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Abstract

The Phase-Rectified Signal Averaging (PRSA) technique
has been widely investigated for the assessment of fetal
well-being during labor, through the analysis of the fetal
heart rate (FHR) series. PRSA provides the average ac-
celeration and deceleration capacities of FHR by means
of synchronous average of segments associated with either
an increase or decrease of the FHR. The identification of
which segments to average and the computation of the ca-
pacities are currently based on the Haar wavelet at scale
T and s, respectively. In this study, we proposed a gener-
alization of the PRSA algorithm by changing the wavelet
involved. We tested five different wavelets, i.e., Haar, Shan-
non, Morlet and two versions of Poisson’s, for the identifi-
cation of acidemia at birth on FHR recordings collected
during labor. The ranking of the top five wavelets was
created using the area-under-the-curve (AUC) of the ROC
analysis. The Haar wavelet was outperformed by Shannon
and Poisson wavelets, with an AUC of 0.65 and 0.60, re-
spectively. The findings suggest that different wavelets may
be more appropriate for acidemia detection.

1. Introduction

The Phase-Rectified Signal Averaging (PRSA) tech-
nique [1] applied to the fetal heart rate FHR (FHR) series
has found a wide room of investigation for the assessment
of fetal well-being during pregnancy monitoring [2] and
labor [3,4]. PRSA provides the average acceleration (AC)
and deceleration (DC) capacities of FHR by means of syn-
chronous average of segments associated with either an in-
crease or decrease of the heart rate [1,5].

During labor, its success for fetal surveillance may be
due to several factors. Indeed, given the fact that FHR se-
ries is usually very noisy and presents FHR decelerations
due to maternal contractions, PRSA has several advantages
over other techniques (e.g., spectral analysis) in this con-
text. First, PRSA does not require stationary series and
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can be applied on the entire recording. Second, it tolerates
a large amount of missing values due to the high number of
segments usually identified for computing the synchronous
average. Third, PRSA depends on three parameters (i.e.,
L, T, and s) that control the frequency band to mostly en-
hance. Fourth, the average operator reduces the noise over
the series and the fact that this average is synchronized to
increasing or decreasing trends of FHR makes it anchored
to important events such as FHR accelerations and decel-
erations.

The identification of segments to be averaged is per-
formed by detecting the so-called anchor points. These
points are defined as those having the average of 7" suc-
cessive samples (including the anchor) of the FHR series
greater/lower than the average of ' previous ones, i.e., a
local FHR acceleration/deceleration. After performing the
synchronous average of all FHR segments centered at each
anchor point, that produces that PRSA series (a vector of
2L elements), AC and DC are computed in a similar fash-
ion on the PRSA series, i.e., the average of s samples after
the anchor point subtracted by the average of the previous
s ones. This approach assigns equal weights to all samples
for anchor point identification and capacity computation.

In this study, we proposed a generalization of the PRSA
algorithm by defining a different weight for each sample
for the identification of anchor points and computation
of capacities. The weights were defined by 4 wavelets.
We tested these wavelets and ranked them using the area-
under-the-curve (AUC) computed through ROC analysis
for the identification of acidemia at birth using cardiotoco-
graphic recordings (CTG) collected during labor.

2. Methods

2.1. Background on AC and DC

The PRSA algorithm involves three steps to compute
AC and DC from the FHR series: i) identification of the
anchor points; ii) synchronous average for computing the
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PRSA series; and iii) computation of AC and DC from the
PRSA series.
First, all the time indices ¢ such that

1T—1 1 T
Apc = {t:TZFHR[tJri] > TZFHR[ti]}

i=0 i=1

ey
are termed “anchor points”. The integer value 7" sets the
“timescale” and the set Aac is the “accelerations’ list”.
The “decelerations’ list” Ap is instead built by chang-
ing the direction of the inequality in (1). Second, a win-
dow of length 2L samples is centered on each anchor point
(the anchor point is at position L + 1). Then, the win-
dows (one for each anchor point) are aligned and averaged
synchronously, obtaining the PRSA series of 2L samples.
Third, the PRSA series is used to compute the capacity
with

s—1

1< L1 ‘
AC= - ;PRSA[L—H] - Q—S;PRSA[L —i] @)

where s is the scale. DC is computed with the same for-
mula, but with a different PRSA series obtained using the
decelerations’ list Apc.

It is worth noting that (1) and (2) are obtained by ap-
plying the Haar wavelet at scale 7" and s, respectively, as
pointed out in [1].

2.2.  Generalization of the PRSA Algorithm

The algorithm described in sec. (2.1) can be generalized
by changing the wavelet family for both anchor point iden-
tification and capacity computation. However, depending
on the wavelet, this change makes the anchor points an-
chored on events different from local accelerations and de-
celerations. Therefore, the terms AC and DC lose sense in
this generalization. On the other hand, the use of a differ-
ent wavelet may optimize the recognition of relevant pat-
terns on the FHR series (e.g., acidemia, sinusoidal pattern).

The generalization works as follows. First, the identifi-
cation of anchor points becomes

2L
A= {t > wrlilFHRE — L+i—1] > 0} 3)
i=1
where wr[i] is the i-th sample of the wavelet w at scale T,
stored in a vector of 2L elements (indexed from 1). Then,
the capacity c, at scale s is computed using

2L

o = zis ; w,[i]PRSALJi] 4)

where w; is the same wavelet used for the identification
of anchor points but a scale s, whereas PRSA is the syn-
chronous average of windows around anchor points as in

).

Given the fact the during labor, FHR may present a
skewed distribution due to maternal contractions, it make
sense to switch the inequality in (3) as well (similarly to
the decelerations’ list). We refer to these two different lists
as As and A. depending on the inequality sign.

2.3.  Wavelets

In this study, we tested five different wavelets belong-
ing to four wavelet families, i.e., Haar, Morlet, Shannon
and Poisson. It is known that FHR decelerations are slow-
varying phenomena (= one deceleration every two or three
minutes at its peak) and their morphology has diagnos-
tic power. Bearing these considerations in mind, wavelets
should be able to enhance the accelerating and decelerat-
ing trends during the FHR decelerations and to be sensitive
to slow changes in FHR. Haar and Poisson wavelets act as
derivative filters, thus enhancing the trends, while Morlet
and Shannon wavelets are equivalent to band pass filters,
thus they should be sensitive to low frequency components
of the FHR series. The cutoff frequencies of these filters
are controlled by the scale of the wavelet [6].

In order to use the wavelet selected in the generalized
PRSA algorithm, we adapted their mathematical formula-
tion. The adaptation was necessary to have: i) the scale
dependent on the parameter a; ii) a bounded wavelet be-
tween [—1, 1]; and iii) the symmetry axis or zero crossing
of the wavelet in the anchor point.

The Haar wavelet was defined as follows (as in [1])

1 L+1<i<L+a
weli)]=¢ -1 L—a+1<i<L (5)

0 otherwise

The Morlet wavelet was defined as follows

wali] = o~ (5F2) e (‘7(1_]4_1)) ©)

a

where o controls the scale (similar to a). Here, we set
o = 5 as commonly used.
The Shannon wavelet was defined as follows

o fi-L-1 3m(i — L— 1)
wg[i] = sinc <2a> cos <2a> (7)

Two versions of the Poisson wavelet were built by
means of the two following steps. First, we defined the
function

#771 i+an\"—1 _itan .
fali = { () (82)" 77 iz man
0 otherwise
3

where n is a parameter of the Poisson wavelet. The func-
tion f is a shifted version of the Poisson wavelet in such a
way that the function is 0 at ¢ = —an.
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Figure 1: Example of five wavelets with ¢ = 10 and L = 50 for all panels: Haar’s (a), Morlet’s (b), Shannon’s (c) and two
versions of Poisson’s (d). The red dashed lines represent the position of the anchor point in the wavelet (i.e., L + 1).

Then, the first version was defined as follows

fa,n[f(i —L— 1)]

Wil = — 9
vl = T umlovll Vamlaval}
while the second one was

wali] = fonli — L 1] (10)

max{'fa,n [a\/ﬁ] |a |fa,n [70‘\/{5”}

The denominator of (9) and (10) rescaled the wavelets in
the range [—1, 1]. Here, we used n = 1. The rationale be-
hind the definition of two Poisson wavelets was the asym-
metric behavior of its original formulation. Indeed, the
function f weights the samples after the anchor point dif-
ferently from those before, making past or future samples
play a different role in the PRSA algorithm.
Figure 1 shows an example for each wavelet.

2.4. Database and CTG Preprocessing

The CTU-UHB Intrapartum Cardiotocography Database
from Physionet [7, 8] was used to test the capacity ¢ on
human data. It contains carefully selected CTG record-
ings of 552 fetuses (singleton, uncomplicated pregnancies,
with no congenital defects and week of gestation > 37)
resampled at 4 Hz (for further details, please refer to [7]).
Umbilical artery pH was also available for each fetus at

birth. Forty-four fetuses had an umbilical artery pH value
< 7.05 and, in this study, were considered as acidotic.

CTG recordings were analyzed during the last hour be-
fore stage II of the labor. Missing beats were linearly in-
terpolated and the reconstructed samples were not allowed
to be anchor points. In addition, only series with less than
30% of missing beats were further considered. Overall, 24
acidotic and 441 healthy fetuses were analyzed. The pre-
processing was the same performed in [9].

2.5. Experiments

We computed the capacities for all wavelets using the
following configurations: i) 7" = 1 and s = 2 [9]; ii)
T =5and s = 5[3]; and iii) 7' = 10 and s = 10 [4].
Both A and A. were considered. These configurations
were found as relevant for acidemia detection in the cited
studies.

A ROC analysis was performed for all capacities ex-
tracted to detect acidemia at birth. The AUC was used
to build the ranking of wavelets. The five highest average
AUC values are reported. Bootstrapping with 2000 itera-
tions was applied to estimate the 90% confidence interval
(CI) of the AUC estimates for each configuration (as done
in [4]).
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Table 1: Average and 90% CI of AUC for the top five wavelets, along with the corresponding configuration of 7" and s.

As \ Ao
Ranking | Wavelet T s AUC Wavelet T s AUC
1 Shannon 5 5 0.65 (0.55,0.75) | Poisson 2nd ver. 10 10 0.60 (0.51, 0.70)
2 Shannon 10 10 0.60(0.50,0.71) | Haar 1 2 0.58(0.48,0.70)
3 Poisson 1st ver. 10 10 0.59(0.49,0.69) | Shannon 10 10 0.57(0.47,0.67)
4 Poisson 2nd ver. 5 5 0.58 (0.48, 0.69) | Poisson 2nd ver. 5 5 0.57 (0.47, 0.67)
5 Haar 1 2 0.57(0.48,0.67) | Poisson 2nd ver. 1 2 0.56(0.46, 0.66)
3. Results References

Table 1 reports the average and confidence interval of
AUC for the top five wavelets, along with the correspond-
ing configuration of 7" and s. The average AUC of the top
five wavelets ranged between 0.56 and 0.65. The two top
performing wavelets were the Shannon’s one with 7" = 5
and s = 5 for A~ (0.65) and the second version of Pois-
son wavelet for A. (0.60). The Haar wavelet ranked fifth
in acceleration mode (0.57) and second in deceleration
(0.58).

Among the five selected wavelets, the second version of
Poisson wavelet appeared in the ranking four times (the
highest) while the Morlet’s did not appear in the top five.

4. Discussions

In this study, we proposed a generalization of the PRSA
algorithm by changing the wavelet used for the identifica-
tion of anchor points and computation of the capacity. In
addition, we tested five different wavelets for the identifi-
cation of acidemia at birth using CTG recordings collected
during labor. The range of AUC was similar to the one in
Georgieva et al.’s study, which reported an AUC of 0.67
for detecting pH < 7.05 on a dataset of more than 7000
pregnancies [3]. They analyzed CTG recordings and found
the best combination of 7" and s values between 5 and 10.
Interestingly, the Haar wavelet at this configuration did not
appear in the top five performers. A possible explanation
could be that, in their study, they analyzed the stage II of
labor, where more FHR decelerations are present.

Differently from the Haar wavelet, the others were not
symmetric with respect to the x-axis (Fig. 1). From one
hand, such asymmetry have played an important role in
the identification of acidemia, as shown in Table 1. On
the other hand, it made the identification of anchor points
more challenging, especially for low values of scale T'. For
example, no anchor points were found in A. with T' = 1
for the Shannon wavelet.

Further analyses are necessary to assess the limits of the
proposed generalization.
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