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The philosophy of computer science is concerned with the ontological and methodological 

issues arising from within the academic discipline of computer science, and from the 

practice of software development and its commercial and industrial deployment. More 

specifically, the philosophy of computer science considers the ontology and epistemology of 

computational systems, focusing on problems associated with their specification, 

programming, implementation, verification and testing. The complex nature of computer 

programs ensures that many of the conceptual questions raised by the philosophy of 

computer science have related ones in the philosophy of mathematics, the philosophy of 

empirical sciences, and the philosophy of technology. We shall provide an analysis of such 

topics that reflects the layered nature of the ontology of computational systems in Sections 

1–5; we then discuss topics involved in their methodology in Sections 6–8. 
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1. Computational Systems 
Computational systems are widespread in everyday life. Their design, development and 

analysis are the proper object of study of the discipline of computer science. The philosophy 

of computer science treats them instead as objects of theoretical analysis. Its first aim is to 

define such systems, i.e., to develop an ontology of computational systems. The literature 

offers two main approaches on the topic. A first one understands computational systems as 

defined by distinct ontologies for software and hardware, usually taken to be their 

elementary components. A different approach sees computational systems as comprising 

several other elements around the software-hardware dichotomy: under this second view, 

computational systems are defined on the basis of a hierarchy of levels of abstraction, 

arranging hardware levels at the bottom of such a hierarchy and extending upwards to 

elements of the design and downwards to include the user. In the following we present these 

two approaches. 

1.1 Software and Hardware 
Usually, computational systems are seen as composed of two ontologically distinct entities: 

software and hardware. Algorithms, source codes, and programs fall in the first category of 

abstract entities; microprocessors, hard drives, and computing machines are concrete, 

physical entities. 

https://plato.stanford.edu/entries/computer-science/#Veri
https://plato.stanford.edu/entries/computer-science/#ModeTheo
https://plato.stanford.edu/entries/computer-science/#TestExpe
https://plato.stanford.edu/entries/computer-science/#Expl
https://plato.stanford.edu/entries/computer-science/#Corr
https://plato.stanford.edu/entries/computer-science/#MathCorr
https://plato.stanford.edu/entries/computer-science/#PhysCorr
https://plato.stanford.edu/entries/computer-science/#Misc
https://plato.stanford.edu/entries/computer-science/#EpisStatCompScie
https://plato.stanford.edu/entries/computer-science/#CompScieMathDisc
https://plato.stanford.edu/entries/computer-science/#CompScieEngiDisc
https://plato.stanford.edu/entries/computer-science/#NComScieScieDisc
https://plato.stanford.edu/entries/computer-science/#Bib
https://plato.stanford.edu/entries/computer-science/#Aca
https://plato.stanford.edu/entries/computer-science/#Oth
https://plato.stanford.edu/entries/computer-science/#Rel


Moore (1978) argues that such a duality is one of the three myths of computer science, in 

that the dichotomy software/hardware has a pragmatic, but not an ontological, significance. 

Computer programs, as the set of instructions a computer may execute, can be examined 

both at the symbolic level, as encoded instructions, and at the physical level, as the set of 

instructions stored in a physical medium. Moore stresses that no program exists as a pure 

abstract entity, that is, without a physical realization (a flash drive, a hard disk on a server, 

or even a piece of paper). Early programs were even hardwired directly and, at the 

beginning of the computer era, programs consisted only in patterns of physical levers. By 

the software/hardware opposition, one usually identifies software with the symbolic level of 

programs, and hardware with the corresponding physical level. The distinction, however, 

can be only pragmatically justified in that it delimits the different tasks of developers. For 

them, software may be given by algorithms and the source code implementing them, while 

hardware is given by machine code and the microprocessors able to execute it. By contrast, 

engineers realizing circuits implementing hardwired programs may be inclined to call 

software many physical parts of a computing machine. In other words, what counts as 

software for one professional may count as hardware for another one. 

Suber (1988) goes even further, maintaining that hardware is a kind of software. Software is 

defined as any pattern that is amenable to being read and executed: once one realizes that all 

physical objects display patterns, one is forced to accept the conclusion that hardware, as a 

physical object, is also software. Suber defines a pattern as “any definite structure, not in the 

narrow sense that requires some recurrence, regularity, or symmetry” (1988, 90) and argues 

that any such structure can indeed be read and executed: for any definite pattern to which no 

meaning is associated, it is always possible to conceive a syntax and a semantics giving a 

meaning, thereby making the pattern an executable program. 

Colburn (1999, 2000), while keeping software and hardware apart, stresses that the former 

has a dual nature, it is a “concrete abstraction” as being both abstract and concrete. To 

define software, one needs to make reference to both a “medium of description”, i.e., the 

language used to express an algorithm, and a “medium of execution”, namely the circuits 

composing the hardware. While software is always concrete in that there is no software 

without a concretization in some physical medium, it is nonetheless abstract, because 

programmers do not consider the implementing machines in their activities: they would 

rather develop a program executable by any machine. This aspect is called by Colburn 

(1999) “enlargement of content” and it defines abstraction in computer science as an 

“abstraction of content”: content is enlarged rather than deleted, as it happens with 

mathematical abstraction. 

Irmak (2012) criticizes the dual nature of software proposed by Colburn (1999, 2000). He 

understands an abstract entity as one lacking spatio-temporal properties, while being 

concrete means having those properties. Defining software as a concrete abstraction would 

therefore imply for software to have contradictory properties. Software does have temporal 

properties: as an object of human creation, it starts to exist at some time once conceived and 

implemented; and it can cease to exist at a certain subsequent time. Software ceases to exist 

when all copies are destroyed, their authors die and nobody else remembers the respective 

algorithms. As an object of human creation, software is an artifact. However, software lacks 

spatial properties in that it cannot be identified with any concrete realization of it. 

Destroying all the physical copies of a given software would not imply that a particular 

software ceases to exist, as stated above, nor, for the very same reason, would deleting all 



texts implementing the software algorithms in some high-level language. Software is thus 

an abstract entity endowed with temporal properties. For these reasons, Irmak (2010) 

definies software as an abstract artifact. 

Duncan (2011) points out that distinguishing software from hardware requires a finer 

ontology than the one involving the simple abstract/concrete dichotomy. Duncan (2017) 

aims at providing such an ontology by focusing on Turner’s (2011) notion of specification 

as an expression that gives correctness conditions for a program (see §2). Duncan (2017) 

stresses that a program acts also as a specification for the implementing machine, meaning 

that a program specifies all correct behaviors that the machine is required to perform. If the 

machine does not act consistently with the program, the machine is said to malfunction, in 

the same way a program which is not correct with respect to its specification is said to be 

flawed or containing a bug. Another ontological category necessary to define the distinction 

software/hardware is that of artifact, which Duncan (2017) defines as a physical, spatio-

temporal entity, which has been constructed so as to fulfill some functions and such that 

there is a community recognizing the artifact as serving that purpose. That said, software is 

defined as a set of instructions encoded in some programming language which act as 

specifications for an artifact able to read those instructions; hardware is defined as an 

artifact whose function is to carry out the specified computation. 

1.2 The Method of Levels of Abstractions 
As shown above, the distinction between software and hardware is not a sharp one. A 

different ontological approach to computational systems relies on the role of abstraction. 

Abstraction is a crucial element in computer science, and it takes many different forms. 

Goguen & Burstall (1985) describe some of this variety, of which the following examples 

are instances. Code can be repeated during programming, by naming text and a parameter, a 

practice known as procedural abstraction. This operation has its formal basis in the 

abstraction operation of the lambda calculus (see the entry on the lambda calculus) and it 

allows a formal mechanism known as polymorphism (Hankin 2004). Another example is 

typing, typical of functional programming, which provides an expressive system of 

representation for the syntactic constructors of the language. Or else, in object-oriented 

design, patterns (Gamma et al. 1994) are abstracted from the common structures that are 

found in software systems and used as interfaces between the implementation of an object 

and its specification. 

All these examples share an underlying methodology in the Levels of Abstraction 

(henceforth LoA), used also in mathematics (Mitchelmore and White 2004) and philosophy 

(Floridi 2008). Abstractions in mathematics are piled upon each other in a never-ending 

search for more and more abstract concepts. On this account, abstraction is self-contained: 

an abstract mathematical object takes its meaning only from the system within which it is 

defined and the only constraint is that new objects be related to each other in a consistent 

system that can be operated on without reference to previous or external meanings. Some 

argue that, in this respect at least, abstraction in computer science is fundamentally different 

from abstraction in mathematics: computational abstraction must leave behind an 

implementation trace and this means that information is hidden but not destroyed (Colburn 

& Shute 2007). Any details that are ignored at one LoA must not be ignored by one of the 

lower LoAs: for example, programmers need not worry about the precise location in 

memory associated with a particular variable, but the virtual machine is required to handle 
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all memory allocations. This reliance of abstraction on different levels is reflected in the 

property of computational systems to depend upon the existence of an implementation: for 

example, even though classes hide details of their methods, they must have 

implementations. Hence, computational abstractions preserve both an abstract guise and an 

implementation. 

A full formulation of LoAs for the ontology of digital computational systems has been 

devised in Primiero (2016), including: 

• Intention 

• Specification 

• Algorithm 

• High-level programming language instructions 

• Assembly/machine code operations 

• Execution 

Intention is the cognitive act that defines a computational problem to be solved: it 

formulates the request to create a computational process to perform a certain task. Requests 

of this sort are usually provided by customers, users, and other stakeholders involved in a 

given software development project. Specification is the formulation of the set of 

requirements necessary for solving the computational problem at hand: it concerns the 

possibly formal determination of the operations the software must perform, through the 

process known as requirements elicitation. Algorithm expresses the procedure providing a 

solution to the proposed computational problem, one which must meet the requirements of 

the specification. High-level programming language (such as C, Java, or 

Python) instructions constitute the linguistic implementation of the proposed algorithm, 

often called the source code, and they can be understood by trained programmers but cannot 

be directly executed by a machine. The instructions coded in high-level language are 

compiled, i.e., translated, by a compiler into assembly code and then assembled in machine 

code operations, executable by a processor. Finally, the execution LoA is the physical level 

of the running software, i.e., of the computer architecture executing the instructions. 

According to this view, no LoA taken in isolation is able to define what a computational 

system is, nor to determine how to distinguish software from hardware. Computational 

systems are rather defined by the whole abstraction hierarchy; each LoA in itself expresses a 

semantic level associated with a realization, either linguistic or physical. 

2. Intention and Specification 
Intention refers to a cognitive state outside the computational system which expresses the 

formulation of a computational problem to be solved. Specifications describe the functions 

that the computational system to be developed must fulfil. Whereas intentions, per se, do 

not pose specific philosophical controversies inside the philosophy of computer science, 

issues arise in connection with the definition of what a specification is and its relation with 

intentions. 

2.1 Intentions 



Intentions articulate the criteria to determine whether a computational system is appropriate 

(i.e., correct, see §7), and therefore it is considered as the first LoA of the computational 

system appropriate to that problem. For instance, customers and users may require a 

smartphone app able to filter out annoying calls from call centers; such request constitutes 

the intention LoA in the development of a computational system able to perform such a 

task. In the software development process of non-naive systems, intentions are usually 

gathered by such techniques as brainstorming, surveys, prototyping, and even focus groups 

(Clarke and Moreira 1999), aimed at defining a structured set of the various stakeholders’ 

intentions. At this LoA, no reference is made to how to solve the computational problem, 

but only the description of the problem that must be solved is provided. 

In contemporary literature, intentions have been the object of philosophical inquiry at least 

since Anscombe (1963). Philosophers have investigated “intentions with which” an action is 

performed (Davidson 1963), intentions of doing something in the future (Davidson 1978), 

and intentional actions (Anscombe 1963, Baier 1970, Ferrero 2017). Issues arise concerning 

which of the three kinds of intention is primary, how they are connected, the relation 

between intentions and belief, whether intentions are or presuppose specific mental states, 

and whether intentions act as causes of actions (see the entry on intention). More formal 

problems concern the opportunity for an agent of having inconsistent intentions and yet 

being considered rational (Bratman 1987, Duijf et al. 2019). 

In their role as the first LoA in the ontology of computational systems, intentions can 

certainly be acknowledged as intentions for the future, in that they express the objective of 

constructing systems able to perform some desired computational tasks. Since intentions, as 

stated above, confine themselves to the definition of the computational problem to be 

solved, without specifying its computational solution, their ontological and epistemological 

analysis does not differ from those referred to in the philosophical literature. In other words, 

there is nothing specifically computational in the intentions defining computational systems 

which deserves a separate treatment in the philosophy of computer science. What matters 

here is the relation between intention and specification, in that intentions provide 

correctness criteria for specifications; specifications are asked to express how the 

computational problem put forward by intentions is to be solved. 

2.2 Definitions and Specifications 
Consider the example of the call filtering app again; a specification may require to create a 

black-list of phone numbers associated with call centers; to update the list every n days; to 

check, upon an incoming call, whether the number is on the black-list; to communicate to 

the call management system not to allow the incoming call in case of an affirmative answer, 

and to allow the call in case of negative answer. 

The latter is a full-fledged specification, though expressed in a natural language. 

Specifications are often advanced in a natural language to be closer to the stakeaholder’s 

intentions and only subsequently they are formalized in a proper formal language. 

Specifications may be expressed by means of graphical languages such as UML (Fowler 

2003), or more formal languages such as TPL (Turner 2009a) and VDM (Jones 1990), using 

predicate logic, or Z (Woodcock and Davies 1996), focusing on set theory. For instance, 

Type Predicate Logic (TPL) expresses the requirements of computational systems using 

predicate logic formulas, wherein the type of the quantified variables is specified. The 
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choice of the variable types allows one to define specifications at the more appropriate 

abstraction level. Whether specifications are expressed in an informal or formal guise often 

depends on the development method followed, with formal specifications usually preferred 

in the context of formal development methods. Moreover, formal specifications facilitate 

verification of correctness for computational systems (see §6). 

Turner (2018) asks what difference is there between models and specifications, both of 

which are extensively used in computer science. The difference is located in what Turner 

(2011) calls the intentional stance: models describe an intended system to be developed 

and, in case of a mismatch between the two, the models are to be refined; 

specifications prescribe how the system is to be built so as to comply with the intended 

functions, and in case of mismatch it is the system that needs to be refined. Matching 

between model and system reflects a correspondence between intentions — 

describing what system is to be constructed in terms of the computational problem the 

system must be able to solve — and specifications — determining how the system is to be 

constructed, in terms of the set of requirements necessary for solving the computational 

problem, as exemplified for the call filtering app. In Turner’s (2011) words, “something is a 

specification when it is given correctness jurisdiction over an artefact”: specifications 

provide correctness criteria for computational systems. Computational systems are thus 

correct when they comply with their specifications, that is, when they behave according to 

them. Conversely, they provide criteria of malfunctioning (§7.3): a computational system 

malfunctions when it does not behave consistently with its specifications. Turner (2011) is 

careful to notice that such a definition of specifications is an idealization: specifications are 

themselves revised in some cases, such as when the specified computational systems cannot 

be realized because of physical laws constraints or cost limitations, or when it turns out that 

the advanced specifications are not correct formalizations of the intentions of clients and 

users. 

More generally, the correctness problem does not only deal with specifications, but with any 

two LoAs defining computational systems, as the next subsection will examine. 

2.3 Specifications and Functions 
Fully implemented and constructed computational systems are technical artifacts, i.e., 

human-made systems designed and implemented with the explicit aim of fulfilling specific 

functions (Kroes 2012). Technical artifacts so defined include tables, screwdrivers, cars, 

bridges, or televisions, and they are distinct both from natural objects (e.g. rocks, cats, or 

dihydrogen monoxide molecules), which are not human-made, and artworks, which do not 

fulfill functions. As such, the ontology of computational systems falls under that of 

technical artifacts (Meijers 2000) characterized by a duality, as they are defined by 

both functional and structural properties (Kroes 2009, see also the entry on philosophy of 

technology). Functional properties specify the functions the artifact is required to perform; 

structural properties express the physical properties through which the artifact can perform 

them. Consider a screwdriver: functional properties may include the function of screwing 

and unscrewing; structural properties can refer to a piece of metal capable of being inserted 

on the head of the screw and a plastic handle that allows a clockwise and anticlockwise 

motion. Functions can be realized in multiple ways by their structural counterparts. For 

instance, the function for the screwdriver could well be realized by a full metal screwdriver, 

or by an electric screwdriver defined by very different structural properties. 
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The layered ontology of computational systems characterized by many different LoAs 

seems to extend the dual ontology defining technical artifacts (Floridi et al. 2015). Turner 

(2018) argues that computational systems are still artifacts in the sense of (Kroes 2009, 

2012), as each LoA is a functional level for lower LoAs and a structural level for upper 

LoAs: 

• the intention expresses the functions that the system must achieve and is 

implemented by the specification; 

• the specification plays a functional role, explaining in details the concrete functions 

that the software must implement, and it is realized by an algorithm, its structural 

level;  

• the algorithm expresses the procedures that the high-level language program, its 

structural level, must implement; 

• instructions in high level language define the functional properties for the machine 

language code, which realizes them; 

• machine code, finally, expresses the functional properties implemented by the 

execution level, which expresses physical structural properties. 

It follows, according to Turner (2018), that structural levels need not be necessarily physical 

levels, and that the notion of abstract artifact holds in computer science. For this reason, 

Turner (2011) comes to define high-level language programs themselves as technical 

artifacts, in that they constitute a structural level implementing specifications as their 

functional level (see §4.2). 

A first consequence is that each LoA – expressing what function to accomplish – can be 

realized by a multiplicity of potential structural levels expressing how those functions are 

accomplished: an intended functionality can be realized by a specification in multiple ways; 

a computational problem expressed by a specification has solutions by a multiplicity of 

different algorithms, which can differ for some important properties but are all equally valid 

(see §3); an algorithm may be implemented in different programs, each written in a different 

high-level programming language, all expressing the same program if they implement the 

same algorithm (Angius and Primiero 2019); source code can be compiled in a multiplicity 

of machine languages, adopting different ISAs (Instruction Set Architectures); executable 

code can be installed and run on a multiplicity of machines (provided that these share the 

same ISA). 

A second consequence is that each LoA as a functional level provides correctness criteria 

for lower levels (Primiero 2020). Not just at the implementation level, correctness is 

required at any LoA from specification to execution, and the cause of malfunctions may be 

located at any LoA not correctly implementing its proper functional level (see §7.3 and 

Fresco, Primiero (2013)). According to Turner (2018), the specification level can be said to 

be correct or incorrect with respect to intentions, despite the difficulty of verifying their 

correctness. Correctness of any non-physical layer can be verified mathematically through 

formal verification, and the execution physical level can be verified empirically, through 

testing (§6). Verifying correctness of specifications with respect to clients’ intentions would 

require instead having access to the mental states of the involved agents. 
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This latter problem relates to the more general one of establishing how artifacts possess 

functions, and what it means that structural properties are related to the intentions of agents. 

The problem is well-known also in the philosophy of biology and the cognitive sciences, 

and two main theories have been put forward as solutions. According to the causal theory of 

function (Cummins 1975), functions are determined by the physical capacities of artifacts: 

for example, the physical ability of the heart of contracting and expanding determines its 

function of pumping blood in the circulatory system. However, this theory faces serious 

problems when applied to technical artifacts. First, it prevents defining correctness and 

malfunctioning (Kroes 2010): suppose the call filtering app installed on our smartphone 

starts banning calls from contacts in our mobile phonebook; according to the causal theory 

of function this would be a new function of the app. Second, the theory does not distinguish 

intended functions from side effects (Turner 2011): in case of a long-lasting call, our 

smartphone would certainly start heating; however, this is not a function intended by clients 

or developers. According to the intentional theory of function (McLaughlin 2001, Searle 

1995), the function fixed by the designer or the user is the intended one of the artifact, and 

structural properties of artifacts are selected so as to be able to fulfill it. This theory is able 

to explain correctness and malfunction, as well as to distinguish side effects from intended 

functions. However, it does not say where the function actually resides, whether in the 

artifact or in the mind of the agent. In the former case, one is back at the question of how 

artifacts possess functions. In the latter case, a further explanation is needed about how 

mental states are related to physical properties of artifacts (Kroes 2010). Turner (2018) 

holds that the intuitions behind both the causal and the intentional theories of function are 

useful to understand the relation between function and structure in computational systems, 

and suggests that the two theories be combined into a single one. On the one hand, there is 

no function without implementation; on the other hand, there is no intention without clients, 

developers, and users. 

3. Algorithms 
Even though known and widely used since antiquity, the problem of defining what 

algorithms are is still open (Vardi 2012). The word “algorithm” originates from the name of 

the ninth-century Persian mathematician Abū Jaʿfar Muḥammad ibn Mūsā al-Khwārizmī, 

who provided rules for arithmetic operations using Arabic numerals. Indeed, the rules one 

follows to compute basic arithmetic operations such as multiplication or division, are 

everyday examples of algorithms. Other well-known examples include rules to bisect an 

angle using compass and straightedge, or Euclid’s algorithm for calculating the greatest 

common divisor. Intuitively, an algorithm is a set of instructions allowing the fulfillment of 

a given task. Despite this ancient tradition in mathematics, only modern logical and 

philosophical reflection put forward the task of providing a definition of what an algorithm 

is, in connection with the foundational crisis of mathematics of the early twentieth century 

(see the entry on the philosophy of mathematics). The notion of effective calculability arose 

from logical research, providing some formal counterpart to the intuitive notion of 

algorithm and giving birth to the theory of computation. Since then, different definitions of 

algorithms have been proposed, ranging from formal to non-formal approaches, as sketched 

in the next sections. 

3.1 Classical Approaches 
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Markov (1954) provides a first precise definition of algorithm as a computational process 

that is determined, applicable, and effective. A computational process is determined if the 

instructions involved are precise enough not to allow for any “arbitrary choice” in their 

execution. The (human or artificial) computer must never be unsure about what step to carry 

out next. Algorithms are applicable for Markov in that they hold for classes of inputs 

(natural numbers for basic arithmetic operations) rather than for single inputs (specific 

natural numbers). Markov (1954:1) defines effectiveness as “the tendency of the algorithm 

to obtain a certain result”. In other words, an algorithm is effective in that it will eventually 

produce the answer to the computational problem. 

Kleene (1967) specifies finiteness as a further important property: an algorithm is a 

procedure which can be described by means of a finite set of instructions and needs a finite 

number of steps to provide an answer to the computational problem. As a counterexample, 

consider a while loop defined by a finite number of steps, but which runs forever since the 

condition in the loop is always satisfied. Instructions should also be amenable 

to mechanical execution, that is, no insight is required for the machine to follow them. 

Following Markov’s determinability and strengthening effectiveness, Kleene (1967) 

additionally specifies that instructions should be able to recognize that the solution to the 

computational problem has been achieved, and halt the computation. 

Knuth (1973) recalls and deepens the analyses of Markov (1954) and Kleene (1967) by 

stating that: 

Besides merely being a finite set of rules that gives a sequence of operations for solving a 

specific type of problem, an algorithm has five important features: 

1. Finiteness. An algorithm must always terminate after a finite number of steps. […] 

2. Definiteness. Each step of an algorithm must be precisely defined; the actions to be 

carried out must be rigorously and unambiguously specified for each case. […] 

3. Input. An algorithm has zero or more inputs. […] 

4. Output. An algorithm has zero or more outputs. […] 

5. Effectiveness. An algorithm is also generally expected to be effective, in the sense 

that its operations must all be sufficiently basic that they can in principle be done 

exactly and in a finite length of time by someone using pencil and paper. (Knuth 

1973: 4–6) […] 

As in Kleene (1967), finiteness affects both the number of instructions and the number of 

implemented computational steps. As in Markov’s determinacy, Knuth’s definiteness 

principle requires that each successive computational step be unambiguously specified. 

Furthermore, Knuth (1973) more explicitly requires that algorithms have (potentially empty 

sets of) inputs and outputs. By algorithms with no inputs or outputs Knuth probably refers to 

algorithms using internally stored data as inputs or algorithms not returning data to an 

external user (Rapaport 2019, ch. 7, in Other Internet Resources). As for effectiveness, 

besides Markov’s tendency “to obtain a certain result”, Knuth requires that the result be 

obtained in a finite amount of time and that the instructions be atomic, that is, simple 

enough to be understandable and executable by a human or artificial computer. 



3.2 Formal Approaches 
Gurevich (2011) maintains, on the one hand, that it is not possible to provide formal 

definitions of algorithms, as the notion continues to evolve over time: consider how 

sequential algorithms, used in ancient mathematics, are flanked by parallel, analog, or 

quantum algorithms in current computer science practice, and how new kinds of algorithms 

are likely to be envisioned in the near future. On the other hand, a formal analysis can be 

advanced if concerned only with classical sequential algorithms. In particular, Gurevich 

(2000) provides an axiomatic definition for this class of algorithms. 

Any sequential algorithm can be simulated by a sequential abstract state machine satisfying 

three axioms: 

1. The sequential-time postulate associates to any algorithm A a set of states S(A), a set 

of initial states I(A) subset of S(A), and a map from S(A) to S(A) of one-step 

transformations of A. States are snapshot descriptions of running algorithms. A run 

of A is a (potentially infinite) sequence of states, starting from some initial state, such 

that there is a one-step transformation from one state to its successor in the sequence. 

Termination is not presupposed by Gurevich’s definition. One-step transformations 

need not be atomic, but they may be composed of a bounded set of atomic 

operations. 

2. According to the abstract-state postulate, states in S(A) are first-order structures, as 

commonly defined in mathematical logic; in other words, states provide a semantics 

to first-order statements. 

3. Finally, the bounded-exploration postulate states that given two 

states X and Y of A there is always a set T of terms such that, when X and Y coincide 

over T, the set of updates of X corresponds to the set of updates 

of Y. X and Y coincide over T when, for every term t in T, the evaluation of t in X is 

the same as the evaluation of t in Y. This allows algorithm A to explore only those 

parts of states which are relative to terms in T. 

Moschovakis (2001) objects that the intuitive notion of algorithm is not captured in full by 

abstract machines. Given a general recursive function f: ℕ → ℕ defined on natural numbers, 

there are usually many different algorithms computing it; “essential, implementation-

independent properties” are not captured by abstract machines, but rather by a system of 

recursive equations. Consider the algorithm mergesort for sorting lists; there are many 

different abstract machines for mergesort, and the question arises which one is to be chosen 

as the mergesort algorithm. The mergesort algorithm is instead the system of recursive 

equations specifying the involved function, whereas abstract machines for 

the mergesort procedure are different implementations of the same algorithm. Two 

questions are put forward by Moschovakis’ formal analysis: different implementations of 

the same algorithm should be equivalent implementations, and yet, an equivalence relation 

among algorithm implementations is to be formally defined. Furthermore, it remains to be 

clarified what the intuitive notion of algorithm formalized by systems of recursive equations 

amounts to. 

Primiero (2020) proposes a reading of the nature of algorithms at three different levels of 

abstraction. At a very high LoA, algorithms can be defined abstracting from the procedure 



they describe, allowing for many different sets of states and transitions. At this LoA 

algorithms can be understood as informal specifications, that is, as informal descriptions of 

a procedure P. At a lower LoA, algorithms specify the instructions needed to solve the 

given computational problem; in other words, they specify a procedure. Algorithms can thus 

be defined as procedures, or descriptions in some given formal language L of how to 

execute a procedure P. Many important properties of algorithms, including those related to 

complexity classes and data structures, cannot be determined at the procedural LoA, and 

instead make reference to an abstract machine implementing the procedure is needed. At a 

bottom LoA, algorithms can be defined as implementable abstract machines, viz. as the 

specification, in a formal language L, of the executions of a program P for a given abstract 

machine M. The threefold definition of algorithms allows Primiero (2020) to supply a 

formal definition of equivalence relations for algorithms in terms of the algebraic notions 

of simulation and bisimulation (Milner 1973, see also Angius and Primero 2018). A 

machine Mi executing a program Pi implements the same algorithm of a 

machine Mj executing a program Pj if and only if the abstract machines 

interpreting Mi and Mj are in a bisimulation relation. 

3.3 Informal Approaches 
Vardi (2012) underlines how, despite the many formal and informal definitions available, 

there is no general consensus on what an algorithm is. The approaches of Gurevich (2000) 

and Moschovakis (2001), which can even be proved to be logically equivalent, only provide 

logical constructs for algorithms, leaving unanswered the main question. Hill (2013) 

suggests that an informal definition of algorithms, taking into account the intuitive 

understanding one has about algorithms, may be more useful, especially for the public 

discourse and the communication between practitioners and users. 

Rapaport (2012, Appendix) provides an attempt to summarize the three classical definitions 

of algorithm sketched above stating that: 

An algorithm (for executor E to accomplish goal G) is: 

1. a procedure, that is, a finite set (or sequence) of statements (or rules, or 

instructions), such that each statement is: 

o composed of a finite number of symbols (or marks) from a finite alphabet 

o and unambiguous for E—that is, 

i. E knows how to do it 

ii. E can do it 

iii. it can be done in a finite amount of time 

iv. and, after doing it, E knows what to do next— 

2. which procedure takes a finite amount of time (that is, it halts), 

3. and that ends with G accomplished. 

Rapaport stresses that an algorithm is a procedure, i.e., a finite sequence of statements 

taking the form of rules or instructions. Finiteness is here expressed by requiring that 

instructions contain a finite number of symbols from a finite alphabet. 



Hill (2016) aims at providing an informal definition of algorithm, starting from Rapaport’s 

(2012): 

An algorithm is a finite, abstract, effective, compound control structure, imperatively given, 

accomplishing a given purpose, under given provisions.(Hill 2016: 48). 

First of all, algorithms are compound structures rather than atomic objects, i.e., they are 

composed of smaller units, namely computational steps. These structures are finite and 

effective, as explicitly mentioned by Markov, Kleene, and Knuth. While these authors do 

not explicitly mention abstractness, Hill (2016) maintains it is implicit in their analysis. 

Algorithms are abstract simply in that they lack spatio-temporal properties and are 

independent from their instances. They provide control, that is, “content that brings about 

some kind of change from one state to another, expressed in values of variables and 

consequent actions” (p. 45). Algorithms are imperatively given, as they command state 

transitions to carry out specified operations. Finally, algorithms operate to achieve 

certain purposes under some usually well-specified provisions, or preconditions. From this 

viewpoint, the author argues, algorithms are on a par with specifications in their specifying 

a goal under certain resources. This definition allows to distinguish algorithms from other 

compound control structures. For instance, recipes are not algorithms because they are not 

effective; nor are games, which are not imperatively given. 

4. Programs 
The ontology of computer programs is strictly related to the subsumed nature of 

computational systems (see §1). If computational systems are defined on the basis of the 

software-hardware dichotomy, programs are abstract entities interpreting the former and 

opposed to the concrete nature of hardware. Examples of such interpretations are provided 

in §1.1 and include the “concrete abstraction” definition by Colburn (2000), the “abstract 

artifact” characterization by Irmak (2012), and programs as specifications of machines 

proposed by Duncan (2011). By contrast, under the interpretation of computational systems 

by a hierarchy of LoAs, programs are implementations of algorithms. We refer to §5 on 

implementation for an analysis of the ontology of programs in this sense. This section 

focuses on definitions of programs with a significant relevance in the literature, namely 

those views that consider programs as theories or as artifacts, with a focus on the problem of 

the relation between programs and the world. 

4.1 Programs as Theories 
The view that programs are theories goes back to approaches in cognitive science. In the 

context of the so-called Information Processing Psychology (IPP) for the simulative 

investigation on human cognitive processes, Newell and Simon (1972) advanced the thesis 

that simulative programs are empirical theories of their simulated systems. Newell and 

Simon assigned to a computer program the role of theory of the simulated system as well as 

of the simulative system, namely the machine running the program, to formulate predictions 

on the simulated system. In particular, the execution traces of the simulative program, given 

a specific problem to solve, are used to predict the mental operation strategies that will be 

performed by the human subject when asked to accomplish the same task. In case of a 

mismatch between execution traces and the verbal reports of the operation strategies of the 

human subject, the empirical theory provided by the simulative program is revised. The 
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predictive use of such a computer program is comparable, according to Newell and Simon, 

to the predictive use of the evolution laws of a system that are expressed by differential or 

difference equations. 

Newell and Simon’s idea that programs are theories has been shared by the cognitive 

scientists Pylyshyn (1984) and Johnson-Laird (1988). Both agree that programs, in contrast 

to typical theories, are better at facing the complexity of the simulative process to be 

modelled, forcing one to fill-in all the details that are necessary for the program to be 

executed. Whereas incomplete or incoherent theories may be advanced at some stage of 

scientific inquiry, this is not the case for programs. 

On the other hand, Moore (1978) considers the programs-as-theories thesis another myth of 

computer science. As programs can only simulate some set of empirical phenomena, at most 

they play the role of computational models of those phenomena. Moore notices that for 

programs to be acknowledged as models, semantic functions are nevertheless needed to 

interpret the empirical system being simulated. However, the view that programs are models 

should not be mistaken for the definition of programs as theories: 

theories explain and predict the empirical phenomena simulated by models, while 

simulation by programs does not offer that. 

According to computer scientist Paul Thagard (1984), understanding programs as theories 

would require a syntactic or a semantic view of theories (see the entry on the structure of 

scientific theories). But programs do not comply with either of the two views. According to 

the syntactic view (Carnap 1966, Hempel 1970), theories are sets of sentences expressed in 

some defined language able to describe target empirical systems; some of those sentences 

define the axioms of the theory, and some are law-like statements expressing regularities of 

those systems. Programs are sets of instructions written in some defined programming 

language which, however, do not describe any system, insofar as they are procedural 

linguistic entities and not declarative ones. To this, Rapaport (2020, see Other Internet 

Resources) objects that procedural programming languages can often be translated into 

declarative languages and that there are languages, such as Prolog, that can be interpreted 

both procedurally and declaratively. According to the semantic view (Suppe 1989, Van 

Fraassen 1980), theories are introduced by a collection of models, defined as set-theoretic 

structures satisfying the theory’s sentences. However, in contrast to Moore (1978), Thagard 

(1984) denies programs the epistemological status of models: programs simulate physical 

systems without satisfying theories’ laws and axioms. Rather, programs include, for 

simulation purposes, implementation details for the programming language used, but not of 

the target system being simulated. 

A yet different approach to the problem of whether programs are theories comes from the 

computer scientist Peter Naur (1985). According to Naur, programming is a theory building 

process not in the sense that programs are theories, but because the successful program’s 

development and life-cycle require that programmers and developers have theories of 

programs available. A theory is here understood, following Ryle (2009), as a corpus of 

knowledge shared by a scientific community about some set of empirical phenomena, and 

not necessarily expressed axiomatically or formally. Theories of programs are necessary 

during the program life-cycle to be able to manage requests of program modifications 

pursuant to observed miscomputations or unsatisfactory solutions to the computational 

problem the program was asked to solve. In particular, theories of programs should allow 
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developers to modify the program so that new solutions to the problem at stake can be 

provided. For this reason, Naur (1985) deems such theories more fundamental, in software 

development, than documentations and specifications. 

For Turner (2010, 2018 ch. 10), programming languages are mathematical objects defined 

by a formal grammar and a formal semantics. In particular, each syntactic construct, such as 

an assignment, a conditional or a while loop, is defined by a grammatical rule determining 

its syntax, and by a semantic rule associating a meaning to it. Depending on whether an 

operational or a denotational semantics is preferred, meaning is given in terms of 

respectively the operations of an abstract machine or of mathematical partial functions from 

set of states to set of states. For instance, the simple assignment statement x:=Ex:=E is 

associated, under an operational semantics, with the machine 

operation update(s,x,v)update(s,x,v) which assigns variable vv interpreted as EE to 

variable xx in state ss. Both in the case of an operational and of a denotational semantics, 

programs can be understood as mathematical theories expressing the operations of an 

implementing machine. Consider operational semantics: a syntactic rule of the 

form ⟨P,s⟩⇓s′⟨P,s⟩⇓s′ states semantically that program PP executed in state ss results 

in s′.s′. According to Turner (2010, 2018), a programming language with an operational 

semantics is akin to an axiomatic theory of operations in which rules provide axioms for the 

relation ⇓⇓. 

4.2 Programs as Technical Artifacts 
Programs can be understood as technical artifacts because programming languages are 

defined, as any other artifact, on the basis of both functional and structural properties 

(Turner 2014, 2018 ch. 5). Functional properties of (high level) programming languages are 

provided by the semantics associated with each syntactic construct of the language. Turner 

(2014) points out that programming languages can indeed be understood as axiomatic 

theories only when their functional level is isolated. Structural properties, on the other hand, 

are specified in terms of the implementation of the language, but not identified with 

physical components of computing machines: given a syntactic construct of the language 

with an associated functional description, its structural property is determined by the 

physical operations that a machine performs to implement an instruction for the construct at 

hand. For instance, the assignment construct x:=Ex:=E is to be linked to the physical 

computation of the value of expression EE and to the placement of the value of EE in the 

physical location xx. 

Another requirement for a programming language to be considered a technical artifact is 

that it has to be endowed with a semantics providing correctness criteria for the language 

implementation. The programmer attests to functional and structural properties of a program 

by taking the semantics to have correctness jurisdiction over the program. 

4.3 Programs and their Relation to the World 
The problem of whether computer programs are theories is tied with the relation that 

programs entertain with the outside world. If programs were theories, they would have to 

represent some empirical system, and a semantic relation would be directly established 

between the program and the world. By contrast, some have argued that the relation 

between programs and natural systems is mediated by models of the outside world 



(Colburn et al. 1993, Smith 1985). In particular, Smith (1985) argues that models are 

abstract descriptions of empirical systems, and computational systems operating in them 

have programs that act as models of the models, i.e., they represent abstract models of 

reality. Such an account of the ontology of programs comes in handy when describing the 

correctness problem in computer science (see § 7): if specifications are considered as 

models requiring certain behaviors from computational systems, programs can be seen as 

models satisfying specifications. 

Two views of programs can be given depending on whether one admits their relation with 

the world (Rapaport 2020, ch. 17, see Other Internet Resource). According to a first view, 

programs are “wide”, “external” and “semantic”: they grant direct reference to objects of an 

empirical system and operations on those objects. According to a second view, programs are 

“narrow”, “internal”, and “syntactic”: they make only reference to the atomic operations of 

an implementing machine carrying out computations. Rapaport (2020, see Other Internet 

Resources) argues that programs need not be “external” and “semantic”. First, computation 

itself needs not to be “external”: a Turing machine executes the instructions contained in its 

finite table by using data written on its tape and halting after the data resulting from the 

computation have been written on the tape. Data are not, strictly speaking, in-put-from and 

out-put-to an external user. Furthemore, Knuth (1973) required algorithms to have zero or 

more inputs and outputs (see § 3.1). A computer program requiring no inputs may be a 

program, say, outputting all prime numbers from 1; and a program with no outputs can be a 

program that computes the value of some given variable x without returning the value stored 

in x as output. Second, programs need not be “external”, teleological, i.e., goal oriented. 

This view opposes other known positions in the literature. Suber (1988) argues that, without 

considering goals and purposes, it would not be possible to assess whether a computer 

program is correct, that is, if it behaves as intended. And as recalled in §3.3., Hill (2016) 

specifies in her informal definition that algorithms accomplish “a given purpose, under 

given provisions.” (Hill 2016: 48). To these views, Rapaport (2020, ch. 17, see Other 

Internet Resource) replies that whereas goals, purposes, and programmers’ intentions may 

be very useful for a human computor to understand a program, they are not necessary for an 

artificial computer to carry out the computations instructed by the program code. Indeed, the 

principle of effectiveness that classical approaches require for algorithms (see §3.1) 

demands, among other properties, that algorithms be executed without any recourse to 

intuition. In other words, a machine executing a program for adding natural numbers does 

not “understand” that it is adding; at the same time, knowing that a given program performs 

addition may help a human agent to understand the program’s code. 

According to this view, computing involves just symbols, not meanings. Turing machines 

become symbols manipulators and not a single but multiple meanings can be associated 

with its operations. How can then one identify when two programs are the same program, if 

not by their meanings, that is, by considering what function they perform? One answer 

comes from Piccini’s analysis of computation and its “internal semantics” (Piccini 2008, 

2015 ch. 3): two programs can be identified as identical by analysing only their syntax and 

the operations the programs carry out on their symbols. The effects of string manipulation 

operations can be considered an internal semantics of a program. The latter can be easily 

determined by isolating subroutines or methods in the program’s code and can afterwards be 

used to identify a program or to establish whether two programs are the same, namely when 

they are defined by the same subroutines. 
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However, it has been argued that there are cases in which it is not possible to determine 

whether two programs are the same without making reference to an external semantics. 

Sprevak (2010) proposes to consider two programs for addition which differ from the fact 

that one operates on Arabic, the other one on Roman numerals. The two programs compute 

the same function, namely addition, but this cannot always be established by inspecting the 

code with its subroutines; it must be determined by assigning content to the input/output 

strings, interpreting Arabic and Roman numerals as numbers. In that regard, Angius and 

Primiero (2018) underline how the problem of identity for computer programs does not 

differ from the problem of identity for natural kinds (Lowe 1998) and technical artifacts 

(Carrara et al. 2014). The problem can be tackled by fixing an identity criterion, namely a 

formal relation, that any two programs should entertain in order to be defined as identical. 

Angius and Primiero (2018) show how to use the process algebra relation of bisimulation 

between the two automata implemented by two programs under examination as such an 

identity criterion. Bisimulation allows to establish matching structural properties of 

programs implementing the same function, as well as providing weaker criteria for copies in 

terms of simulation. This brings the discussion back to the notion of programs as 

implementations. We now turn to analyze this latter concept. 

5. Implementation 
The word ‘implementation’ is often associated with a physical realization of a computing 

system, i.e., to a machine executing a computer program. In particular, according to the dual 

ontology of computing systems examined in §1.1, implementation in this sense reduces to 

the structural hardware, as opposed to the functional software. By contrast, following the 

method of the levels of abstraction (§ 1.2), implementation becomes a wider relation 

holding between any LoA defining a computational system and the levels higher in the 

hierarchy. Accordingly, an algorithm is an implementation of a (set of) specification(s); a 

program expressed in a high level programming language can be defined as an 

implementation of an algorithm (see §4); assembly and machine code instructions can be 

seen as an implementation of a set of high-level programming language instructions with 

respect to a given ISA; finally, executions are physical, observable, implementations of 

those machine code instructions. By the same token, programs formulated in a high-level 

language are also implementations of specifications, and, as similarly argued by the dual-

ontology paradigm, executions are implementations of high-level programming language 

instructions. According to Turner (2018), even the specification can be understood as an 

implementation of what has been called intention. 

What remains to be examined here is the nature of the implementation relation thus defined. 

Analyzing this relation is essential to define the notion of correctness (§7). Indeed, a correct 

program amounts to a correct implementation of an algorithm; and a correct computing 

system is a correct implementation of a set of specifications. In other words, under this 

view, the notion of correctness is paired with that of implementation for any LoA: any level 

can be said to be correct with respect to upper levels if and only if it is a correct 

implementation thereof. 

The following three subsections examine three main definitions of the implementation 

relation that have been advanced in the philosophy of computer science literature. 
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5.1 Implementation as Semantic Interpretation 
A first philosophical analysis of the notion of implementation in computer science is 

advanced by Rapaport (1999, 2005). He defines an implementation I as the semantic 

interpretation of a syntactic or abstract domain A in a medium of implementation M. If 

implementation is understood as a relation holding between a given LoA and any upper 

level in the hierarchical ontology of a computational system, it follows that Rapaport’s 

definition extends accordingly, so that any LoA provides a semantic interpretation in a 

given medium of implementation for the upper levels. Under this view, specifications 

provide semantic interpretations of intentions expressed by stakeholders in the specification 

(formal) language, and algorithms provide semantic interpretations of specifications using 

one of the many languages algorithms can be formulated in (natural languages, pseudo-

code, logic languages, functional languages etc.). The medium of implementation can be 

either abstract or concrete. A computer program is the implementation of an algorithm in 

that the former provides a semantic interpretation of the syntactic constructs of the latter in a 

high-level programming language as its medium of implementation. The program’s 

instructions interpret the algorithm's tasks in a programming language. Also the execution 

LoA provides a semantic interpretation of the assembly/machine code operations into the 

medium given by the structural properties of the physical machine. According to the 

analysis in (Rapaport 1999, 2005), implementation is an asymmetric relation: if I is an 

implementation of A, A cannot be an implementation of I. However, the author argues that 

any LoA can be both a syntactic and a semantic level, that is, it can play the role of both the 

implementation I and of a syntactic domain A. Whereas an algorithm is assigned a semantic 

interpretation by a program expressed in a high-level language, the same algorithm provides 

a semantic interpretation for the specification. It follows that the abstraction-implementation 

relation pairs the functional-structural relation for computational systems. 

Primiero (2020) considers this latter aspect as one main limit of Rapaport’s (1999, 2005) 

account of implementation: implementation reduces to a unique relation between a syntactic 

level and its semantic interpretation and it does not account for the layered ontology of 

computational systems seen in §1.2. In order to extend the present definition of 

implementation to all LoAs, each level has to be reinterpreted each time either as syntactic 

or as a semantic level. This, in turn, has a repercussion on the second difficulty 

characterizing, according to Primero (2020), implementation as a semantic interpretation: on 

the one hand, this approach does not take into account incorrect implementations; on the 

other hand, for a given incorrect implementation, the unique relation so defined can relate 

incorrectness only to one syntactic level, excluding all other levels as potential error 

locations. 

Turner (2018) aims to show that semantic interpretation not only does not account for 

incorrect implementation, but not even to correct ones. One first example is provided by the 

implementation of one language into another: the implementing language here is not 

providing a semantic interpretation of the implemented language, unless the former is 

associated with a semantics providing meaning and correctness criteria for the latter. Such 

semantics will remain external to the implementation relation: whereas correctness is 

associated with semantic interpretation, implementation does not always come with a 

semantic interpretation. A second example is given by considering an abstract stack 

implemented by an array; again, the array does not provide correctness criteria for the stack. 
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Quite to the contrary, it is the stack that specifies correctness criteria for any of its 

implementation, arrays included. 

5.2 Implementation as the Relation Specification-

Artifact 
The fact that correctness criteria for the implementation relation are provided by the abstract 

level induces Turner (2012, 2014, 2018) to define implementation as the 

relation specification-artefact. As examined in §2, specifications have correctness 

jurisdiction over artifacts, that is, they prescribe the allowed behaviors of artifacts. Also 

recall that artifacts can be both abstract and concrete entities, and that any LoA can play the 

role of specification for lower levels. This amounts to saying that the specification-artefact 

relation is able to define any implementation relation across the layered ontology of 

computational systems. 

Depending on how the specification-artifact relation is defined, Turner (2012) distinguishes 

as many as three different notions of implementation. Consider the case of a physical 

machine implementing a given abstract machine. According to an intentional notion of 

implementation, an abstract machine works as a specification for a physical machine, 

provided it advances all the functional requirements the latter must fulfill, i.e., it specifies 

(in principle) all the allowed behaviors of the implementing physical machine. According to 

an extensional notion of implementation, a physical machine is a correct implementation of 

an abstract machine if and only if isomorphisms can be established mapping states of the 

latter to states of the former, and transitions in the abstract machine correspond to actual 

executions (computational traces) of the artifact. Finally, an empirical notion of 

implementation requires the physical machine to display computations that match those 

prescribed by the abstract machine; that is to say, correct implementation has to be 

evaluated empirically through testing. 

Primiero (2020) underlines how, while this approach addresses the issue of correctness and 

miscomputation as it allows to distinguish a correct from an incorrect implementation, it 

still identifies a unique implementation relation between a specification level and an artifact 

level. Again, if this account is allowed to involve the layered ontology of computational 

systems by reinterpreting each time any LoA either as a specification or artifact, Turner’s 

account prevents from referring to more than one level at the same time as the cause of 

miscomputation: a miscomputation always occurs here as an incorrect implementation of a 

specification by an artifact. By defining implementation as a relation holding accross all the 

LoAs, one would be able to identify multiple incorrect implementations which do not 

directly refer to the abstract specification. A miscomputation may indeed be caused by an 

incorrect implementation of lower levels which is then inherited all the way down to the 

execution level. 

5.3 Implementation for LoAs 
Primiero (2020) proposes a definition of implementation not as a relation between two fixed 

levels, but one that is allowed to range over any LoA. Under this view, an 

implementation I is a relation of instantiation holding between a LoA and any other one 

higher in the abstraction hierarchy. Accordingly, a physical computing machine is an 
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implementation of assembly/machine code operations; by transitivity, it can also be 

considered as an instantiation of a set of instructions expressed in high-level programming 

language instructions. A program expressed in a high-level language is an implementation 

of an algorithm; but it can also be taken to be the instantiation of a set of specifications. 

Such a definition of implementation allows Primiero (2020) to provide a general definition 

of correctness: a physical computing system is correct if and only if it is characterized by 

correct implementations at any LoA. Hence correctness and implementation are coupled and 

defined at any LoA. Functional correctness is the property of a computational system that 

displays the functionalities required by the specifications of that system. Procedural 

correctness characterizes computational systems displaying the functionalities intended by 

the implemented algorithms. And executional correctness is defined as the property of a 

system that is able to correctly execute the program on its architecture. Each of these forms 

of correctness can also be classified quantitatively, depending on the amount of 

functionalities being satisfied. A functionally efficient computational system displays a 

minimal subset of the functionalities required by the specifications; a 

functionally optimal system is able to display a maximal subset of those functionalities. 

Similarly, the author defines procedurally as well as executionally efficient and optimal 

computational systems. 

5.4 Physical Computation 
According to this definition, implementation shifts from level to level: a set of algorithms 

defining a computational system are implemented as procedures in some formal 

language, as instructions in a high-level language, or as operations in a low-level 

programming language. An interesting question is whether any system, beyond 

computational artifacts, implementing procedures of this sort qualifies as a computational 

system. In other words, asking about the nature of physical implementation amounts to 

asking what is a computational system. If any system implementing an algorithm would 

qualify as computational, the class of such systems could be extended to biological systems, 

such as the brain or the cell; to physical systems, including the universe or some portion of 

it; and eventually to any system whatsoever, a thesis known as pancomputationalism (for an 

exhaustive overview on the topic see Rapaport 2018). 

Traditionally, a computational system is intended as a mechanical artifact that takes input 

data, elaborates them algorithmically according to a set of instructions, and returns 

manipulated data as outputs. For instance, von Neumann (1945, p.1) states that “An 

automatic computing system is a (usually highly composite) device, which can carry out 

instructions to perform calculations of a considerable order of complexity”. Such an 

informal and well-accepted definition leaves some questions open, including whether 

computational systems have to be machines, whether they have to process data 

algorithmically and, consequently, whether computations have to be Turing complete. 

Rapaport (2018) provides a more explicit characterization of a computational system 

defined as any “physical plausible implementation of anything logically equivalent to a 

universal Turing machine”. Strictly speaking personal computers are not physical Turing 

machines, but register machines are known to be Turing equivalent. To qualify as 

computational, systems must be plausible implementations thereof, in that Turing machines, 

contrary to physical machines, have access to infinite memory space and are, as abstract 



machines, error free. According to Rapaport’s (2018) definition, any physical 

implementation of this sort is thus a computational system, including natural systems. This 

raises the question about which class of natural systems is able to implement Turing 

equivalent computations. Searle famously argued that anything can be an implementation of 

a Turing machine, or of a logical equivalent model (Searle 1990). His argument levers on 

the fact that being a Turing machine is a syntactic property, in that it is all about 

manipulating tokens of 0’s and 1’s. According to Searle, syntactic properties are not 

intrinsic to physical systems, but they are assigned to them by an observer. In other words, a 

physical state of a system is not intrinsically a computational state: there must be an 

observer, or user, who assigns to that state a computational role. It follows that any system 

whose behavior can be described as syntactic manipulation of 0’s and 1’s is a computational 

system. 

Hayes (1997) objects to Searle (1990) that if everything was a computational system, the 

property “being a computational system” would become vacuous, as all entities would 

possess it. Instead, there are entities which are computational systems, and entities which 

are not. Computational systems are those in which the patterns received as inputs and saved 

into memory are able to change themselves. In other words, Hayes makes reference to the 

fact that stored inputs can be both data and instructions and that instructions, when 

executed, are able to modify the value of some input data. “If it were paper, it would be 

‘magic paper’ on which writing might spontaneously change, or new writing appear” 

(Hayes 1997, p. 393). Only systems able to act as “magic paper” can be acknowledged as 

computational. 

A yet different approach comes from Piccinini (2007, 2008) in the context of his 

mechanistic analysis of physical computations (Piccinini 2015; see also the entry 

on computation in physical systems). A physical computing system is a system whose 

behaviors can be explained mechanistically by describing the computing mechanism that 

brings about those behaviors. Mechanisms can be defined by “entities and activities 

organized such that they are productive of regular changes from start or set-up to finish or 

termination condition” (Machamer et al. 2000; see the entry on mechanisms in science). 

Computations, as physical processes, can be understood as those mechanisms that “generate 

output strings from input strings in accordance with general rules that apply to all input 

strings and depend on the input (and sometimes internal states)” (Piccinini 2007, p. 108). It 

is easy to identify set-up and termination conditions for computational processes. Any 

system which can be explained by describing an underlying computing mechanism is to be 

considered a computational system. The focus on explanation helps Piccinini avoid the 

Searlean conclusion that any system is a computational system: even if one may interpret, in 

principle, any given set of entities and activities as a computing mechanism, only the need 

to explain a certain observed phenomenon in terms of a computing mechanism defines the 

system under examination as computational. 

6. Verification 
A crucial step in the software development process is verification. This consists in the 

process of evaluating whether a given computational system is correct with respect to the 

specification of its design. In the early days of the computer industry, validity and 

correctness checking methods included several design and construction techniques, see for 
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example (Arif et al. 2018). Nowadays, correctness evaluation methods can be roughly 

sorted into two main groups: formal verification and testing. Formal verification (Monin 

and Hinchey 2003) involves a proof of correctness with mathematical tools; software testing 

(Ammann and Offutt 2008) rather consists in running the implemented program to observe 

whether performed executions comply or not with the advanced specifications. In many 

practical cases, a combination of both methods is used (see for instance Callahan et 

al. 1996). 

6.1 Models and Theories 
Formal verification methods require a representation of the software under verification. 

In theorem proving (see van Leeuwen 1990), programs are represented in terms of 

axiomatic systems and a set of rules of inference representing the pre- and post-conditions 

of program transitions. A proof of correctness is then obtained by deriving formulas 

expressing specifications from the axioms. In model checking (Baier and Katoen 2008), a 

program is represented in terms of a state transition system, its property specifications are 

formalised by temporal logic formulas (Kröger and Merz 2008), and a proof of correctness 

is achieved by a depth-first search algorithm that checks whether those formulas hold of the 

state transition system. 

Axiomatic systems and state transition systems used for correctness evaluation can be 

understood as theories of the represented artifacts, in that they are used to predict and 

explain their future behaviors. Methodologically state transition systems in model checking 

can be compared with scientific models in empirical sciences (Angius and Tamburrini 

2011). For instance, Kripke Structures (see Clarke et al. 1999 ch. 2) are in compliance with 

Suppes’ (1960) definition of scientific models as set-theoretic structures establishing proper 

mapping relations with models of data collected by means of experiments on the target 

empirical system (see also the entry on models in science). Kripke Structures and other state 

transition systems utilized in formal verification methods are often called system 

specifications. They are distinguished from common specifications, also called property 

specifications. The latter specify some required behavioral properties the program to be 

encoded must instantiate, while the former specify (in principle) all potential executions of 

an already encoded program, thus allowing for algorithmic checks on its traces (Clarke et al. 

1999). In order to achieve this goal, system specifications are considered 

as abductive structures, hypothesizing the set of potential executions of a target 

computational system on the basis of the program’s code and the allowed state transitions 

(Angius 2013b). Indeed, once it has been checked whether some temporal logic formula 

holds of the modeled Kripke Structure, the represented program is empirically tested against 

the behavioral property corresponding to the checked formula, in order to evaluate whether 

the model-hypothesis is an adequate representation of the target computational system. 

Accordingly, property specifications and system specifications differ also in their 

intentional stance (Turner 2011): the former are requirements on the program to be encoded, 

the latter are (hypothetical) descriptions of the encoded program. The descriptive and 

abductive character of state transition systems in model checking is an additional and 

essential feature putting state transition systems on a par with scientific models. 

6.2 Testing and Experiments 
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Testing is the more ‘empirical’ process of launching a program and observing its executions 

in order to evaluate whether they comply with the supplied property specifications. Such 

technique is extensively used in the software development process. Philosophers and 

philosophically-minded computer scientists have considered software testing under the light 

of traditional methodological approaches in scientific discovery (Snelting 1998; Gagliardi 

2007; Northover et al. 2008; Angius 2014) and questioned whether software tests can be 

acknowledged as scientific experiments evaluating the correctness of programs (Schiaffonati 

and Verdicchio 2014, Schiaffonati 2015; Tedre 2015). 

Dijkstra’s well-known dictum “Program testing can be used to show the presence of bugs, 

but never to show their absence” (Dijkstra 1970, p.7), introduces Popper’s (1959) principle 

of falsifiability into computer science (Snelting 1998). Testing a program against an 

advanced property specification for a given interval of time may exhibit some failures, but if 

no failure occurs while observing the running program one cannot conclude that the 

program is correct. An incorrect execution might be observed at the very next system’s run. 

The reason is that testers can only launch the program with a finite subset of the potential 

program’s input set and only for a finite interval of time; accordingly, not all potential 

executions of the program to be tested can be empirically observed. For this reason, the aim 

of software testing is to detect programs’ faults and not to guarantee their absence (Ammann 

and Offutt 2008, p. 11). A program is falsifiable in that tests can reveal faults (Northover et 

al. 2008). Hence, given a computational system and a property specification, a test is akin to 

a scientific experiment which, by observing the system’s behaviors, tries to falsify the 

hypothesis that the program is correct with respect to the interested specification. 

However, other methodological and epistemological traits characterizing scientific 

experiments are not shared by software tests. A first methodological distinction can be 

recognized in that a falsifying test leads to the revision of the computational system, not of 

the hypothesis, as in the case of testing scientific hypotheses. This is due to the difference in 

the intentional stance of specifications and empirical hypotheses in science (Turner 2011). 

Specifications are requirements whose violation demands for program revisions until the 

program becomes a correct instantiation of the specifications. 

For this, among other reasons, the traditional notion of scientific experiment needs to be 

‘stretched’ in order to be applied to software testing activities (Schiaffonati 2015). Theory-

driven experiments, characterizing most of the experimental sciences, find no counterpart in 

actual computer science practice. If one excludes the cases wherein testing is combined with 

formal methods, most experiments performed by software engineers are 

rather explorative, i.e. aimed at ‘exploring’ “the realm of possibilities pertaining to the 

functioning of an artefact and its interaction with the environment in the absence of a proper 

theory or theoretical background” (Schiaffonati 2015: 662). Software testers often do not 

have theoretical control on the experiments they perform; exploration on the behaviors of 

the computational system interacting with users and environments rather allows testers to 

formulate theoretical generalizations on the observed behaviors. Explorative experiments in 

computer science are also characterized by the fact that programs are often tested in a real-

like environment wherein testers play the role of users. However, it is an essential feature of 

theory-driven experiments that experimenters do not take part in the experiment to be 

carried out. 



As a result, while some software testing activities are closer to the experimental activities 

one finds in empirical sciences, some others rather define a new typology of experiment that 

turns out to belong to the software development process. Five typologies of experiments can 

be distinguished in the process of specifying, implementing, and evaluating computational 

systems (Tedre 2015): 

• feasibility experiments are performed to evaluate whether a system performs the 

functions specified by users and stakeholders; 

• trial experiments are carried out to evaluate isolated capabilities of the system given 

some set of initial conditions; 

• field experiments are performed in real environments and not in simulated ones; 

• comparison experiments test similar systems, instantiating in different ways the same 

function, to evaluate which instantiation better performs the desired function both in 

real-like and real environments; 

• finally, controlled experiments are used to appraise advanced hypotheses on the 

behaviors of the testing computational system and are the only ones on a par with 

scientific theory-driven experiments, in that they are carried out on the basis of some 

theoretical hypotheses under evaluation. 

6.3 Explanation 
A software test is considered successful when miscomputations are detected (assuming that 

no computational artifact is 100% correct). The successive step is to find out what caused 

the execution to be incorrect, that is, to trace back the fault (more familiarly named ‘bug’), 

before proceeding to the debugging phase and then testing the system again. In other words, 

an explanation of the observed miscomputation is to be advanced. 

Efforts have been made to consider explanations in computer science (Piccinini 2007; 

Piccinini and Craver 2011; Piccinini 2015; Angius and Tamburrini 2016) in relation to the 

different models of explanations elaborated in the philosophy of science. In particular, 

computational explanations can be understood as a specific kind of mechanistic 

explanation (Glennan 1996; Machamer et al. 2000; Bechtel and Abrahamsen 2005), insofar 

as computing processes can be analyzed as mechanisms (Piccinini 2007; 2015; see also the 

entry on computation in physical systems). 

Consider a processor executing an instruction. The involved process can be understood as a 

mechanism whose components are states and combinatory elements in the processor 

instantiating the functions prescribed by the relevant hardware specifications (specifications 

for registers, for the Arithmetic Logic Unit etc..), organized in such a way that they are 

capable of carrying out the observed execution. Providing the description of such a 

mechanism counts as advancing a mechanist explanation of the observed computation, such 

as the explanation of an operational malfunction. 

For every type of miscomputation (see §7.3), a corresponding mechanist explanation can be 

defined at the adequate LoA and with respect to the set of specifications characterizing that 

LoA. Indeed, abstract descriptions of mechanisms still supply one with a mechanist 

explanation in the form of a mechanism schema, defined as “a truncated abstract description 
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of a mechanism that can be filled with descriptions of known component parts and 

activities” (Machamer et al. 2000, p. 15). For instance, suppose the very common case in 

which a machine miscomputes by executing a program containing syntax errors, called 

slips. The computing machine is unable to correctly implement the functional requirements 

provided by the program specifications. However, for explanatory purposes, it would be 

redundant to provide an explanation of the occurred slip at the hardware level of abstraction, 

by advancing the detailed description of the hardware components and their functional 

organization. In such cases, a satisfactory explanation may consist in showing that the 

program’s code is not a correct instantiation of the provided program specifications (Angius 

and Tamburrini 2016). In order to explain mechanistically an occurred miscomputation, it 

may be sufficient to provide the description of the incorrect program, abstracting from the 

rest of the computing mechanism (Piccinini and Craver 2011). Abstraction is a virtue not 

only in software development and specification, but also in the explanation of 

computational systems’ behaviors. 

7. Correctness 
Each of the different approaches on software verification examined in the previous section 

assumes a different understanding of correctness for software. Standardly, correctness has 

been understood as a relation holding between an abstraction and its implementation, such 

that it holds if the latter fulfills the properties formulated by the former. Once computational 

systems are described as having a layered ontology, correctness needs to be reformulated as 

the relation that any structural level entertains with respect to its functional level (Primiero, 

2020). Hence, correctness can still be considered as a mathematical relationship when 

formulated between abstract and functional level; while it can be considered as an empirical 

relationship when formulated between the functional and the implementation levels. One of 

the earlier debates in the philosophy of computer science (De Millo et al. 1979; Fetzer 

1988) was indeed around this distinction. 

7.1 Mathematical Correctness 
Formal verification methods grant an a-priori analysis of the behaviors of programs, 

without requiring the observation of any of their implementation or considering their 

execution. In particular, theorem proving allows one to deduce any potential behavior of the 

program under consideration and its behavioral properties from a suitable axiomatic 

representation. In the case of model checking, one knows in advance the behavioural 

properties displayed by the execution of a program by performing an algorithmic search of 

the formulas valid in a given set-theoretic model. These considerations famously led Hoare 

(1969) to conclude that program development is an “exact science”, which should be 

characterized by mathematical proofs of correctness, epistemologically on a par with 

standard proofs in mathematical practice. 

De Millo et al. (1979) question Hoare’s thesis: correct mathematical proofs are 

usually elegant and graspable, implying that any (expert) reader can “see” that the 

conclusion follows from the premises (for the notion of elegance in software see also Hill 

(2018)). What are often called Cartesian proofs (Hacking 2014) do not have a counterpart 

in correctness proofs, typically long and cumbersome, difficult to grasp and not explaining 

why the conclusion necessarily follows from the premises. Yet, many proofs in mathematics 



are long and complex, but they are in principle surveyable, thanks to the use of lemmas, 

abstractions and the analytic construction of new concepts leading step by step to the 

statement to be proved. Correctness proofs, on the contrary, do not involve the creation of 

new concepts, nor the modularity one typically finds in mathematical proofs (Turner, 2018). 

And yet, proofs that are not surveyable cannot be considered mathematical proofs 

(Wittgenstein 1956). 

A second theoretical difficulty concerning proofs of correctness for computer programs 

concerns their complexity and that of the programs to be verified. Already Hoare (1981) 

admitted that while verification of correctness is always possible in principle, in practice it 

is hardly achievable. Except for trivial cases, contemporary software is modularly encoded, 

is required to satisfy a large set of specifications, and it is developed so as to interact with 

other programs, systems, users. Embedded and reactive software are cases in point. In order 

to verify such complex software, correctness proofs are carried out automatically. Hence, on 

the one hand, the correctness problem shifts from the program under examination to the 

program performing the verification, e.g. a theorem prover; on the other hand, proofs 

carried out by a physical process can go wrong, due to mechanical mistakes of the machine. 

Against this infinite regress argument, Arkoudas and Bringsjord (2007) argue that one can 

make use of a proof checker which, by being a relatively small program, is usually easier to 

verify. 

Most recently, formal methods for checking correctness based on a combination of logical 

and statistical analysis have given new stimulus to this research area: the ability of 

Separation Logics (Reynolds, 2002) to offer a representation of the logical behavior of the 

physical memory of computational systems, and the possibility of considering probabilistic 

distributions of inputs as statistical source of errors, have allowed formal correctness check 

of large interactive systems like the Facebook platform (see also Pym et al. 2019). 

7.2 Physical Correctness 
Fetzer (1988) objected that deductive reasoning is only able to guarantee for the correctness 

of a program with respect to its specifications, but not for the correctness of a computational 

system, that is also accounting for the program’s physical implementation. Even if the 

program were correct with respect to any of the related upper LoAs (algorithms, 

specifications, requirements), its implementation could still violate one or more of the 

intended specifications due to a physical malfunctioning. The former kind of correctness 

can in principle be proved mathematically, but the correctness of the execution LoA 

requires an empirical assessment. As examined in §6.2, software testing can show only in 

principle the correctness of a computational system. In practice, the number of allowed 

executions of non-trivial systems are potentially infinite and cannot be exhaustively checked 

in a finite (or reasonable) amount of time (Dijkstra 1974). Most successful testing methods 

rather see both formal verification and testing used together to reach a satisfactory 

correction level. 

Another objection to the theoretical possibility of mathematical correctness is that since 

proofs are carried out by a theorem prover, i.e. a physical machine, the knowledge one 

attains about computational systems is not a-priori but empirical (see Turner 2018 ch. 25). 

However, Burge (1988) argues that computer-based proofs of correctness can still be 

regarded as a-priori, in that even though their possibility depends on sensory experience, 
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their justification does not (as it is for a-posteriori knowledge). For instance, the knowledge 

that red is a color is a-priori even though it requires having sensory experience of red; this 

is because ‘red is a colour’ is true independently of any sensory experience. For further 

discussion on the nature of the use of computers in mathematical proofs, see (Hales 2008; 

Harrison 2008; Tymoczko 1979, 1980). 

The problem of correctness eventually reduces to asking what it means for a physical 

machine to satisfy an abstract requirement. According to the simple mapping account, a 

computational system S is a correct implementation of specification SP only if: 

i. there can be established a morphism from the states ascribed to S to the states defined 

by SP, and 

ii. for any state transition s1→s2s1→s2 in S there is a state 

transition s′1→s′2s1′→s2′ in SP between state s′1s1′ mapping to s1s1 and 

state s′2s2′ mapping to s2s2. 

The simple mapping account only demands for an extensional agreement between the 

description of S and SP. The weakness of this account is that it is quite easy to identify an 

extensional agreement between any couple of physical system-specification, leaving room 

for a pancomputationalist perspective. 

The danger of pancomputationalism has led some authors to attempt an account of correct 

implementation that somehow restricts the class of possible interpretations. In particular, 

1. The causal account (D. J. Chalmers 1996; Copeland 1996) suggests that the material 

conditional (if the system is in the physical state s1s1 …) is replaced by a 

counterfactual one. 

2. The semantic account argues that a computational system must be associated with a 

semantic description, specifying what the system is to achieve (Sprevak 2012). For 

example, a physical device could be interpreted as an AND gate or an OR gate but 

without a definition of the device there is no way of fixing what the artifact is. 

3. The syntactic account demands that only physical states that can be defined as 

syntactic can be mapped onto computational states. What remains to be examined is 

what defines a syntactic state (see Piccinini 2015 or the entry on computation in 

physical systems for an overview of the syntactic account 

4. The normative account (Turner 2012) maintains not only that abstract and physical 

computational processes must be in agreement, but also that the abstract specification 

has normative force over the system. According to such an account, computations are 

physical processes whose function is fixed by an abstract specification. This 

relationship is stronger than both the semantic account, asking for a simple 

descriptive relationship, and the syntactic account, focusing on a syntactic object and 

its semantic interpretation. 

7.3 Miscomputations 
From what has been said so far, it follows that correctness of implemented programs does 

not automatically establish the well-functioning of a computational system. Turing (1950) 

already distinguished between errors of functioning and errors of conclusion. The former 
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are caused by a faulty implementation unable to execute the instructions of some high-level 

language program; errors of conclusion characterize correct abstract machines that 

nonetheless fail to carry out the tasks they were supposed to accomplish. This may happen 

in those cases in which a program instantiates correctly some specifications which do not 

properly express the users’ requirements on such a program. In both cases, machines 

implementing correct programs can still be said to miscompute. 

Turing’s distinction between errors of functioning and errors of conclusion has been 

expanded into a complete taxonomy of miscomputations (Fresco and Primiero 2013). The 

classification is established on the basis of the different LoAs defining computational 

systems. Errors can be: 

• conceptual: they violate validity conditions requiring consistency for specifications 

expressed in propositional conjunctive normal form; 

• material: they violate the correctness requirements of programs with respect to the 

set of their specifications; 

• performable: they arise when physical constraints are breached by some faulty 

implementing hardware. 

Performable errors clearly emerge only at the execution level, and they correspond with 

Turing’s (1950) error of functioning, also called operational malfunctions. Conceptual and 

material errors may arise at any level of abstraction from the intention level down to the 

physical implementation level. Conceptual errors engender mistakes, while material errors 

induce failures. For instance, a mistake at the intention level consists of an inconsistent set 

of requirements, while at the physical implementation level it may correspond to an invalid 

hardware design (such as in the choice of the logic gates for the truth-functional 

connectives). Failures occurring at the specification level may be due to a design that is 

deemed to be incomplete with respect to the set of desired functional requirements, while a 

failure at the algorithm level occurs in those frequent cases in which the algorithm is found 

not to fulfill the specifications. Beyond mistakes, failures, and operational 

malfunctions, slips are a source of miscomputations at the high-level programming language 

instructions level: they may be conceptual or material errors due to, respectively, a syntactic 

or a semantic flaw in the program. Conceptual slips appear in all those cases in which the 

syntactical rules of high-level languages are violated; material slips involve the violation of 

semantic rules of programming languages, such as when a variable is used but not 

initialized. 

A further distinction has to be made between dysfunctions and misfunctions for software-

based computational systems (Floridi, Fresco and Primiero 2015). Software can only 

misfunction but cannot ever dysfunction. A software token can dysfunction in case its 

physical implementation fails to satisfy intentions or specifications. Dysfunctions only 

apply to single tokens since a token dysfunctions in that it does not behave as the other 

tokens of the same type do with respect to the implemented functions. For this reason, 

dysfunctions do not apply to the intention level and the specification level. On the contrary, 

both software types and tokens can misfunction, since misfunctions do not depend on 

comparisons with tokens of the same type being able to perform some implemented 

function or not. Misfunction of tokens usually depends on the dysfunction of some other 

component, while misfunction of types is often due to poor design. A software token cannot 



dysfunction, because all tokens of a given type implement functions specified uniformly at 

the intention and specification levels. Those functions are implemented at the algorithm 

implementation level before being performed at the execution level; in case of correct 

implementation, all tokens will behave correctly at the execution level (provided that no 

operational malfunction occurs). For the very same reason, software tokens cannot 

misfunction, since they are implementations of the same intentions and specifications. Only 

software types can misfunction in case of poor design; misfunctioning software types are 

able to correctly perform their functions but may also produce some undesired side-effect. 

For the application of the notion of malfunctioning to the problem of malware classification, 

see (Primiero et al. 2019). 

8. The Epistemological Status of Computer 

Science  
Between the 1960s and the 1970s, computer science emerged as an academic discipline 

independent from its older siblings, mathematics and physics, and with it the problem of 

defining its epistemological status as influenced by mathematical, empirical, and 

engineering methods (Tedre and Sutien 2008, Tedre 2011, Tedre 2015, Primiero 2020). A 

debate is still in place today concerning whether computer science has to 

be mostly considered as a mathematical discipline, a branch of engineering, or as a scientific 

discipline. 

8.1 Computer Science as a Mathematical Discipline 
Any epistemological characterization of computer science is based on ontological, 

methodological, and epistemological commitments, namely on assumptions about the nature 

of computational systems, the methods guiding the software development process, and the 

kind of reasoning thereby involved, whether deductive, inductive, or a combination of both 

(Eden 2007). 

The origin of the analysis of computation as a mathematical notion came notoriously from 

logic, with Hilbert's question concerning the decidability of predicate calculus, known as 

the Entschiedungsproblem (Hilbert and Ackermann 1950): could there be a mechanical 

procedure for deciding of an arbitrary sentence of logic whether it is provable? To address 

this question, a rigorous model of the informal concept of an effective or mechanical 

method in logic and mathematics was required. This is first and foremost a mathematical 

endeavor: one has to develop a mathematical analogue of the informal notion. Supporters of 

the view that computer science is mathematical in nature assume that a computer program 

can be seen as a physical realization of such a mathematical entity and that one can reason 

about programs deductively through the formal methods of theoretical computer 

science. Dijkstra (1974) and Hoare (1986) were very explicit in considering programs’ 

instructions as mathematical sentences, and considering a formal semantics for 

programming languages in terms of an axiomatic system (Hoare 1969). Provided that 

program specifications and instructions are advanced in the same formal language, formal 

semantics provide the means to prove correctness. Accordingly, knowledge about the 

behaviors of computational systems is acquired by the deductive reasoning involved in 

mathematical proofs of correctness. The reason at the basis of such a rationalist optimism 



(Eden 2007) about what can be known about computational systems is that they are 

artifacts, that is, human-made systems and, as such, one can predict their behaviors with 

certainty (Knuth 1974). 

Although a central concern of theoretical computer science, the topics of computability and 

complexity are covered in existing entries on the Church-Turing thesis, computational 

complexity theory, and recursive functions. 

8.2 Computer Science as an Engineering Discipline 
In the late 1970s, the increasing number of applications of computational systems in 

everyday contexts, and the consequent booming of market demands caused a deviation of 

interests for computer scientists in Academia and in Industry: from focusing on methods of 

proving programs’ correctness, they turned to methods for managing complexity and 

evaluating the reliability of those system (Wegner 1976). Indeed, expressing formally the 

specifications, structure, and input of highly complex programs embedded in larger systems 

and interacting with users is practically impossible, and hence providing mathematical 

proofs of their correctness becomes mostly unfeasible. Computer science research 

developed in the direction of testing techniques able to provide a statistical evaluation of 

correctness, often called reliability (Littlewood and Strigini 2000), in terms of estimation of 

error distributions in a program’s code. 

In line with this engineering account of computer science is the thesis that reliability of 

computational systems is evaluated in the same way that civil engineering does for bridges 

and aerospace engineering for airplanes (DeMillo et al. 1979). In particular, whereas 

empirical sciences examine what exists, computer science focuses on what can exist, i.e., on 

how to produce artifacts, and it should be therefore acknowledged as an “engineering of 

mathematics” (Hartmanis 1981). Similarly, whereas scientific inquiries are involved in 

discovering laws concerning the phenomena under observation, one cannot identify proper 

laws in computer science practice, insofar as the latter is rather involved in the production of 

phenomena concerning computational artifacts (Brooks 1996). 

8.3 Computer Science as a Scientific Discipline 
As examined in §6, because software testing and reliability measuring techniques are known 

for their incapability of assuring for the absence of code faults (Dijkstra 1970), in many 

cases, and especially for the evaluation of the so-called safety-critical systems (such as 

controllers of airplanes, rockets, nuclear plants etc..), a combination of formal methods and 

empirical testing is used to evaluate correctness and dependability. Computer science can 

accordingly be understood as a scientific discipline, in that it makes use of both deductive 

and inductive probabilistic reasoning to examine computational systems (Denning et al. 

1981, 2005, 2007; Tichy 1998; Colburn 2000). 

The thesis that computer science is, from a methodological viewpoint, on a par with 

empirical sciences traces back to Newell, Perlis, and Simon’s 1967 letter to Science (Newell 

et al. 1967) and dominated all the 1980’s (Wegner 1976). In the 1975 Turing Award lecture, 

Newell and Simon argued: 

Computer science is an empirical discipline. We would have called it an experimental 

science, but like astronomy, economics, and geology, some of its unique forms of 
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observation and experience do not fit a narrow stereotype of the experimental method. 

Nonetheless, they are experiments. Each new machine that is built is an experiment. 

Actually constructing the machine poses a question to nature; and we listen for the answer 

by observing the machine in operation and analyzing it by all analytical and measurement 

means available (Newell and Simon 1975, p. 114) 

Since Newell and Simon’s Turing award lecture, it has been clear that computer science can 

be understood as an empirical science but of a special sort, and this is related to the nature 

of experiments in computing. Indeed, much current debate on the epistemological status of 

computer science concerns the problem of defining what kind of science it is (Tedre 2011, 

Tedre 2015) and, in particular, the nature of experiments in computer science (Schiaffonati 

and Verdicchio 2014), the nature, if any, of laws and theorems in computing (Hartmanis 

1993; Rombach and Seelish 2008), and the methodological relation between computer 

science and software engineering (Gruner 2011). 

Bibliography 

• Abramsky, Samson & Guy McCusker, 1995, “Games and Full Abstraction for the 

Lazy λλ-Calculus”, in D. Kozen (ed.), Tenth Annual IEEEE Symposium on Logic in 

Computer Science, IEEE Computer Society Press, pp. 234–43. 

doi:10.1109/LICS.1995.523259 

• Abramsky, Samson, Pasquale Malacaria, & Radha Jagadeesan, 1994, “Full 

Abstraction for PCF”, in M. Hagiya & J.C. Mitchell (eds.), Theoretical Aspects of 

Computer Software: International Symposium TACS ‘94, Sendai, Japan, April 19–22, 

1994, Springer-Verlag, pp. 1–15. 

• Abrial, Jean-Raymond, 1996, The B-Book: Assigning Programs to Meanings, 

Cambridge: Cambridge University Press. 

• Alama, Jesse, 2015, “The Lambda Calculus”, The Stanford Encyclopedia of 

Philosophy (Spring 2015 Edition), Edward N. Zalta (ed.), URL = 

<https://plato.stanford.edu/archives/spr2015/entries/lambda-calculus/>. 

• Allen, Robert J., 1997, A Formal Approach to Software Architecture, Ph.D. Thesis, 

Computer Science, Carnegie Mellon University. Issued as CMU Technical Report 

CMU-CS-97-144. Allen 1997 available on line 

• Ammann, Paul & Jeff Offutt, 2008, Introduction to Software Testing, Cambridge: 

Cambridge University Press. 

• Angius, Nicola, 2013a, “Abstraction and Idealization in the Formal Verification of 

Software”, Minds and Machines, 23(2): 211–226. doi:10.1007/s11023-012-9289-8 

• –––, 2013b, “Model-Based Abductive Reasoning in Automated Software 

Testing”, Logic Journal of IGPL, 21(6): 931–942. doi:10.1093/jigpal/jzt006 

• –––, 2014, “The Problem of Justification of Empirical Hypotheses in Software 

Testing”, Philosophy & Technology, 27(3): 423–439. doi:10.1007/s13347-014-0159-

6 

• Angius, N., & Primiero, G., 2018, “The logic of identity and copy for computational 

artefacts”, Journal of Logic and Computation, 28(6): 1293–1322. 

https://plato.stanford.edu/archives/spr2015/entries/lambda-calculus/
http://www.cs.cmu.edu/~able/paper_abstracts/rallen_thesis.htm


• Angius, Nicola & Guglielmo Tamburrini, 2011, “Scientific Theories of 

Computational Systems in Model Checking”, Minds and Machines, 21(2): 323–336. 

doi:10.1007/s11023-011-9231-5 

• –––, 2017, “Explaining engineered computing systems’ behaviour: the role of 

abstraction and idealization”, Philosophy & Technology, 30(2): 239–258. 

• Anscombe, G. E. M., 1963, Intention, second edition, Oxford: Blackwell. 

• Arkoudas, Konstantine & Selmer Bringsjord, 2007, “Computers, Justification, and 

Mathematical Knowledge”, Minds and Machines, 17(2): 185–202. 

doi:10.1007/s11023-007-9063-5 

• Arif, R. Mori, E., and Primiero, G, 2018, “Validity and Correctness before the OS: 

the case of LEOI and LEOII”, in Liesbeth de Mol, Giuseppe Primiero 

(eds.), Reflections on Programmings Systems - Historical and Philosophical Aspects, 

Philosophical Studies Series, Cham: Springer, pp. 15–47. 

• Ashenhurst, Robert L. (ed.), 1989, “Letters in the ACM Forum”, Communications of 

the ACM, 32(3): 287. doi:10.1145/62065.315925 

• Baier, A., 1970, “Act and Intent”, Journal of Philosophy, 67: 648–658. 

• Baier, Christel & Joost-Pieter Katoen, 2008, Principles of Model Checking, 

Cambridge, MA: The MIT Press. 

• Bass, Len, Paul C. Clements, & Rick Kazman, 2003 [1997], Software Architecture in 

Practice, second edition, Reading, MA: Addison-Wesley; first edition 1997; third 

edition, 2012. 

• Bechtel, William & Adele Abrahamsen, 2005, “Explanation: A Mechanist 

Alternative”, Studies in History and Philosophy of Science Part C: Studies in History 

and Philosophy of Biological and Biomedical Sciences, 36(2): 421–441. 

doi:10.1016/j.shpsc.2005.03.010 

• Boghossian, Paul A., 1989, “The Rule-following Considerations”, Mind, 98(392): 

507–549. doi:10.1093/mind/XCVIII.392.507 

• Bourbaki, Nicolas, 1968, Theory of Sets, Ettore Majorana International Science 

Series, Paris: Hermann. 

• Bratman, M. E., 1987, Intention, Plans, and Practical Reason, Cambridge, MA: 

Harvard University Press. 

• Bridges, Douglas & Palmgren Erik, 2013, “Constructive Mathematics”, The Stanford 

Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (ed.), URL = 

<https://plato.stanford.edu/archives/win2013/entries/mathematics-constructive/>. 

• Brooks, Frederick P. Jr., 1995, The Mythical Man Month: Essays on Software 

Engineering, Anniversary Edition, Reading, MA: Addison-Wesley. 

• –––, 1996, “The Computer Scientist as Toolsmith II”, Communications of the ACM, 

39(3): 61–68. doi:10.1145/227234.227243 

• Burge, Tyler, 1998, “Computer Proof, Apriori Knowledge, and Other Minds”, Noûs, 

32(S12): 1–37. doi:10.1111/0029-4624.32.s12.1 

https://plato.stanford.edu/archives/win2013/entries/mathematics-constructive/


• Bynum, Terrell Ward, 2008, “Milestones in the History of Information and Computer 

Ethics”, in Himma and Tavani 2008: 25–48. doi:10.1002/9780470281819.ch2 

• Callahan, John, Francis Schneider, & Steve Easterbrook, 1996, “Automated Software 

Testing Using Model-Checking”, in Proceeding Spin Workshop, J.C. Gregoire, G.J. 

Holzmann and D. Peled (eds.), New Brunswick, NJ: Rutgers University, pp. 118–

127. 

• Cardelli, Luca & Peter Wegner, 1985, “On Understanding Types, Data Abstraction, 

and Polymorphism”, 17(4): 471–522. [Cardelli and Wegner 1985 available online] 

• Carnap, R., 1966, Philosophical foundations of physics (Vol. 966), New York: Basic 

Books. 

• Carrara, M., Gaio, S., and Soavi, M., 2014, “Artifact kinds, identity criteria, and 

logical adequacy”, in M. Franssen, P. Kroes, T. Reydon and P. E. Vermaas 

(eds.), Artefact Kinds: Ontology and The Human-made World, New York: Springer, 

pp. 85–101. 

• Chalmers, A. F., 1999, What is this thing called Science?, Maidenhead: Open 

University Press 

• Chalmers, David J., 1996, “Does a Rock Implement Every Finite-State 

Automaton?” Synthese, 108(3): 309–33. [D.J. Chalmers 1996 available online] 

doi:10.1007/BF00413692 

• Clarke, Edmund M. Jr., Orna Grumberg, & Doron A. Peled, 1999, Model Checking, 

Cambridge, MA: The MIT Press. 

• Colburn, Timothy R., 1999, “Software, Abstraction, and Ontology”, The Monist, 

82(1): 3–19. doi:10.5840/monist19998215 

• –––, 2000, Philosophy and Computer Science, Armonk, NY: M.E. Sharp. 

• Colburn, T. R., Fetzer, J. H. , and Rankin T. L., 1993, Program Verification: 

Fundamental Issues in Computer Science, Dordrecht: Kluwer Academic Publishers. 

• Colburn, Timothy & Gary Shute, 2007, “Abstraction in Computer Science”, Minds 

and Machines, 17(2): 169–184. doi:10.1007/s11023-007-9061-7 

• Copeland, B. Jack, 1993, Artificial Intelligence: A Philosophical Introduction, San 

Francisco: John Wiley & Sons. 

• –––, 1996, “What is Computation?” Synthese, 108(3): 335–359. 

doi:10.1007/BF00413693 

• –––, 2015, “The Church-Turing Thesis”, The Stanford Encyclopedia of 

Philosophy (Summer 2015 Edition), Edward N. Zalta (ed.), URL = 

<https://plato.stanford.edu/archives/sum2015/entries/church-turing/>. 

• Copeland, B. Jack & Oron Shagrir, 2007, “Physical Computation: How General are 

Gandy’s Principles for Mechanisms?” Minds and Machines, 17(2): 217–231. 

doi:10.1007/s11023-007-9058-2 

• –––, 2011, “Do Accelerating Turing Machines Compute the Uncomputable?” Minds 

and Machines, 21(2): 221–239. doi:10.1007/s11023-011-9238-y 

http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf
http://consc.net/papers/rock.html
https://plato.stanford.edu/archives/sum2015/entries/church-turing/


• Cummins, Robert, 1975, “Functional Analysis”, The Journal of Philosophy, 72(20): 

741–765. doi:10.2307/2024640 

• Davidson, D., 1963, “Actions, Reasons, and Causes,” reprinted in Essays on Actions 

and Events, Oxford: Oxford University Press, 1980, pp. 3–20. 

• –––, 1978, “Intending”, reprinted in Essays on Actions and Events, Oxford: Oxford 

University Press, 1980, pp. 83–102. 

• De Millo, Richard A., Richard J. Lipton, & Alan J. Perlis, 1979, “Social Processes 

and Proofs of Theorems and Programs”, Communications of the ACM, 22(5): 271–

281. doi:10.1145/359104.359106 

• Denning, Peter J., 2005, “Is Computer Science Science?”, Communications of the 

ACM, 48(4): 27–31. doi:10.1145/1053291.1053309 

• –––, 2007, “Computing is a Natural Science”, Communications of the ACM, 50(7): 

13–18. doi:10.1145/1272516.1272529 

• Denning, Peter J., Edward A. Feigenbaum, Paul Gilmore, Anthony C. Hearn, Robert 

W. Ritchie, & Joseph F. Traub, 1981, “A Discipline in Crisis”, Communications of 

the ACM, 24(6): 370–374. doi:10.1145/358669.358682 

• Devlin, Keith, 1994, Mathematics: The Science of Patterns: The Search for Order in 

Life, Mind, and the Universe, New York: Henry Holt. 

• Dijkstra, Edsger W., 1970, Notes on Structured Programming, T.H.-Report 70-

WSK-03, Mathematics Technological University Eindhoven, The Netherlands. 

[Dijkstra 1970 available online] 

• –––, 1974, “Programming as a Discipline of Mathematical Nature”, American 

Mathematical Monthly, 81(6): 608–612. [Dijkstra 1974 available online 

• Distributed Software Engineering, 1997, The Darwin Language, Department of 

Computing, Imperial College of Science, Technology and Medicine, London. 

[Darwin language 1997 available online] 

• Duhem, P., 1954, The Aim and Structure of Physical Theory, Princeton: Princeton 

University Press. 

• Duijf, H., Broersen, J., and Meyer, J. J. C., 2019, “Conflicting intentions: rectifying 

the consistency requirements”, Philosophical Studies, 176(4): 1097–1118. 

• Dummett, Michael A.E., 2006, Thought and Reality, Oxford: Oxford University 

Press. 

• Duncan, William, 2011, “Using Ontological Dependence to Distinguish between 

Hardware and Software”, Proceedings of the Society for the Study of Artificial 

Intelligence and Simulation of Behavior Conference: Computing and Philosophy, 

University of York, York, UK. [Duncan 2011 available online (zip file)] 

• –––, 2017, “Ontological Distinctions between Hardware and Software”, Applied 

Ontology, 12(1): 5–32. 

• Eden, Amnon H., 2007, “Three Paradigms of Computer Science”, Minds and 

Machines, 17(2): 135–167. doi:10.1007/s11023-007-9060-8 

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD361.html
http://www.cs.toronto.edu/~chechik/courses00/ece450/darwin-lang.pdf
http://www.aisb.org.uk/publications/proceedings/aisb2011.zip


• Egan, Frances, 1992, “Individualism, Computation, and Perceptual Content”, Mind, 

101(403): 443–59. doi:10.1093/mind/101.403.443 

• Edgar, Stacey L., 2003 [1997], Morality and Machines: Perspectives on Computer 

Ethics, Sudbury, MA: Jones & Bartlett Learning. 

• Ferrero, L., 2017, “Intending, Acting, and Doing,” Philosophical Explorations, 20 

(Supplement 2): 13–39. 

• Fernández, Maribel, 2004, Programming Languages and Operational Semantics: An 

Introduction, London: King’s College Publications. 

• Fetzer, James H., 1988, “Program Verification: The Very Idea”, Communications of 

the ACM, 31(9): 1048–1063. doi:10.1145/48529.48530 

• –––, 1990, Artificial Intelligence: Its Scope and Limits, Dordrecht: Springer 

Netherlands. 

• Feynman, Richard P., 1984–1986, Feynman Lectures on Computation, Cambridge, 

MA: Westview Press, 2000. 

• Flanagan, Mary, Daniel C. Howe, & Helen Nissenbaum, 2008, “Embodying Values 

in Technology: Theory and Practice”, in Information Technology and Moral 

Philosophy, Jeroen van den Hoven and John Weckert (eds.), Cambridge: Cambridge 

University Press, pp. 322–353. 

• Floridi, Luciano, 2008, “The Method of Levels of Abstraction”, Minds and 

Machines, 18(3): 303–329. doi:10.1007/s11023-008-9113-7 

• Floridi, Luciano, Nir Fresco, & Giuseppe Primiero, 2015, “On Malfunctioning 

Software”, Synthese, 192(4): 1199–1220. doi:10.1007/s11229-014-0610-3 

• Floyd, Robert W., 1979, “The Paradigms of Programming”, Communications of the 

ACM, 22(8): 455–460. doi:10.1145/1283920.1283934 

• Fowler, Martin, 2003, UML Distilled: A Brief Guide to the Standard Object 

Modeling Language, 3rd edition, Reading, MA: Addison-Wesley. 

• Franssen, Maarten, Gert-Jan Lokhorst, & Ibio van de Poel, 2013, “Philosophy of 

Technology”, The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), 

Edward N. Zalta (ed.), URL = 

<https://plato.stanford.edu/archives/win2013/entries/technology/>. 

• Frege, Gottlob, 1914, “Letter to Jourdain”, reprinted in Frege 1980: 78–80. 

• –––, 1980, Gottlob Frege: Philosophical and Mathematical Correspondence, G. 

Gabriel, H. Hermes, F. Kambartel, C. Thiel, and A. Veraart (eds.), Oxford: Blackwell 

Publishers. 

• Fresco, Nir & Giuseppe Primiero, 2013, “Miscomputation”, Philosophy & 

Technology, 26(3): 253–272. doi:10.1007/s13347-013-0112-0 

• Friedman, Batya & Helen Nissenbaum, 1996, “Bias in Computer Systems”, ACM 

Transactions on Information Systems (TOIS), 14(3): 330–347. 

doi:10.1145/230538.230561 

https://plato.stanford.edu/archives/win2013/entries/technology/


• Frigg, Roman & Stephan Hartmann, 2012, “Models in Science”, The Stanford 

Encyclopedia of Philosophy (Fall 2012 Edition), Edward N. Zalta (ed.), URL 

=<https://plato.stanford.edu/archives/fall2012/entries/models-science/>. 

• Gagliardi, Francesco, 2007, “Epistemological Justification of Test Driven 

Development in Agile Processes”, Agile Processes in Software Engineering and 

Extreme Programming: Proceedings of the 8th International Conference, XP 2007, 

Como, Italy, June 18–22, 2007, Berlin: Springer Berlin Heidelberg, pp. 253–256. 

doi:10.1007/978-3-540-73101-6_48 

• Gamma, Erich, Richard Helm, Ralph Johnson, & John Vlissides, 1994, Design 

Patterns: Elements of Reusable Object-Oriented Software, Reading, MA: Addison-

Wesley. 

• Glennan, Stuart S., 1996, “Mechanisms and the Nature of Causation”, Erkenntnis, 

44(1): 49–71. doi:10.1007/BF00172853 

• Glüer, Kathrin & Åsa Wikforss, 2015, “The Normativity of Meaning and 

Content”, The Stanford Encyclopedia of Philosophy (Summer 2015 Edition), Edward 

N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/sum2015/entries/meaning-

normativity/>. 

• Goguen, Joseph A. & Rod M. Burstall, 1985, “Institutions: Abstract Model Theory 

for Computer Science”, Report CSLI-85-30, Center for the Study of Language and 

Information at Stanford University. 

• –––, 1992, “Institutions: Abstract Model Theory for Specification and 

Programming”, Journal of the ACM (JACM), 39(1): 95–146. 

doi:10.1145/147508.147524 

• Gordon, Michael J.C., 1979, The Denotational Description of Programming 

Languages, New York: Springer-Verlag. 

• Gotterbarn, Donald, 1991, “Computer Ethics: Responsibility Regained”, National 

Forum: The Phi Beta Kappa Journal, 71(3): 26–31. 

• –––, 2001, “Informatics and Professional Responsibility”, Science and Engineering 

Ethics, 7(2): 221–230. doi:10.1007/s11948-001-0043-5 

• Gotterbarn, Donald, Keith Miller, & Simon Rogerson, 1997, “Software Engineering 

Code of Ethics”, Information Society, 40(11): 110–118. doi:10.1145/265684.265699 

• Gotterbarn, Donald & Keith W. Miller, 2009, “The Public is the Priority: Making 

Decisions Using the Software Engineering Code of Ethics”, IEEE Computer, 42(6): 

66–73. doi:10.1109/MC.2009.204 

• Gruner, Stefan, 2011, “Problems for a Philosophy of Software Engineering”, Minds 

and Machines, 21(2): 275–299. doi:10.1007/s11023-011-9234-2 

• Gunter, Carl A., 1992, Semantics of Programming Languages: Structures and 

Techniques, Cambridge, MA: MIT Press. 

• Gupta, Anil, 2014, “Definitions”, The Stanford Encyclopedia of Philosophy (Fall 

2014 Edition), Edward N. Zalta (ed.), URL = 

<https://plato.stanford.edu/archives/fall2014/entries/definitions/>. 

https://plato.stanford.edu/archives/fall2012/entries/models-science/
https://plato.stanford.edu/archives/sum2015/entries/meaning-normativity/
https://plato.stanford.edu/archives/sum2015/entries/meaning-normativity/
https://plato.stanford.edu/archives/fall2014/entries/definitions/


• Gurevich, Y., 2000, “Sequential Abstract-State Machines Capture Sequential 

Algorithms”, ACM Transactions on Computational Logic (TOCL), 1(1): 77-111. 

• –––, 2012, “What is an algorithm?”, in International conference on current trends in 

theory and practice of computer science, Heidelberg, Berlin: Springer, pp. 31–42. 

• Hacking, I., 2014, Why is there a Philosophy of Mathematics at all?, Cambridge: 

Cambridge University Press. 

• Hagar, Amit, 2007, “Quantum Algorithms: Philosophical Lessons”, Minds and 

Machines, 17(2): 233–247. doi:10.1007/s11023-007-9057-3 

• Hale, Bob, 1987, Abstract Objects, Oxford: Basil Blackwell. 

• Hales, Thomas C., 2008, “Formal Proof”, Notices of the American Mathematical 

Society, 55(11): 1370–1380. 

• Hankin, Chris, 2004, An Introduction to Lambda Calculi for Computer Scientists, 

London: King’s College Publications. 

• Harrison, John, 2008, “Formal Proof—Theory and Practice”, Notices of the 

American Mathematical Society, 55(11): 1395–1406. 

• Hartmanis, Juris, 1981, “Nature of Computer Science and Its Paradigms”, pp. 353–

354 (in Section 1) of “Quo Vadimus: Computer Science in a Decade”, J.F. Traub 

(ed.), Communications of the ACM, 24(6): 351–369. doi:10.1145/358669.358677 

• –––, 1993, “Some Observations About the Nature of Computer Science”, 

in International Conference on Foundations of Software Technology and Theoretical 

Computer Science, Springer Berlin Heidelberg, pp. 1–12. doi:10.1007/3-540-57529-

4_39 

• Hayes, P. J., 1997, “What is a Computer?”, The Monist, 80(3): 389–404. 

• Hempel, C. G., 1970, “On the ‘standard conception’ of scientific 

theories”, Minnesota Studies in the Philosophy of Science, 4: 142–163. 

• Henson, Martin C., 1987, Elements of Functional Programming, Oxford: Blackwell. 

• Hilbert, David, 1931, “The Grounding of Elementary Number Theory”, reprinted in 

P. Mancosu (ed.), 1998, From Brouwer to Hilbert: the Debate on the Foundations of 

Mathematics in the 1920s, New York: Oxford University Press, pp. 266–273. 

• Hilbert, David & Wilhelm Ackermann, 1928, Grundzüge Der Theoretischen Logik, 

translated as Principles of Mathematical Logic, Lewis M. Hammond, George G. 

Leckie, and F. Steinhardt (trans.), New York: Chelsea, 1950. 

• Hill, R.K., 2016, “What an algorithm is”, Philosophy & Technology, 29(1): 35–59. 

• –––, 2018, “Elegance in Software”, in Liesbeth de Mol, Giuseppe Primiero 

(eds.), Reflections on Programmings Systems - Historical and Philosophical Aspects 

(Philosophical Studies Series), Cham: Springer, pp. 273–286. 

• Hoare, C.A.R., 1969, “An Axiomatic Basis for Computer 

Programming”, Communications of the ACM, 12(10): 576–580. 

doi:10.1145/363235.363259 



• –––, 1973, “Notes on Data Structuring”, in O.J. Dahl, E.W. Dijkstra, and C.A.R. 

Hoare (eds.), Structured Programming, London: Academic Press, pp. 83–174. 

• –––, 1981, “The Emperor’s Old Clothes”, Communications of the ACM, 24(2): 75–

83. doi:10.1145/1283920.1283936 

• –––, 1985, Communicating Sequential Processes, Englewood Cliffs, NJ: Prentice 

Hall. [Hoare 1985 available online] 

• –––, 1986, The Mathematics of Programming: An Inaugural Lecture Delivered 

Before the University of Oxford on Oct. 17, 1985, Oxford: Oxford University Press. 

• Hodges, Andrews, 2011, “Alan Turing”, The Stanford Encyclopedia of 

Philosophy (Summer 2011 Edition), Edward N. Zalta (ed.), URL = 

<https://plato.stanford.edu/archives/sum2011/entries/turing/>. 

• Hodges, Wilfrid, 2013, “Model Theory”, The Stanford Encyclopedia of 

Philosophy (Fall 2013 Edition), Edward N. Zalta (ed.), forthcoming URL = 

<https://plato.stanford.edu/archives/fall2013/entries/model-theory/>. 

• Hopcroft, John E. & Jeffrey D. Ullman, 1969, Formal Languages and their Relation 

to Automata, Reading, MA: Addison-Wesley. 

• Hughes, Justin, 1988, “The Philosophy of Intellectual Property”, Georgetown Law 

Journal, 77: 287. 

• Irmak, Nurbay, 2012, “Software is an Abstract Artifact”, Grazer Philosophische 

Studien, 86(1): 55–72. 

• Johnson, Christopher W., 2006, “What are Emergent Properties and How Do They 

Affect the Engineering of Complex Systems”, Reliability Engineering and System 

Safety, 91(12): 1475–1481. [Johnson 2006 available online] 

• Johnson-Laird, P. N., 1988, The Computer and the Mind: An Introduction to 

Cognitive Science, Cambridge, MA: Harvard University Press. 

• Jones, Cliff B., 1990 [1986], Systematic Software Development Using VDM, second 

edition, Englewood Cliffs, NJ: Prentice Hall. [Jones 1990 available online] 

• Kimppa, Kai, 2005, “Intellectual Property Rights in Software—Justifiable from a 

Liberalist Position? Free Software Foundation’s Position in Comparison to John 

Locke’s Concept of Property”, in R.A. Spinello & H.T. Tavani (eds.), Intellectual 

Property Rights in a Networked World: Theory and Practice, Hershey, PA: Idea, pp. 

67–82. 

• Kinsella, N. Stephan, 2001, “Against Intellectual Property”, Journal of Libertarian 

Studies, 15(2): 1–53. 

• Kleene, S. C., 1967, Mathematical Logic, New York: Wiley. 

• Knuth, D. E., 1973, The Art of Computer Programming, second edition, Reading, 

MA: Addison-Wesley. 

• –––, 1974a, “Computer Programming as an Art”, Communications of the ACM, 

17(12): 667–673. doi:10.1145/1283920.1283929 

http://www.usingcsp.com/
https://plato.stanford.edu/archives/sum2011/entries/turing/
https://plato.stanford.edu/archives/fall2013/entries/model-theory/
http://www.dcs.gla.ac.uk/~johnson/papers/RESS/Complexity_Emergence_Editorial.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/publications/


• –––, 1974b, “Computer Science and Its Relation to Mathematics”, The American 

Mathematical Monthly, 81(4): 323–343. 

• –––, 1977, “Algorithms”, Scientifc American, 236(4): 63–80. 

• Kripke, Saul, 1982, Wittgenstein on Rules and Private Language, Cambridge, MA: 

Harvard University Press. 

• Kroes, Peter, 2010, “Engineering and the Dual Nature of Technical 

Artefacts”, Cambridge Journal of Economics, 34(1): 51–62. doi:10.1093/cje/bep019 

• –––, 2012, Technical Artefacts: Creations of Mind and Matter: A Philosophy of 

Engineering Design, Dordrecht: Springer. 

• Kroes, Peter & Anthonie Meijers, 2006, “The Dual Nature of Technical 

Artefacts”, Studies in History and Philosophy of Science, 37(1): 1–4. 

doi:10.1016/j.shpsa.2005.12.001 

• Kröger, Fred & Stephan Merz, 2008, Temporal Logics and State Systems, Berlin: 

Springer. 

• Ladd, John, 1988, “Computers and Moral Responsibility: a Framework for An 

Ethical Analysis”, in Carol C. Gould, (ed.), The Information Web: Ethical & Social 

Implications of Computer Networking, Boulder, CO: Westview Press, pp. 207–228. 

• Landin, P.J., 1964, “The Mechanical Evaluation of Expressions”, The Computer 

Journal, 6(4): 308–320. doi:10.1093/comjnl/6.4.308 

• Littlewood, Bev & Lorenzo Strigini, 2000, “Software Reliability and Dependability: 

a Roadmap”, ICSE ’00 Proceedings of the Conference on the Future of Software 

Engineering, pp. 175–188. doi:10.1145/336512.336551 

• Locke, John, 1690, The Second Treatise of Government. [Locke 1690 available 

online] 

• Loewenheim, Ulrich, 1989, “Legal Protection for Computer Programs in West 

Germany”, Berkeley Technology Law Journal, 4(2): 187–215. [Loewenheim 1989 

available online] doi:10.15779/Z38Q67F 

• Long, Roderick T., 1995, “The Libertarian Case Against Intellectual Property 

Rights”, Formulations, Autumn, Free Nation Foundation. 

• Loui, Michael C. & Keith W. Miller, 2008, “Ethics and Professional Responsibility 

in Computing”, Wiley Encyclopedia of Computer Science and Engineering, 

Benjamin Wah (ed.), John Wiley & Sons. [Loui and Miller 2008 available online] 

• Lowe, E. J., 1998, The Possibility of Metaphysics: Substance, Identity, and Time, 

Oxford: Clarendon Press. 

• Luckham, David C., 1998, “Rapide: A Language and Toolset for Causal Event 

Modeling of Distributed System Architectures”, in Y. Masunaga, T. Katayama, and 

M. Tsukamoto (eds.), Worldwide Computing and its Applications, WWCA’98, 

Berlin: Springer, pp. 88–96. doi:10.1007/3-540-64216-1_42 

• Machamer, Peter K., Lindley Darden, & Carl F. Craver, 2000, “Thinking About 

Mechanisms”, Philosophy of Science, 67(1): 1–25. doi:10.1086/392759 

https://www.gutenberg.org/files/7370/7370-h/7370-h.htm
https://www.gutenberg.org/files/7370/7370-h/7370-h.htm
http://scholarship.law.berkeley.edu/btlj/vol4/iss2/1/
http://scholarship.law.berkeley.edu/btlj/vol4/iss2/1/
http://hdl.handle.net/2142/12247


• Magee, Jeff, Naranker Dulay, Susan Eisenbach, & Jeff Kramer, 1995, “Specifying 

Distributed Software Architectures”, Proceedings of 5th European Software 

Engineering Conference (ESEC 95), Berlin: Springer-Verlag, pp. 137–153. 

• Markov, A., 1954, “Theory of algorithms”, Tr. Mat. Inst. Steklov 42, pp. 1–14. trans. 

by Edwin Hewitt in American Mathematical Society Translations, Series 2, Vol. 15 

(1960). 

• Martin-Löf, Per, 1982, “Constructive Mathematics and Computer Programming”, 

in Logic, Methodology and Philosophy of Science (Volume VI: 1979), Amsterdam: 

North-Holland, pp. 153–175. 

• McGettrick, Andrew, 1980, The Definition of Programming Languages, Cambridge: 

Cambridge University Press. 

• McLaughlin, Peter, 2001, What Functions Explain: Functional Explanation and Self-

Reproducing Systems, Cambridge: Cambridge University Press. 

• Meijers, A.W.M., 2001, “The Relational Ontology of Technical Artifacts”, in P.A. 

Kroes and A.W.M. Meijers (eds.), The Empirical Turn in the Philosophy of 

Technology, Amsterdam: Elsevier, pp. 81–96. 

• Mitchelmore, Michael & Paul White, 2004, “Abstraction in Mathematics and 

Mathematics Learning”, in M.J. Høines and A.B. Fuglestad (eds.), Proceedings of 

the 28th Conference of the International Group for the Psychology of Mathematics 

Education (Volume 3), Bergen: Programm Committee, pp. 329–336. [Mitchelmore 

and White 2004 available online] 

• Miller, Alexander & Crispin Wright (eds), 2002, Rule Following and Meaning, 

Montreal/Ithaca: McGill-Queen's University Press. 

• Milne, Robert & Christopher Strachey, 1976, A Theory of Programming Language 

Semantics, London: Chapman and Hall. 

• Milner, R., 1971, “An algebraic definition of simulation between programs”, 

Technical Report, CS-205, pp. 481–489, Department of Computer Science, Stanford 

University. 

• Mitchell, John C., 2003, Concepts in Programming Languages, Cambridge: 

Cambridge University Press. 

• Monin, Jean François, 2003, Understanding Formal Methods, Michael G. Hinchey 

(ed.), London: Springer (this is Monin's translation of his own Introduction aux 

Méthodes Formelles, Hermes, 1996, first edition; 2000, second edition), 

doi:10.1007/978-1-4471-0043-0 

• Mooers, Calvin N., 1975, “Computer Software and Copyright”, ACM Computing 

Surveys, 7(1): 45–72. doi:10.1145/356643.356647 

• Moor, James H., 1978, “Three Myths of Computer Science”, The British Journal for 

the Philosophy of Science, 29(3): 213–222. 

• Morgan, C., 1994, Programming From Specifications, Englewood Cliffs: Prentice 

Hall. [Morgan 1994 available online] 

http://www.emis.de/proceedings/PME28/RR/RR031_Mitchelmore.pdf
http://www.emis.de/proceedings/PME28/RR/RR031_Mitchelmore.pdf


• Moschovakis, Y. N., 2001, “What is an algorithm?”, in Mathematics Unlimited—

2001 and Beyond, Heidelberg, Berlin: Springer, pp. 919–936. 

• Naur, P., 1985, “Programming as theory building”, Microprocessing and 

microprogramming, 15(5): 253–261. 

• Newell, A., and Simon, H. A., 1961, “Computer simulation of human 

thinking” Science, 134(3495): 2011–2017. 

• ––– 1972, Human Problem Solving, Englewood Cliffs, NJ: Prentice-Hall. 

• –––, 1976, “Computer Science as Empirical Inquiry: Symbols and 

Search”, Communications of the ACM, 19(3): 113–126. 

doi:10.1145/1283920.1283930 

• Newell, Allen, Alan J. Perlis, & Herbert A. Simon, 1967, “Computer 

Science”, Science, 157(3795): 1373–1374. doi:10.1126/science.157.3795.1373-b 

• Nissenbaum,Helen, 1998, “Values in the Design of Computer Systems”, Computers 

and Society, 28(1): 38–39. 

• Northover, Mandy, Derrick G. Kourie, Andrew Boake, Stefan Gruner, & Alan 

Northover, 2008, “Towards a Philosophy of Software Development: 40 Years After 

the Birth of Software Engineering”, Journal for General Philosophy of Science, 

39(1): 85–113. doi:10.1007/s10838-008-9068-7 

• Pears, David Francis, 2006, Paradox and Platitude in Wittgenstein’s Philosophy, 

Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780199247707.001.0001 

• Piccinini, Gualtiero, 2007, “Computing Mechanisms”, Philosophy of Science, 74(4): 

501–526. doi:10.1086/522851 

• –––, 2008, “Computation without Representation”, Philosophical Studies, 137(2): 

206–241. [Piccinini 2008 available online] doi:10.1007/s11098-005-5385-4 

• –––, 2008, “Computers”, Pacific Philosophical Quarterly, 89: 32–73. 

• –––, 2015, Physical Computation: A Mechanistic Account, Oxford: Oxford 

University Press. doi:10.1093/acprof:oso/9780199658855.001.0001 

• Piccinini, Gualtiero & Carl Craver, 2011, “Integrating Psychology and Neuroscience: 

Functional Analyses as Mechanism Sketches”, Synthese, 183(3): 283–311. 

doi:10.1007/s11229-011-9898-4 

• Popper, Karl R., 1959, The Logic of Scientific Discovery, London: Hutchinson. 

• Primiero, G., 2016, “Information in the philosophy of computer science”, in Floridi 

L. (ed.), The Routledge Handbook of Philosophy of Information, London: Routledge, 

pp. 90–106. 

• –––, 2020, On the Foundations of Computing. New York: Oxford University Press. 

• Primiero, G., D.F. Solheim & J.M. Spring, 2019 “On Malfunction, Mechanisms and 

Malware Classification”, Philos. Technol. 32: 339–362. 

https://doi.org/10.1007/s13347-018-0334-2 

• Pylyshyn, Z. W., 1984, Computation and Cognition: Towards a Foundation for 

Cognitive Science, Cambridge, MA: MIT Press. 

http://www.umsl.edu/~piccininig/Computation_without_Representation.pdf


• Pym, D., J.M. Spring, & P. O’Hearn, 2019, “Why Separation Logic 

Works”, Philosophy & Technology, 32: 483–516. 

• Rapaport, William J., 1995, “Understanding Understanding: Syntactic Semantics and 

Computational Cognition”, in Tomberlin (ed.), Philosophical Perspectives, Vol. 9: 

AI, Connectionism, and Philosophical Psychology, Atascadero, CA: Ridgeview, pp. 

49–88. [Rapaport 1995 available online] doi:10.2307/2214212 

• –––, 1999, “Implementation Is Semantic Interpretation”, The Monist, 82(1): 109–30. 

[Rapaport 1999 available online] 

• –––, 2005, “Implementation as Semantic Interpretation: Further Thoughts”, Journal 

of Experimental& Theoretical Artificial Intelligence, 17(4): 385–417. [Rapaport 

2005 available online] 

• –––, 2012, “Semiotic systems, computers, and the mind: how cognition could be 

computing”, International Journal of Signs and Semiotic Systems, 2(1): 32–71 

• –––, 2018, “What is a Computer? A Survey”, Minds and Machines, 28(3): 385–426. 

• Reynolds, J.C., 2002, “Separation Logic: a logic for shared mutable data structures”, 

in Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, 

IEEE, pp. 55–74. 

• Rombach, Dieter & Frank Seelisch, 2008, “Formalisms in Software Engineering: 

Myths Versus Empirical Facts”, in Balancing Agility and Formalism in Software 

Engineering, Springer Berlin Heidelberg, pp. 13–25. doi:10.1007/978-3-540-85279-

7_2 

• Rosenberg, A., 2012, The Philosophy of Science, London: Routledge. 

• Ryle G., 1949 [2009], The Concept of Mind, Abingdon: Routledge 

• Schiaffonati, Viola, 2015, “Stretching the Traditional Notion of Experiment in 

Computing: Explorative Experiments”, Science and Engineering Ethics, 22(3): 1–19. 

doi:10.1007/s11948-015-9655-z 

• Schiaffonati, Viola & Mario Verdicchio, 2014, “Computing and 

Experiments”, Philosophy & Technology, 27(3): 359–376. doi:10.1007/s13347-013-

0126-7 

• Searle, J. R., 1990, “Is the brain a digital computer?” Proceedings and Addresses of 

the American Philosophical Association, 64(3): 21–37. 

• Searle, John R., 1995, The Construction of Social Reality, New York: Free Press. 

• Setiya, K., “Intention”, The Stanford Encyclopedia of Philosophy (Fall 2018 Edition), 

Edward N. Zalta (ed.), URL = 

<https://plato.stanford.edu/archives/fall2018/entries/intention/>. 

• Shanker, S.G., 1987, “Wittgenstein versus Turing on the Nature of Church’s 

Thesis”, Notre Dame Journal of Formal Logic, 28(4): 615–649. [Shanker 1987 

available online] doi:10.1305/ndjfl/1093637650 

• Shavell, Steven & Tanguy van Ypersele, 2001, “Rewards Versus Intellectual 

Property Rights”, Journal of Law and Economics, 44: 525–547 

http://www.cse.buffalo.edu/~rapaport/Papers/rapaport95-uu.pdf
http://www.cse.buffalo.edu/~rapaport/Papers/monist.pdf
http://www.cse.buffalo.edu/~rapaport/Papers/jetai05.pdf
http://www.cse.buffalo.edu/~rapaport/Papers/jetai05.pdf
https://plato.stanford.edu/archives/fall2018/entries/intention/
http://projecteuclid.org/euclid.ndjfl/1093637650
http://projecteuclid.org/euclid.ndjfl/1093637650


• Skemp, Richard R., 1987, The Psychology of Learning Mathematics, Hillsdale, NJ: 

Lawrence Erlbaum Associates. 

• Smith, Brian Cantwell, 1985, “The Limits of Correctness in Computers”, ACM 

SIGCAS Computers and Society, 14–15(1–4): 18–26. doi:10.1145/379486.379512 

• Snelting, Gregor, 1998, “Paul Feyerabend and Software Technology”, Software 

Tools for Technology Transfer, 2(1): 1–5. doi:10.1007/s100090050013 

• Sommerville, Ian, 2016 [1982], Software Engineering, Reading, MA: Addison-

Wesley; first edition, 1982. 

• Sprevak, M., 2010, “Computation, individuation, and the received view on 

representation”, Studies in History and Philosophy of Science, 41(3): 260–270. 

• –––, 2012, “Three Challenges to Chalmers on Computational 

Implementation”, Journal of Cognitive Science, 13(2): 107–143. 

• Stoy, Joseph E., 1977, Denotational Semantics: The Scott-Strachey Approach to 

Programming Language Semantics, Cambridge, MA: MIT Press. 

• Strachey, Christopher, 2000, “Fundamental Concepts in Programming 

Languages”, Higher-Order and Symbolic Computation, 13(1–2): 11–49. 

doi:10.1023/A:1010000313106 

• Suber, Peter, 1988, “What Is Software?” Journal of Speculative Philosophy, 2(2): 

89–119. [Suber 1988 available online] 

• Summerville, I., 2012, Software Engineering, Reading, MA: Addison-Wesley; first 

edition, 1982. 

• Suppe, Frederick, 1989, The Semantic Conception of Theories and Scientific 

Realism, Chicago: University of Illinois Press. 

• Suppes, Patrick, 1960, “A Comparison of the Meaning and Uses of Models in 

Mathematics and the Empirical Sciences”, Synthese, 12(2): 287–301. 

doi:10.1007/BF00485107 

• –––, 1969, “Models of Data”, in Studies in the Methodology and Foundations of 

Science, Dordrecht: Springer Netherlands, pp. 24–35. 

• Technical Correspondence, Corporate, 1989, Communications of the ACM, 32(3): 

374–381. Letters from James C. Pleasant, Lawrence Paulson/Avra Cohen/Michael 

Gordon, William Bevier/Michael Smith/William Young, Thomas Clune, Stephen 

Savitzky, James Fetzer. doi:10.1145/62065.315927 

• Tedre, Matti, 2011, “Computing as a Science: A Survey of Competing 

Viewpoints”, Minds and Machines, 21(3): 361–387. doi:10.1007/s11023-011-9240-4 

• –––, 2015, The Science of Computing: Shaping a Discipline, Boca Raton: CRC 

Press, Taylor and Francis Group. 

• Tedre, Matti & Ekki Sutinen, 2008, “Three Traditions of Computing: What 

Educators Should Know”, Computer Science Education, 18(3): 153–170. 

doi:10.1080/08993400802332332 

http://legacy.earlham.edu/~peters/writing/software.htm


• Thagard, P., 1984, “Computer programs as psychological theories”, Mind, Language 

and Society, Vienna: Conceptus-Studien, pp. 77–84. 

• Thomasson, Amie, 2007, “Artifacts and Human Concepts”, in Eric Margolis and 

Stephen Laurence (eds.), Creations of the Mind: Essays on Artifacts and Their 

Representations, Oxford: Oxford University Press, pp. 52–73. 

• Thompson, Simon, 2011, Haskell: The Craft of Functional Programming, third 

edition, Reading, MA: Addison-Wesley; first edition, 1996. 

• Tichy, Walter F., 1998, “Should Computer Scientists Experiment More?”, IEEE 

Computer, 31(5): 32–40. doi:10.1109/2.675631 

• Turing, A.M., 1936, “On Computable Numbers, with an Application to the 

Entscheidungsproblem”, Proceedings of the London Mathematical Society (Series 2), 

42: 230–65. doi:10.1112/plms/s2-42.1.230 

• –––, 1950, “Computing Machinery and Intelligence”, Mind, 59(236): 433–460. 

doi:10.1093/mind/LIX.236.433 

• Turner, Raymond, 2007, “Understanding Programming Languages”, Minds and 

Machines, 17(2): 203–216. doi:10.1007/s11023-007-9062-6 

• –––, 2009a, Computable Models, Berlin: Springer. doi:10.1007/978-1-84882-052-4 

• –––, 2009b, “The Meaning of Programming Languages”, APA Newsletters, 9(1): 2–

7. (This APA Newsletter is available online; see the Other Internet Resources.) 

• –––, 2010, “Programming Languages as Mathematical Theories”, in J. Vallverdú 

(ed.), Thinking Machines and the Philosophy of Computer Science: Concepts and 

Principles, Hershey, PA: IGI Global, pp. 66–82. 

• –––, 2011, “Specification”, Minds and Machines, 21(2): 135–152. 

doi:10.1007/s11023-011-9239-x 

• –––, 2012, “Machines”, in H. Zenil (ed.), A Computable Universe: Understanding 

and Exploring Nature as Computation, London: World Scientific Publishing 

Company/Imperial College Press, pp. 63–76. 

• –––, 2014, “Programming Languages as Technical Artefacts”, Philosophy and 

Technology, 27(3): 377–397; first published online 2013. doi:10.1007/s13347–012–

0098-z 

• –––, 2018, Computational artifacts: Towards a philosophy of computer science, 

Berlin Heidelberg: Springer. 

• Tymoczko, Thomas, 1979, “The Four Color Problem and Its Philosophical 

Significance”, The Journal of Philosophy, 76(2): 57–83. doi:10.2307/2025976 

• –––, 1980, “Computers, Proofs and Mathematicians: A Philosophical Investigation of 

the Four-Color Proof”, Mathematics Magazine, 53(3): 131–138. 

• Van Fraassen, Bas C., 1980, The Scientific Image, Oxford: Oxford University Press. 

doi:10.1093/0198244274.001.0001 

• –––, 1989, Laws and Symmetry, Oxford: Oxford University Press. 

doi:10.1093/0198248601.001.0001 



• Van Leeuwen, Jan (ed.), 1990, Handbook of Theoretical Computer Science. Volume 

B: Formal Models and Semantics, Amsterdam: Elsevier and Cambridge, MA: MIT 

Press. 

• Vardi, M., 2012, “What is an algorithm?”, Communications of the ACM, 55(3): 5. 

doi:10.1145/2093548.2093549 

• Vermaas, Pieter E. & Wybo Houkes, 2003, “Ascribing Functions to Technical 

Artifacts: A Challenge to Etiological Accounts of Function”, British Journal of the 

Philosophy of Science, 54: 261–289. [Vermaas and Houkes 2003 available online] 

• Vliet, Hans van, 2008, Software Engineering: Principles and Practice, 3rd edition, 

Hoboken, NJ: Wiley. (First edition, 1993) 

• von Neumann, J. (1945). “First draft report on the EDVAC”, IEEE Annals of the 

History of Computing, 15(4): 27–75. 

• Wang, Hao, 1974, From Mathematics to Philosophy, London: Routledge, Kegan & 

Paul. 

• Wegner, Peter, 1976, “Research Paradigms in Computer Science”, in Proceedings of 

the 2nd international Conference on Software Engineering, Los Alamitos, CA: IEEE 

Computer Society Press, pp. 322–330. 

• White, Graham, 2003, “The Philosophy of Computer Languages”, in Luciano Floridi 

(ed.), The Blackwell Guide to the Philosophy of Computing and Information, 

Malden: Wiley-Blackwell, pp. 318–326. 

doi:10.1111/b.9780631229193.2003.00020.x 

• Wiener, Norbert, 1948, Cybernetics: Control and Communication in the Animal and 

the Machine, New York: Wiley & Sons. 

• –––, 1964, God and Golem, Inc.: A Comment on Certain Points Where Cybernetics 

Impinges on Religion, Cambridge, MA: MIT press. 

• Wittgenstein, Ludwig, 1953 [2001], Philosophical Investigations, translated by 

G.E.M. Anscombe, 3rd Edition, Oxford: Blackwell Publishing. 

• –––, 1956 [1978], Remarks of the Foundations of Mathematics, G.H. von Wright, R. 

Rhees, and G.E.M. Anscombe (eds.), translated by G.E.M. Anscombe, revised 

edition, Oxford: Basil Blackwell. 

• –––, 1939 [1975], Wittgenstein’s Lectures on the Foundations of Mathematics, 

Cambridge 1939, C. Diamond (ed.), Cambridge: Cambridge University Press. 

• Woodcock, Jim & Jim Davies, 1996, Using Z: Specification, Refinement, and Proof, 

Englewood Cliffs, NJ: Prentice Hall. 

• Wright, Crispin 1983, Frege’s Conception of Numbers as Objects, Aberdeen: 

Aberdeen University Press. 

Academic Tools 
 

How to cite this entry. 

 

Preview the PDF version of this entry at the Friends of the SEP Society. 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.5058
https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=computer-science
https://leibniz.stanford.edu/friends/preview/computer-science/
https://leibniz.stanford.edu/friends/


 

Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project 

(InPhO). 

 

Enhanced bibliography for this entry at PhilPapers, with links to its database. 

Other Internet Resources 

• ACM (ed.), 2013, ACM Turing Award Lectures. 

• APA Newsletter on Philosophy and Computers, 9(1): Fall 2009. 

• Groklaw, 2012a, “What Does ‘Software is Mathematics’ Mean?” Part 1, by PoIR. 

• Groklaw, 2012b, “What Does ‘Software is Mathematics’ Mean?” Part 2, by PoIR. 

• Huss, Eric, 1997, The C Library Reference Guide, at Fortran 90+ (www.fortran-

2000.com). 

• Rapaport, William J., 2020, “Philosophy of Computer Science”. DRAFT © 2004–

2020 by William J. Rapaport. Available at Philosophy of Computer Science, 

manuscript. 

• Smith, Barry, 2012, “Logic and Formal Ontology”. A revised version of the paper 

which appeared in J. N. Mohanty and W. McKenna (eds), 1989, Husserl’s 

Phenomenology: A Textbook, Lanham: University Press of America. 

• Turner, Ray and Amon Eden, 2011, “The Philosophy of Computer 

Science”, Stanford Encyclopedia of Philosophy (Winter 2011 Edition), Edward N. 

Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2011/entries/computer-

science/>. [This was the previous entry on the philosophy of computer science in 

the Stanford Encyclopedia of Philosophy—see the version history.] 

• Center for Philosophy of Computer Science 

Related Entries 
artificial intelligence: logic and | Church-Turing Thesis | computability and 

complexity | computation: in physical systems | computational complexity 

theory | information | information: semantic conceptions of | intention | mathematics, 

philosophy of | recursive functions | technology, philosophy of | Turing machines 

Copyright © 2021 by 

Nicola Angius <nangius@uniss.it> 

Giuseppe Primiero <giuseppe.primiero@unimi.it> 

Raymond Turner <turnr@essex.ac.uk> 

 

https://www.inphoproject.org/entity?sep=computer-science&redirect=True
https://philpapers.org/sep/computer-science/
https://philpapers.org/
http://amturing.acm.org/byyear.cfm
https://cdn.ymaws.com/www.apaonline.org/resource/collection/EADE8D52-8D02-4136-9A2A-729368501E43/v09n1Computers.pdf
http://www.groklaw.net/article.php?story=20121013192858600
http://www.groklaw.net/articlebasic.php?story=20121129053154687
http://www.fortran-2000.com/ArnaudRecipes/Cstd/
http://www.cse.buffalo.edu/~rapaport/Papers/phics.pdf
http://ontology.buffalo.edu/smith/articles/lfo.pdf
https://plato.stanford.edu/archives/win2011/entries/computer-science/
https://plato.stanford.edu/archives/win2011/entries/computer-science/
https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=computer-science
http://www.cs.uu.nl/groups/AD/index-phil.html
https://plato.stanford.edu/entries/logic-ai/
https://plato.stanford.edu/entries/church-turing/
https://plato.stanford.edu/entries/computability/
https://plato.stanford.edu/entries/computability/
https://plato.stanford.edu/entries/computation-physicalsystems/
https://plato.stanford.edu/entries/computational-complexity/
https://plato.stanford.edu/entries/computational-complexity/
https://plato.stanford.edu/entries/information/
https://plato.stanford.edu/entries/information-semantic/
https://plato.stanford.edu/entries/intention/
https://plato.stanford.edu/entries/philosophy-mathematics/
https://plato.stanford.edu/entries/philosophy-mathematics/
https://plato.stanford.edu/entries/recursive-functions/
https://plato.stanford.edu/entries/technology/
https://plato.stanford.edu/entries/turing-machine/
https://plato.stanford.edu/info.html#c
https://uniss.academia.edu/NicolaAngius
mailto:nangius%40uniss.it
mailto:giuseppe.primiero%40unimi.it
http://cswww.essex.ac.uk/staff/turnr/
mailto:turnr%40essex.ac.uk

