
Towards Substructural Property-Based
Testing

Marco Mantovani and Alberto Momigliano(B)

Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
momigliano@di.unimi.it

Abstract. We propose to extend property-based testing to substruc-
tural logics to overcome the current lack of reasoning tools in the field.
We take the first step by implementing a property-based testing system
for specifications written in the linear logic programming language Lolli.
We employ the foundational proof certificates architecture to model var-
ious data generation strategies. We validate our approach by encoding a
model of a simple imperative programming language and its compilation
and by testing its meta-theory via mutation analysis.

Keywords: Linear logic · Property-based testing · Focusing ·
Semantics of programming languages

1 Introduction

Since their inception in the late 80’s, logical frameworks based on intuitionis-
tic logic [43] have been successfully used to represent and animate deductive
systems (λProlog) as well as to reason (Twelf) about them. The methodology
of higher-order abstract syntax (HOAS) together with parametric-hypothetical
judgments yields elegant encodings that lead to elegant proofs, since it delegates
to the meta-logic the handling of many common notions, in particular the repre-
sentation of contexts. For example, when modeling a typing system, we represent
the typing context as a set of parametric (atomic) assumptions: this tends to
simplify the meta-theory since properties such as weakening and context sub-
stitution come for free: in fact, they are inherited from the logical framework,
and do not need to be proved on a case-by-case basis. For an early example,
see the proof of subject reduction for MiniML in [35], which completely avoids
the need to establish intermediate lemmas, as opposed to more standard and
labor-intensive treatments [15].

However, this identification of meta and object level contexts turns out to
be problematic in state-passing specifications. To fix ideas, consider specifying
the operational semantics of an imperative programming language: evaluating

This work has been partially supported by the National Group of Computing Science
(GNCS-INdAM) within the project “Estensioni del Property-based Testing di e con
linguaggi di programmazione dichiarativa”.

c© Springer Nature Switzerland AG 2022
E. De Angelis and W. Vanhoof (Eds.): LOPSTR 2021, LNCS 13290, pp. 92–112, 2022.
https://doi.org/10.1007/978-3-030-98869-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98869-2_6&domain=pdf
http://orcid.org/0000-0003-0942-4777
https://doi.org/10.1007/978-3-030-98869-2_6

Towards Substructural Property-Based Testing 93

an assignment requires taking an input state, modifying it and finally returning
it. A state (and related notions such as heaps, stacks, etc.) cannot be adequately
encoded as a set of intuitionistic assumptions, since it is intrinsically ephemeral.
The standard solution of reifing the state into a data structure, while doable,
betrays the whole HOAS approach.

Luckily, linear logic can change the world [51]—Linear logic being of course
the main example of substructural logics, i.e., those non-classical logics charac-
terized by the absence of some structural rules [41]. Linearity provides a notion
of context which has an immediate reading in terms of resources. A state can
be seen as a set of linear assumptions and the linear connectives can be used to
model in a declarative way reading and writing said state. In the early 90’s this
idea was taken up in linear logic programming and specification languages such
as Lolli [22], LLF [7] and Forum [36].

In the ensuing years, given the richness of linear logic and the flexibility of
the proof-theoretic foundations of logic programming [37], more sophisticated
languages emerged, with additional features such as order (Olli [46]), subexpo-
nentials [40], bottom-up evaluation and concurrency (Lollimon [29], Celf [49]).
Each extension required significant ingenuity, since it relied on the development
of appropriate notions of canonical forms, resource management, unification etc.
At the same time, tools for reasoning over such substructural specifications did
not materialize. Meta-reasoning over a logical framework, in fact, asks for formu-
lating appropriate meta-logics, which, again, is far from trivial, the more when
the framework is substructural; in fact no implementation of the latter have
appeared. The case for the concurrent logical framework CLF [8] is particularly
striking, where, notwithstanding a wide and promising range of applications, the
only meta-theoretic analysis available in Celf is checking that a program is well-
moded. Compare this with the successful deployment of dedicated HOAS-based
intuitionistic proof assistants such as Beluga [45] and Abella [1].

If linear verification is too hard, or just while we wait for the field to catch up,
this paper suggests validation as a useful alternative, in particular in the form
of property-based testing [24] (PBT). This is a lightweight validation technique
whereby the user specifies executable properties that the code should satisfy and
the system tries to refute them via automatic (typically random) data generation.

Previous work [4] gave a proof-theoretic reconstruction of PBT in terms of
focusing and foundational proof certificates (FPC) [12], which, in theory, applies
to all the languages mentioned above. The promise of the approach is that we
can state and check properties in the very logic where we specify them, with-
out resorting to a further meta-logic. Of course, validation falls rather short of
verification, but as by now common in mainstream proof assistants, e.g., [5,42],
we may resort to testing not only in lieu of proving, but before proving, so as
to avoid pointless effort in trying to prove false theorems or true properties over
bugged models.

In fact, the two-level architecture [19] underlying the Abella system and the
Hybrid library [17] seems a good match for the combination of testing and prov-
ing over substructural specifications. In this architecture we keep the meta-logic

94 M. Mantovani and A. Momigliano

fixed, while making substructural the specification logic. Indeed, some case stud-
ies have been already carried out, as we detail in Sect. 6.

In this paper we move the first steps in this programme implementing PBT
for Lolli and evaluating its capability in catching bugs by applying it to a mid-
size case study: we give a linear encoding of the static and dynamic semantic of
an imperative programming language and its compilation into a stack machine
and validate several properties, among which type preservation and soundness of
compilation. We have tried to test properties in the way they would be stated and
hopefully proved in a linear proof assistant based on the two-level architecture.
That is, we are not arguing (yet) that linear PBT is “better” than traditional
ones for state-passing specifications. Besides, in the case studies we have carried
out so far, we generate only persistent data (expressions, programs) under a given
linear context. Rather, we advocate the coupling of validation and (eventually)
verification for those encoding where linearity makes a difference in terms of
drastically simplifying the infrastructure needed to prove the main result: one of
the original success stories of linear specifications, namely type preservation of
MiniML with references [7,34], still stands and nicely extends the cited one for
MiniML: linearly, the theorem can be proven from first principles, while with a
standard encoding, for example the Coq formalization in Software foundations1,
one needs literally dozens of preliminary lemmas.

The rest of the paper is organized as follows: we start in the next Sect. 2 with
a short example of model-based testing of a linear specification. Section 3 gives a
short introduction to the proof-theory of intuitionistic linear logic programming,
while Sect. 4 applies the notion of FPC to our reconstruction of PBT. Next
(Sect. 5), we validate our approach with a case study concerning the meta-theory
of a basic imperative language including an experimental evaluation (Sect. 5.2).
We conclude in Sect. 6 with a short review of related and future work.

We assume in the following a passing familiarity with linear logic and with
the proof-theoretic foundations of logic programming [37].

2 A Motivating Example

To preview our methodology, we present a self-contained example where we use
PBT in the guise of model-based testing: we test an implementation against a
trusted version. We choose as trusted model the linear encoding of the impli-
cational fragment of the contraction-free calculus for propositional intuitionistic
logic, popularized by Dyckhoff. Figure 1 lists the rules for the judgment Γ � C,
together with a Lolli implementation. Here, and in the following, we will use
Lolli’s concrete syntax, where the lollipop (in both directions) is linear impli-
cation, x is multiplicative conjunction (tensor), & is additive conjunction and
erase its unit �. The of-course modality is bang.

As shown originally in [22], we can encode provability with a predicate pv
that uses a linear context of propositions hyp for assumptions, that is occurring

1 https://softwarefoundations.cis.upenn.edu/plf-current/References.html.

https://softwarefoundations.cis.upenn.edu/plf-current/References.html

Towards Substructural Property-Based Testing 95

Γ, A � B

Γ � A → B
R→

Γ, A � A
init

Γ, B, a � C

Γ, a → B, a � C
La

→
Γ, A2 → B � A1 → A2 Γ, B � C

Γ, (A1 → A2) → B � C
Li

→

. .

pv(imp(A,B)) o- (hyp(A) -o pv(B)).

pv(A) o- hyp(A) x erase.

pv(C) o- hyp(imp(A,B)) x bang(atom(A)) x hyp(A) x

(hyp(B) -o hyp(A) -o pv(C)).

pv(C) o- hyp(imp(imp(A1,A2),B)) x

(hyp(imp(A2,B) -o pv(imp(A1,A2))) &

(hyp(B) -o pv(C))).

Fig. 1. Rules for contraction free LJF→ and their Lolli encoding

at the left of the turnstile; this is shown in the first clause encoding the implica-
tion right rule R→ via the embedded implication hyp(A) -o pv(B). In the left
rules, the premises are consumed by means of the tensor and new assumptions
(re)asserted. The fact atom(A) lives on thanks to the bang, since it may need
to be reused. Note how in the encoding of rule Li

→, the context Γ is duplicated
through additive conjunction. The init rule disposes via erase of any remaining
assumption since the object logic enjoys weakening. By construction, the above
code is a decision procedure for LJF→.

Taking inspiration from Tarau’s [50], we consider next an optimization where
we factor the two left rules for implication in one:

... % similar to before

pvb(C) o- hypb(imp(A,B)) x pvbi(A,B) x
(hypb(B) -o pvb(C)).

pvbi(imp(C,D),B) o- hypb(imp(D,B)) -o pvb(imp(C,D)).
pvbi(A,_) o- hypb(A).

Does the optimization preserve provability? Formally, the conjecture is
∀A : form. pv(A) ⊃ pvb(A). We could try to prove it, although, for the rea-
sons alluded to in the introduction, it is not clear in which (formalized) meta-
logic we would carry out such proof. Instead, it is simpler to test, that is to
search for a counter-example. And the answer is no, the (encoding of the)
optimization is faulty, as witnessed by the (pretty printed) counterexample
A => ((A => (A => B)) => B): this intuitionistic tautology fails to be prov-
able in the purported optimization. We leave the fix to the reader.

3 A Primer on Linear Logic Programming

In this section we introduce some basic notions concerning the proof-theoretic
foundations of intuitionistic linear logic programming. We follow quite closely

96 M. Mantovani and A. Momigliano

B � B
id

Δ � � �-R

Δ, Bi � C

Δ, B1 & B2 � C
&-Li (i = 1, 2) Δ � B Δ � C

Δ � B & C
&-R

Δ, B1, B2 � C

Δ, B1 ⊗ B2 � C
⊗-Li

Δ1 � B Δ2 � C

Δ1, Δ2 � B ⊗ C
⊗-R

Δ1 � B Δ2, C � E

Δ1, Δ2, B � C � E
�-L

Δ, B � C

Δ � B � C
�-R

Γ, B � C

Δ, !B � C
!-D

!Δ � B
!Δ � !B !-R

Δ � E
Δ, !B � E

!-W
Δ, !B, !B � C

Δ, !B � C
!-C

Δ, B[t/x] � C

Δ, ∀x.B � C
∀-L Δ � B[y/x]

Δ � ∀x.B
∀-R

provided that y is not free in the lower sequent.

Fig. 2. A sequent calculus for a fragment of linear logic.

the account by Miller and Hodas [22], to which we refer for more details and
motivations. It is possible, although slightly more technically involved, to give a
more general and modern treatment of the proof-theory in terms of focusing [28].

A substructural logic differs from classical and intuitionistic logic by restrict-
ing or even dropping from its proof-theory one of the usual structural rules,
namely weakening, contraction, and exchange. Linear logic [21] is probably the
most well-known: by controlling the use of contraction and weakening we can
view logical deduction no longer as an ever-expanding collection of persistent
“truths”, but as a way of manipulating resources that cannot be arbitrarily
duplicated or thrown away.

A linear logic programming language such as Lolli extends conservatively the
logic behind λProlog, that is (first-order) Hereditary Harrop formulæ (HHF),
which can be seen as the language freely generated by �, ∧, ⇒ and ∀. Therefore
it is natural to refine HHF via the connectives �,&,⊗,�, !,∀. We present the
proof-theory of this language as a two-sided sequent calculus (Fig. 2) based on
the judgment Δ � B2, where B is a formula over the above connectives and Δ is
a multi-set of formulas. We use “,” to denote both multi-set union and adding a
formula to a context; further, with !Δ we mean the multiset {!B | B ∈ Δ}. Con-
traction and weakening are allowed only on unrestricted assumptions (rules !-W
and !-C). Linear logic induces a related distinction between connectives, which
now come in two flavors: additive and multiplicative. The former duplicate the
context, e.g., additive conjunction (&-R), the latter split it, e.g., multiplicative
conjunction (⊗-R).

2 We overload “�” to denote provability for all the sequent systems in this paper,
counting on the structure of antecedent and consequent to disambiguate.

Towards Substructural Property-Based Testing 97

Δ � G1 Δ � G2

Δ � G1 & G2 · � 1
Δ1 � G1 Δ2 � G2

Δ1, Δ2 � G1 ⊗ G2 Δ � �
Δ, α � G

Δ � α � G

· � G

· � !G
Δ, !A, A � G

Δ, !A � G

!Δ, A � A

Δ � G G � A ∈ grnd(P)
Δ � A

Fig. 3. Uniform proofs for second order LHHF

While this calculus is well-understood, it cannot be seen as an abstract logic
programming language in the sense of [37], since it does not enjoy the uniform
proof property: the latter allows one to see a cut-free sequent derivation Γ � G
as the state of an interpreter trying to establish if G follows from Γ . More
technically, a proof is uniform if every occurrence of a sequent with non-atomic
succedent is the conclusion of a right introduction rule.

For the fragment in Fig. 2, the problem boils down to the non-permutability
of the right rules for tensor and of-course over the left rules. Miller & Hodas’ solu-
tion was to limit the occurrences of those troublesome operators. We go a little
bit further, following large part of the literature [4,17,19], and adopt an addi-
tional minor restriction of linear Hereditary Harrop formulæ: we limit ourselves
to implications with atomic, possibly banged, premises. We also drop universal
goals, since our term language is first-order (as opposed to λProlog), making
universal goals essentially useless. On the other hand, we introduce as goals (not
as first class connectives) the tensor and the of-course modality. This allows us
to view, as usual, intuitionistic implication as defined: A ⇒ B is mapped to
!A � B. Having both forms (linear and unrestricted) of hypothetical judgments
is an essential ingredient in the art of linear logic specifications. Programs are
sets of the universal closure of clauses of the form G � A, which are fixed and
implicitly banged, since they can be used as many times as needed. The grammar
of second-order LHHF follows:

Goals G ::= A | � | 1 | α � G | !G | G1 ⊗ G2 | G1 & G2

Clauses D ::= ∀(G � A)
Programs P ::= · | P,D
Assumption α ::= A | !A
Context Δ ::= · | Δ,α
Atoms A ::= . . .

This reformulation of LHHF leads to the calculus in Fig. 3, which is closer to
our intuition of a logic programming interpreter since the left rules have been
replaced by backchaining (last rule) over all the ground instances (grnd) of a
program. Note how the additive unit � allows one to discard any remaining
assumption, while 1 holds only if all resources have been consumed. Similarly,

98 M. Mantovani and A. Momigliano

ΔI \ ΔO � G1 ΔI \ ΔO � G2

ΔI \ ΔO � G1 & G2 ΔI \ ΔI � 1

ΔI \ ΔM � G1 ΔM \ ΔO � G2

ΔI \ ΔO � G1 ⊗ G2

ΔO ⊆ ΔI

ΔI \ ΔO � �
ΔI , α \ ΔO, � � G

ΔI \ ΔO � α � G

ΔI \ ΔI � G

ΔI \ ΔI � !G

ΔI , A \ ΔI , � � A ΔI , !A \ ΔO, !A � A

ΔI \ ΔO � G G � A ∈ grnd(P)
ΔI \ ΔO � A

Fig. 4. The IO system for second order LHHF.

a bang can hold only if it does not depend on any resource. In the axiom rule,
A is the only ephemeral assumption. Unrestricted assumptions can be copied at
will.

By adapting the techniques in [22], we can show that second-order LHHF has
the uniform proof property. However, the latter does not address the question
of how to perform proof search in the presence of linear assumptions, a.k.a. the
resource management problem [6]. The problem is firstly caused by multiplicative
connectives that, under a goal-oriented strategy, require a potentially exponen-
tial partitioning of the given linear context, case in point the tensor right rule.
Another source of non-determinism is the rule for �, since it puts no constraint
on the required context.

A solution to the first issue is based on lazy context splitting and it is known
as the IO system: it was introduced in [22], and further refined in [6]: when we
need to split a context (in our fragment only in the tensor case), we give to one
of the sub-goal the whole input context (ΔI): some of it will be consumed and
the leftovers (ΔO) returned to be used by the other sub-goal.

Figure 4 contains a version of the IO system for our language as described
by the judgment ΔI \ ΔO � G, where \ is just a suggestive notation to separate
input and output context. Following the literature and our implementation, we
will signal that a resource has been consumed in the input context by replacing
it with the placeholder “�”.

The IO system is known to be sound and complete w.r.t. uniform provability:
ΔI \ΔO � G iff ΔI −ΔO � G, where “−” is context difference modulo � (see [22]
for the definition). Given this relationship, the requirement for the linear context
to be empty in the right rules for 1 and ! is realized by the notation ΔI \ ΔI . In
particular, in the linear axiom rule, A is the only available resource, while in the
intuitionistic case, !A is not consumed. The tensor rule showcases lazy context
splitting, while additive conjunction duplicates the linear context.

The handling of � is sub-optimal, since it succeeds with any subset of the
input context. As well known, this could be addressed by using the notion of

Towards Substructural Property-Based Testing 99

slack [6] to remove �-non determinism. However, given the preferred style of our
encodings (see Sect. 5), where additive unit is called only as a last step, this has
so far not proved necessary.

4 The Proof-Theory of PBT

While PBT originated in a functional programming setting [14], at least two
factors make a proof-theoretic reconstruction fruitful:

1. it fits nicely with a (co)inductive reading of rule-based presentations of a
system-under-test;

2. it easily generalizes to richer logics.

If we view a property as a logical formula ∀x[(τ(x) ∧ P (x)) ⊃ Q(x)] where
τ is a typing predicate, providing a counter-example consists of negating the
property, and therefore searching for a proof of ∃x[(τ(x) ∧ P (x)) ∧ ¬Q(x)].

Stated in this way the problem points to a logic programming solution, and
this means uniform proofs or more generally, proof-search in a focused sequent
calculus [28], where the specification is a set of assumptions (typically sets of
clauses) and the negated property is the query.

The connection of PBT with focused proof search is that in such a query
the positive phase is represented by ∃x and (τ(x) ∧ P (x)). This corresponds
to the generation of possible counter-examples under precondition P . That is
followed by the negative phase (which corresponds to counter-example testing)
and is represented by ¬Q(x). This formalizes the intuition that generation may
be arbitrarily hard, while testing is just a deterministic computation.

How do we supply external information to the positive phase? In particular,
how do we steer data generation? This is where the theory of foundational proof
certificates [12] (FPC) comes in. For the type-theoretically inclined, FPC can
be understood as a generalization of proof-terms in the Curry-Howard tradi-
tion. They have been introduced to define and share a range of proof structures
used in various theorem provers (e.g., resolution refutations, Herbrand disjuncts,
tableaux, etc.). A FPC implementation consists of

1. a generic proof-checking kernel,
2. the specification of a certificate format, and
3. a set of predicates (called clerks and experts) that decorate the sequent rules

used in the kernel and help to process the certificate.

In our setting, we can view those predicates as simple logic programs that guide
the search for potential counter-examples using different generation strategies.
The following special case may clarify the idea: consider two variations of the
beloved Prolog vanilla meta-interpreter, where in the left-hand side we bound
the derivation by its height and in the right-hand side we limit the number of
clauses used (size): for the latter, N is input and M output, so the size will be
N − M . For convenience we use numerals.

100 M. Mantovani and A. Momigliano

Ξ1 : ΔI \ ΔO � G1 Ξ2 : ΔI \ ΔO � G2 &e(Ξ, Ξ1, Ξ2)
Ξ : ΔI \ ΔO � G1 & G2

1e(Ξ)
Ξ : ΔI \ ΔI � 1

Ξ1 : ΔI \ ΔM � G1 Ξ2 : ΔM \ ΔO � G2 ⊗e(Ξ, Ξ1, Ξ2)
Ξ : ΔI \ ΔO � G1 ⊗ G2

ΔI ⊇ ΔO �e(Ξ)
Ξ : ΔI \ ΔO � �

Ξ ′ : ΔI , α \ ΔO, � � G �e (Ξ, Ξ ′)
Ξ : ΔI \ ΔO � α � G

Ξ ′ : ΔI \ ΔI � G !e(Ξ, Ξ ′)
Ξ : ΔI \ ΔI � !G

inite(Ξ)
Ξ : ΔI , A \ ΔI , � � A

init! e(Ξ)
Ξ : ΔI , !A \ ΔO, !A � A

Ξ ′ : ΔI \ ΔO � G (G � A) ∈ grnd(P) unfolde(Ξ, Ξ ′, A, G)
Ξ : ΔI \ ΔO � A

Fig. 5. FPC presentation of the IO system for second order Lolli

demo(_,true). demo(N,N,true).
demo(H,(G1,G2)) :- demo(N,M,(G1,G2)) :-
demo(H,G1),demo(H,G2). demo(N,T,G1),demo(T,M,G2).

demo(s(H),A) :- demo(s(N),M,A) :-
clause(A,G),demo(H,G). clause(A,G),demo(N,M,G).

Not only is this code repetitious, but it reflects just two specific derivations
strategies. We can abstract the pattern by replacing the concrete bounds with
a variable to be instantiated with a specific certificate format and add for each
case/rule a predicate that will direct the search according to the given certificate.

demo(Cert,true) :-
trueE(Cert).

demo(Cert,(G1,G2)) :-
andE(Cert,Cert1,Cert2),
demo(Cert1,G1),demo(Cert2,G2).

demo(Cert,A) :-
unfoldE(Cert,Cert1),
clause(A,G),demo(Cert1,G).

Then, it is just a matter to provide the predicates, implicitly fixing the certificate
format:

trueE(height(_)).
trueE(size(N,N)).
andE(height(H),height(H),height(H)).
andE(size(N,M),size(N,T),size(T,M)).
unfoldE(height(s(H)),height(H)).
unfoldE(size(s(N),M),size(N,M)).

With this intuition in place, we can take the final step by augmenting each
inference rule of the system in Fig. 4 with an additional premise involving an

Towards Substructural Property-Based Testing 101

expert predicate, a certificate Ξ, and possibly resulting certificates (Ξ ′, Ξ1, Ξ2),
reading the rules from conclusion to premises. Operationally, the certificate Ξ is
an input in the conclusion of a rule and the continuations are computed by the
expert to be handed over to the premises, if any. We sum up the rules in Fig. 5.

As we have said, the FPC methodology requires to describe a format for the
certificate. Since in this paper we use FPC only to guide proof-search, we fix the
following three formats and we allow their composition, known as pairing :

Certificates Ξ ::= n | 〈n,m〉 | d | (Ξ,Ξ)

Following on the examples above, the first certificate is just a natural number
(height), while the second consists of a pair of naturals (size). In the third case,
d stands for a distribution of weights to clauses in a predicate definition, to be
used for random generation; if none is given, we assume a uniform distribution.
Crucially, we can compose certificates, so that for example we can offer random
generation bounded by the height of the derivation; pairing is a simple, but
surprisingly effective combinator [3].

Each certificate format is accompanied by the implementation of the predi-
cates that process the certificate in question. We exemplify the FPC discipline
with a selection of rules instantiated with the size certificates. If we run the
judgment 〈n,m〉 : ΔI \ ΔO � G, the inputs are n, ΔI and G, while ΔO and m
will be output.

〈n − 1,m〉 : ΔI \ ΔO � G (A ← G) ∈ grnd(P) n > 0
〈n,m〉 : ΔI \ ΔO � A 〈n, n〉 : ΔI \ ΔI � 1

〈i,m〉 : ΔI \ ΔM � G1 〈m, o〉 : ΔM \ ΔO � G2

〈i, o〉 : ΔI \ ΔO � G1 ⊗ G2

〈n,m〉 : ΔI \ ΔO � G1 〈n,m〉 : ΔI \ ΔO � G2

〈n,m〉 : ΔI \ ΔO � G1 & G2

Here (as in all the formats considered in this paper), most experts are rather
simple; they basically hand over the certificate according to the connective. This
is the case of & and 1, where the expert copies the bound and its action is
implicit in the instantiation of the certificates in the premises. In the tensor
rule, the certificate mimics context splitting. The unfold expert, instead, is more
interesting: not only it decreases the bound, provided we have not maxed out on
the latter, but it is also in charge of selecting the next goal: for bounded search
via chronological backtracking, for random data generation via random back-
tracking: every time the derivation reaches an atom, we permute its definition
and pick a matching clause according to the distribution described by the certifi-
cate. Other strategies are possible, as suggested in [18]: for example, permuting
the definition just once at the beginning of generation, or even randomizing the
conjunctions in the body of a clause.

102 M. Mantovani and A. Momigliano

Note that we have elected not to delegate to the experts resource manage-
ment: while possible, it would force us to pair such certificate with any other
one. As detailed in [4], more sophisticated FPC capture other features of PBT,
such as shrinking and bug-provenance, and will not be repeated here.

We are now ready to account for the soundness property from the example in
Sect. 2. By analogy, this applies to certificate-driven PBT with a liner IO kernel
in general. Let Ξ be here the height certificate with bound 4 and form() a
unary predicate describing the syntax of implicational formulæ, which we use
as a generator. Testing the property amounts to the following query in a host
language that implements the kernel:

∃F. (Ξ : · \ · � form(F)) ∧ (Ξ : · \ · � pv(F)) ∧ ¬(Ξ : · \ · � pvb(F))

In our case, the meta-language is simply Prolog, where we encode the kernel with
a predicate prove/4 and to check for un-provability negation-as-failure suffices,
as argued in [4].

C = height (4), prove(C,[],[], form(F)),
prove(C,[],[],pv(F)),\+ prove(C,[],[],pvb(F)).

5 Case Study

IMP is a model of a minimalist Turing-complete imperative programming lan-
guage, featuring instructions for assignment, sequencing, conditional and loop.
It has been extensively used in teaching and in mechanizations (viz. formalized
textbooks such as Software Foundations and Concrete Semantics3). Here we fol-
low Leroy’s account [27], but add a basic type system to distinguish arithmetical
from Boolean expressions.

IMP is a good candidate for a linear logic encoding, since its operational
semantics is, of course, state-based, while its syntax (see below) is simple enough
not to require a sophisticated treatment of binders.

expr ::= var variable
| i integer constant
| b Boolean constant
| expr + expr addition
| expr − expr subtraction
| expr ∗ expr multiplication
| expr ∧ expr conjunction
| expr ∨ expr disjunction
| ¬ expr negation
| expr == expr equality

val ::=

| vi integer value
| vb Boolean value

ty ::=

| tint integers type
| tbool Bool type

3 softwarefoundations.cis.upenn.edu and concrete-semantics.org.

http://softwarefoundations.cis.upenn.edu/
http://concrete-semantics.org/

Towards Substructural Property-Based Testing 103

cmd ::= skip no op
| cmd ; cmd sequence
| if expr then cmd else cmd conditional
| while expr do cmd loop
| var = expr assignment

The relevant judgments describing the dynamic and static semantics of IMP
are:

σ � e ⇓ v big step evaluation of expressions;
(c, σ) ⇓ σ′ big step execution of commands;
(c, σ) � (c′, σ′) small step execution of commands and its Kleene closure;
Γ � e : τ well-typed expressions and v : τ well-typed values;
Γ � c well-typed commands and Γ : σ well-typed states;

5.1 On Linear Encodings

In traditional accounts, a state σ is a (finite) map between variables and values.
Linear logic takes a “distributed” view and represents a state as a multi-set of
linear assumptions. Since this is central to our approach, we make explicit the
(overloaded) encoding function �·� on states. Its action on values is as expected
and therefore omitted:

σ ::= · | σ, x �→ v
�·� = ∅

�σ, x �→ v� = �σ�, var(x , �v�)

When encoding state-based computations such as evaluation and execution
in a Lolli-like language, it is almost forced on us to use a continuation-passing
style (CPS [47]): by sequencing the computation, we get a handle on how to
express “what to compute next”, and this turns out to be the right tool to
encode the operational semantics of state update, the more when the modeled
semantics has side-effects, lest adequacy is lost.

Yet, even under the CPS-umbrella, there are choices: e.g., whether to adopt
an encoding that privileges additive connectives, in particular when using the
state in a non-destructive way. In the additive style, the state is duplicated with
& and then eventually disposed of via � at the leaves of the derivation.

This is well-understood, but it would lead to the reification of the continua-
tion as a data structure and the introduction of an additional layer of instruc-
tions to manage the continuation: for an example, see the static and dynamic
semantics of MiniMLR in [7]4.

Mixing additive and multiplicative connectives asks for a more sophisticated
resource management system; this is a concern, given the efficiency requirements
that testing brings to the table: the idea behind “QuickCheck”, and hence its
name, is that an outcome should be produced quickly.
4 This can be circumvented by switching to a more expressive logic, either by inter-

nalizing the continuation as an ordered context [46] or by changing representation
via forward chaining (destination-passing style) [29].

104 M. Mantovani and A. Momigliano

A solution comes from the notion of logical continuation advocated by Chir-
imar [13], which affords us the luxury to never duplicate the state. Logical
continuations need higher-order logic (or can be simulated in an un-typed set-
ting such as Prolog). Informally, the idea is to transform every atom A of type
(τ1 ∗ · · · ∗ τn) → o into a new one Â of type (τ1 ∗ · · · ∗ τn ∗ o) → o where we accu-
mulate in the additional argument the body of the definition of A as a nested
goal. Facts are transformed so that the continuation becomes the precondition.

For example, consider a fragment of the rules for the evaluation judgment
σ � m ⇓ v and its CPS-encoding:

x �→ v ∈ σ
σ � x ⇓ v

e/v
σ � n ⇓ n

e/n

σ � e1 ⇓ v1 σ � e2 ⇓ v2 plus v1 v2 v
σ � e1 + e2 ⇓ v

e/p

eval(v(X),N,K) o- var(X,N) x (var(X,N) -o K).

eval(i(N),vi(N),K) o- K.

eval(plus(E1,E2),vi(V),K) o-

eval(E1 ,vi(V1),eval(E2,vi(V2),bang(sum(V1 ,V2 ,V,K)))).

In the variable case, the value for X is read (and consumed) in the linear context
and consequently reasserted; then we call the continuation in the restored state.
Evaluating a constant i(N) will have the side-effect of instantiating N in K. The
clause for addition showcases the sequencing of goals inside the logical continu-
ation, where the sum predicate is “banged” as a computation that does not need
the state.

The adequacy statement for CPS-evaluation reads: σ � m ⇓ v iff the sequent
�σ� � eval(�m�, �v�,�) has a uniform proof, where the initial continuation �
cleans up �σ� upon success. As well-know, we need to generalize the statement
to arbitrary continuations for the proof to go through.

It is instructive to look at a direct additive encoding as well:

ev(v(X),V) o- var(X,V) x erase.
ev(i(N),vi(N)) o- erase.
ev(plus(E1 ,E2),vi(V)) o- ev(E1 ,vi(V1)) &

ev(E2 ,vi(V2)) &
bang(sum(V1 ,V2 ,V)).

While this seems appealingly simpler, it breaks down when the state is updated
and not just read; consider the operational semantics of assignment and its CPS-
encoding:

σ � m ⇓ v

(σ, x := m) ⇓ σ ⊕ {x �→ v}

ceval(asn(X,E),K) o-
eval(E,V, (var(X,_) x (var(X,V) -o K))).

Towards Substructural Property-Based Testing 105

The continuation is in charge of both having something to compute after the
assignment returns, but also of sequencing in the right order reading the state via
evaluation, and updating via the embedded implication. An additive encoding
using & would not be adequate, since the connective’s commutativity is at odd
with side-effects.

At the top level, we initialize the execution of programs (seen as a sequence of
commands) by using as initial continuation a predicate collect that consumes
the final state and returns it in a reified format.

main(P,Vars ,S) o- ceval(P,collect(Vars ,S)).

We are now in the position of addressing the meta-theory of our system-
under-study via testing. We list the more important properties among those
that we have considered. All statements are universally quantified:

srv subject reduction for evaluation: Γ � m : τ −→ σ � m ⇓ v −→ Γ : σ −→
v : τ ;

dtx determinism of execution: (σ, c) ⇓ σ1 −→ (σ, c) ⇓ σ2 −→ σ1 ≈ σ2;
srx subject reduction for execution: Γ � c −→ Γ : σ −→ (σ, c) ⇓ σ′ −→ Γ : σ′;
pr progress for small step execution: Γ � c −→ Γ : σ −→ c = skip ∨

∃c′ σ′, (c, σ) � (c′, σ′);
eq equivalence of small and big step execution (assuming determinism of both):

(σ, c) ⇓ σ1 −→ (c, σ1) �∗ (skip, σ2) −→ σ1 ≈ σ2.

We have also encoded the compilation of IMP to a stack machine and (muta-
tion) tested forward and backward simulation of compilation w.r.t. source and
target execution [27]. We have added a simple type discipline for the assembly
language in the spirit of Typed Assembly Languages [39] and tested preserva-
tion and progress, to exclude underflows in the execution of a well-typed stack
machine. Details can be found in the accompanying repository5.

5.2 Experimental Evaluation

A word of caution before discussing our experiments: first, we have spent almost
no effort in crafting nor tuning custom generators; in fact, they are simply FPC-
driven regular unary logic programs [52] with a very minor massage. Compare
this with the amount of ingenuity poured in writing generators in [23] or with
the model-checking techniques of [48]. Secondly, our interpreter is a Prolog meta-
interpreter and while we have tried to exploit Prolog’s indexing, there are obvious
ways to improve its efficiency, from partial evaluation to better data structures
for contexts.

Of the many experiments that we have run and are available in the dedicated
repository, we list here only a few, with no pretense of completeness. In those,
we have adopted a certain exhaustive generation strategy (size), then paired it

5 https://github.com/Tovy97/Towards-Substructural-Property-Based-Testing/tree/
master/Lolli/Assembly.

https://github.com/Tovy97/Towards-Substructural-Property-Based-Testing/tree/master/Lolli/Assembly
https://github.com/Tovy97/Towards-Substructural-Property-Based-Testing/tree/master/Lolli/Assembly

106 M. Mantovani and A. Momigliano

4 5 6 7
0

20

40

Certificate size (n)

ti
m
e
(s
ec
)

Vanilla
Linear

Size Generated data coverage
4 384 68%
5 1160 85%
6 15344 68%
7 63064 72%

Fig. 6. Testing property eq with certificate 〈n, 〉

dtx srx srv pr eq cex
M1 pass pass pass pass pass
M2 found pass pass pass found w := 0 - 1

M3 pass pass pass pass pass
M4 pass found found pass pass x := tt /\ tt

M5 pass pass pass pass pass
M6 found pass pass pass found if x = x then {w := 0} else {w := 1}

M7 pass pass pass pass pass
M8 pass pass pass pass pass
M9 pass pass pass pass pass

Fig. 7. Mutation testing

with height. We have used consistently certain bounds that experimentally have
shown to be effective in generating enough interesting data.

To establish a fair baseline, we have also implemented a state-passing version
of our benchmarks driven by a FPC-lead vanilla meta-interpreter.

We have run the experiments on a laptop with an Intel i7–7500U CPU and
16 GB of RAM running WSL (Ubuntu 20.04) over Windows 10, using SWI-
Prolog 8.2.4. All times are in seconds, as reported by SWI’s time/1. They are
the average of five measurements.

First we compare the time to test a sample property (“eq”, the equivalence of
big and small step execution) over a bug-free model both with linear and vanilla
PBT. On the left of Fig. 6 we plot the time proportionally to the certificate size.
On the right we list the number of generated programs and the percentage of
those that converge within a bound given by a polynomial function over the
certificate size (column “coverage”). The linear interpreter performs worse than
the state-passing one, but not dramatically so. This is to be expected, since the
vanilla meta-interpreter does not do any context management: in fact, it does
not use logical contexts at all.

Next, to gauge the effectiveness in catching bugs, we use, as customary, muta-
tion analysis [25], whereby single intentional mistakes are inserted into the sys-
tem under study. A testing suite is deemed as good as its capability of detecting

Towards Substructural Property-Based Testing 107

those bugs (killing a mutant). Most of the literature about mutation analysis
revolves around automatic mutant analysis for imperative code, certainly not
linear logical specifications of object logics. Therefore, we resort to the manual
design of a small number of mutants, with all the limitations entailed. Note,
however, that this is the approach taken by the testing suite6 of a leading tool
such as PLT-Redex [16].

We list in Table 1 a selection of the mutations that we have implemented,
together with a categorization, borrowed from the classification of mutations for
Prolog-like languages in [38]. We also report the judgment where the mutation
occurs.

Clause mutations: deletion of a predicate in the body of a clause, deleting the
whole clause if a fact.

Operator mutations: arithmetic and relational operator mutation.
Variable mutations: replacing a variable with an (anonymous) variable and

vice versa.
Constant mutations: replacing a constant by a constant (of the same type),

or by an (anonymous) variable and vice versa.

Table 1. List of mutations

M1 (eval, C) mutation in the definition of addition

M2 (eval, Cl) added another clause to the definition of subtraction

M3 (eval, O) substitution of − for ∗ in arithmetic definitions

M4 (eval, O) similar to M1 but for conjunction

M5 (exec, V) bug on assignment

M6 (exec, Cl) switch branches in if-then-else

M7 (exec, Cl) deletion of one of the while rule

M8 (type, C) wrong output type in rule for addition

M9 (type, C) wrong input type in rule for disjunction

Figure 7 summarizes the outcome of mutation testing, where “found” indi-
cates that a counter-example (cex) has been found and “pass” that the bound
has been exhausted. In the first case, we report counter-examples in the last col-
umn, after pretty-printing. Since this is accomplished in milliseconds, we omit
the precise timing information. Note that counter-examples found by exhaustive
search are minimal by construction.

The results seem at first disappointing (3 mutants out of 9 being detected),
until we realize that it is not so much a question of our tool failing to kill mutants,
but of the above properties being too coarse. Consider for example mutation M3:
being a type-preserving operation swap in the evaluation of expressions, this will

6 https://docs.racket-lang.org/redex/benchmark.html.

https://docs.racket-lang.org/redex/benchmark.html

108 M. Mantovani and A. Momigliano

certainly not lead to a failure of subject reduction, nor invalidate determinism
of evaluation. On the other hand all mutants are easily killed with model-based
testing, that is taking as properties soundness (L → C) and completeness (C →
L) of the top-level judgments (exec/type) where mutations occur w.r.t. their bug-
free versions executed under the vanilla interpreter. This is reported in Fig. 8.

exec: C → L exec: L → C cex
No Mut pass in 2.40 pass in 6.56

M1 found in 0.06 pass in 6.45 w := 0 + 0

M2 pass in 2.40 found in 0.04 w := 0 - 1

M3 found in 0.06 found in 0.06 w := 0 * 1

M4 found in 0.06 found in 0.04 y := tt /\ tt

M5 found in 0.00 pass in 5.15 w := 0; w := 1

M6 pass in 2.34 found in 0.17 if y = y then {w := 0} else {w := 1}

M7 found in 0.65 pass in 0.82 while y = y /\ y = w do {y := tt}

type: C → L type: L → C cex
No Mut pass in 0.89 pass in 0.87

M8 found in 0.03 pass in 0.84 w := 0 + 0

M9 found in 0.04 pass in 0.71 y := tt \/ tt

Fig. 8. Model-based testing of IMP mutations

6 Related Work and Conclusions

The success of QuickCheck has lead many proof assistants to adopt some form
of PBT or more in general of counterexamples search. The system where proofs
and disproofs are best integrated is arguably Isabelle/HOL, which offers a com-
bination of random, exhaustive and symbolic testing [5] together with a model
finder [2]. A decade later QuickChick [42] has been added to Coq as a port-
ing of PBT compatible with the severe constraints of constructive type theory.
However, these PBT tools tend to be limited to executable total specifications,
while many judgments are partial and/or non-terminating. An exception is the
approach in [31], which brings relational PBT to Coq.

As far as the meta-theory of programming languages is concerned, PLT-
Redex [16] is an executable DSL for mechanizing semantic models built on top of
the programming environment DrRacket. Its usefulness has been demonstrated
in several impressive case studies [26]. αCheck [10,11] is a close ancestor of the
present work, since it is based on a proof-theoretic view of PBT, although it wires
in a fixed generation strategy. Moreover, the system goes beyond the confine of
classical or intuitionistic logic and embraces nominal logic as a way to give a
logical account of encoding models where binding signatures matter [9].

While substructural logics are a recurring thread in current PL theory (see
for example session types and separation logic) and while linear logic program-
ming languages have been extensively used to represent such models [20,44,49],

Towards Substructural Property-Based Testing 109

formal verification via linear logic frameworks, as we have mentioned, is still
in its infancy. Schürmann et al. [33] have designed L+

ω , a linear meta-logics
conservatively extending the meta-theory of Twelf and Pientka et al. [20] have
introduced LINCX, a linear version of contextual modal type theory to be used
within Beluga.

However most case studies, as elegant as they are, are still on paper, viz.
type soundness of MiniML with references and cut-elimination for (object) linear
logic (LLF [7,33]). Martin’s dissertation [32] offers a thorough investigation of
the verification of the meta-theory of MiniML with references in Isabelle/HOL’s
Hybrid library, in several styles, including linear and ordered specifications. A
more extensive use of Hybrid, this time on top of Coq, is the recent verification of
type soundness of the proto-Quipper quantum functional programming language
in a Lolli-like specification logic [30].

In this paper we have argued for the extension of property-based testing to
substructural logics to overcome the current lack of reasoning tools in the field.
We have taken the first step by implementing a PBT system for specifications
written in linear Hereditary Harrop formulæ, the language underlying Lolli. We
have adapted the FPC architecture to model various generation strategies. We
have validated our approach by encoding the meta-theory of IMP and its com-
pilation with a dimple mutation analysis. With all the caution that our setup
entails, the experiments show that linear PBT is effective w.r.t. mutations and
while it under-performs vanilla PBT over bug-free models, there are immediate
avenues for improvement.

There is so much future work that it is almost overwhelming: first item,
from the system point of view, is abandoning the meta-interpretation approach,
and then a possible integration with Abella. Theoretically, our plan is to extend
our framework to richer linear logic languages, featuring ordered logic up to
concurrency, as well as supporting different operational semantics, to begin with
bottom-up evaluation.

Source code can be found at https://github.com/Tovy97/Towards-Substruct
ural-Property-Based-Testing.

Acknowledgments. We are grateful to Dale Miller for many discussions and in par-
ticular for suggesting the use of logical continuations. Thanks also to Jeff Polakow for
his comments on a draft version of this paper.

References

1. Baelde, D., et al.: Abella: a system for reasoning about relational specifications. J.
Formaliz. Reason. 7(2), 1–89 (2014)

2. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in
Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS
(LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24364-6 2

3. Blanco, R., Chihani, Z., Miller, D.: Translating between implicit and explicit ver-
sions of proof. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp.
255–273. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 16

https://github.com/Tovy97/Towards-Substructural-Property-Based-Testing
https://github.com/Tovy97/Towards-Substructural-Property-Based-Testing
https://doi.org/10.1007/978-3-642-24364-6_2
https://doi.org/10.1007/978-3-642-24364-6_2
https://doi.org/10.1007/978-3-319-63046-5_16

110 M. Mantovani and A. Momigliano

4. Blanco, R., Miller, D., Momigliano, A.: Property-based testing via proof recon-
struction. In: PPDP, pp. 5:1–5:13. ACM (2019)

5. Bulwahn, L.: The new Quickcheck for Isabelle. In: Hawblitzel, C., Miller, D. (eds.)
CPP 2012. LNCS, vol. 7679, pp. 92–108. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35308-6 10

6. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear
logic proof search. Theor. Comput. Sci. 232(1–2), 133–163 (2000)

7. Cervesato, I., Pfenning, F.: A linear logical framework. In: LICS, pp. 264–275.
IEEE Computer Society (1996)

8. Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical frame-
work ii: examples and applications. Technical report, CMU (2002)

9. Cheney, J.: Toward a general theory of names: binding and scope. In: MERLIN,
pp. 33–40. ACM (2005)

10. Cheney, J., Momigliano, A.: αCheck: a mechanized metatheory model checker.
Theory Pract. Logic Program. 17(3), 311–352 (2017)

11. Cheney, J., Momigliano, A., Pessina, M.: Advances in property-based testing for
αProlog. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP 2016. LNCS, vol. 9762,
pp. 37–56. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41135-4 3

12. Chihani, Z., Miller, D., Renaud, F.: A semantic framework for proof evidence. J.
Autom. Reason. 59(3), 287–330 (2017)

13. Chirimar, J.: Proof theoretic approach to specification languages. Ph.D. thesis.
University of Pennsylvania (1995)

14. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the 2000 ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2000), pp. 268–279. ACM (2000)

15. Dubois, C.: Proving ML type soundness within Coq. In: Aagaard, M., Harrison, J.
(eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 126–144. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44659-1 9

16. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
The MIT Press, Cambridge (2009)

17. Felty, A.P., Momigliano, A.: Hybrid - a definitional two-level approach to reasoning
with higher-order abstract syntax. J. Autom. Reason. 48(1), 43–105 (2012)

18. Fetscher, B., Claessen, K., Pa�lka, M., Hughes, J., Findler, R.B.: Making random
judgments: automatically generating well-typed terms from the definition of a type-
system. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 383–405. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46669-8 16

19. Gacek, A., Miller, D., Nadathur, G.: A two-level logic approach to reasoning about
computations. J. Autom. Reason. 49(2), 241–273 (2012)

20. Georges, A.L., Murawska, A., Otis, S., Pientka, B.: LINCX: a linear logical frame-
work with first-class contexts. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp.
530–555. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-
1 20

21. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)
22. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic.

Inf. Comput. 110(2), 327–365 (1994)
23. Hritcu, C., et al.: Testing noninterference, quickly. In: Proceedings of the 18th ACM

SIGPLAN International Conference on Functional Programming, ICFP 2013, pp.
455–468. ACM, New York, NY, USA (2013)

24. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006). https://doi.org/10.1007/
978-3-540-69611-7 1

https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/978-3-319-41135-4_3
https://doi.org/10.1007/3-540-44659-1_9
https://doi.org/10.1007/978-3-662-46669-8_16
https://doi.org/10.1007/978-3-662-54434-1_20
https://doi.org/10.1007/978-3-662-54434-1_20
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-540-69611-7_1

Towards Substructural Property-Based Testing 111

25. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

26. Klein, C., et al.: Run your research: on the effectiveness of lightweight mechaniza-
tion. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pp. 285–296. ACM, New York,
NY, USA (2012)

27. Leroy, X.: Mechanized semantics - with applications to program proof and compiler
verification. In: Logics and Languages for Reliability and Security, volume 25 of
NATO Science for Peace and Security Series - D: Information and Communication
Security, pp. 195–224. IOS Press (2010)

28. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and clas-
sical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009)

29. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic
programming. In: PPDP, pp. 35–46. ACM (2005)

30. Mahmoud, M.Y., Felty, A.P.: Formalization of metatheory of the quipper quantum
programming language in a linear logic. J. Autom. Reason. 63(4), 967–1002 (2019)

31. Manighetti, M., Miller, D., Momigliano, A.: Two applications of logic programming
to Coq. In: TYPES, volume 188 of LIPIcs, pp. 10:1–10:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2020)

32. Martin, A.: Reasoning using higher-order abstract syntax in a higher-order logic
proof environment: improvements to hybrid and a case study. Ph.D. thesis. Uni-
versity of Ottawa (2010). https://ruor.uottawa.ca/handle/10393/19711

33. McCreight, A., Schürmann, C.: A meta linear logical framework. Electron. Notes
Theor. Comput. Sci. 199, 129–147 (2008)

34. McDowell, R., Miller, D.: Reasoning with higher-order abstract syntax in a logical
framework. ACM Trans. Comput. Log. 3(1), 80–136 (2002)

35. Michaylov, S., Pfenning, F.: Natural semantics and some of its meta-theory
in Elf. In: Eriksson, L.-H., Hallnäs, L., Schroeder-Heister, P. (eds.) ELP 1991.
LNCS, vol. 596, pp. 299–344. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0013612

36. Miller, D.: Forum: a multiple-conclusion specification logic. Theor. Comput. Sci.
165(1), 201–232 (1996)

37. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Ann. Pure Appl. Log. 51, 125–157 (1991)

38. Momigliano, A., Ornaghi, M.: The blame game for property-based testing. In:
CILC, volume 2396 of CEUR Workshop Proceedings, pp. 4–13. CEUR-WS.org
(2019)

39. Morrisett, J.G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly
language. ACM Trans. Program. Lang. Syst. 21(3), 527–568 (1999)

40. Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponen-
tials. In: PPDP, pp. 129–140. ACM (2009)

41. Paoli, F.: Substructural Logics: A Primer. Kluwer, Alphen aan den Rijn (2002)
42. Paraskevopoulou, Z., Hriţcu, C., Dénès, M., Lampropoulos, L., Pierce, B.C.: Foun-

dational property-based testing. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS,
vol. 9236, pp. 325–343. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22102-1 22

43. Pfenning, F.: Logical frameworks. In: Robinson, A., Voronkov, A. (eds.), Handbook
of Automated Reasoning. Elsevier Science Publishers (1999)

44. Pfenning, F., Simmons, R.J.: Substructural operational semantics as ordered logic
programming. In: LICS, pp. 101–110. IEEE Computer Society (2009)

https://ruor.uottawa.ca/handle/10393/19711
https://doi.org/10.1007/BFb0013612
https://doi.org/10.1007/BFb0013612
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1007/978-3-319-22102-1_22

112 M. Mantovani and A. Momigliano

45. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning
with deductive systems (system description). In: Giesl, J., Hähnle, R. (eds.) IJCAR
2010. LNCS (LNAI), vol. 6173, pp. 15–21. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14203-1 2

46. Polakow, J.: Linear logic programming with an ordered context. In: PPDP, pp.
68–79. ACM (2000)

47. Reynolds, J.C.: The discoveries of continuations. LISP Symb. Comput. 6(3–4),
233–248 (1993)

48. Roberson, M., Harries, M., Darga, P.T., Boyapati, C.: Efficient software model
checking of soundness of type systems. In: Harris, G.E. (ed.), OOPSLA, pp. 493–
504. ACM (2008)

49. Schack-Nielsen, A., Schürmann, C.: Celf – a logical framework for deductive
and concurrent systems (system description). In: Armando, A., Baumgartner, P.,
Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 320–326. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 28

50. Tarau, P.: A combinatorial testing framework for intuitionistic propositional
theorem provers. In: Alferes, J.J., Johansson, M. (eds.) PADL 2019. LNCS, vol.
11372, pp. 115–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05998-9 8

51. Wadler, P.: Linear types can change the world! In: Programming Concepts and
Methods, p. 561. North-Holland (1990)

52. Yardeni, E., Shapiro, E.: A type system for logic programs. J. Log. Program. 10(2),
125–153 (1991)

https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-540-71070-7_28
https://doi.org/10.1007/978-3-030-05998-9_8
https://doi.org/10.1007/978-3-030-05998-9_8

	Towards Substructural Property-Based Testing
	1 Introduction
	2 A Motivating Example
	3 A Primer on Linear Logic Programming
	4 The Proof-Theory of PBT
	5 Case Study
	5.1 On Linear Encodings
	5.2 Experimental Evaluation

	6 Related Work and Conclusions
	References

