
● We integrate remote sensing into ex-post assessment of CAP effects  

● We evaluate the effects of CAP greening on soil quality parameters 

● Integration of administrative data with remote sensing offers full land coverage 

● Membership in greening groups has moderate effects on soil quality 

● The approach is reproducible in time and space  
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Abstract 10 

 11 

With the reform of the European Common Agricultural Policy (CAP) in 2015, subsidies to farms (the 12 

so-called green payment or “greening”) are now bound to the fulfilment of environmentally friendly 13 

measures, such as crop diversification and allocation of a share of their farmland to Ecological Focus 14 

Areas. Research on the effects of these policy changes so far have focused mainly on land use 15 

transition; however, a detailed investigation of how CAP greening affects the properties of 16 

agricultural land is required to assess the actual environmental benefits of the reform. In this study, 17 

we present a first attempt to assess the impacts of CAP greening on soil quality dynamics in 18 

Lombardy, a populated region in northern Italy where high-intensity agriculture is widespread. We 19 

combine high resolution (10/30 m) soil indices from remote sensing based on Landsat-8 and Sentinel-20 

2 data with a regional administrative database covering all agricultural parcels of the region. We then 21 

perform a correlation analysis to investigate whether and to what extent greening prescriptions affect 22 

the soil quality from 2014, representing pre-greening conditions, to 2017, representing post-greening 23 

conditions. Our analysis indicates a high persistence of soil quality indicators and suggests that some 24 

crops might have a significant impact on soil quality dynamics, as well as the membership in different 25 

groups with respect to CAP greening. Although we identified some uncertainties in the soil indices, 26 

by integrating a large volume of data and an efficient processing algorithm our method paves the way 27 

for the ex-post environmental performance assessment of agricultural policies. 28 

 29 
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Soil health is the foundation of agriculture; it governs food production by supplying the essential 31 

nutrients, water, oxygen and root support for food-producing plants (FAO, 2015). Healthy soils also 32 

provide a number of additional ecosystem services, including water regulation and the uptake of 33 

carbon from the atmosphere (Adhikari and Hartemink, 2016). Soil health is determined by the 34 

complex interaction of physical, biological and chemical properties such as organic matter, water 35 

content and nutrient availability (Paz-Kegan et al., 2014; Bonfante et al., 2019). Understanding how 36 

these properties vary over time and the drivers of variability permits improving agricultural and 37 

environmental practices and a more efficient use of resources (Castaldi et al., 2016).  38 

Soil health and quality are affected by agricultural activity through farmland practices and land use 39 

choices. Farmer’s decisions on crop allocation and land management may be influenced by various 40 

factors such as selling prices of agricultural products and cost of inputs (Glenk et al., 2017), 41 

pedoclimatic conditions (Leteinturier et al., 2006) along with individual and risk preferences of the 42 

farmer itself (Latawiec et al, 2017; Paut et al, 2020). Many of the agricultural drivers that impact, 43 

directly or indirectly, on soil management and quality depend, in turn, on external factors, such as 44 

agricultural policies (Kremmydas et al., 2018). In Europe, in particular, the Common Agricultural 45 

Policy (CAP) has affected and shaped land use choices and land management practices (Topp and 46 

Mitchell, 2003; Posthumus and Morris, 2010, Viaggi et al., 2013), depending on the historical phase 47 

in which such policy has been implemented. In general, the CAP has shifted over time from 48 

productivity-incentive measures toward a more environmentally-friendly regulatory framework. In a 49 

first stage, which lasted about 30 years, the CAP was mainly based on interventions aimed at 50 

supporting selling prices of agricultural products, in order to stimulate farm productivity and ensure 51 

food self-sufficiency of European Countries. Subsequently, the CAP was reshaped in two pillars: the 52 

first one where price support has been progressively reduced in favour of per-hectare payments and 53 

the second one, providing incentives for environmentally-friendly measures (low-input and organic 54 

farming, afforestation). The establishment of first pillar payments inaugurated a process (commonly 55 

known as “decoupling”) aimed at diminishing the influence of CAP support on farmland use choices 56 

(Garzon, 2006; Folmer et al., 2013). Over time, decoupled per-hectare payments (first pillar), have 57 

been tied to the fulfilment of practices respectful of the land and the environment, by farms. At a first 58 

stage, according to the so-called cross-compliance, farms were obliged to keep their land in Good 59 

Agronomic and Environmental Conditions (GAEC) in order to receive CAP payments (Bennett et 60 

al., 2006; JRC, 2019a; JRC, 2019b). With the current CAP reform (2015-2020) the requirements to 61 

obtain farm payments have increased, with the introduction of the so-called greening payments 62 

(European Commission, 2020). Greening payments represent the main part of decoupled payments 63 
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for farms, provided with the purpose to encourage farmers to make a sustainable use of their land. In 64 

order to receive greening payments, farmers are required to respect cross compliance (GAEC), to 65 

adopt crop diversification and to devote a portion of their farmland to Ecological Focus Area (for 66 

further details, see paragraph 1.2). The ongoing debate on a further future CAP reform (2021-2027) 67 

includes two main enhancements in terms of soil and environmental management practices. The first 68 

one is the shift from crop diversification (that is a static concept) to crop rotation, as a requirement to 69 

receive farm payments. The second and more general innovation implies a shift from compliance-70 

based to performance monitoring of the policy architecture (Rossi, 2018). While so far farm payments 71 

have been linked to the compliance to certain practices (GAEC, greening) the reform process binds 72 

them to the attainment of certain evidence-based targets. In line with the green evolution of the CAP, 73 

it is plausible to expect that such targets will encompass, among others, the effect of sustainable land 74 

management practices (such as crop diversification/rotation) on soil quality. 75 

As the CAP has evolved toward more environmentally-friendly targets, there has been a growing 76 

interest in measuring and monitoring its effects on land use, coverage and soil properties (Tóth et al, 77 

2013; Orgiazzi et al., 2018; JRC, 2020) and on soil conservation (Borrelli et al, 2016; Borrelli and 78 

Panagos, 2020). Referring to soil quality and management, the change of CAP monitoring, from 79 

compliance to performance, calls for a stronger integration of available data sources. 80 

While soil properties can be monitored through field sampling and laboratory analysis (see e.g. Paz-81 

Kegan et al., 2014; Orgiazzi et al., 2018), this is a laborious, costly and time-consuming process 82 

(Mulder et al., 2011). A more efficient alternative is to combine field sampling with remote sensing 83 

to produce spatial maps of soil properties, exploiting the wide area coverage of optical and radar 84 

sensors and their ability to monitor the topsoil (Shoshany et al., 2013). Commonly used optical 85 

sensors include MODIS (Bouaziz et al., 2011; Poggio et al., 2013; Chen et al., 2014; Pellegrini et al., 86 

2018), Landsat ETM+/OLI (Dehni and Lounis, 2012; Forkour et al., 2017) and more recently, 87 

Sentinel-2 MSI (Castaldi et al., 2018). The spectral bands of these sensors are often combined to 88 

produce spectral indices, taking advantage of their simplicity and low sensitivity to atmospheric 89 

conditions. Several spectral indices have been developed to monitor soil properties, including the 90 

normalized multiband drought index (NMDI, Wang and Qu, 2007), which is related to the soil 91 

moisture content, the salinity and brightness indices (SI and BI, Dehni and Lounis, 2012), which are 92 

related to the soil salinity, and the Normalized Difference Vegetation Index (NDVI). The NDVI, 93 

although originally developed and most often used to monitor the health or phenology of vegetation 94 

(Primi et al., 2016), has been linked to the organic matter content in soils (Guo et al., 2017; 95 

Gholizadeh et al., 2018).  96 
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In most studies, spatial maps of soil properties are derived by simultaneously collecting soil samples 97 

and acquiring remote sensing data. The soil properties of interest are then measured in the laboratory 98 

and a prediction model is built to relate field and remote sensing data, using multivariate regression 99 

(Douaoui et al., 2006; Gholizadeh et al., 2018) or machine learning techniques (Bachofer et al., 2015; 100 

Castaldi et al., 2019). While this approach can greatly extend the scope of traditional soil surveys, it 101 

still relies on accurate field data collection. To overcome this issue, Castaldi et al. (2018) based their 102 

prediction model on the LUCAS topsoil database (JRC, 2020), a European-wide effort to produce 103 

standardized measurements of soil properties of samples collected across the European Union (EU). 104 

Nevertheless, studies such as this produce a static map of soil properties. 105 

In the context of agricultural studies, a more dynamic use of remote sensing datasets is to integrate 106 

already existing administrative agricultural data, by increasing their spatial or temporal detail. In fact, 107 

remote sensing, such as other digital technologies, could improve different key agricultural policy 108 

dimensions, including policy evaluation (Ehlers et al., 2021). Waldhoff et al. (2017) employed 109 

medium to high resolution satellites (ASTER, Landsat, Sentinel and SPOT) to produce crop 110 

sequences for the North-Rhine Westfalia region in Germany over a period of 8 years; Stumpf et al. 111 

(2018) determined land use dynamics from a combination of Landsat satellite images, meteorological 112 

and topographic variables. The transition between grassland and cropland was then employed to gain 113 

insights into the evolution of organic carbon in Swiss soils. In summary, although remote sensing 114 

often forms an integral part of studies on soil properties in agricultural areas, the evolution of soil 115 

properties themselves is seldom investigated using this technique (Sheffield and Morse-McNabb, 116 

2015; Dube et al., 2017). Further still, the complexity of the integration between remote sensing and 117 

agricultural census data increases with increasing spatial resolution (Zhang, 2010). 118 

Another strand of literature has investigated the economic and environmental impacts of CAP 119 

instruments. Detailed scale assessments of CAP environmental effects are usually based on field 120 

experiments (Kleijn and Sutherland, 2003; Walker et al., 2007; Ansell et al., 2016), or on ad-hoc 121 

surveys carried out on a limited amount of farms (Zahm et al., 2008; Paracchini et al., 2015). This 122 

kind of evaluation suffers from the difficulty of extending the results to wider territorial areas. Some 123 

exceptions are represented by ex-post assessments, on the effects of participation in the agri-124 

environmental measures of the CAP (Pufahl and Weiss, 2009; Chabé-Ferret and Subervie, 2013; 125 

Bertoni et al., 2020), on the effect of greening (Bertoni et al., 2021) and of CAP direct payments 126 

(Arata and Sckokai, 2016; Coderoni and Esposti, 2018). Such ex-post analysis relies on datasets 127 

provided by public administrations (Pufahl and Weiss, 2009, Chabé-Ferret and Subervie, 2013, 128 
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Bertoni et al, 2020; Bertoni et al, 2021). Particularly, the Farm Accountancy Data Network (FADN)1 129 

is usually exploited in the assessments of CAP effects, (Mary, 2013; Arata and Sckokai, 2016; 130 

Coderoni and Esposti, 2018). Howewer, being conceived to evaluate the economic performance of 131 

farms, it reports a limited amount of information on environmental performance, usually limited to 132 

the inputs (pesticides and fertilizers) and water consumption (Kelly et al., 2018). 133 

The main bottleneck of such assessment studies is the lack of data having, at the same time, a 134 

reasonable detail (at least farm level) and full territorial coverage (Primdahl et al., 2010). Indeed, the 135 

availability of indicators measured at a detailed spatial scale represents one of the main challenges in 136 

assessing the sustainability of the agricultural sector (Burkhard et al., 2009). A further challenge is 137 

represented by the extensibility of the results to a larger scale (Kelly et al., 2018). This condition is 138 

guaranteed when, as in our case, available data cover the universe of observations on a given territory. 139 

For the above-mentioned reasons, ex-post CAP impact assessments could be usefully complemented 140 

by using geo-referenced data with wide spatial coverage, deriving from remote sensing. 141 

In line with the performance-measurement of policy measures, this paper describes a first attempt to 142 

assess whether and to what extent the crop-mix change induced by the greening measures (Bertoni et 143 

al., 2018; Micheletti et al., 2020; Bertoni et al., 2021) may be associated with a change in soil quality 144 

indices. 145 

In particular we aim at testing how different factors, including farmland use type, eligibility and 146 

compliance with respect to greening policies, contribute to explaining the dynamic variability in soil 147 

properties derived from remote sensing indices. In the first stage, we develop a methodology to 148 

combine high resolution remote sensing and administrative agricultural datasets in an efficient 149 

manner, to provide dynamics maps of soil properties in a wide agricultural region of the EU without 150 

the need for field surveys; secondly, we undertake a preliminary assessment of the evolution of soil 151 

properties before and after the implementation of greening policies, and finally we perform a 152 

correlation analysis to evaluate the possible influences on the observed changes in soil properties in 153 

the context of CAP greening. 154 

 155 

1.1. Study area 156 

                                                           
1 The FADN is a sample dataset of about 80,000 farms, representing about 5 million EU farms that concentrate 90% of 

EU agricultural production (Kelly et al., 2018) 
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The area examined in this study is a large portion (covering about 2,150 km2) of the flatland of 157 

Lombardy region, in Northern Italy. Lombardy is the most populated Italian region with more than 158 

10 million inhabitants, corresponding to 16.4% of the Italian population, concentrated in only 7.9% 159 

of the national territory. Over 53% of the area, mainly in the north, is mountainous or hilly, while the 160 

southern part of the region is a plain, where more than 72% of the land is managed by the agricultural 161 

sector. Here, arable crops – in particular maize and forage crops - represent the main farmland 162 

utilization type (89%), while permanent grassland is limited to only 6% of the farmland. Water flood 163 

irrigation is widespread. Agriculture in Lombardy is characterized by high-intensity farming systems 164 

(Fumagalli et al. 2011). The average value of production per hectare of farmland is 3.9 times that of 165 

the EU-28, while the average economic dimension of the farms is 5.7 times. Livestock products, 166 

especially milk and pigs, provide two thirds of the agricultural value, with the livestock density 167 

(measured as the number of Livestock Standard Units – LSU – per hectare), being 3.7 times that of 168 

the EU-28 (Eurostat Farm Structure Survey, 2013). Given the high livestock density, both nitrate 169 

leaching in water, and its dispersion in air, are considered serious problems (Perego et al., 2012; 170 

Acutis et al., 2014; Paracchini et al., 2015). 171 

 172 

2.  The greening policy 173 

The greening policy represented one of the main novelties of the 2015-2020 CAP programming 174 

period. Greening ensures that the allocation of CAP direct payments to the farmers is bound by their 175 

fulfilment of some ‘agricultural practices beneficial for the climate and environment’. 176 

The practices are as follows: 177 

a)  diversification of arable crops; 178 

b)  maintaining existing permanent grassland; 179 

c) having an ecological focus area on the agricultural area. 180 

In Italy, only the first and the third practice were applied at farm level, while the second was 181 

implemented at national level, not representing in such a way a real bond for farms. For this reason, 182 

we considered in our analysis only ‘diversification of arable crops’ and ‘ecological focus area’ 183 

practices. 184 

‘Diversification of arable crops’ mandates that farms having more than 10 (30) hectares of arable land 185 

should cultivate at least 2 (3) arable crops, allocating a minimum share of cropland to the less 186 

represented crop(s). The third rule establishes that in farms with above 15 hectares of arable land, at 187 
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least 5% of such surface should be devoted to Ecological Focus Areas (for instance nitrogen-fixing 188 

crops, fallow land, landscape features, buffer strips, etc.). Organic farms and farms with a large share 189 

of forage crops and/or leguminous crops and/or fallow land and/or flooded crops (rice) were 190 

exempted from the compliance with greening rules, regardless of their dimension. For further details, 191 

see Regulation (EU) n. 1307/2013, articles 43-47. 192 

It is quite evident that these practices potentially affect farmland uses, particularly in a region like 193 

Lombardy, traditionally characterized by the presence of large farms and a widespread maize 194 

monoculture. Given such features, some studies have attempted to estimate how greening 195 

introduction impacted on farmland allocation choices in Lombardy. Most of these analyses were ex-196 

ante simulations, based on small-scale sample data (e.g. Cortignani et al., 2017). Conversely, Bertoni 197 

et al. (2018), Micheletti et al. (2020) and Bertoni et al. (2021) performed a detailed ex-post analysis 198 

by observing the actual behaviour of all farmland parcels in the Lombardy region for some years 199 

before and after greening implementation. Results of Bertoni et al. (2018) and Micheletti et al. (2020) 200 

claim for a change in transition probabilities of the main arable crops. Such changes consist in a 201 

decrease of transitions probabilities toward maize and in an increase of those toward nitrogen-fixing 202 

crops (soybean, alfalfa), herbages and other cereals. Bertoni et. al. (2021) estimated the net effect of 203 

greening on farmland allocation between 2014 and 2015. Their results show a reduction of 10% of 204 

maize area in eligible and not initially compliant farms, counterbalanced by increases of other crops 205 

(mainly soybean, alfalfa, wheat, barley and fallow land). However, all these estimations focus on the 206 

effects of the policy on farmland allocation, which is only the visible outcome of the greening policy, 207 

and not on its environmental impact. In this sense, our study aims at testing whether and to what 208 

extent level and variations in soil indices may be somehow associated to observable outcomes (land 209 

use change) induced by the CAP greening. 210 

 211 

3. Datasets and methods 212 

 213 

3.1. Remote sensing data 214 

Remote sensing data were acquired for 2014 (pre-greening conditions) and 2017 (post-greening 215 

conditions). To map soil properties through spectral indices, soils are required to be bare to exclude 216 

the influence of vegetation (Wang et al., 2007). Thus, we selected satellite images from October/ 217 

early November, as this time of year marks the period of rotation between summer and winter crops. 218 

For 2014, we acquired Landsat-8 OLI data at 30 m spatial resolution, at the L1T processing level. 219 

These data are freely available from USGS and were downloaded at http://earthexplorer.usgs.gov/; 220 
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altogether we selected four cloud-free tiles (see Table 1), acquired between 23/10 and 01/11, covering 221 

the low-lying areas of Lombardy. Individual tiles were merged together using the mean value for 222 

overlapping portions and top-of-atmosphere percent reflectance between 0 and 1 was calculated using 223 

the coefficients found in the Landsat tile metadata. 224 

For 2017, we downloaded six cloud-free 100 km by 100 km tiles (see Table 1) from the Sentinel-2A 225 

and –B satellites, acquired on 14/10 and 16/10, at the L1C processing level. The tiles were 226 

downloaded from the ESA Copernicus open access hub (https://scihub.copernicus.eu/) and were 227 

merged together using the same approach described for Landsat before calculating the indices. For 228 

consistency with the other bands, we resampled bands 8A, 11 and 12, originally at 20 m spatial 229 

resolution, to 10 m resolution. These bands are necessary for calculation of the NMDI. We did not 230 

resample the other 20 m or 60 m bands of Sentinel-2, as they were not needed for calculation of other 231 

indices. Sentinel-2 digital numbers are provided as scaled reflectance between 0 and 10,000. We 232 

transformed this value to percent reflectance between 0 and 1. 233 

 234 

Table 1: satellite images used to calculate indices for 2014 and 2017. Tile refers to the tiling system 235 

of Landsat 8 (path_row) and Sentinel-2 (UTM Military Grid Reference System). 236 

Satellite Tile  Date Resolution (m) 

Landsat 8 OLI 193_28 01/11/2014 30 

Landsat 8 OLI 193_29 01/11/2014 30 

Landsat 8 OLI 194_28 23/10/2014 30 

Landsat 8 OLI 194_29 23/10/2014 30 

Sentinel-2 32TMQ 14/10/2017 10 

Sentinel-2 32TMR 14/10/2017 10 

Sentinel-2 32TNQ 14/10/2017 10 

Sentinel-2 32TNR 14/10/2017 10 

Sentinel-2 32TPQ 16/10/2017 10 

Sentinel-2 32TPR 16/10/2017 10 

 237 

3.2 Administrative data 238 
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In our analysis, remote sensing data were combined with georeferenced administrative data coming 239 

from the SIARL dataset of Lombardy Region. SIARL is an administrative dataset by which 240 

Lombardy Region administration manages farmer requests for CAP payments. For each of about 241 

50,000 farms located in the Region, it contains information about farm structures, crops, livestock, 242 

family and hired labour, and CAP payments received. Particularly, for our purposes we gathered data 243 

about the use of each of the two millions of farmland parcels of the Lombardy region from 2011 to 244 

2017. These data came from yearly declarations of farmers applying for CAP payments. 245 

Given the occasional contemporary presence of more crops on the same parcel in the same year, 246 

following Bertoni et al. (2018), we applied some rules to assign to each georeferenced parcel only 247 

one use per year. The number of potential farmland uses was 23. Subsequently, we created a balanced 248 

panel 2011-2017, eliminating those parcels not declared in all the observed years. In any case, the 249 

resulting balanced panel of farmland parcels represents 95% of the total agricultural area. Finally, we 250 

reduced the georeferenced balanced panel of parcels, considering only those parcels which overlap 251 

with remote sensing data. The result was a balanced panel 2011-2017 of 153,954 farmland parcels 252 

for a total area of 214,968 hectares. Since some farmland uses result in a permanent land cover, 253 

leading to distortions in remote sensing indices, and/or are not affected by greening rules at all, we 254 

decided to eliminate parcels with those land use types2. After cleaning these parcels, the balanced 255 

panel 2011-2017 shrinks to 129,166 parcels for 191,645 hectares. The final number of farmland uses 256 

included in the model was 17. 257 

Each parcel belonging to the dataset was assigned to one of three groups based on criteria of both 258 

eligibility and compliance with the greening policy of the farm to which they belonged. These 259 

conditions were verified by making reference to the year 2014, which was the last year before 260 

greening introduction. Specifically, we separated parcels into three groups: 1) Group 1 (not eligible). 261 

This group includes parcels belonging to small farms and those that are exempted from greening 262 

payments because of their characteristics; 2) Group 2 (eligible and compliant). This group includes 263 

parcels belonging to those farms that are eligible for greening practices, but were already compliant 264 

with these rules in 2014; 3) Group 3 (eligible, not compliant). This group includes parcels pertaining 265 

to farms that were eligible for greening payments, but that before the implementation of greening 266 

policies did not satisfy greening requirements.  267 

                                                           
2 More specifically, we excluded from the dataset parcels with the following uses for at least one year between 2014 

and 2017: permanent crops, permanent grassland, flowers, woods and rice. 
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Classification of farmland parcels into three greening groups resulted in the creation of three sub-268 

samples of respectively 32,155 hectares (Group 1), 74,810 hectares (Group 2), and 84,680 hectares 269 

(Group 3). In annex 1 we show the details about the evolution of the farmland use, before and after 270 

greening introduction, in each of the three above mentioned groups. 271 

 272 

3.3 Calculation of remote sensing indices for each parcel 273 

Four types of indices were calculated based on the merged Landsat 8 and Sentinel-2 data, including 274 

the NMDI, SI, BI and NDVI. The NMDI, developed by Wang and Qu (2007), has an inverse 275 

relationship with the moisture content of the soil: higher values (> 0.7) represent a moisture content 276 

lower than 0.1, values around 0.6 intermediate wetness conditions and < 0.6 wet soil conditions 277 

(Wang and Qu, 2007). It is calculated following equation (1) 278 𝑁𝑀𝐷𝐼 = 𝑁𝐼𝑅−(𝑆𝑊𝐼𝑅1−𝑆𝑊𝐼𝑅2)𝑁𝐼𝑅+(𝑆𝑊𝐼𝑅1+𝑆𝑊𝐼𝑅2)          (1) 279 

Where NIR stands for near infrared and SWIR stands for shortwave infrared. The equation proposed 280 

by Wang and Qu (2007) is based on the MODIS sensor, where NIR is a band centered at 860 nm, 281 

SWIR1 is centered at 1640 nm and SWIR2 at 2130 nm. We selected the closest bands of Landsat 8 282 

(USGS, 2018) and Sentinel-2 (ESA, 2015). For Landsat, these are band 5 (865 nm), band 6 (1608.5 283 

nm) and band 7 (2200 nm). For Sentinel-2, we used band 8A (20 m resolution, resampled to 10 m) 284 

which is narrower than band 8 and closer to the original center wavelength, at 865 nm. Bands 11 285 

(1610 nm) and 12 (2190 mn) were used as SWIR1 and SWIR2, respectively. 286 

The three other indices only require a red and NIR band, combined in different ways. For the three 287 

indices, NIR (near infrared) corresponds to Landsat 8 OLI band 5 and Sentinel-2 MSI band 8, while 288 

the red band corresponds to band 4 in both Landsat 8 OLI and Sentinel-2 MSI mosaics. 289 

The SI and BI (sometimes called SI-1 and SI-3) are both sensitive to the salinity content of the soil, 290 

with higher values representing an increase in salinity (Bouaziz et al., 2011), and a range generally 291 

between 0-0.30 (Nguyen et al., 2020). The indices were calculated following equations (2) and (3), 292 

see Dehni and Lounis (2013): 293 𝑆𝐼 =  √𝑅𝐸𝐷 ×  𝑁𝐼𝑅           (2) 294 𝐵𝐼 =  √𝑅𝐸𝐷2 + 𝑁𝐼𝑅2          (3) 295 

 296 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 

   

 

11 

 

The NDVI, while generally employed to retrieve vegetation properties, has also been linked to the 297 

organic carbon content of soils. This index generally ranges between -1 and +1, with values < 0.2 298 

identifying bare soils, and is directly related to the organic content (Guo et al., 2017; Gholizadeh et 299 

al., 2018). We followed Rouse et al. (1973) to calculate the NDVI according to equation (4). 300 𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅−𝑅𝐸𝐷𝑁𝐼𝑅+𝑅𝐸𝐷           (4) 301 

 302 

We further extracted a single value of each index for all agricultural parcels. In view of the large 303 

number of parcels in the administrative database (153,954) and high resolution of raster data, using 304 

conventional GIS software proved too time consuming to perform these calculations; thus, we 305 

developed a computationally efficient version of the ray casting algorithm (Hormann and Agathos, 306 

2001) in the C programming language. The ray casting algorithm is used to detect whether a point 307 

lies inside a polygon and is based on the concept of ray crossing (see Fig. 1). A point is deemed inside 308 

a polygon if a horizontal ray starting from the point in a fixed direction crosses one side of the polygon 309 

an odd number of times. Otherwise, the point lies outside the polygon. The center of each raster cell 310 

was used as a starting point and each parcel was attributed the average of all raster cells lying inside 311 

it for each remote sensing index.  312 

 313 

Figure 1: The principles of the ray casting algorithm. Blue dots represent the center of Landsat 8 314 

OLI cells (30 m resolution), while red dots represent the centers of Sentinel-2 cells (10 m resolution). 315 

The horizontal ray (red arrow) from one dot inside the polygon in a fixed direction crosses a polygon 316 

side an odd number of times. 317 
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 318 

 319 

3.4 Statistical tests on remote sensing indices and their variation 320 

Based on the ray casting algorithm, we calculated for each parcel the value of each index and the 321 

difference  between its value in 2017 and 2014, that is the last year before greening implementation 322 

(Δindex=index2017-index2014). Recalling that both BI and SI are directly related to the salinity degree of 323 

the soil, for these two indexes a positive variation of Δindex means that salinity increased between 2014 324 

and 2017. Conversely, being NMDI inversely correlated with the content of water in the soil, an 325 

increase of Δindex results in a reduction of water in the soil, and vice-versa. As for the NDVI, as the 326 

index is directly linked to organic matter content when soil is bare, an increase of Δindex means an 327 

increase in soil organic matter content over the period 2014-2017. 328 

To evaluate the degree of association of different, competing factors in affecting values or variations 329 

in the indices, we performed five tests using stepwise selection for a linear regression based on the 330 

Akaike information criterion (AIC) and weighting the observations by parcel size (see Venables and 331 

Ripley, 2002). Stepwise selection (or sequential replacement) is a combination of forward and 332 

backward selections. It starts with no predictors, then sequentially adds the predictor that most 333 

increases the AIC, like in a pure forward selection. After adding each new variable, it removes any 334 

variables that no longer provide an improvement in the model fit (like in a pure backward selection). 335 

When the procedure reaches an equilibrium, it stops. Depending on the test, in turn we used each 336 

index, or Δindex, as the dependent variable. It is worth pointing out that the tests performed aim to 337 

detect a statistically significant effect of the independent variables on the soil indices (in absolute or 338 

in variations), keeping in mind that those dependent variables may be affected by other, unobserved 339 

factors. Particularly, in the five tests we evaluated: 340 
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1) Variation of soil indices with respect to farmland use. For each parcel, we determined the 341 

farmland use type in the three years post-greening (2015, 2016 and 2017) and summed the 342 

number of years for each type of land use as the variable coefficient. Δindex was selected as the 343 

dependent variable (see table 2 in the results section). As an example, if the parcel use in 2015 344 

and 2016 was wheat, while in 2017 it was soybean, the model evaluates Δindex = 2αwheat + 345 

1αsoybean. Maize farmland use was used as a reference. 346 

2) Variation of soil indices with respect to crop rotation. As in step (1), we identified the farmland 347 

use type for every year after 2014 and summed the number of changes in farmland use type 348 

from one year to another, which was used as the independent variable in the regression model. 349 

Δindex was used as the dependent variable (see table 3 in the results section). In the previous 350 

example, the model would evaluate Δindex = 1αrot, while in case of no changes the number of 351 

rotations would be 0. 352 

3) Pre-greening soil conditions with respect to eligibility and compliance with greening policies 353 

before they came into effect. The aim of this test was to understand whether soil indices were 354 

significantly different in the farms/parcels targeted by greening policies (group 3) compared 355 

to those which already complied with the policies (group 2) and those which were not eligible 356 

(group 1, chosen as reference). Here, the absolute value of each index, calculated in 2014, was 357 

used as the dependent variable (see table 4 in the results section). 358 

4) Variation of soil indices with respect to eligibility for and compliance with greening policies 359 

before they came into effect. We used the same approach described at point (3) to determine 360 

independent variables. In this case Δindex was used as the dependent variable (see table 5 in 361 

the results section). The aim of this test was to determine whether farms/parcels that had to 362 

change cultivation practices to comply with greening rules actually underwent an 363 

improvement in soil quality as seen by remote sensing indicators. Group 3 (eligible, not 364 

compliant) was the reference. 365 

5) Variation of soil indices with respect to eligibility for and compliance with greening policies 366 

before they came into effect, and with respect to the farmland use and number of rotations. 367 

This last model is aimed at testing whether or not the estimated effects in model 4 are affected 368 

by the changes in farmland uses and number of rotations induced by the greening policy. If 369 

so, it would be possible to state that the differences between the greening groups are 370 

attributable to the variation in the crop mix. If not, these variations could largely depend on 371 

unobserved factors linked to the group to which each farmland parcel belongs. 372 

 373 
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4. Results 374 

4.1 Variation in soil indices 375 

We first investigated changes in remote sensing based soil indices between 2014 and 2017, to 376 

understand how they evolved over time and which factors can contribute to variations aside from 377 

actual changes in soil quality. Density plots in figure 2 show the relationship between the value of 378 

each index in 2014 and 2017 for all agricultural parcels considered in the analysis. Among the indices, 379 

the SI shows a very high persistence, confirmed by a relatively high adjusted r-squared. Lower 380 

relative values of this index in 2014 were followed by low values in 2017, while for higher values (> 381 

0.15) in 2014 there is a higher spread and a tendency towards lower values in 2017. In comparison 382 

the BI, which should be linked to the same soil characteristics as the SI, i.e. salinity, has a much larger 383 

spread, and so do the NDVI and NMDI. The former shows slightly lower values in 2014 than in 2017 384 

while the latter shows very little persistence, as the value of the index in 2014 and 2017 appear 385 

independent from each other. For these indices, factors including meteorological variability and the 386 

use of different satellite sensors with slightly different spectral bands might explain a significant 387 

amount of variance.  388 

 389 

Figure 2: density plots of soil index values in 2014 and 2017 for all parcels considered in the analysis. 390 

Red represents a greater density of observations than blue. The value of adjusted R-squared is also 391 

reported. 392 
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 393 

 394 

4.2 Regression Analysis 395 

While the variations in soil indices appear shaped by various parameters, we performed subsequent 396 

statistical tests to provide insights into the factors more directly related to the implementation of the 397 

greening policy. In the stepwise regression analysis, we found that the constant term is negative for 398 

all models where Δindex was used as the dependent variable, suggesting an average decrease in the 399 

value of all soil indices between 2014 and 2017 (see tables 2, 3, 5). Adjusted r-squared values are 400 

generally low in all five predictive models. However, several independent variables included in the 401 

models attain high statistical significance. Here, we describe only those values that were significant 402 

in stepwise regression at the 99% confidence level. 403 

In the first test, we evaluated the relationship between farmland use type and Δindex (Table 2). The 404 

final number of land use types included in the model was highest for the ΔNDVI (14, 12 with p < 405 

0.01) and lowest for the ΔBI (8, of which 2 with p < 0.01). At the same time, 11 (7) and 9 (8) variables 406 

were included in the models for the ΔNMDI and ΔSI, and found significant for their variations at the 407 

99% confidence level, respectively. Variations in BI had a negative correlation with rotation ryegrass 408 

+ maize for silage and horticulture, but a positive correlation with alfalfa and other temporary 409 

grassland. ΔNDVI was negatively correlated with rotation ryegrass + maize for silage, triticale, 410 

legume herbages, temporary grassland and fallow land. It was positively correlated with wheat, 411 
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soybean, grass and mixed herbages, horticulture, ryegrass and alfalfa. Variations in NMDI were 412 

positively correlated with wheat, soybean, horticulture and alfalfa. They were negatively correlated 413 

with triticale, pulses (highest coefficient), grass herbages and fallow land. Finally, variations in SI 414 

were positively correlated with rotation ryegrass + maize for silage, triticale, temporary grassland and 415 

fallow land. They were negatively correlated with wheat, soybean, horticulture, other arable crops 416 

and alfalfa. Alfalfa and horticulture were significant in predictive models for all indices with 417 

concordant effect (with the exception of ΔBI). 418 

In the second test, we looked at the influence of rotation practices (see Table 3). The number of 419 

rotations at parcel level was positively correlated with ΔNDVI and ΔNMDI and negatively correlated 420 

with ΔSI, with ΔNDVI attaining a slightly higher coefficient. The coefficients suggest a decrease in 421 

salinity and an increase in organic matter with increased number of crop rotations, but also decreased 422 

soil water content.  423 

In the third and fourth test, we investigated the relationship between soil indices and compliance with 424 

greening policies, both before and after the implementation of greening policies. The estimated 425 

coefficients indicate the effect of the membership of a farmland parcel to group 1 (not eligible) and 426 

to group 2 (eligible and compliant) vs group 3 (eligible and not initially compliant to greening 427 

policies). We first checked whether membership in predefined groups had a relationship with the 428 

value of soil indices in 2014 (see Table 4). Both group 1 and group 2 had a positive relationship with 429 

the SI and a negative correlation both with the NDVI and the NMDI. These findings could point to 430 

relatively high salinity in both groups in 2014, but also higher water content, particularly for members 431 

of group 1. BI coefficient confirms that the salinity was higher for group 1, at least. For the NDVI, 432 

the initial content of organic matter in the soil appears lower in groups 1 and 2, compared to group 3. 433 

The analysis of the variation in soil indices with respect to eligibility and compliance to greening 434 

policies (see Table 5) shows that membership in group 1 (not eligible) and group 2 (eligible and 435 

compliant) has a negative relationship with variations in the SI, and positive relationships with 436 

variation in the BI, NDVI and NMDI. This suggests group membership could play a role by leading 437 

to decreased water content and increased organic matter for groups not expected to change their 438 

farmland allocation after the implementation of greening policies, while the changes in salinity are 439 

less clear. 440 

Finally, in Table 6, we performed a more complete estimation of membership in greening groups, 441 

controlling for both number of rotations and farmland uses. This last elaboration permits us to 442 

evaluate how much of the variability between greening groups depends on increased crop variability 443 
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or on other not controlled factors. Estimated coefficients for greening groups do not change sign and 444 

level of significance (with the exception of ∆BI for group 1 which lost significance). However, the 445 

magnitude of the coefficients is reduced compared to the model in Table 5, particularly for those of 446 

group 2. 447 

Table 2: predictive models of changes in soil remote sensing indices by farmland use type. Land use 448 

types are the independent variables, Δindex is the dependent variable. Only variables significant at 449 

the 90% confidence level or above are included. 450 

 451 
Note: *p<0.1; **p<0.05; ***p<0.01 452 

 453 

Table 3: predictive models of changes in soil remote sensing indices by rotation practices. The 454 

number of rotations from one year to the other is considered as independent variable, Δindex is the 455 

dependent variable. 456 
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 457 

Note: *p<0.1; **p<0.05; ***p<0.01 458 

Table 4: Predictive model of soil indices in 2014 with respect to eligibility and compliance with 459 

greening policies. The index value in 2014 is the dependent variable. Group membership represents 460 

the independent variable. 461 

 462 
Note: *p<0.1; **p<0.05; ***p<0.01 463 

 464 

Table 5: Predictive model of changes in soil remote sensing indices by eligibility and compliance 465 

with greening policies. Δindex is the dependent variable; group membership is the independent 466 

variable. 467 

 468 
Note: *p<0.1; **p<0.05; ***p<0.01 469 

 470 

Table 6: Predictive model of changes in soil remote sensing indices by eligibility and compliance 471 

with greening policies, number of rotations and farmland use. Δindex is the dependent variable; 472 

group membership, number of rotations and farmland uses are the independent variables. 473 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 

   

 

19 

 

 474 
Note: *p<0.1; **p<0.05; ***p<0.01 475 

 476 

5 Discussion 477 

5.1 Assessing the effects of policy changes through remote sensing: advantages and limitations 478 

CAP greening is a relatively new concept, having been introduced with the CAP reform 2015-2020. 479 

Consequently in the context of remote sensing most research has only recently approached the issue 480 

of assessing compliance with the greening requirements, either by investigating different supervised 481 

classification schemes for the identification of land use types at the parcel scale (Sitokostantinou et 482 

al., 2018), or by addressing the automatic extraction of satellite data and their integration into a 483 

spatiotemporal framework (Rousi et al., 2020). Estimating the effects of the CAP reform however is 484 

a more complex issue, and one that has been relatively overlooked from a remote sensing perspective. 485 

Previous efforts have been made particularly in the field of soil erosion monitoring. For instance, 486 

Borrelli and Panagos (2020) developed an indicator to estimate soil erosion in the EU incorporating 487 

data from the MERIS satellite, which could be used to evaluate the effects of policy changes; 488 

however, their approach is based on the Corine land cover product (which is updated every 6 years) 489 

at 100 m resolution, while our methodology uses higher resolution satellite data (10/30 m) and 490 

considers individual farm parcels.  491 

In our study, we combine remote sensing-based spectral indices, geospatial administrative data, a fast 492 

algorithm for data processing and a robust statistical approach to provide a first attempt to detect the 493 

effects of the CAP reform on soil quality in the Lombardy region. The novelty of the work lies in the 494 

combination of these sources to assess policy changes, and particularly in the use of spectral indices 495 

from satellite data. These indices have the advantage of simplicity over other methods, making use 496 

of models (e.g. Borrelli et al., 2016), and the availability of data from Landsat-8 and Sentinel-2 before 497 

and after the implementation of the CAP reform offers a unique possibility to look at the changes 498 

over wide areas while also providing a great level of detail. 499 
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The use of satellite sources for the assessment of soil quality however also comes with a number of 500 

uncertainties. In fact, the estimation of remote sensing indices is related to seasonality and a 501 

requirement that limits the availability of data for this approach is the choice of the best period to 502 

obtain a homogeneous bare soil. Recommendations by Bartholomeus et al. (2008) suggest that 503 

vegetation cover should be lower than 20% to be able to estimate bare soil indices; the value might 504 

also be lower for the NDVI, which in this study was used for soil organic carbon and which is sensitive 505 

to the vegetation content of pixels observed by the satellite. As we cannot exclude that residual 506 

vegetation was present at the time of image acquisition, there is a chance that our approach to assess 507 

changes in soil organic carbon was affected. To exclude this possibility, and obtain a more robust 508 

indication of changes in this soil variable, other indices or individual bands might be tested, including 509 

the reflectance in the visible band of the electromagnetic spectrum or the indices proposed by 510 

Bartholomeus et al. (2008).  511 

Another issue which limits data availability from satellites is the presence of cloud cover, which can 512 

be rather high in the plains of Lombardy especially during the winter season, as low clouds can persist 513 

for several days (Kästner and Kriebel, 2001). Cloud cover particularly influences data availability 514 

before the implementation of greening policies, as in 2014 only data from Landsat 8 were available; 515 

with the launch of Sentinel-2A in 2015 and its twin satellite Sentinel-2B in 2017, the number of 516 

remote sensing images for the post-greening period have greatly increased, and with them the chance 517 

to obtain high quality cloud-free data. Thus, future changes in remote sensing indices of soil quality 518 

might be investigated over a longer period and used to assess the effects of further changes in the 519 

agricultural policy if those are implemented.  520 

A possible limitation of this study is that we did not perform an atmospheric correction on Landsat 521 

and Sentinel-2 data before calculating the spectral indices. The effects of this lack of atmospheric 522 

correction should nevertheless be limited, as normalized indices show a low sensitivity to atmospheric 523 

conditions. After comparing Sentinel-2 and Landsat-8 imagery acquired on the same day and 524 

processed with three separate atmospheric schemes and without correction, Rumora et al. (2021) 525 

conclude that correlations between index values from the two sensors are always highly statistically 526 

significant (> 99%) when no atmospheric correction is applied in spite of the slightly different 527 

wavelengths used, and that using a simpler or no atmospheric correction produces better results than 528 

using more complicated schemes. Although a greater effect of the atmosphere might be hypothesized 529 

for non-normalized indices such as those used to estimate salinity content (SI e BI), the strength of 530 

our analysis is that it focuses on the relative variation in indices compared to a reference, and the 531 

absolute value of indices is unimportant. To further increase the reliability of our approach, the 532 
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integration with radar remote sensing, with its ability to provide estimates of soil moisture (Ezzahar 533 

et al., 2020), might prove useful and improve the assessment of soil quality estimates in relation to 534 

policy changes. 535 

 536 

5.2 Remote sensing for the assessment of CAP environmental performance 537 

Among several proposed objectives, our analysis seeks to demonstrate the feasibility and benefits of 538 

integrating administrative and remote sensing data into agricultural policy ex-post evaluation 539 

processes. Administrative datasets ensure full territorial coverage and a high level of detailed 540 

information (down to the parcel level). On the other hand, they contain a limited amount of 541 

information, especially on environmental indicators (often limited to land use or participation in 542 

voluntary agro-environmental measures). So far, broad-spectrum ex-post evaluations do not directly 543 

quantify the environmental effects of policies, but rather changes in agricultural practices (Dupraz 544 

and Guyomard, 2019), or in the allocation of farmland that is measurable from administrative 545 

datasets. At most, environmental effects are indirectly assessed by applying tabulated coefficients on 546 

GHG emissions inputs to the various agricultural practices or uses of agricultural land (Chabé-Ferret 547 

and Subervie, 2013; Bertoni et al. 2021). 548 

Following the line of reasoning conducted so far, our study provides some important innovations in 549 

the literature of ex-post evaluations of agricultural policies. Firstly, the combination of remote sensing 550 

techniques with administrative datasets ensures the almost total coverage of the territory and, at the 551 

same time, an extremely detailed level of analysis (farmland parcel level). Secondly, it represents a 552 

direct assessment of parameters related to the environmental sustainability of agriculture, and not 553 

derived from other parameters. Thirdly, it aims to offer an assessment of environmental performance 554 

parameters, linked to the quality of the soils, not investigated until now in previous studies. Finally, 555 

our methodology can be replicated over time and space. 556 

The present analysis represents a first attempt to establish a procedure for assessing the effects of 557 

agricultural policies using remote sensing techniques. Given its innovativeness, of course it suffers 558 

from some limitations and technical difficulties mentioned in paragraph 4.1. (e.g. calibration of 559 

indicators based on the degree of land cover and weather conditions). These aspects deserve to be 560 

carefully investigated on a second step of improvement of such methodology. The present analysis is 561 

therefore characterized above all from a methodological point of view and aspires to indicate a path 562 

for a new line of research. 563 
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 564 

5.3 Assessment of soil indexes dynamics after the introduction of CAP greening  565 

CAP Greening mainly affects the allocation of agricultural land. As previously pointed out, in the 566 

area under investigation, greening has resulted in a reallocation of maize and maize for silage areas 567 

towards other crops such as soy, alfalfa, other cereals and set-aside (Bertoni et al., 2021). This 568 

occurred especially in group 3 (eligible and not compliant farms). For this reason, our first two 569 

elaborations have been related to the variations of the soil quality indices in relation to the farmland 570 

use (Tab. 2) and to the number of rotations in the reference period (Tab. 3). The coefficients calculated 571 

for the individual crops express a variation with respect to corn, which is the crop mainly affected by 572 

the introduction of the new policy. In general, the coefficients are very low, as is the R-square, a sign 573 

that the conditions of the soils tend to persist over time and are not particularly affected by crop 574 

changes, especially in a relatively short time interval such as that analysed. In any case, the 575 

coefficients of different crops were significant3. With reference to the main crops that have replaced 576 

maize, it is observed that soy has a positive effect on the organic substance content (NDVI) and 577 

contributes to the reduction of salinity (SI), on the contrary the NMDI coefficient goes in the direction 578 

of a reduction of the content of water in the soil. The trend of wheat is similar. Alfalfa would cause 579 

an increase in organic matter and a reduction in water content, while the results on salinity are 580 

contrasting between the two indices. The number of rotations over the period analysed is positively 581 

correlated with the organic matter content and negatively with the salinity and water content. 582 

We then tested the changes in the indices based on the group to which the farmland parcels belong, 583 

in terms of eligibility and compliance with greening. The regression in Tab. 5 shows the coefficients 584 

of the two groups that have not been affected by greening (group 1 - not eligible farms and group 2 - 585 

eligible and compliant farms) vs the reference group (group - 3 eligible and not compliant farms), 586 

that has been affected by the introduction of the new policy. Regression results show that group 3 had 587 

better outcomes for the NMDI indicator (soil water content) and worse for NDVI (organic matter 588 

content). The salinity variation appears smaller than in the other groups if we consider BI, but the 589 

opposite when we observe the SI trend. 590 

Finally, in Tab. 6 we repeated this previous regression by groups, controlling at the same time for 591 

farmland use and the number of rotations. The sign of the coefficients does not change, pointing to a 592 

time persistence of the dynamics of such indicators. Evidently, these are mainly due to specific factors 593 

                                                           
3 A positive coefficient indicates: for BI and SI indicates an increase in salinity, for NDVI an increase in the content of 

organic matter, for NMDI a reduction in the water content in soils. 
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of the groups analyzed for which we do not have available control variables at the level of detail 594 

necessary for our analysis. This is also confirmed by the regression in Table 4, which highlights 595 

different starting conditions between the various groups. The control variables that would have been 596 

useful to refine our analysis undoubtedly include the cultivation and irrigation practices adopted, for 597 

which there is no georeferenced information in the territory considered, and soil quality, that are 598 

mapped to a scale not usable for our detail of analysis. The presence of this kind of information would 599 

have certainly improved the quality of our analysis, like the possibility of conducting the analysis 600 

over a longer period. 601 

In any case, it is interesting to note that by controlling for farmland uses and number of crops, the 602 

coefficient magnitude of the greening groups decreases. This applies, in particular, to the soil organic 603 

matter content (NDVI) and the salinity index (SI), the latter in relation to group 2. Both of these 604 

indicators show a negative performance in group 3 farms, which however improved when controlling 605 

for crop mix change associated with the adaptation to greening. 606 

In any case, results shown should be considered as an outcome of a preliminary and innovative 607 

research study. The aim of such a tool of analysis is to combine available big data (from administrative 608 

and remote sensing sources) in the attempt to lay the foundations for an ex-post assessment of CAP 609 

greening on soil quality. Keeping this in mind, its efficacy and accuracy can and should be improved 610 

in different ways. The first one has been already mentioned and relates to additional data and 611 

information to consolidate the results. The second one pertains to improvements on the calibration of 612 

the soil quality indicators. In particular, the indicator of organic matter content (NDVI) presents the 613 

most critical issues. Our choice of excluding perennial crops, rice and stable meadows, as well as that 614 

of calculating the indicators in the period with the greatest probability of having bare soil, goes in the 615 

direction of a refinement of the analysis. However, we cannot exclude confounding effects due to the 616 

presence of crop residues in the field (eg corn stalks). Therefore, such aspects should be improved in 617 

order to make such combined methodology more reliable for ex-post assessment of environmental 618 

effects of agricultural policy. 619 

 620 

Conclusions 621 

 622 

In this study, we assessed the dynamics of agricultural land soil quality indices in the Lombardy 623 

region of Italy, over the period subsequent to the introduction of CAP greening in 2015. Soil quality 624 

indices considered in this study are the Salinity index (SI) and brightness index (BI), used to 625 
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investigate the salinity content of the soil; Normalized difference vegetation index (NDVI) used to 626 

estimate soil organic carbon, normalized difference drought index (NMDI), used to estimate soil 627 

moisture. The indices were obtained from remote sensing imagery, specifically Landsat 8 OLI for the 628 

period before the introduction of greening policies, i.e. 2014, and Sentinel-2A for the post-greening 629 

period, i.e. 2017, and combined with an administrative database of all agricultural parcels of the 630 

region; based on these two datasets, we performed a regression analysis to assess the impact of 631 

different factors, including farmland use type, eligibility and compliance with respect to greening 632 

policies, on the dynamic variability in soil properties in the region.  633 

Our preliminary results indicate a high persistence of the soil quality indicators before and after the 634 

introduction of CAP greening but also significant correlations (99% confidence level) between 635 

variations in the indices and membership in specific groups pertaining to farmland use, eligibility and 636 

compliance with greening policies. In particular, greening group membership appears to lead to 637 

decreased water content and increased organic matter for groups not expected to change their 638 

farmland allocation after the implementation of greening policies. We identified some uncertainties 639 

in relation to the choice of the NDVI, which might particularly be impacted by residuals of vegetation 640 

in the parcel; these issues need to be addressed in detail by conducting further research. Nevertheless, 641 

the study is mainly methodological and by combining administrative and remote sensing data with a 642 

high level of detail it shows a potential tool to be used, with further improvements, for ex-post 643 

assessment of CAP policy instruments, with special focus on the assessment of soil quality changes 644 

over the long term. 645 
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Annex 1 – Farmland uses 2014-2017 in the greening groups 899 

Group 1 – Not eligible farms 900 

 901 

Source: own elaboration on SIARL data 902 

 903 

Group 2 – Eligible and compliant farms 904 

 905 

Source: own elaboration on SIARL data 906 
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Group 3 – Eligible and not compliant farms 908 
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Source: own elaboration on SIARL data 910 
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