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Abstract: In contrast to their mostly unstable isolobal carbon counterparts, oligophosphanide anions, such as 

M(cyclo-P5
tBu4) (M = Li, Na) and M2(P4R4) [M = Na, K; R = Ph, tBu, 2,4,6-Me3C6H2 (Mes)], have unique fea-

tures, depending on their composition and structure, and are highly suitable building blocks for the synthesis of 

phosphorus-rich metal compounds. However, alkali metal oligophosphanediides are highly reactive and highly 

reducing, and a major problem is their tendency for disproportionation in reactions with electrophiles. This, 

however, can also give rise to a fascinating chemistry of making and breaking of P–P bonds. On the other hand, 

neutral cyclooligophosphines, such as cyclo-(P5Ph5), are suitable stable ligands for the formation of phosphorus-

rich metal complexes. 
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1 Introduction 

The chemistry of phosphorus is, without any doubt, one of the most intriguing fields of inorganic chemistry. It 

comprises a vast number of classes of inorganic compounds with many elements in the periodic table and combina-

tions thereof. A distinctive feature of phosphorus is the high dissociation energy of homonuclear bonds [1] which 

causes a pronounced tendency to form P–P bonds, leading to a plethora of compounds. Like carbon, phosphorus-rich 

molecules show constitutional, configurational and conformational isomerism as well as valence tautomerism, can 

exist as stable three-, four-, five- or six-membered rings and polycyclic compounds and can also contain multiple 

bonds – this is the main reason why phosphorus is sometimes referred to as the “carbon copy”.[2] This can be rational-

ised with the similarity of the frontier orbitals of the fragments CH3/PH2, CH2/PH and CH/P (isolobal concept [3]). 

Despite these striking similarities, there are some distinctive features of these compounds:  

1. Every phosphorus atom has a lone pair of electrons, facilitating coordination of Lewis acids, particularly 

metal atoms and ions. 

2. Phosphorus tends to feature smaller bond angles compared to carbon [4] which results in a different stability 

of the respective ring systems and polycyclic structures.[5] 

3. As a result of the reduced number of bonds on phosphorus, various chiral centres are present in oligophos-

phines. Remarkably, the inversion barrier in some these oligophosphines is so low that this reaction already 

occurs at room temperature.[6,7,8] Coordination to metal ions can even further decrease the barrier.[9] 

4. Disproportionation and transformation reactions of oligophosphines in general occur at much lower tempera-

tures compared to hydrocarbons. Phosphorus hydrides, PnHn+2 or cyclo-PnHn, are thus hardly isolable.[10] 

However, when the hydrogen atoms are replaced with bigger organic groups, such as tBu, the respective 

compounds can be significantly stabilised.[10] 

The chemistry of phosphorus-rich compounds dates back to 1877 when Köhler and Michaelis investigated the re-

action of PhPCl2 with PhPH2.[11,12] Under evolution of HCl, a product was obtained, which, based on the elemental 

composition (C and H), was identified as phosphobenzene, PhP=PPh. However, as was shown almost a century later, 

this reaction produces polymers as well as several oligomers [13] with the tetramer cyclo-(P4Ph4) as the main compo-

nent.[14] Employing 31P NMR spectroscopy and single crystal X-ray crystallography, all cyclo-

oligo(phenylphosphines) with ring sizes from three to six were identified in the following years.[15–19] Even though 
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two of these compounds can be isolated, also the most stable one in this series, cyclo-(P5Ph5), slowly transforms to 

four- and six-membered rings in solution.[21] In the last four decades, the chemical library of phosphorus-rich com-

pounds was vastly extended. One of the biggest contribution was the pioneering work of Baudler et al. who character-

ised a large number of catenated, cyclic and polycyclic oligophosphines with hydrogen and organic substituents.[5–12] 

As was shown later, phosphorus is also capable of forming unsaturated [21] and even aromatic compounds [22]. To-

day, many more phosphorus-rich compounds exist.  

The follow-up chemistry of oligophosphines, in contrast, was considerably less investigated. One reason is their 

pronounced tendency to undergo transformation reactions to other phosphines even at very low temperatures making 

their isolation virtually impossible. This especially applies to phosphorus hydrides PnHn+2 which have mainly been 

characterised only by 31P NMR spectroscopy in mixtures. The second reason is the rather unselective synthesis of most 

oligophosphines; extremely tedious methods must often be applied to obtain a pure compound.[23] However, not all 

oligophosphines require such complex procedures. For example, cyclooligophosphines are usually much easier to 

isolate, and their reactivity, particularly their coordination chemistry, have been studied, e.g. complexes with cyclo-

(PnRn) (n = 3–6, R = Ph,[21,24–28] Et,[29,30] or tBu [31–33]).  

 

Another aspect of the reactivity of oligophosphines is the reaction with alkali metals which leads to P–P bond 

cleavage and formation of oligophosphanides or -phosphanediides. The linear dianionic species M2(P4R4) (M = Li, Na, 

K; R = Ph, C2H5, cyclo-C6H11) were first synthesised by Issleib et al. by reduction of cyclo-(P4R4) with alkali met-

als.[34,35] These compounds are of special interest for coordination chemistry because of the negatively charged P 

atoms, which have excellent donor properties. A more facile procedure for the synthesis of linear dianionic species 

M2(P4R4) (M = Na, K; R = alkyl or aryl) has been reported.[36] However, the preparation and purification of metal 

complexes with oligophosphanide ligands has remained a challenging task.[37–39] Hey-Hawkins et al. developed 

selective routes toward these oligophosphanides by one-pot reactions of PCl3, chlorophosphines and alkali metals 

under careful control of the stoichiometry (Scheme 1).[40,41] These reactions give the desired ligands in only one, 

high-yielding, reaction, which, in turn, enabled the synthesis of a large variety of corresponding metal complexes.  

 

 
 

Scheme 1: Syntheses of oligophosphanides. 

 

 

Even though the chemistry of phosphorus-rich compounds and their complexes is intriguing enough to justify the 

corresponding research, there are also potential applications in materials science. Oligophosphine-based metal com-

plexes can be converted to phosphorus-rich metal phosphides MPx with x > 1. Metal phosphides have numerous out-

standing properties, making them highly interesting for industrial applications. This involves catalytic activity for 

many different reactions (hydrogen evolution,[42,43] water splitting,[44] hydrodenitrogenation and hydrodesulfuration 

[45–47]), ferromagnetism,[48] superconductivity,[49,50] anti-corrosive properties [51] and countless more. Despite 

this, their current application is limited as the synthesis of these materials is extremely challenging. Reacting the ele-

ments (metal and red phosphorus) requires very high temperatures which, however, lead to decomposition of the prod-

uct due to the volatility of white phosphorus (P4) under these conditions.[52] Furthermore, the extreme reaction heat 

can cause explosions and reactions with the material of the reaction vessel. One promising alternative method is the 

mild thermolysis of phosphorus-rich metal complexes. By applying relatively low temperatures, the organic groups of 

the molecule are cleaved off while the metal and phosphorus atoms remain in the material.[53]  
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The Hey-Hawkins group reported two intriguing examples of such thermolyses by using oligophosphine com-

plexes of iron and manganese. Upon heating of [Fe{cyclo-(P5
tBu4)}2] to 500 °C, a new phosphorus-rich iron phosphide 

(formal composition FeP6) was identified according to the mass loss (Scheme 2).[53] The second example is the com-

plex [Mn2(μ-Br){cyclo‐(P4
tBu3)P

tBu}(CO)6].[54] Up to 141 °C, loss of six CO molecules occurs followed by loss of 

four tBu and Br (up to 315 °C) to give a compound of formal composition Mn2P5. Conversion to Mn2P took place when 

thermolysed up to 1000 °C. In both cases, the elevated temperature caused elimination of the tBu groups as isobutene.  

 

 

 
Scheme 2: Illustration of the thermolytic conversion of an oligophosphanide iron complex to a phosphorus-rich iron phosphide. 

 

2 Results and Discussion 

Over the past few years numerous phosphorus-rich transition metal complexes of linear (P4R4)
2– (R = Ph, 2,4,6-

Me3C6H2 (Mes)) anions were reported by Hey-Hawkins and coworkers. Simple transmetallation reactions occur when 

Na2(P4Mes4) reacts with one equivalent of the platinum(II) complexes [PtCl2(L)] [L = cod (1,5-cyclooctadiene), dppe 

(dppe = bis(diphenylphosphino)ethane)] yielding [Pt(P4Mes4)(cod)] and [Pt(P4Mes4)(dppe)], respectively. Mere ligand 

exchange occurred when these products were reacted with an excess of isonitriles, RN≡C (R = cyclo-C6H11, 
tBu), re-

sulting in [Pt(P4Mes4)(C≡NR)2].[55]  

 

The first copper(I) complexes were obtained by the reaction of one equivalent of Na2(P4Ph4) with two equivalents 

of [CuCl(PCyp3)2] (Cyp = cyclo-C5H9), which gave the tetranuclear copper(I) oligophosphanide complex 

[Cu4(P4Ph4)2(PCyp3)3] (Scheme 3).[56]  

 

 
 
Scheme 3: Synthesis of copper(I) oligophosphanide complexes.[56,57]  



 
The analogous tetranuclear copper(I) oligophosphanide complex [Cu4(P4Ph4)2(PH2Ph)2(PCyp3)2] was obtained 

from the reaction of M2(P4Ph4) (M = Na, K) with one equivalent of HCl followed by the subsequent addition of one 

equivalent of [CuCl(PCyp3)2] (Scheme 3).[57] Similarly, the reaction of two equivalents of in situ formed (P4HMes4)
– 

with one equivalent of [{RhCl(cod)}2] gave the rhodium(I) tetraphosphanido complex [Rh(P4HMes4)(cod)] with a 

small amount of  the side product [{Rh(cod)}2(µ-P2HMes2)(µ-PHMes)] (Scheme 4).[57]  

 

 
 
Scheme 4: Synthesis of rhodium(I) oligophosphanide complexes.[57] 

 
The reaction of Na2(P4Mes4) with [AgCl(PPh3)2] gave unusual silver oligophosphanide complexes containing a di-

anionic P6 chain,[58] while the reaction with [Ta(η5-C5Me5)Cl4] gave an unusual product containing a P6 trianion 

(Scheme 5).[59]  

 

 
 
Scheme 5: Synthesis of unusual metal oligophosphanide complexes.[58,59] 

 
Oxidative cleavage of the P‒P bond is observed when Na2(P4Mes4) reacts with bis(phosphane)nickel(II) dichloride 

and bis(phosphane)palladium(II) dichloride to give nickel(0) and palladium(0) diphosphene complexes (Scheme 

6).[60]  

 

 
 
Scheme 6: Oxidative P‒P bond cleavage of Na2(P4Mes4) by nickel(II) and palladium(II) complexes.[60] 

 
In contrast, reductive cleavage of the P‒P bond occurs in the reaction of Na2(P4Ph4) with one equivalent of 

[Ni(cod)2] (Scheme 7). Similarly, the reaction of [Ni(cod)2] with the less reactive potassium tetraphosphanide 

[K2(pmdeta)2(P4Ph4)] (pmdeta = N,N,N′,N′′,N′′-pentamethyldiethylenetriamine) gave the complex 

[K(pmdeta)]2[Ni(P4Ph4)(η
2-P2Ph2)], which contains both diphosphene and an intact P4 chain of the tetraphosphanediide 

(Scheme 7).[61]  
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Scheme 7: Reactivity of Na and K salts of (P4Ph4)

2‒ towards [Ni(cod)2].[61] 

 
Additionally, P‒P bond cleavage of Na2(P4Mes4) occurs in the reaction with nucleophiles, such as nBuLi, which 

results in an unusual phosphorus-carbon based heterocyclic phosphaindazole anion (P2C9H9)
‒ (Scheme 8).[62]  

 

 
 
Scheme 8: Synthesis of a phosphorus-carbon based heterocyclic phosphaindazole.[62] 

 
Besides transition metal complexes, a few main group metal complexes of (P4

tBu4)
2– have also been reported. A 

transmetallation reaction is observed when K2(P4
tBu4) reacts with one equivalent of R2ECl2 (E = Si, R = Me, Cl; E = 

Ge, R = Et; E = Sn, R = Me, tBu, nBu, Ph) to give cyclo-(P4
tBu4ER2) (Scheme 9).[63–67]  

 

 
 
Scheme 9: Synthesis of group 14 metal complexes.[63–67] 

 
The reaction between Na2(P4Mes4) and two equivalents of tributyltin chloride gave the linear transmetallation 

product P4Mes4(SnBu3)2, which is surprisingly stable towards air and moisture (Scheme 10).[68]  

 

 
 
Scheme 10: Reaction of Na2(P4Mes4) with two equivalents of Bu3SnCl.[68] 

 

 



While oligophosphanide anions are highly reactive, neutral cyclooligophosphines are suitable ligands for the for-

mation of stable phosphorus-rich metal complexes.[69] We have shown that the phosphorus-rich complexes 

[Cr(CO)5{cyclo-(P5Ph5)-κP1}, [{Cr(CO)5}2{-cyclo-(P5Ph5)-κP1,P3}], [M(CO)4{cyclo-(P5Ph5)-κP1,P3}] (with M = Cr, 

Mo, W (exo and endo isomer)) are obtained in stoichiometric reactions (1:1 or 2:1) of the group 6 carbonyls with cyclo-

(P5Ph5) in toluene or dichloromethane at room temperature. These complexes are air-stable at room temperature for at 

least one day. Single crystal structure determinations showed that the cyclopentaphosphine remains intact and acts as 

monodentate, bridging or bidentate ligand. Thermal decomposition of selected complexes occurs in three steps starting 

at ca. 220 °C and being completed at 600 °C. The decomposition products indicate that in contrast to the complexes 

with tBu groups, these complexes are not suitable as precursors for the synthesis of phosphorus-rich metal phos-

phides.[70]  

 

        
 
Figure 1: Molecular structures (H atoms are omitted) and atom labelling scheme for [Cr(CO)4{cyclo-(P5Ph5)-κP1,P3}] with ellipsoids drawn 
at 30% probability level. 

 

 
Figure 2: Experimental (top) and simulated (bottom) 31P{1H} NMR spectrum of complex [Cr(CO)4{cyclo-(P5Ph5)-κP1,P3}] in C6D6. 
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Table 1: 31P{1H} NMR data (δ (ppm) and J (Hz)) of [Cr(CO)4{cyclo-(P5Ph5)-κP1,P3}] in C6D6 at 25 °C. 

[Cr(CO)4{cyclo-(P5Ph5)-κ
2P1,P3}] 

(ABCDE spin system) 

 
               
2J(PC,PE) = 29.0         
1J(PB,PC) = –202.7 
2J(PD,PE) = 17.2         2J(PA,PC) = 16.4 
1J(PB,PE) = –235.0      2J(PB,PD) =10.3 
1J(PA,PE) = –353.6      1J(PA,PD) = –273.7 
1J(PC,PD) = –210.2      2J(PA,PB) = –12.0 

3 Conclusions 

The targeted synthesis of ions such as (P4R4)
2− (R = Ph, Mes) and cyclo-(P5

tBu4)
− and their versatile reactivity to-

wards transition metal complexes allowed the preparation of a large variety of phosphorus-rich metal oligophospha-

nides. In reactions with these anions, complexes with intact ligands are formed, or degradation, rearrangement or oxi-

dative coupling of the anions was observed, depending on the starting materials. In contrast, neutral 

cyclooligophosphines, such as cyclo-(P5Ph5), are generally much more predictable in coordination chemistry.  
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