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Abstract: Bone and soft-tissue primary malignant tumors or sarcomas are a large, diverse group
of mesenchymal-derived malignancies. They represent a model for intra- and intertumoral het-
erogeneities, making them particularly suitable for radiomics analyses. Radiomic features offer
information on cancer phenotype as well as the tumor microenvironment which, combined with
other pertinent data such as genomics and proteomics and correlated with outcomes data, can
produce accurate, robust, evidence-based, clinical-decision support systems. Our purpose in this nar-
rative review is to offer an overview of radiomics studies dealing with Magnetic Resonance Imaging
(MRI)-based radiomics models of bone and soft-tissue sarcomas that could help distinguish different
histotypes, low-grade from high-grade sarcomas, predict response to multimodality therapy, and thus
better tailor patients’ treatments and finally improve their survivals. Although showing promising
results, interobserver segmentation variability, feature reproducibility, and model validation are three
main challenges of radiomics that need to be addressed in order to translate radiomics studies to clin-
ical applications. These efforts, together with a better knowledge and application of the “Radiomics
Quality Score” and Image Biomarker Standardization Initiative reporting guidelines, could improve
the quality of sarcoma radiomics studies and facilitate radiomics towards clinical translation.

Keywords: artificial intelligence; musculoskeletal; radiomics; sarcoma

1. Background

Bone and soft-tissue primary malignant tumors or sarcomas represent a large, di-
verse group of mesenchymal-derived malignancies. They are rare entities with several
histological subtypes, and each has an incidence < 1/100,000/year [1,2].

Different bone tumor subtypes have distinct patterns of incidence and among them,
osteosarcoma is the most common. Osteosarcoma (OS) and Ewing sarcoma (ES) are
more common in the second decade of life, while chondrosarcoma (CS) has a higher
incidence in adulthood [1]. Among the over 80 different histological subtypes of soft-
tissue sarcomas, liposarcoma, and leiomyosarcoma are the most common. The majority
of sarcoma histotypes therefore have an incidence < 2/1,000,000/year. Given the rarity of
these tumors, and the complexity of interdisciplinary treatment including radiation therapy,
systemic therapy, and surgery, they are managed in tertiary sarcoma centers, able to offer
access to the full spectrum of care and expertise [1,2].

Both biopsy and imaging supplement clinical data prior to the beginning of any treat-
ment, with a biopsy representing the reference standard for preoperative diagnosis [1,2].
The biopsy of a suspected primary malignant bone tumor should be performed at the
tertiary sarcoma center [3]. An inaccurate biopsy, for instance in the case of sampling errors
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in large, heterogeneous tumors, may lead to inaccurate diagnosis and thus inadequate treat-
ment. Moreover, there exists the risk of biopsy tract contamination which remains a concern.
Imaging plays a pivotal role in diagnosis, staging, response to treatment monitoring, and
surveillance for recurrence.

Nowadays, attention is focused on the introduction of artificial intelligence in muscu-
loskeletal (MSK) radiology and the enrollment of radiomic texture analysis as a tool able to
non-invasively provide information regarding diagnosis and prognosis [4].

The term “radiomics”, from a merging of the terms “radio” and “omics”, indicates
the extraction, analysis, and quantitative mapping of many medical image features (i.e.,
intensity, shape, texture, or wavelet), in relation to clinical prognostic end points and
genomics [5]. Radiomic features offer information both on cancer phenotype and the
tumor microenvironment which, combined with other pertinent data such as genomics
and proteomics and correlated with outcomes data, may provide robust, evidence-based,
clinical-decision support systems. To date, several radiomic studies have focused on
distinguishing tumor histotype and grading before treatment, monitoring response to
therapy and predicting outcome [6]. A schematic diagram illustrating an example of a
radiomic workflow, from image collection and segmentation to radiomic feature extraction
and selection and, finally, classification model, is shown in Figure 1. Machine learning can
be combined with radiomics to perform classification tasks.
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Figure 1. An example of a radiomic workflow. A machine learning classifier can be employed to
perform classification tasks based on radiomic features.

In this review, we offer an overview of radiomics achievements in MSK radiology,
where the introduction of artificial intelligence and the employment of radiomic texture
analysis have resulted in the development of radiomics Magnetic Resonance Imaging (MRI)-
based models that could help distinguish different histotypes, low-grade from high-grade
sarcomas, predict response to treatment, and overall survival.
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2. Benign vs. Malignant and Histotype Differentiation
2.1. Soft-Tissue Tumors

The accurate diagnosis of soft-tissue lesions with the purpose of discriminating be-
tween malignant and benign tumors is crucial for patient management, as their treatment,
follow-up, and prognosis differ considerably. The characterization of soft-tissue lesions is
still challenging in current clinical practice. MRI is accepted as the standard imaging diag-
nostic tool for detecting and classifying soft-tissue tumors [7]. Further invasive procedure
such as percutaneous biopsy or surgery is often required following MRI in case of uncertain
diagnosis. Though biopsy is the usual method of classifying tumor histology before surgery,
it may produce complications and sampling, as it is invasive and only evaluates a small
sample. Thus, a non-invasive approach to differentiating benign from malignant soft-tissue
tumors may avoid an unnecessary invasive procedure and reduce complications.

Radiologists usually utilize certain features related to the biological activity of the
tumor to distinguish between benign and malignant soft-tissue tumors, such as size,
edema, necrosis, and infiltration of surrounding tissue. These criteria have been demon-
strated to have relatively limited performance, with a diagnostic accuracy amounting to
50–85% [7–12].

Tumor heterogeneity can be evaluated using histological or imaging data and is a
major criterion used to diagnose malignancies [9,13–16]. Emerging studies show that using
computer-assisted diagnostics (CAD) for the quantification of tumor heterogeneity by
radiomics-based texture analysis (TA) is a promising tool as it may represent a non-invasive
biomarker for differentiation between histological tumor types, grading, response monitor-
ing, and outcome prediction. Radiomics-based TA quantifies the coarseness and regularity
of the spatial distribution of pixel grey level values within normal and pathological tissue.
Recent studies have demonstrated that macroscopic heterogeneity assessed by medical im-
ages likely mirrors underlying histopathological heterogeneity, thus providing a promising
diagnostic tool for tumor detection and grading, treatment response, and overall outcome
prediction [17,18].

Juntu et al. showed that the accuracy of the T1-weighted (T1WI)-based support vector
machine algorithm for discriminating benign vs. malignant soft-tissue tumors was 93%,
outperforming radiologists’ classification accuracy [19].

More recently, Wang et al. [20] comprehensively examined the texture features of
T1WI and fat-suppressed (FS)–T2 weighted (T2WI) images related to malignancy in soft-
tissue tumors. They identified the radiomic features which significantly correlated with
malignant soft-tissue lesions, including margin, size, low T2 signal matrix, signal intensity,
vessels, myxoid matrix, capsule, and radiomics score, and then constructed a radiomics
nomogram by adding the clinical model. The radiomics nomogram (area under the receiver
operating characteristic curve (AUC) = 0.96 and 0.88) demonstrated a superior predictive
performance to the clinical model based on radiologists’ experience, as well as the radiomics
algorithm alone, in two validation sets. In a previous study, there was a demonstrated high
accuracy of a radiomics nomogram based on FS-T2WI, outperforming the clinical model
for differentiating between benign and malignant soft-tissue masses [21].

Fat-containing soft-tissue tumors are a common clinical entity [22]. Lipomas are
the most common soft-tissue tumors and liposarcomas the most common soft-tissue sar-
coma [23].

In 2020, the World Health Organization committee for Classification of Soft Tissue
Tumors [12] distinguished the locally aggressive atypical lipomatous tumor (ALT)/well-
differentiated liposarcoma (WDL) from four histologic subtypes of malignant liposar-
coma, such as dedifferentiated, myxoid, pleomorphic, and not otherwise specified liposar-
coma [12].

Imaging discrimination between lipoma and liposarcoma is a major point, since patient
management, treatment, follow-up, and overall outcome differ markedly (5-year survival
ranges from almost 100% for lipoma to 60–70% for liposarcoma) [24]. This remains a
challenge for conventional MRI examination since a significant number of benign lipomas
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also have an imaging appearance mimicking ALT/WDL, which may resemble ordinary
lipoma. A previous study demonstrated only 69% accuracy for specialized musculoskeletal
radiologists in differentiation between these lesions on MRI [25].

Thornhill et al. [26] fulfilled the differentiation of lipoma from liposarcoma analyzing
texture and shape in multiple sequences (T1WI, T2WI, FS-T2WI, short time inversion
recovery (STIR), ce-T1WI) at 1.5 Tesla. They obtained an accuracy of 85%, sensitivity
of 96%, and specificity of 91% for textural and morphological features extracted from
T1WI sequences compared to radiologists. Given the robustness of T1WI sequences,
Malinauskaite et al. [27] relied on this sequence in their study. They showed that radiomics
in association with machine-learning methods gave better performances than specialized
MSK radiologists in differentiating between lipoma and liposarcoma on preoperative T1WI
MRI, obtaining 94.7% diagnostic accuracy, 88.8% sensitivity, and 100% specificity, with
positive and negative predicting values of 100% and 78.5%, respectively (AUC = 0.926).

One of the major dilemmas in fat-containing tumors’ diagnosis lies in differentiating
lipoma from WDL or ALT. ALT/WDL are locally aggressive and have no potential for metas-
tasis unless dedifferentiation occurs. Even on histological analysis, the diagnosis can be
challenging and subjective [28]. To date, the gold standard for the diagnosis of ALT/WDL
is fluorescence in situ hybridization (FISH) detection of murine double minute 2 (MDM2)
gene amplification [29–31]. Several studies evaluated the ability of MRI to differentiate
these lesions and suggested size and lipomatous content as reliable imaging discriminators.
However, a certain overlap of the imaging features of lipoma and ALT/WDL has been
reported, concluding that MRI is unreliable [32,33]. Even post-contrast imaging did not
improve the reliability of diagnosis and may occasionally be misleading [34].

A recent study conducted by Pressney et al. [35] demonstrated that radiomics-based
texture heterogeneity quantification using fine, medium, and coarse feature scales is able to
significantly differentiate between lipoma and ALT/WDL, in particular for medium and
coarse texture scales with higher means and lower or negative kurtoses.

2.2. Bone Tumors

Several coarseness factors were also found to be able to discern enchondroma from
low-grade chondrosarcoma [36]. Cartilaginous tumors are often an incidental finding in
radiological imaging [37]. Discrimination between low-grade chondrosarcoma—renamed
atypical cartilaginous tumor in long bones according to the World Health Organization in
2020 [12]—and enchondroma is a challenge both for radiologists and pathologists [38].

Lisson and colleagues assessed the diagnostic value of MRI-based 3D texture analysis
to estimate intratumor heterogeneity [36] and found several texture parameters with the
potential to differentiate between low-grade chondrosarcoma and enchondroma with
a high sensitivity, specificity, and accuracy. The most important ones were kurtosis in
contrast-enhanced (ce)-T1WI and entropy in T1WI.

Other studies have looked at the histological differentiation of primary bone tumors.
To date, a 3D non-enhanced computed tomography (CT) and an enhanced CT-based
radiomics model has been validated as a novel approach to differentiate sacral chordoma
and sacral giant cell tumor [39]. Furthermore, a radiomics model based on features extracted
from both FS-T2WI and ce-T1WI sequences yielded favorable results and constituted a new
technique for the discrimination of OS and ES [40]. Moreover, a multiparametric radiomics
signature can accurately differentiate skull base chordoma from chondrosarcoma [41].
Still, radiomics and machine learning have proved useful in spinal lesion differential
diagnosis and have demonstrated good diagnostic performances in labeling spinal lesions
as either benign or malignant and also in labeling them as benign, primary malignant, or
metastases [42].

The main characteristics of the studies discussed in Sections 2.1 and 2.2 are detailed in
Table 1.
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Table 1. Predictive performances of radiomics models in discriminating benign vs. malignant tumors.

Authors Year Type of Tumor Technique Sequences Predictive Performances Radiomics Nomogram (Radiomics
Combined with Clinical Features)

Juntu et al. [19] 2010 Soft-tissue tumors MRI T1WI AUC = 0.91 N/A

Wang et al. [20] 2020 Soft-tissue tumors MRI T1WI, FS-T2WI AUC = 0.86, 0.82 AUC = 0.96, 0.88

Malinauskaite et al. [27] 2020 Lipoma vs. liposarcoma MRI T1WI AUC = 0.926 N/A

Pressney et al. [35] 2020 Lipoma vs. ALT/WDL MRI PDWI AUC = 0.8 N/A

Lisson et al. [36] 2018 Enchondroma vs.
chondrosarcoma G1 MRI T1WI

(ce)-T1WI
AUC = 0.851, 0.822
AUC = 0.876, 0.826 N/A
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3. Grading
3.1. Soft-Tissue Tumors

Soft-tissue sarcomas (STS) comprise a diverse group of malignant soft-tissue tumors
with various prognoses. Among all the prognostic factors, histologic grading into low,
medium, or high grade of malignancy is one of the most important in order to predict
the probability of distant metastasis and survival [43]. Moreover, treatment plans in STS
patients greatly depend on tumor grade. The most important differentiation is between
low-grade (G1) and high-grade (G2 or G3), as it directly affects treatment decision in
multimodality therapy [44].

To date, core needle biopsy is the gold standard for histopathological diagnosis of
preoperative STS. It classifies STS into low, medium, or high grade of malignancy on the
basis of mitotic counts, differentiation levels, and degrees of necrosis [45,46]. However,
it is not always possible to assign a pretherapeutic histologic grade due to insufficient
specimens or sampling errors and this will affect the timing of treatment [47].

MRI features have been used by several studies attempting to increase the accuracy of
pretherapeutic grade assessment. Both peritumoral features (such as poorly defined mar-
gins, peritumoral edema-like signals, and enhancement) and intratumoral heterogeneity
have been found to have some potential to predict high-grade tumors [17,48].

To some extent, qualitative features of macroscopic intratumoral heterogeneity such as
the presence of intratumoral necrosis, hemorrhage, myxoid degeneration, and calcifications
can be assessed by visual observation of routine MR images. However, evaluation of
intratumoral heterogeneity at the microscopic level advocates the need for more accurate
diagnostic tools.

Radiomics-based texture analysis of MR imaging features allows a deep examination
of their distribution in the scanned volume and can be used to assess intratumoral hetero-
geneity. To date, texture analysis has been successfully applied to imaging studies for the
assessment of various neoplasms, aiming to discriminate tumor grades and types before
treatment [6,17,49].

A recent small retrospective study conducted by Corino et al. used diffusion weight
(DWI) MRI-based radiomics features to distinguish G2 and G3 STS. They reported that
the apparent diffusion coefficient (ADC)-based radiomics classifier has the potential to
distinguish intermediate from high-grade lesions in STS [50]. However, discriminating G2
from G3 lesions may not provide enough information for multimodality therapy.

Another study demonstrated the role of intratumoral heterogeneity on MRI, assessed
by histogram analysis, in discriminating different STS grades [51].They evaluated the role of
five histogram parameters (mean, mode, standard deviation (SD), kurtosis, and skewness),
automatically extracted from the selected regions of interest (ROI) on T1WI and T2WI
images and enhancement ratio (ER) maps. These parameters are members of the first-
order statistics of statistical-based texture analysis and reflect the frequency distribution
of grey level on images without taking into account spatial factors [17,49]. The study
demonstrated that intratumoral heterogeneity evaluated by quantitative features on MR
images, in particular skewness and kurtosis, has the potential to predict the differentiation
of different histologic grades of STS.

Zhang et al. also developed a non-invasive radiomics tool to determine the histopatho-
logical grades of soft-tissue tumors and thus predict biologic behavior [52]. They auto-
matically extracted first-order statistics, shape- and size-based features, texture features,
and higher-order statistical features from FS-T2WI MR images and compared the perfor-
mance of three different radiomics classifiers. They showed that when training with the
support vector machine classification method (SVM), the radiomics classifier had better
performances than a biopsy in discriminating STS histopathological grades [52].

Peeken et al. assessed the predictive performances of radiomic models based on differ-
ent MRI sequences (T2FS, T1FSGd, and a combined model). The three models achieved
an area under the receiver operator characteristic curve (AUC) of 0.78, 0.69, and 0.76,
respectively [53].
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3.2. Bone Tumors

As seen for STS, the clinical outcome of cartilaginous tumor mostly depends on the his-
tological grading, as the 10-year overall survival ranges from 88% for low-grade/atypical
cartilaginous tumors to 62% and 26% for grade 2 and grade 3 chondrosarcoma, respec-
tively [54]. Moreover, treatment drastically changes among different histopathological
grades of cartilaginous tumors [1]. However, the downgrading of chondrosarcoma may de-
rive from sampling errors in preoperative biopsy [55]. Moreover, a significant interobserver
variability in tumor grading has been observed, even among specialized bone pathologists.
Thus, integrating imaging data to clinical data and biopsy is of pivotal importance and
MRI is the gold standard [56]. Useful imaging characteristics in chondrosarcoma grading
have been found to be bone expansion, periosteal reaction, soft-tissue mass, and tumor
length, yielding a diagnostic accuracy > 90% [57], as well as bone marrow edema, cortical
thickening, and destruction and soft-tissue edema [57], while you cannot differentiate
different chondrosarcoma grades using diffusion-weighted-(DWI) MRI [58].

Fritz et al. evaluated the diagnostic accuracy of morphologic MRI and MRI-based
bidimensional texture analysis for chondrosarcoma grading in a series of 53 chondromas
and 63 low-to-high-grade cartilaginous tumors [59]. They obtained the highest diagnostic
performances for differentiation of benign from malignant, as well as benign from low-
grade tumor, with a combination of both morphologic MRI and texture analysis predictors,
but were unable to differentiate low-grade from high-grade lesions [59]. Data mining and
machine learning could address this limitation of classical statistical approaches [60].

Recent studies aimed to evaluate the diagnostic accuracy of machine learning for
tumor grading of cartilaginous bone tumors based on radiomic parameters extracted from
MRI. Gitto and colleagues attempted to discriminate low-grade/atypical cartilaginous
tumors from higher-grade lesions extracting radiomic data from unenhanced T1WI and
T2WI sequences of MRI [61]. They combined texture analysis with machine learning, and
performed automatic feature selection through a Random Forest wrapper whose output
comprised four features derived from T1WI sequences. Afterwards, the performance of
a locally weighted ensemble classifier was evaluated on the test cohort, and was showed
to be as good as an experienced musculoskeletal radiologist (AUC = 0.78). In agreement
with these results, more recently they attempted to develop a machine-learning classifier
based on preoperative CT radiomic features to discriminate between atypical cartilaginous
tumors and high-grade chondrosarcomas of long bones [62]. The CT radiomics-based
machine-learning classifier achieved 75% accuracy overall, 81% accuracy in identifying
atypical cartilaginous tumors, and 70% accuracy in identifying higher-grade chondrosar-
comas, and still there was no difference in comparison with an experienced radiologist
(p = 0.75). Additionally, Gitto et al. recently obtained 92% accuracy in differentiating
atypical cartilaginous tumor from grade 2 chondrosarcoma of long bones using T1WI
MRI radiomics-based machine learning, with no difference compared to an experienced
musculoskeletal oncology radiologist (p = 0.134) [63].

Altogether, these results suggest that even though qualitative image assessment still
plays a central role in the diagnosis and tumor grade discrimination, a radiomics-based
machine learning classification model of low-to-high-grade tumors is a promising tool for
preoperative tumor characterization.

The main characteristics of the studies discussed in Sections 3.1 and 3.2 are detailed in
Table 2.
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Table 2. Predictive performances of radiomics models in grading tumors.

Authors Year Type of Tumor Technique Sequences Predictive Performances

Corino et al. [50] 2018 STS (G2 vs. G3) MRI ADC AUC = 0.85, 0.87

Xiang et al. [51] 2019 STS (G1 vs. G2 vs. G3) MRI ER (Enhancement Ratio) maps AUC = 0.747, 0.684

Zhang et al. [52] 2019 STS (G1 vs. G2 vs. G3) MRI FS-T2WI AUC = 0.92 (SVM)

Peeken et al. [53] 2019 STS (G1 vs. G2 vs. G3) MRI
T2WI

ce-T1WI
combined

AUC = 0.78
AUC = 0.69
AUC = 0.76

Fritz et al. [59] 2018 Chondrosarcomas
(G1 vs. G2 vs. G3) MRI T1WI, ce-T1WI Not significant

Gitto et al. [61] 2020 Atypical cartilaginous tumor
vs. G2-G4 chondrosarcoma MRI T1WI

T2WI AUC = 0.78

Gitto et al. [62] 2021 Atypical cartilaginous tumor
vs. G2-G4 chondrosarcoma CT CT AUC = 0.78

Gitto et al. [63] 2022 Atypical cartilaginous tumor
vs. G2 chondrosarcoma MRI T1WI AUC = 0.94
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4. Treatment Response
4.1. Soft-Tissue Tumors

The standard of care for patients with locally advanced high-grade STS is being
reconsidered since anthracycline-based neoadjuvant chemotherapy (NAC) has been shown
to improve overall and metastasis-free survivals of patients [64–66]. The prediction of
response to NAC is of pivotal importance since any difficulty with the prediction may
hamper personalized medicine strategies that depend on pathological examination results.

In a recent study, the accuracy of Choi criteria to predict a very good pathological
response (defined as <10% viable cells on surgical specimens) was demonstrated to be
74.1% [67,68]. In another study, a decrease in contrast enhancement of –30.5% between two
MRIs with optimized acquisition timing after contrast-agent injection yielded an accuracy
of 82.8% [69]. In a prospective study of 50 patients, a decrease of >35% of maximum
standardized uptake value (SUVmax) at an early evaluation with 18FDG-PET-CT provided
an AUC of 0.83 [70,71]. Despite these encouraging results, response evaluation is still
based on response evaluation criteria in solid tumors (RECIST). However, shortening of
the longest diameter is not an adequate criterion to predict therapeutic response to NAC of
STS, since they usually do not shrink. MRI evaluation of STS during NAC can point out a
wide range of morphologic changes conjugating fibrotic and necrotic processes, infarction,
bleeding, redifferentiation, or selection of resistant components. These lead to a change
in tumor heterogeneity that could be quantified with shape and texture features making
STS particularly suitable to the radiomics approach for the evaluation of tumor response to
treatment. The traditional radiomics system analyzes features extracted from single-phase
medical images, thus neglecting the changes that occurred during treatment or follow-
up. Delta-radiomics quantifies the change in radiomic features during or after treatment,
and is therefore more appropriate for the evaluation of tumor response to treatment and
provides a potential tool for precision medicine [72]. The delta-radiomics approach has
been demonstrated to be predictive of prognoses and metastases’ occurrence in previous
studies conducted on non-small cell lung cancer [73,74].

A retrospective study by Crombé et al. investigated the potential of an MRI T2-based
delta-radiomics approach to improve early response assessment in high-grade STS patients
treated by anthracycline-based NAC [75]. A threshold of <10% viable cells on surgical spec-
imens defined good histological response (good-HR). Three senior radiologists reported
RECIST response status and performed a semantic analysis of the MRI at baseline and early
evaluation after NAC, reporting changes in tumor volume compatible with fibrosis and/or
necrosis, margin definition, surrounding edema, and peritumoral enhancement. After 3D
manual segmentation of tumors at baseline and early treatment stages, absolute changes in
33 first- and second-order texture and shape features were calculated. An association with
response was observed neither for RECIST 1.1 (p = 0.112) nor for semantic radiological vari-
ables (range of p-values: 0.134–0.490), with the exception of an edema decrease (p = 0.003).
Whereas 14 shape and texture features were associated with treatment response (range of
p-values: 0.002–0.037), the highest diagnostic performance on the training cohort was ob-
tained with three features: ∆_Histogram_Entropy, ∆_Elongation, ∆_Surrounding_Edema,
(AUC = 0.86, accuracy = 88.1%, sensitivity = 94.1%, and specificity = 66.3%). On the test
cohort, this model provided an accuracy of 74.6%. These preliminary results indicate that
a T2-based delta-radiomics approach might be able to ameliorate performances in early
response assessment in STS patients.

A more recent longitudinal imaging study explored radiomics features from longitu-
dinal DWI MRI for the assessment of treatment response in patients with localized STS
undergoing hypofractionated preoperative radiotherapy (RT) [76]. A support vector ma-
chine (SVM) model built to predict the treatment effect score was used both with mean
ADC or delta ADC and with radiomics features extracted from longitudinal DWI and
tumor ADC maps acquired at three time points. The prediction performance of mean ADC
or delta ADC alone was poor (AUC < 0.74), whereas including delta radiomics of mid- or
post-treatment relative to the baseline substantially improve the prediction.
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4.2. Bone Tumors

In addition, for high-grade osteosarcoma (HOS), the gold standard for treatment is
NAC, followed by surgical resection and adjuvant chemotherapy [77]. The long-term sur-
vival rate of localized osteosarcoma patients has improved markedly after the introduction
of NAC, with a 5-year survival rate of approximately 60–70% [78]. However, in patients
with poor histologic responses after NAC, their prognoses are still poor [78,79]. Thus, the
accurate prediction of histologic responses to NAC in patients with HOS is a critical point
for treatment planning and prognoses [80].

Changes in tumor volume have to date been proposed as a prediction factor to treat-
ment response. However, osteosarcoma does not significantly shrink after NAC [81], but
the tumor may undergo necrosis or change in vascularization or become cystic, with no
significant change in tumor size.

Several prediction models have been developed to distinguish good responders from
others with HOS, based on 18FGD PET/CT or MRI [81–84]. Most models have focused on
qualitative description of medical images or used a mean value to represent whole tumors,
which may neglect tumor heterogeneity and have limitations in predicting therapeutic
responses.

A recent retrospective study developed and validated a delta-radiomics nomogram
to evaluate pathologic responses after NAC in patients with HOS [85]. This work aims
to identify the poor response HOS patients by combining pre- and post-treatment CT
data. There were 7 intensity features and 53 texture features extracted from each region of
interest (ROI) on the CT images before and after NAC, with radiomics signatures built for
comparison purposes as well. A radiomics nomogram was then developed by combining
the delta-radiomics signature with independent clinical factors such as the occurrence
of new pulmonary metastases. The study showed that the delta-radiomics signature
performed better than single-CT-based radiomics signatures in both training and validation
cohorts in discriminating between the pathologic good response (necrosis fraction ≥ 90%)
group and the non-pathologic good response (necrosis fraction < 90%) group (p < 0.0001).
As well, the delta-radiomics nomogram showed good discrimination ability with AUC
0.871 and 0.843 in the training and validation cohorts, respectively, suggesting it could be
used to better tailor proper chemotherapy and treatment plans.

The main characteristics of the studies discussed in Sections 4.1 and 4.2 are detailed in
Table 3.

Table 3. Performances of radiomics models in response to treatment prediction.

Authors Year Type of
Tumor Treatment Technique Sequences

∆_Radiomics
Predictive

Performances

∆_Radiomics Nomogram
Predictive Performances

Crombé et al.
[75] 2019 G3 STS NAC MRI T2WI AUC = 0.86 N/A

Gao et al.
[76] 2020 G3 STS RT MRI ADC AUC = 0.85 N/A

Lin et al. [85] 2020 HOS NAC CT N/A AUC = 0.868,
0.823 AUC = 0.871, 0.843

5. Local Recurrence and Metastasis
5.1. Soft-Tissue Tumors

The incidence of local recurrence (LR) for STS is about 6.5% and 25% and is related to
poor prognosis [86]. The American College of Radiology (ACR) Appropriateness Criteria
guidelines suggest MRI as the most proper imaging examination for LR surveillance of
musculoskeletal STS [87]. However, despite MRI being capable of differentiating local recur-
rence from post-surgical changes (i.e., edema, hematoma, inflammation, and scarring), they
can sometimes mimic local recurrence on T1WI, T2WI, and post-contrast sequences [87–90].
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Postoperative inflammation and fibrosis may share many characteristics with tumors on a
conventional MRI and can occasionally appear mass-like [91]. Moreover, some LR are not
nodules but plaque-like “tails” of tumor on MRI, or they may be of a low signal intensity on
T2WI images with only architectural distortion visible on a T1WI study due to the tumoral
presence. In these cases, radiomics may be a valid aid to radiologists in the detection of
LR [90].

A recent prospective study on a small number of patients hypothesizes that MRI
radiomics analysis of patients undergoing follow-up for STS allows the differentiation of
LR from normal tissue [92]. They showed that radiomics features extracted from T1WI MRI
images, FS-T2WI MRI images, and T1WI post-gadolinium (Gd) sequences can differentiate
LR from normal tissue better than conventional MRI (AUC = 0.96 for radiomics based on
T1WI post-Gd).

About 25% of all patients with STS develop distant metastases [93]. In those with
high-grade tumors, the metastatic recurrence rate increases to approximately 50% [94]. The
main site of distant metastases in patients with STS of the extremities are the lungs (80%
of metastatic cases) [95]. The development of lung metastases affects both prognosis and
management of STS patients, thus making the prediction of lung metastases risk of great
interest in the course of STS management. As discussed above, radiomics tools for the
study of tumor heterogeneity yield valuable information about tumor aggressiveness.

Vallières and colleagues developed a joint model merging FDG-PET and MRI-extracted
texture features for an early assessment of the risk of lung metastases in STS patients [96].
Nine non-texture features (shape features and SUV metrics) and forty-one texture features
were extracted from the ROI of single FDG-PET, T1WI, and FS-T2WI scans and fused
FDG-PET/T1WI and FDG-PET/FS-T2WI scans. In agreement with other studies [97,98],
SUVmax was significantly related to lung metastasis risk in STS patients. A significant
positive association was also shown to exist with Percent Inactive, being the volume of
inactive FDG-PET regions of tumors and lung metastases’ occurrence. However, texture
analysis better characterizes intratumoral heterogeneity and better predicts lung metastases
risk. In particular, merging MRI information with that of FDG-PET performs better than
MRI or FDG-PET alone (AUC of four texture features extracted from FDG-PET/T1WI and
FDG-PET/FS-T2WI scan = 0.984 ± 0.002) [96].

5.2. Bone Tumors

The incidence of local or distant relapse in patients with localized osteosarcoma is
about 30–40%, and it results in a decrease of the 5-year survival rate to 23%–29% [99].
The majority of these recurrence occurs in the first year of treatment (early relapse) [100].
Accurate prediction of early relapse in osteosarcoma is still a challenge that could take
advantage of radiomics-based evaluation of tumor heterogeneity on MRI.

Chen et al. developed and validated an MRI-based radiomics nomogram from retro-
spective multicenter datasets to predict the risk of early relapse (≤1 year) in osteosarcoma
after surgery [101]. Radiomics features were extracted from contrast-enhanced (ce)-T1WI
images and features were extracted through a LASSO regression system. A radiomics
nomogram was constructed by incorporating MRI-assessed predictors such as joint inva-
sion and perivascular involvement. It was shown to be capable of predicting early relapses
of osteosarcoma, providing a potential tool to improve personalized therapy.

The main characteristics of the studies discussed in Sections 5.1 and 5.2 are detailed in
Table 4.
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Table 4. Performances of radiomics models in the prediction of local recurrence and metastasis.

Authors Year Type of Tumor Prediction/
Discrimination Technique Sequences Radiomics Model

Performances
Radiomics + Clinical

Features Performances

Tagliafico et al. [92] 2019 STS Fibrosis vs. LR MRI ce-T1WI AUC = 0.96 N/A

Vallières et al. [96] 2015 STS Lung metastasis risk FDG-PET
MRI

FDG-PET/T1WI,
FDG-PET/FS-T2WI AUC = 0.984 N/A

Chen et al. [101] 2020 HOS LR MRI ce-T1WI AUC = 0.887, 0.763 AUC = 0.907, 0.811
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6. Overall Survival
6.1. Soft-Tissue Tumors

STS behavior largely differs, ranging from indolent tumors to highly aggressive dis-
ease. Besides tumor size, the French Federation of Cancer Center’s histologic grading
system is the other major prognostic factor for STS. It takes into consideration tumor
differentiation, mitotic activity, and necrosis [102]. Several studies have corroborated its
prognostic value in terms of local recurrence-free survival, metastasis-free survival, and
overall survival [43,103,104]. However, tumor heterogeneity and the possible underestima-
tion of histologic grade because of sampling errors remain a concern. As discussed above,
biopsy grade can be corrected using imaging findings, so it has been hypothesized that
imaging features associated with grade would correlate with patients’ prognoses.

Crombé and colleagues conducted a retrospective single-center study with the aim of
assessing the relationship between conventional MRI features and high tumor grade and
to determine consequent information regarding patient outcomes [105]. They evaluated
qualitative characteristics of images at T2WI, T1WI precontrast, and T1WI postcontrast
MRI. Kaplan–Meier curves and multivariable Cox models were used to evaluate possible
associations of these features with overall survival and metastasis-free survival. Based on
multivariable analysis, there were three independent MRI features (presence of necrosis,
heterogeneous signal intensities at T2W, and peritumoral enhancement) found to be associ-
ated with grade 3 STS. No metastatic relapses or deaths were reported in the absence of
these three relevant MRI features. These findings hint that baseline MRI studies may be
complementary to histologic grade in providing prognostic information about STS patients.

Prior studies reported promising results for quantitative imaging biomarkers of STS
as prognostic factors. These mainly focused on positron emission tomography/computed
tomography (PET/CT) and found associations of quantitative features and structural
features (e.g., tumor boundary heterogeneity) with patient outcomes [97,98,106]. More
recently, radiomics has emerged as a promising tool capable of capturing complex image
characteristics and providing a quantitative analysis of texture heterogeneity.

Radiomics features extracted from STS have been found to be possibly associated with
the risk of developing distant metastases and overall survival in STS. Spraker et al. [107]
evaluated the hypothesis that quantitative imaging features extracted from pretherapy
T1WI MR images would be predictive of overall survival in patients with STS. They ex-
tracted 30 radiomic features from pretreatment T1WI ce-MRI of two independent cohorts of
patients with stage 2–3 STS. After feature selection, they trained three models for predicting
overall survival: a clinical-only model (C) containing only age and grade as predictors, a
radiomics-only model (R), and a combined model (C + R). There were two main findings.
First, radiomic features alone were together significantly predictive of overall survival.
Second, the combined model (C + R) outperformed the predictive performances of overall
survival compared with clinical features alone.

These results were similar to those obtained by Peeken et al. After evaluating the per-
formance of their MRI-based radiomics models in discriminating between low-grade (G1)
and high-grade (G2/G3) STS, they went further by analyzing the usefulness of radiomics
models for prognostic assessment [53]. Radiomics models directly trained to predict overall
survival only showed moderate predictive performances. However, radiomics nomograms
were created by combining the American Joint Committee on Cancer (AJCC) staging system
(7th edition) with the radiomics grading models, for prognostic assessment. Combining the
FS-T2WI radiomics model into a nomogram with AJCC clinical staging showed the best
predictive performance for overall survival, above clinical staging alone.

They also conducted a similar study on pre-radiotherapy-planning CT scans and
investigated whether quantitative imaging features extracted from CT scans performed for
radiotherapy planning provided prognostic information [108]. After features extraction
and reduction, machine learning modeling for the prediction of grading, overall survival,
and distant (DPFS) and local (LPFS) progression-free survival were fulfilled followed by
external validation. They evaluated a radiomics model, a clinical model, and two combined
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models: one obtained by combining clinical features and the tumor volume and the other
trained on all radiomics and clinical features. They observed that radiomics models were
able to differentiate grade 3 from non-grade 3 STS (AUC: 0.64). Moreover, radiomic models
showed better predictive performances for patients’ overall survival, DPFS, and LPFS,
compared to a clinical model. Still, the combined model achieved the best performance for
overall survival.

6.2. Bone Tumors

As is the case with STS, osteosarcomas also differ widely for aggressiveness and tumor
behavior. Therefore, the identification of prognostic biomarkers is crucial for osteosarcoma
treatment planning, especially in patients with localized osteosarcoma. Radiomics aims to
quantify heterogeneous aspects of tumor images with the admission that this information
is associated with tumor biology and behavior [109].

A recent study validated the hypothesis that a radiomic signature extracted from
DWI-MRI can outperform predictive performances compared with clinical factors alone in
localized osteosarcoma. Multivariate Cox regression was used to validate the radiomics
signature as an independent biomarker showing that the radiomics signature was predictive
of overall survival. The combined model incorporating radiomics and clinical factors still
resulted in better performances in terms of survival (C-index: 0.813; 95% CI: 0.75, 0.89)
when compared both with radiomics (C-index: 0.712; 95% CI: 0.65, 0.78) and clinical models
alone [109].

In another study, radiomics features were extracted from the pretreatment diagnostic
computed tomography images of patients with HOS [110], a clinical model was constructed
by using clinical factors only (stage and tumor volume), and a radiomics nomogram
was developed by incorporating the radiomics score and clinical factors. The radiomics
nomogram showed better performance than the clinical model, both in terms of better
calibration and classification capacity (AUC 0.86 vs. 0.79 for the training cohort, and 0.84
vs. 0.73 for the validation cohort) and prediction of survival and non-survival group.

The main characteristics of the studies discussed in Sections 6.1 and 6.2 are detailed in
Table 5.

Table 5. Performances of radiomics models in the prediction of overall survival, distant progression-
free survival, and local progression-free survival.

Authors Year Type of Tumor Prediction/
Discrimination Technique Sequences

Radiomics
Model

Performances
Radiomics + Clinical

Features Performances

Spraker et al.
[107] 2019 STS OS MRI ce-T1WI C-index = 0.68 C-index = 0.78

Peeken et al.
[53] 2019 STS OS MRI

FS-T2WI
ce-T1WI

combined
tumor volume

C-index = 0.55
C-index = 0.60
C-index = 0.60
C-index = 0.54

C-index = 0.67
C-index = 0.70
C-index = 0.66
C-index = 0.71

Peeken et al.
[108] 2019 STS

OS
DPFS
LPFS

CT N/A
C-index = 0.73
C-index = 0.68
C-index = 0.77

C-index = 0.76

Zhao et al.
[109] 2019 HOS OS MRI DWI C-index = 0.712 C-index = 0.813

Wu et al. [110] 2018 HOS OS CT N/A AUC = 0.79,
0.73 AUC = 0.86, 0.84

7. Limitations and Conclusions

Radiomics has now become one of the main fields of research in oncologic imaging.
It arises from the underlying hypotheses that quantitative imaging features reflect the
molecular phenotype of tumor and that predictive models can be developed and improved
by integrating radiomics data with non-radiological and “-omics”. Therefore, radiomics
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appears complementary to histopathological and molecular analyses to predict tumor
grading, identify relevant subgroups of patients, predict response to multimodality therapy,
and thus better design personalized treatments to finally improve patients’ survival.

However, no oncologic radiomics studies have yet translated to clinical applications.
Hence, to overcome the turning point between proofs of concept and real-life application,
one of the major issues to be addressed is that of radiomic feature reproducibility and
model validation which vary widely among the studies dealing with musculoskeletal
sarcomas [111–113]. In particular, a certain degree of interobserver segmentation variability
highlights the need for a preliminary reproducibility analysis in radiomic studies [114].
Machine learning can be combined with radiomics to perform model validation [115,116].

Although showing promising results, improvements in study design, validation, and
open science are needed to make sarcoma radiomics studies reproducible with an acceptable
level of evidence needed. These efforts, together with a better knowledge and application
of the “Radiomics Quality Score” and Image Biomarker Standardization Initiative [112]
reporting guidelines, could improve the quality of sarcoma radiomics studies and facilitate
radiomics towards clinical translation.
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