimensional (2D)
image, oriented in the axial plane. The architecture is shown in Fig. 1. All convolu-
tional layers have a zero-padding of type “same” [26]. Therefore, the dimensions of

Fig. 1 Scheme of the CNN architecture adopted here

https://github.com/KCL-BMEIS/NiftySeg/
https://github.com/KCL-BMEIS/NiftySeg/
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Table 1 Range of parameters used for the transformations of data augmentation step. For each
slice, with 0.5 probability, a random number within this range was assigned to each transformation.
For elastic deformation: α represents the scale factor and σ the standard deviation of the Gaussian
filter

Transformation Parameter range

Rotation [−4.6◦, 4.6◦]
Shift [−3, 3] in x and y direction

Scaling [0.98, 1.02] with bicubic interpolation

Elastic deformation α = 4 and σ = 30

each layer’s output do not differ from those of the layer’s input. For each layer the
neurons are activated by the ReLU (Rectifier Linear Unit) function [27].

The architecture of the CNN is the following: Input layer (INPUT) treating each
voxel of input images as a neuron; two layers of standard convolution (layers 1); two
layers of dilated convolution with dilatation factor d = 2 (layers 2); five branches
in parallel, each branch with two convolution layers. In the first branch there is a
standard convolution for the first layer the kernel dimension is 3 × 3 while for the
second it is 1 × 1 (layers 3); the remaining four branches have dilated convolution
respectively with d = 6, 12, 18, 24 (layers 4, 5, 6, 7).

Each output of these parallel branches is concatenated in the third dimension and
followed to: a convolution layer that uses 64 filters of dimensions 1× 1; a convolution
layer that uses 2 filters of dimensions 1 × 1; a Softmax layer [28] that represents the
activation function for classification; a Loss layer.

The convolutional layers have 32 filters with dimension 3 × 3 except for the
second layer of layers 3, which is 1 × 1, and the last two layers. Except for the last
1 × 1 convolution, each convolution layer is followed by batch normalization [28]
and dropout [26]. Due to the imbalance between the class of belonging to the DN
and the non belonging class (i.e. background), we decided to use the Dice Loss as
loss function, based on the DSC and robust to class imbalance [29]. We used the
Adam optimizer [30] with a small learning rate of η = 0.001 for setting the weights
of the CNN.

Training—To reduce overfitting, data augmentation was applied. Four different
transformations were considered: rotation, translation, scaling and elastic deforma-
tion. These transformations were applied to input (b0)—desired output (GT) pairs.
Data augmentation was applied independently on each slice with a probability of
0.5 for each transformation. The parameters used are reported in Table 1. The origi-
nal b0 images plus those from data augmentation and the corresponding GT masks
were provided as input to the CNN for training. To speed up training, however, only
slices containing the DN (on average 8 per subject) were automatically included as
selected from theGTmasks. The hyperparameters that must be chosen a priori before
training were the batch size, the dropout and the number of epochs. For tuning these
hyperparameters we tried a number of combinations (45 in total), using batch size
(8, 16, 24, 32, 64), dropout (0.2, 0.3, 0.4) and epochs (30, 50, 100).
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Fig. 2 Steps followed for hyperparameters optimization and CNN training

For each combination of hyperparameters, aMonteCarlo 10-folds cross validation
was performed: firstly, we randomly extracted 6 of the 76 subjects as test set. Then,
the remaining 70 subjects were randomly split into 60 subjects for training and 10
subjects for validation; this step was repeated for each of the 10 folds. The Monte
Carlo 10-folds cross validation randomly selects subjects for the training and the
validation set, therefore it is possible that a subject is never included or can be used
more than once in the validation set. Steps used for CNN training are shown in Fig. 2:
(1) for each fold of each combination of hyperparameters we calculated the DSC for
the subjects included in the validation set (10 subjects); (2) we calculated the mean
DSC for each hyperparameters combination by averaging the DSCs of the 10 folds;
(3) we chose the combination of hyperparameters that maximized the average DSC;
(4) among the 10 CNN that were trained with the best hyperparameters combination,
we chose the one with the maximum DSC. Set the hyperparameters, we used the 6
test subjects for an unbiased estimate of the CNN performance. Subsequently, to
check that the network did not overfit on the GTs of rater 1 used for training the
scores for the 6 test subjects were calculated comparing the segmentations obtained
with CNN and the masks from rater 2.
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2.5 Post Processing for OPAL and CNN

Both OPAL and CNN labeling identified a number of false positive (FP) voxels
as belonging to the DNs located in different brain regions, sometimes very distant
from the DNs themselves. In order to remove these FP voxels, an automated post
processing step was implemented: the DN masks obtained with SUIT were dilated
twice and used to mask the DN masks generated by OPAL and CNN.

2.6 Quantitative Evaluation

For each method, performance was tested by comparing automatic DNs against GT
masks using three scores [31].

DSC i.e. the overlap between two binary masks:

DSC = 2 T P

2 T P + FP + FN
(1)

where TP indicates True Positive and FN False Negative. DSC ranges [0–1].
Sensitivity or TPR:

T PR = 100 x
T P

T P + FN
(2)

TPR ranges [0–100] with low TPR indicating a bias towards under-segmentation.
Precision or PPV:

PPV = 100 x
T P

T P + FP
(3)

PPV ranges [0–100] with low PPV indicating a bias towards over-segmentation.
Specificity or True Negative Rate (TNR) was not considered because the two

classes (DN and background) are unbalanced, causing high and non-informative
TNR values.

2.7 Comparison of Automatic Methods

We calculated DSC, TPR and PPV for each automated method. For OPAL and
CNN we calculated these scores, on the validation and test sets, before and after
post processing. Since SUIT is an atlas-based method we calculated these scores on
the whole dataset, while for OPAL we exclueded the 46 subjects used as template.
Regarding CNN, the scores were calculated for the validation (10 subjects) and
test (6 subjects) sets for each of the 10 folds corresponding to the optimal set of
hyperparameters. For each method we calculated the group average of these scores.
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For the CNN we calculated two average values: the first one by averaging between
the 10 folds corresponding to the best combination of hyperparameters, while the
second one by averaging only results obtained with the network chosen as the final
CNN (the one with the best perfomance) among the 10 networks.

2.8 Clinical Application to TLE Data

TLEdata pre-processing andDNs segmentation The spatial resolution of the TLE
b0 images was lower than that of the HCP dataset, so TLE b0 images were resampled
to match the HCP resolution using FSL FLIRT (FMRIB’s Linear Image Registra-
tion Tool) before applying each segmentation method. In order to remove the FPs
we exploited the segmentation masks resulting from SUIT, which were moved from
T1w space to b0 space using a rigid registration computed with SPM. Resulting DN
masks were resampled to their original spatial resolution for quantitative analysis
of parameter maps by applying the inverse of the roto-translation matrix. (GTT LE )

segmentations were used to assess performance of the three methods. We selected
the best automatic DNs segmentation method based on the performance on both
datasets (HCP and TLE). The best method was then applied to all TLE subjects to
extract quantitative DNs parameters from DWI.

DN structural and microstructural characteristics in TLE patients For each
DN (right and left DN independently), thew following quantitative measures were
extracted: (1) volume; (2) average value of DTI metrics (AD, RD, MD and FA);
(3) average value of DKI metrics (AK, RK and MK). Lateralization of volumes and
metrics values was investigated using an Asymmetry Index (AI), with range [−2; 2]
where 0 indicates perfect symmetry [32]:

AI = mean(DN le f t) − mean(DN rigth)
mean(DN le f t)+mean(DN rigth)

2

(4)

We considered a total of 24 measures for each subjects. Statistically significant
differences between HC, RTLE and LTLE were investigated using SPSS (IBM,
Armonk, NY, United States of America) as exploratory work.

Age and gender were compared and included in the statistical comparison. A
general linearmodel (GLM) univariate analysis was implemented using as covariates
those variables not homogeneous between groups. 24 GLM univariate comparisons,
with=5%,were performed to explorewhichvariables could significantly differentiate
the three groups. SubsequentlyGLMunivariate analysis was repeated for eachmetric
in pairwise group comparisons.
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Fig. 3 Segmentationmasks obtainedwith the threemethods for a randomly selected subject (SUIT,
OPAL and CNN). Each image shows the overlap of the segmentation obtained with the respective
automated method (red) overlaid with the GT (yellow)

3 Results

The inter-rater variability of the manual segmentations resulted in a
DSC = 0.8066±0.0575. Intra-rater variability produced a DSC = 0.7927±0.0369.
In Fig. 3 DN masks of a randomly selected subject are displayed. OPAL probability
threshold was set to 0.4. The Monte Carlo 10-folds cross validation of the CNN
provided the best results with hyperparameters: batch size = 24, dropout = 0.2 and
number of epochs = 100.

3.1 Comparison of the Three Automatic Methods

Table 2 reports DSC, TPR and PPV scores (mean±standard deviation) for the three
methods.The best performance was achieved by CNN (DSC = 0.8658±0.0255) fol-
lowed by OPAL (DSC = 0.7624±0.1786). SUIT performed worst, with the lowest
scores (DSC = 0.4907±0.0793).

The scores between the segmentations obtained with CNN and rater 2 were: DSC
= 0.8208±0.0371, TPR = 74.3759±5.6519, PPV = 91.7158±4.9100.

3.2 Application to TLE Dataset

Table 3 reports DSC, TPR and PPV scores between (GTT LE ) and the segmentation
obtained with each automatic method. For OPAL it was necessary to reset the proba-
bility threshold to 0 as 0.4 (set for the HCP data) eliminated TP. Overall scores were:
DSC = 0.1322±0.1512, TPR = 7.7931±9.2878 and PPV = 55.2716±50.8794. CNN
outperformed the other methods with a DSC = 0.7368±0.0799.

Statistical comparisons showed that age was not homogeneous between the three
groups of the TLE study (p-value = 0.017) while gender was matched (p-value =
0.491). Therefore, we included age as a GLM covariate in the DWI metric analysis.
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Table 2 SUIT, OPAL and CNN performances. For CNN, two sets of scores are reported: (1)
average scores from the 10 networks with the chosen hyperparameters; (2) metrics from results
obtained with the CNN network chosen as the best performer. For DSC, in bracket we reported the
values before the post processing step to remove false positives. For each score the best value is
indicated in boldface

DSC TPR PPV

SUIT 0.4907±0.0793 86.3444±6.6154 34.9475±7.6264

OPAL—validation set 0.7434 ± 0.2168
(0.7427 ± 0.2164)

73.4617 ± 24.0014 76.9896± 22.3599

OPAL—test set 0.7624 ± 0.1786
(0.7602 ± 0.1780)

76.3791 ± 23.1454 83.2686 ± 9.3198

CNN—validation set
(10 networks)

0.8519±0.0144
(0.7607±0.0311)

86.7444±2.7735 84.5275±1.0535

CNN—validation set
(1 network)

0.8366±0.0579
(0.7916±0.0602)

83.8757±9.9464 84.4935±8.0567

CNN—test set (10
networks)

0.8650±0.0067
(0.7943±0.0323)

84.6590±1.2522 88.6746±0.8117

CNN—test set (1
network)

0.8658±0.0255
(0.8440±0.0270)

84.5150±4.0032 88.9238±3.8065

Table 3 Comparison of SUIT, OPAL and CNN against GT on 18 TLE subjects

DSC TPR PPV

SUIT 0.4145±0.1023 84.3647±8.4051 27.9597±8.6905

OPAL 0.4522±0.1178 84.3277±16.0649 28.6451±12.1937

CNN 0.7368±0.0799 88.6787±4.5745 65.7410±10.6841

We found significant differences between the three groups: AD of the left DN (p-
value = 0.024), MD of the left DN (p-value = 0.039) and volume of the right DN
(p-value = 0.014). The first row of Fig. 4 shows boxplots of these metrics for each
group. Pairwise comparisons between two of the three groups showed that: AD of
the left DN is significantly different between LTLE and RTLE patients (p-value =
0.004),MD of the left DN is significantly different between LTLE and RTLE patients
(p-value = 0.016), the volume of the right DN is significantly different between HC
and LTLE patients (p-value = 0.049) and between HC and RTLE patients (p-value
= 0.010). Moreover from pairwise comparisons other metrics resulted significantly
different: volume of the left DN between HC and RTLE patients (p-value = 0.027)
and RD of the left DN between HC and LTLE patients (p-value = 0.044) (second
row of Fig. 4).
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Fig. 4 In thefirst row: boxplots of themeasures that resulted statistically different (p<0.05) between
the three groups: AD of the left DN,MD of the left DN and volume of right DN. Significant pairwise
comparisons are highlightedwith asterisks. In the second row: boxplots of themeasures that resulted
statistically different (p<0.05) from pairwise comparisons (highlighted with an asterisk): volume
of the left DN and RD of the left DN

4 Discussion

In this work we proposed an automatic DNs segmentation method that uses b0
images from a DWI dataset. Specifically, analysis of DSC scores highlighted perfor-
mances comparable with inter- and intra-raters segmentation (DSC>0.7). The use
of b0 images, inherently co-registered with DWI data, instead of high resolution
T1w structural scans, allows the user to apply the masks directly to microstructural
parameter maps obtained for clinical research studies.

On HCP data, segmentation masks obtained with OPAL and CNN were more
accurate than the over-segmented DNs obtained with SUIT. Furthermore, the scores
average values were superior for segmentations using CNN compared to OPAL.

OPALapplied toTLEdata hadworse performance (even after changing the thresh-
old). This indicates that OPAL, which here used a reference database constructed on
HCP data, cannot segment images acquired on a different scanner and with a worse
resolution. Possibly, to improve the performance of OPAL, one would need to build
a more appropriate database of reference templates.

Therefore, the implemented CNN outperforms OPAL and can be considered the
best automated segmentation method of DWI images among the ones tested here
(the code for the CNN is publicly available at https://github.com/marta-gaviraghi/
segmentDN).

One further major advantage of CNN over OPAL lies in its greater transferability
across sites and users. Indeed, OPAL requires that the database of b0s and associated
GTs is available to segment the DNs of new subjects. Conversely, CNN needs a

https://github.com/marta-gaviraghi/segmentDN
https://github.com/marta-gaviraghi/segmentDN
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database of images and GTs only for training, but after the network has learnt the
association between images and segmentations, the reference images are no longer
needed. One could question also the dependency of the method on the geometri-
cal acquisition parameters, but here we demonstrated that the method worked well
(DSC>0.73) also on a completely different dataset, acquired on a standard clinical
3T scanner and with a much coarser voxel resolution.

The CNN was applied to the b0 data of the TLE dataset to segment the DNs and
study their microstructural properties. While understanding the DNs involvement in
TLE requires a dedicated study comparing regions from the entire brain, it was very
interesting to see that the DN masks obtained from the b0 images could be easily
applied to DTI and DKI metrics and be used for some very preliminary assessment.
The statistical comparison showed that the right DN volume is reduced in both RTLE
and LTLE with respect to HC. The volume reduction of the right DN in TLE patients
could indicate atrophy of this cerebellar nucleus, but to understand the source of such
alteration one should also consider what happens to the underlying microstructure
and hence assess parameters from, for example, DTI or DKI fitting of the data as
it was performed here. From our exploratory comparisons, AD and MD seem to
be the most affected metrics, which might simply relate to a different proportion of
white and grey matter structures captured by the masks in different groups. To disen-
tangle the source of such changes, though, future studies should consider advanced
microstructural models that probe more specific biophysical properties such as neu-
ronal density, orientation dispersion and soma compartments [19]. These preliminary
results support the hypothesis that DNs might be involved in TLE, consistently with
previous studies in animal models of epilepsy [7–9]. The extent of such involvement
must be explored further within a dedicated clinical study that correlates DN alter-
ations with that of other brain regions, considering also clinical/anamnestic data such
as comorbidities and treatment [33].

Methodologically, given the coarse resolution of DWI data, a potential limita-
tion of using b0 images is that it is not possible to extract the convoluted surface of
the DNs and to specifically extract their grey matter. Current structural scans used
for the segmentation of small regions (T1w scans) do not show contrast in the CN
areas. If a detailed reconstruction of the DNs shape and size is considered a fun-
damental aspect for a specific study, a dedicated sequence with optimized contrast
(e.g. based on T2 or T2* properties or QSM) and image resolution (e.g. to achieve
sub-millimetre voxel size) should be considered, at the expense of longer acquisition
times. For the purpose of our study, b0 images served the purpose of achieving a
significant improvement over the SUIT segmentation without resorting to additional
MR sequences and longer acquisition time. Furthermore, the demonstrated transla-
tion of the CNN from the HCP to a clinical scanner DWI data is very encouraging
and makes this CNN possibly viable for other applications that use EPI-readouts;
future work could therefore investigate transferability of the proposed CNN to study
functional MRI activations of the DNs in relation to their microstructure character-
istics. Future work could explore other architectures (such as U-Net) in order to find
the best one for this application. In order to remove FPs, morphological operations
could be implemented as an alternative post-processing step to SUIT masking.
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5 Conclusion

Weproposed an automatic segmentation of the DNs using an automatedmethod. The
CNN implemented here can segment images with a spatial resolution and acquisition
protocol different from the training set. By using the proposed CNN on a cohort of
subjects affected by TLEwe detected asymmetric microstructural changes within the
DNs, which should be further investigated in dedicated studies. Future work could
consider multimodal datasets including as input images with different MRI contrasts
and an expanded GT database for training.
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