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1. ABSTRACT  
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The food industry needs to comply with more strict rules (from regulatory agencies) and meet 

customers’ demands for higher quality. Emerging technologies for quality and safety inspection 

are becoming fundamental and needful to fulfil these purposes. 

The optical techniques have been using in different fields (agriculture, food, chemistry etc.). 

During harvest, post-harvest and food processing these techniques are well applied to predict 

crucial quality parameters. Spectra of intact food samples can be measured in few seconds 

without any sample preparation and expert personnel trained. Compared to this technology, 

chemical techniques are time-consuming, require sample preparation and use of chemical 

reagents which are often not sustainable for the environment. 

This PhD project regards different applications of non-destructive optical techniques to 

evaluate the quality of agri-food products as well as  the development of customized optical 

devices to fulfil the needs of agri-food chain which is going toward a concept of industry 4.0. 

This thesis starts with a focus on optical sensing in terms of concept, data management and 

general applications in agri-food chains highlighting the attitude to be a green technology. 

Then, in two chapters were set the stage for models' development using commercial benchtop 

and portable optical devices to enhance the advantages of this technique in terms of 

performance (compared to other analytical instruments) and versatility in coffee industry and 

in the olive supply chain. Moreover, thanks to the need of the winemaking industry to improve 

the production of high-quality wines, another chapter was developed to show the latest 

frontiers in terms of data collection for maturation control of wine grapes. Therefore, optical 

hand-held and stand-alone prototypes were designed, built, and tested in order to shift the 

current paradigm of grape maturation monitoring (based on lab analysis) with a new one that 

allows a low-cost non-destructive real-time monitoring providing information with temporal and 

spatial resolution. 

Finally, a last chapter has been introduced as an initial step for future developments in the field 

of hyperspectral imaging sensors. Therefore, a cost-effective hyperspectral device was 

developed to drastically reduce the cost of these instruments comparing it with those present 

on the market. To clarify, for these instruments the cost limitations are not strictly related to the 

device itself but for the specific applications. Indeed, even though the hyperspectral imaging 

technique can collect a large amount of data, the application of only one device (in some cases) 

is not enough to cover all the critical points the industry has to face. The production process in 

a firm or the monitoring in field require distributed systems to collect data and provide 

information. In these circumstances, considering the application of several hyperspectral 

devices, the costs become prohibitive for the majority of the companies and the research is 
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going toward the development of hyperspectral sensors taking into account a considerable 

cost reduction. 

To conclude, this PhD project has proved advantages and frontiers of optical sensing as one 

of the most efficient and advanced tools for safety and quality evaluation in the food industry 

throughout the entire production process. 

 

Keywords: spectroscopy, hyperspectral imaging, chemometric, food quality, green 

technology, sensors  
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2.1 Fundaments of optical sensing  
 

Optical sensing is defined as the science of acquiring, processing, and interpreting data that 

record interactions between electromagnetic radiation (composed by photons) and a specific 

target (Borràs et al., 2015). These interactions involve reflection, absorption, and transmission 

of a flux of photons by the target matter, in addition to emission of radiation and fluorescence 

(Corti et al., 2018). 

Optical techniques, based on infrared (IR), ultra-violet (UV), visible (vis), fluorescence, are 

widely used in agriculture and for food fingerprinting. The light sent to the sample interacts with 

it in different ways, a part is absorbed, a part emitted, others scattered and transmitted (figure 

1). Most of these techniques offer the possibility of analyze a sample (or sample extract) in a 

non-destructive way allowing a simultaneous determination of several properties in the sample 

(Tugnolo et al., 2019) . 

In the IR region, near-infrared (NIR, 4000–14,286 cm−1; 700–2500 nm) and mid-infrared (MIR, 

400–4000 cm−1; 2500–25,000 nm) spectroscopy involve the absorbance of radiation at 

molecular vibrational frequencies occurring for the O-H, N-H, and C-H groups and for the C-

C, C-O, C-N, and N-O groups in organic materials (Malegori et al., 2018; Tugnolo et al., 2020). 

Instead, electronic transitions absorb in the vis region (14,286–25,000 cm−1; 400–700 nm) and 

in the UV region (25,000–40,000 cm−1; 250–400 nm) (Buratti et al., 2017; Gomez-Caravaca et 

al., 2016). 

Moreover, the region from 0.75 to 100 μm is used as a non-destructive technique 

(thermography) to monitor the temperature evaluating the IR radiation emitted by an object. 

The thermography provides key facts on the dimension, heat distribution as well as structural 

analysis (Fernández-Cuevas et al., 2015). The main factor which influences the amount of 

radiation is the emissivity (energy ratio emitted from a sample at the surface temperature). The 

emissivity depends on the wavelength of the infrared region, temperature as well as the surface 

of the sample (Mohd Ali et al., 2020). 

The resulting information derived from the interaction between photons and the target can be 

handled in terms of punctual information (spectroscopy) or image information (thermal imaging 

and hyperspectral/multispectral imaging). The advantaging of imaging techniques is 

characterized by the presence of the spatial resolution (Sx and Sy) which measures the 

geometric relationship between the image pixels. In thermography, the information retrieved 

from the thermal image could be used to describe the thermal distribution without exerting any 

energy to the sample. The technique employs the thermal distribution of an image that 

produces a thermal map or thermogram of the object (Still et al., 2019). In addition to the spatial 



 

11 | P a g e  
 

resolution, the hyperspectral and multispectral imaging techniques also handle the spectral 

resolution (Sλ) which measure the variations in illumination within the image pixels as a 

function of wavelength (Khan et al., 2018). These data are represented in the form of a 3-

Dimensional hyperspectral data cube where each slice of this data cube along Sλ, represents 

a specific band from the electromagnetic spectrum (Stuart, McGonigle and Willmott, 2019; 

Amigo, 2020). 

 

Figure 2.1 Logic scheme to highlight differences between the acquisition of punctual information and image 
information. 

 

2.2 Use of the optical data 
 

Nowadays, optical instruments provide rapidly a large amount of data. However, this large 

amount of information (dataset) is hard to handle and needs to be pre-treated for a correct 

evaluation (Cortés et al., 2019). For this purpose, chemometrics is one of the most powerful 

and widely applied technique capable to manage these chemical data in a multivariate way 

ensuring that experimental data contain the maximum information (Bro and Smilde, 2014).  

Chemometric techniques are normally applied to data structures represented by a 

bidimensional (second order tensor) or three-dimensional (third order tensor) matrix (Figure 

2.1). On the data matrix, before carrying out any type of processing, mathematical pre-

treatments, normalization and/or scaling are needed. Then, the process continues with: (i) 

exploratory data analysis (which summarize the main information contained into the data), (ii) 

model calibration and validation and (ii) model transfer (Cortés et al., 2019). 
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The main objective of spectra pre-treatment is to reduce the noise associated with the data, 

minimize artifacts, and amplify the information. Many smoothing methods (for example, 

Gaussian filter, moving average, median filter, and Savitzky-Golay smoothing) are used as a 

filter to reduce spectral noise. Additive and multiplicative effects are very common in optical 

data influencing the global intensity (typically arising from unwanted light scattering) and/or 

producing baseline vertical shifts (offsets). For these reasons, treatments like Standard Normal 

Variate (SNV) transform or the Multiplicative Scatter Correction (MSC) are generally applied. 

Derivation methods (usually first and second derivative) are also used to enhance the 

resolution and minimize the spectra offset and drifts. Finally, different normalization and/or 

scaling treatments (like mean centering, autoscaling, range scaling, pareto scaling etc.) 

become fundamentals to homogenize the data in order to perform a correct explorative and 

modelling phase (Boulet and Roger, 2012; Biancolillo and Marini, 2018; Oliveri et al., 2019). 

Moreover, different combinations of these methods applied simultaneously can also be used 

for signal processing (Rinnan, 2014). 

Then, with the aim of (i) extracting useful information, (ii) correlating the variables, (iii) 

eliminating anomalous data and (iv) hypothesizing the subsequent work procedures an 

explorative unsupervised Principal Component Analysis (PCA) is essential (Bro and Smilde, 

2014; Tefas and Pitas, 2016). Afterwards, supervised regression and classification techniques 

can be applied according to the specific application (Todeschini, 1998). A multivariate 

regression/classification method provides the best relationship between a set of independent 

variables (optical outputs)  that describe the objects (predictors) studied and a set of measured 

response for the same objects. 

Regression methods are focused on predicting some of the properties of the sample (e.g., 

soluble solids, acidity, anthocyanins, polyphenols, water potential etc.). For these purpose 

methods like Multiple Linear Regression (MLR), Principal Component Regression (PCR), 

Partial Least Square regression (PLS), Support Vector machine Regression (SVR)  or Artificial 

Neural Network (ANN) are broadly used (Liakos et al., 2018). 

The regression models' accuracy is usually evaluated with Root Mean Square Error (RMSE), 

as well as bias and R2 (coefficient of determination); the lower the error, the nearer to zero is 

the bias and the higher the R2 (as maximum equal to 1), the better the model performances. 

Besides, RPD (ratio between the standard deviation of the response variable and RMSE) gives 

an immediate description of the prediction accuracy (RPD between 1.5 and 2 means that the 

model can discriminate low from high values of the response variable; a value between 2 and 

2.5 indicates that coarse quantitative predictions are possible, and a value between 2.5 and 3 

or above corresponds to good and excellent prediction accuracy) (Nicolaï et al., 2007).  
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The whole set of parameters for the evaluation of model goodness have to be calculated not 

only in calibration but also in validation (cross-validation and/or test-set), allowing to choose 

the best number of latent variables for maximizing model reliability, balancing good predictions 

and overfitting. 

Differently from regression, a multivariate classification model is created with a set of samples 

belonging to known categories (class), and subsequently (as for regression) the model is 

evaluated by cross-validation (internal validation) or test set (external validation). Many 

methods like Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Soft 

Independent Modelling by Class Analogy (SIMCA), Support Vector Machine (SVM) and Partial 

Least Square regression – Discriminant analysis (PLS-DA) are used to define membership of 

each sample to its appropriate class. To evaluate the classification performance, many indexes 

commonly derived from the confusion matrix (matrix where the  entries on the main diagonal 

represent the number of correct class assignations, while off-diagonal entries represent 

classification errors) are used (error rate, non-error rate, class specificity and sensitivity etc.) 

(Ballabio and Consonni, 2013; Oliveri and Downey, 2013; Zhong et al., 2018). 

Finally, clustering is another unsupervised method typically used to find natural groupings 

(clusters). It is the process of grouping the data into clusters, so that the objects within the 

same cluster have higher degree of similarity in comparison to one another but are very much 

dissimilar to the objects in different clusters. There are several clustering techniques available 

and those are organized into the following categories as partitioning methods, hierarchical 

methods, density-based methods, grid-based methods, model-based methods, methods for 

high-dimensional data and constraint-based clustering (Bonilla, De Toda and Martínez-

Casasnovas, 2015; Liakos et al., 2018). 

2.2.1 Multivariate analytical methods 
 

As mentioned above, chemometrics is a powerful tool able to study at best the information 

coming from a large amount of analytical variables. In this chapter, a more detailed description 

of the two most important methods of data exploration and regression has been done in order 

to give an initial overview of the main statistical approaches used in this PhD thesis. 

Principal Component Analysis (PCA) 

PCA is an exploratory data analysis which is at the base of the multivariate approach. The 

starting point of the multivariate data analysis is a data matrix (a data table) denoted by “X”. 

The “n” rows in the table are defined “objects” and “k” columns are the “variables” related to 

the measurements performed on the objects (S. Wold 1995). 
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Currently, large datasets are increasingly widespread in many disciplines. In order to 

understand these datasets, methods which drastically reduce their dimensionality in an 

interpretable way and preserve the information contained into the data are needed. One of 

them is PCA which reduces the dimensionality of the dataset while preserving as much 

‘variability’ (i.e. statistical information) as possible. This translates into finding new variables, 

the principal components (PCs), that are linear functions of those in the original dataset, that 

successively maximize variance and that are uncorrelated with each other (Jolliffe & Cadima, 

2016). 

From a geometrical point of view, this method consists of a rotation of the original data matrix, 

carried out in such a way that the first new axis is oriented in the direction of maximum variance 

of the data (PC1), the second (PC2) is perpendicular to the first and is in the direction of the 

next maximum variance direction and so on up to a number of PCs equal to the number of 

original variables. Technically, the maximum PCs amount is equal to the number of original 

variables, but practically, only the first components include the useful information, as variables 

co-vary, especially in spectroscopic data, and further PCs only contain random noise. Since 

the main components are the axes relative to the direction of maximum variance in descending 

order, as the number of PCs increases, the percentage of variance which they explain 

decreases.  

In particular, each PC is composed by the product of two vectors: the scores vector (ti), and 

the loadings vector (pi), where i represents the number of components s expressed in the 

equation below 

Equation     𝑿= 𝒕𝟏𝒑𝟏
𝑻+ 𝒕𝟐𝒑𝟐

𝑻+⋯+ 𝒕𝒊𝒑𝒊
𝑻+𝑬=𝑻𝑷𝑻+ E 

X is the original data matrix with observations and variables, whereas E is the residual matrix, 

that contains the unmodelled variation and has the same dimensions of X. The scores matrix 

T contains information on how each sample relates to each other, whereas the loading matrix 

P expresses the influence of the measured variables on the scores. PCs number i defines the 

amount of variation in the data, i.e. the independent phenomena. In figure 2.2 it is shown the 

PCA decomposition scheme.  
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Figure 2.2 PCA decomposition of X. 

 

Mathematically, components are calculated by an eigenvalue decomposition of the covariance 

matrix: 

 Equation     𝒄𝒐𝒗(𝑿)= 𝑿𝑻𝑿/(𝒎 – 𝟏) 

 Equation     𝒄𝒐𝒗(𝑿)𝒑𝒊= 𝒑𝒊𝝀𝒊 

where λi are the eigenvalues related to the eigenvectors pi. The scores vectors ti are the 

projections of the data matrix X onto pi. T2 and Q parameters are used to evaluate PCA models. 

T2 statistic represents the distance of a sample in the model space (i.e. in the space of 

significant PCs), whereas Q statistic represents the distance of a sample from the model 

space, meaning that the PCA model cannot describe efficiently their variability (Figure 13). 

These two parameters are extremely useful for outliers detection. 

Figure 2.3 Graphical representation of T2 and Q statistics.  

 

Through this technique, it is possible to: evaluate the correlation between variables and their 

importance, view the samples (identify outliers, classes, etc.), summarize the data description 

(elimination of the error or redundant information), reduce the size of the data and search of 

the main properties (Todeschini, 1998) 
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Finally, in the study of multivariate problems, an aspect of great importance concerns the 

possibility to graphically visualize the data. With PCA is possible to represent the original data 

matrix as the product of two matrices: scores and loadings. The loadings visualize the role of 

each variable to describe the PCs and also identify any correlations. In the graph, the values 

are between 0 (origin of the plane) and 1/-1 (end of the axis). Thus, the elements very close to 

the origin are not informative and the variables far from the origin will have greater variability 

and therefore greater relevance to describe the PC. Instead, the scores plot is obtained by 

combining the original variables and the loadings. The values of the scores represent the new 

coordinates of the objects in the score plot thus It shows the behaviour of the original objects 

(samples) in the space of the PCs (Todeschini, 1998). 

Multivariate regression  

A multivariate regression method provides the best relationship between a set of independent 

variables that describe the objects (predictors) studied (x1, x2,..., xn) and a set of measured 

response (y) for the same objects. 

y = f(x1, x2,..., xn) 

On the one hand, the form of the equation below describes how the description of the system 

is linked to the experimental measurement (fitting), and, on the other, the model obtained (once 

validated) allows to predict the future value of the objects.  

y=β0+β1 x1+β2 x2+⋯+βn xn+ε 

The equation above shows the general form of a multivariate calibration model where: 

 y=experimental response; 

 x1,x2,…xn=values of the independent variables experimentally acquired; 

 β0, β1, β2… βn=regression coefficients of the linear model; 

 ε=experimental noise. 

The Partial Least-Squares regression (PLS) is one of the most used linear regression methods 

which model the covariance structure between the matrix of predictors (X) and the matrix of 

the response (Y). PLS operates a simultaneous decomposition of both X and Y matrices in 

order to explain as much as possible of the variability of X and to find the best correlation with 

Y. Its aim is to maximize the covariance between the two matrices, creating at the same time 

latent variables that describe the maximum variability of X. The algorithm performs the 

decomposition of X and Y as in in PCA: 

 Equation      𝑿=𝑻𝑷𝑻+ 𝑬 
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 Equation     𝒀=𝑼𝑸𝑻+𝑹 

The maximum covariance criterion is imposed through a regression model for each component 

between the scores of X (ti) and Y (ui), obtaining their inner relation: 

 Equation     𝒖𝒊=𝒃𝒊𝒕𝒊 

 Equation     𝒃𝒊= 𝒖𝒊
𝑻 𝒕𝒊/(𝒕𝒊

𝑻𝒕𝒊) 

where b is the regression coefficient related to the ith component. However, this is not the best 

possible strategy, as the components are calculated separately for each block, resulting in a 

weak relation between them. For this reason, inner relation is improved by rotating the 

components, which means making t and u switch places in the NIPALS algorithm. As final 

step, scores are orthogonalized by introducing loading weights, W, which are orthonormal, 

calculated according to the equation below: 

Equation      𝑾= 𝑻𝑻𝑿 

Scores and loadings have the same properties described for PCA, but in PLS the latent 

variables (LV) explain the variability of X that most influences the responses predictions in Y. 

The choice of LVs number is critical: on the one hand is essential to include all the useful 

information to obtain better results, on the other hand LVs that contain only noise and irrelevant 

information should not be included. In fact, choosing to many LVs leads to the creation of a 

model that is perfectly suited to explain the variability of the data used to create it, even 

managing to represent its noise, but it would be hardly adaptable for the prediction of unknown 

samples, thus resulting not functional. The most used method for the determination of the 

optimal number of LVs is the cross-validation. Once the model is created, it must be validated, 

i.e. subjected to a test that demonstrate its reliability. For this purpose, it is strongly 

recommended to use samples that were not used in the calculation of the model itself, in order 

to avoid an overly favourable estimate of the error. The previously generated prediction 

algorithm is applied on this new set of samples (test set), whose characteristics are known, in 

order to evaluate the predictive capability in terms of error on the real data (Todeschini, 1998).  

2.3 Proximal sensing applications overview  
 

The increasing importance of vis/NIR spectroscopy in pre and postharvest technology is 

obvious from the increase in numbers of publications, as well as from the fact that many 

manufacturers of on-line grading lines have now implemented vis/NIR systems to measure 

various quality attributes. The objective the paper below (Paper 1) is to give a comprehensive 

overview of vis/NIR spectroscopy for measuring quality attributes of agricultural products. 
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PAPER 1: Visible/near infrared spectroscopy for horticulture: case studies 
from pre-harvest to post-harvest 
  

R. Beghia, V. Giovenzana, A. Tugnolo and R. Guidetti  

Department of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di 

Milano, via Celoria 2, 20133 Milano, Italy 

a roberto.beghi@unimi.it 

Abstract  

The Italian agri-food system is mostly characterized by small and medium-sized enterprises 

(SME). They are characterized by the lack of crucial information for the management and 

control of their processes. The main parameters related to important information to better lead 

the decision-making stages of the production process (e.g. monitoring the shelf life and post-

harvest life, etc.) need to be measured in a simple,  non-destructive and quick way. From this 

point of view, the optical techniques based on visible near-infrared spectroscopy (Vis/NIR) are 

an established, simple and rapid application for the determination of many parameters related 

to productions quality representing a valid support to the various supply chains. Nevertheless, 

the available optical systems are complex and expensive devices and their real use in SME is 

still very limited. The aim of the research was to test commercial hand-held devices and 

prototypes of low-costs and user-friendly systems, useful for different applications from pre-

harvest to post-harvest. This work proposed a collection of case studies regarding the 

application of Vis/NIR spectroscopy on different matrices with different goals: on (i) grape and 

(ii) blueberry for ripening evaluation, on (iii) cultivated mushrooms to control quality at harvest, 

and (iv) for senescence monitoring of fresh-cut baby leaf salad during shelf life. A Light Emitting 

Diode (LED) based prototype at four specific wavelengths (630, 690, 750 and 850 nm) was 

proposed and tested on grape for estimating ripeness analysis. Moreover, a commercial hand-

held Vis/NIR device (400-1000 nm) was used for the evaluation of blueberries ripeness, for the 

postharvest monitoring of mushrooms, and for the senescence evaluation of fresh-cut baby 

leaf salad. The use of these devices could be helpful for the monitoring of quality standards, 

to provide a high quality product to the consumers. 

 

Keywords: handheld device, fruits and vegetables, ripeness, chemometrics 
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INTRODUCTION 

The Italian agri-food system is mostly characterized by small and medium-sized enterprises 

(SME). Due to their size and the small possibility of significant investments in analytical 

instrumentation, they are characterized by the lack of crucial information for the management 

and control of their processes. The main parameters related to important information to better 

lead the decision-making stages of the production process (e.g. decide the harvest time, 

monitoring fermentations, monitoring shelf life and post-harvest life, etc.) need to be measured 

in a simple, non-destructive and quick way. By sorting harvested products according to their 

maturity, it is possible to split immature-green, partially mature, and fully mature products, in 

order to obtain the uniformity of lots at destination. Thus, the assessment of the maturity stage 

is of great importance for determining the optimal postharvest strategy for product handling 

and marketing (Slaughter, 2009). Nowadays, ripening stage and harvest time are estimated 

mainly by visual assessment based on growers’ experience, which can result in unsatisfactory 

homogeneity of the fruit lots and large variability from farm to farm. Operators need simple and 

portable devices capable to provide fast ripeness assessment of a large set of samples in the 

field to help them to determine the optimum harvest time. 

Consumers’ interest in berry fruits has recently increased together with the growing demand 

for health-producing foods, considering the berries’ bioactive and health-protecting properties. 

Due to these aspects, blueberries, blackberries, and raspberries are considered a rich source 

of antioxidant compounds, particularly of flavonoids and anthocyanin (López et al., 2010). 

Moreover, the growing demand for these fruits may represent an important income generating 

opportunity for marginal rural areas, because their cultivation is particularly suited for small 

farms and mountain regions. 

The non-destructive techniques, and in particular the optical analysis in the region of visible-

near infrared (Vis/NIR) and near-infrared (NIR) and, have been developed considerably over 

the last 20 years (Guidetti et al. 2012; Nicolai et al. 2007). Until now, many studies reported in 

the literature have evaluated the applicability of Vis/NIR and NIR spectroscopy to obtain an 

effective system to perform a wide check on fruits. For example, several applications have 

been developed to estimate ripeness parameters of different fruit species, especially on grapes 

(Cozzolino et al., 2006). 

Ready-to-eat products are characterized by a shelf-life shorter than that of the original 

unprocessed raw material. These foods are often subjected to rapid loss of colour, organic 

acids, vitamins and other compounds that determine flavour and nutritional value. Monitoring 
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the quality decay of fresh-cut products is necessary to control the freshness level during the 

entire production chain and to ensure quality product for the consumer. Hence, also fresh-cut 

fruit and vegetable sector could be greatly helped by new analytical methods that are accurate, 

rapid and could be integrated into the production chain to better managing the shelf life of 

minimally processed products and to meet consumer demand. 

These optical approaches, however, are always related to the analysis of wide spectra 

(thousands of wavelengths or variables) and, therefore, require multivariate techniques for 

data processing to build predictive models. To explain the chemical information encoded in the 

spectral data, chemometric analysis is required (Cogdill and Anderson, 2005). Moreover, the 

limitations to NIRs adoption by the agricultural sector could be attributed to cost, technical 

limitations, grower resistance and supply chain weakness (Magwaza et al., 2012). Hence, to 

avoid these limitations, simplified handheld devices are desirable. For a simplification and 

greater diffusion of these non-destructive techniques, in recent years interest has shifted 

towards the development of portable systems that could be used in pre- and post-harvest 

(Beghi et al., 2017).  

Portable vis/NIR instruments have been tested in controlled laboratory conditions or directly in 

the field. Concerning laboratory applications, Puangsombut et al. (2012) investigated the 

feasibility of using Vis/NIR spectroscopic devices in transmission mode to predict the soluble 

solids content (SSC) and total acidity of fresh-cut products. Regarding applications in 

uncontrolled field conditions, Larrain et al. (2008) developed a portable NIR instrument (640-

1300 nm) for determining ripeness in wine grapes, Guidetti et al. (2008) tested a Vis/NIR device 

working in reflectance configuration to predict blueberry ripeness, Guidetti et al. (2010) 

evaluated grape quality parameters with a portable Vis/NIR system, finally, Beghi et al. (2013) 

assessed the nutraceutical properties of apples through a visible and near-infrared portable 

system.  

All these approaches, nevertheless, rely always on wide spectral ranges (thousands of 

wavelengths) and thus require multivariate techniques for data processing to build prediction 

models. Chemometrics can be also used for the selection of a small number of relevant 

variables, which represent the most useful information contained in the full spectra (Xiaobo et 

al., 2010). In this way the spectral noise and the variables containing redundant information 

can be eliminated. Moreover, a reduced cost for potential miniaturized devices, realized to 

work at only these selected wavelengths, can be foreseen. 
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Few examples of commercial non-destructive devices based on a small number of 

wavelengths are already available on the market. These applications are mainly dedicated to 

fruits. For example, the University of Bologna (Costa et al., 2011) patented innovative and 

simplified NIRs equipment, namely DA-Meter for apple and Kiwi-Meter for kiwi. These systems 

are used for the analysis of the ripeness level of the fruit through indices based on differences 

in absorbance between specific wavelengths. This type of instrument, simple and portable, 

can be used directly on the fruit on the trees and can help growers in taking decision regarding 

the best cultural management practices (such as pruning, thinning, nutrition, etc.). In this way 

the heterogeneity of the product can be reduced and, therefore, can be simplified the 

management of lots product during post-harvest. 

The aim of this group of researches was to apply Vis/NIR spectroscopy and to design, build 

and test concepts and prototypes of low-costs and user-friendly devices useful for different 

case-study applications from pre-harvest to post-harvest. The authors conducted tests on 

grape (Civelli et al., 2015; Giovenzana et al., 2015; Giovenzana et al., 2014) and blueberry 

(Beghi et al., 2013) ripening evaluation, on cultivated mushrooms to control postharvest 

(Giovenzana et al., 2019), and on fresh-cut baby leaf salad during shelf life for senescence 

monitoring (Beghi et al., 2014). 

 

MATERIALS AND METHODS 

Different experimental setups were carried out for the different matrices considered. 

 

Samplings  

 

Evaluation of grape ripeness 

The experimentation was carried out on Vitis vinifera L., Nebbiolo cultivar (ecotype 

Chiavennasca) in the Valtellina viticultural area (Sondrio, northern Italy, approx. 46.2° N, 9.9° 

E) during the last period of ripening of the 2012 season. Samples were drawn from 17 different 

zones, throughout the entire wine area of the valley, in order to represent environmental 

variability and monitor the entire production region of DOC (controlled denomination of origin) 

and DOCG (controlled and guaranteed denomination of origin) wines. A total of 68 samples of 

red grapes were collected on four sampling dates. 
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The total soluble solids (TSS) content was measured using a digital pocket refractometer while 

the Glories method (Glories, 1984) was used to measure the total polyphenols (TP). The 

polyphenols quantification was based on the optical density (OD) measurement at 280 nm 

using a UV/Vis spectrophotometer. 

Evaluation of blueberries ripeness 

In this case a total of 942 Vis/NIR fruit spectra in the range of 445-970 nm were acquired for 

Vaccinium corymbosum L. (“Brigitta” cultivar) during two different growing seasons (2009 and 

2010), cultivated in different farms in the area of Valtellina, Italy.  

Field spectra acquisitions of berries were carried out at weekly intervals. Spectra 

measurements were taken in the field on individual berries along their equator region after 

artificial illumination with the probe tip. Just after measurement of the plants, fruits samples 

were picked and divided into four ripeness classes according to the criteria used by expert 

growers (mainly relying on size and surface colour distribution). According to commercial 

classification, blueberry fruits were graded in four classes, from totally unripe to fully ripe. 

Postharvest control of cultivated mushrooms 

Samples of Agaricus bisporus were randomly harvested from three different flushes. The 

ripening process was conducted in conditioned wide rooms, without any windows. The 

environmental conditions of the room were controlled regarding temperature, CO2 and relative 

humidity. The mushrooms grew on bed of specific soil placed on steel structures. The 

mushrooms were considered ready for the harvest when they reached the specific dimensional 

standards required by the retailer. 

Samples’ variability was increased according to an accelerated shelf-life program. The first 

analysis (t0) was performed the day of sampling directly at the production company. After that, 

the samples were stored at room temperature (24-26 °C with 60-70 % of relative humidity) for 

three (t1), five (t2) and seven (t3) days following the harvest in order to simulate an accelerated 

qualitative decay process. At the end of the accelerated shelf-life program the number of 

samples available was 167.  

The reference parameters were evaluated after the Vis/NIR analysis using the traditional 

destructive methods. The analysed physico-chemical parameters were: firmness, TSS and 

water content (WC). 
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Senescence monitoring of fresh-cut baby leaf salad  

Three storage/shelf-life temperatures were investigated: 4.0±0.5 °C, 10.0±0.5 °C and 20.0±0.5 

°C. The duration of the experimentation was different for the different storage temperature. 

The Valerianella locusta L. packages preserved at 4 °C and 10 °C were sampled for 16 days, 

while samples stored at 20 °C were analysed only for 7 days, due to the rapid degradation of 

the lettuce at this temperature. The numbers of sampling points during storage monitoring for 

the fresh-cut leaves were therefore 10, 11 and 6 for 4 °C, 10 °C and 20 °C, respectively. The 

quality decay of samples was evaluated by chemical parameters (pH, moisture and total 

polyphenols content). 

Vis/NIR spectroscopy measurements 

Spectral acquisitions were performed on samples using a Vis/NIR portable system operating 

in the wavelength range of 400-1000 nm, spectral resolution 0.3 nm (Jaz, OceanOptics, USA). 

Spectra were acquired in reflectance mode: light radiation was guided from the light source to 

the surface of the sample through a Y-shaped, bidirectional fiber-optic probe (OceanOptics, 

USA).  

Data analysis 

Chemometric analyses were performed using The Unscrambler® 9.8 software package 

(CAMO ASA, Norway). The correlation between the spectral data matrix and the reference 

parameters were carried out using the Partial Least Square (PLS) regression algorithm. 

Depending on the dimension of the available datasets, leave-more-out cross-validation with 

different cancellation groups was used to validate the PLS regression models. To evaluate 

model accuracy, the statistical parameters used were the coefficient of determination in 

calibration (R2
cal), the coefficient of determination in cross-validation (R2

cv), the root mean 

square error of cross-validation (RMSECV). The best calibrations were selected based on 

minimizing the RMSECV.  

In some cases, Regression Coefficient Analysis (RCA) was carried out for relevant variable 

selection, representing the most useful information of the full Vis/NIR spectral region (Xiaobo 

et al., 2010, Chong and Jun, 2005). Standardized regression coefficients of the PLS model 

were used for the elaboration. The standardization considered both the standard deviation of 

reflectance and the standard deviation of the reference data. Therefore, the selected 

wavelengths were employed for the elaboration of Multi Linear Regression (MLR) models. 

MLR is a regression method that, compared with PLS, allows to develop models using only 
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few important variables. Verifying the prediction ability of the MLR models was performed to 

study the efficiency of the selected wavelengths. 

 

RESULTS AND DISCUSSION 

Results for grape ripeness evaluation 

Correlations between the spectral data and technological (total soluble solids, TSS) and 

phenolic (polyphenols, TP) parameters were carried out using partial least square (PLS) 

regression. Standardized regression coefficients of the PLS model were used to select the 

relevant variables, representing the most useful information of the full spectral region. Ratio 

Performance Deviation (RPD) values were also calculate to evaluate models performance. 

The three selected wavelengths were 670 nm, corresponding to the chlorophyll absorption 

peak, 730 nm, equal to the maximum reflectance peak, and 780 nm, representing the third 

overtone of OH stretching. MLR was applied on the three selected wavelengths to verify their 

effectiveness. A comparison between PLS derived from the full Vis/NIR spectra and MLR 

arising only from the three wavelengths was carried out on TSS and TP. The overall calibration 

and prediction results of the MLR models, both for TSS and TP prediction, were satisfactory, 

although the performance of the MLR models (Table 1) were slightly worse than the good PLS 

models. The obtained RMSECV values were similar for the PLS and MLR models. RPD value 

for TSS decreased from 2.26 for PLS to 2.13 for MLR and, regarding TP, RPD showed a 

decrement from 1.98 to 1.79. 

Table 1. Statistics of the MLR based on the three selected wavelengths (670, 730, 780 nm) and of the PLS models 
to predict the ripening parameters of the Nebbiolo grape (Giovenzana et al., 2014). 

Ripening 

Parameters 

Calibration MLR Cross-validation MLR Cross-validation PLS 

R2
cal RMSEC R2

cv RMSECV RPD R2
cv RMSECV RPD 

TSS (°Brix) 0.75 0.77 0.71 0.83 2.13 0.77 0.78 2.26 

TP (OD280 nm) 0.74 3.95 0.70 4.30 1.79 0.74 3.88 1.98 

TSS=total soluble solid content, TP=total polyphenols, OD=optical density, RPD=Ratio Performance Deviation 

 

Results showed that only a small loss of information was noticeable between the PLS model 

calculated using 2048 wavelengths and the MLR models employing only three effective 
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variables. The results demonstrate the feasibility of a simplified, low-cost handheld device for 

ripeness assessment in the field. 

Results for blueberry ripeness evaluation 

A PCA of blueberries spectra highlighted that two main wavebands (680 nm and 740 nm) can 

maximize the differences between fully ripe samples and those close to ripeness or unripe. 

Hence, spectral values at 680, 740, and 850 nm (the latter being an additional normalization 

waveband) were used to create a blueberry ripeness index (BRI) as a linear combination of 

two spectral ratios: S1=log(I680/I850) and S2= (I740/I850).  

The definition of specific ripeness thresholds for the BRI according to different selective criteria 

was tested, and the ripeness classification capability was then assessed on a separate 

validation set of 471 berries. When applying a less selective threshold approach, the BRI 

correctly classified as ripe 85% of manually graded fully ripe berries, whereas 13% of close 

but not yet ripe validation samples were misclassified as fully ripe and ready to harvest. 

Comparatively, when a more demanding ripeness threshold was applied, the amount of nearly 

ripe berries misclassified as ripe decreased to 8%, but, the amount of fully ripe berries not 

identified as ripe rose to 25%. In both cases, none of the unripe samples was erroneously 

classified as a ripe fruit.  

Also in this case the results, which were obtained with a BRI defined by spectral measurements 

at just three discrete wavelengths, point to the feasibility of a simple, microcontroller-based, 

handheld optical device able to implement the BRI to quickly assess the ripeness of sets of 

berries during the last and most delicate stages of the ripening process. 

 

Results for postharvest control of cultivated mushrooms 

PLS regression models were built from the spectra of cap and stipe of Agaricus bisporus. Table 

2 shows the performance parameters of the PLS regression for the prediction of firmness, WC 

and SSC.  
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Table 2. Statistics of PLS models elaborated on Vis/NIR spectra to estimate the firmness, SSC and WC of the 
Agaricus bisporus mushrooms (Giovenzana et al., 2019). 

 Parameter LV 
Calibration Validation 

R2 RMSEC R2 RMSEV RMSE % RPD 

Cap 

Firmness 8 0.83 6.36 0.78 8.81 17.28 2.03 

SSC 3 0.27 1.12 0.30 1.47 22.14 1.58 

WC 2 0.71 1.63 0.55 3.12 3.49 1.46 

Stipe 

Firmness 11 0.79 7.15 0.55 11.10 18.95 1.52 

SSC 6 0.66 0.92 0.65 1.32 21.25 1.70 

WC 9 0.84 1.55 0.78 2.14 2.38 2.15 

LV=Latent Variables, RPD=Ratio Performance Deviation 

 

In particular for the cap, interesting results were obtained for the prediction of the firmness with 

a R2 of 0.78 and RPD of 2.03. The prediction of SSC and WC showed results below 

expectations with R2 0.33 and 0.55 respectively. Probably, the colour variation during the 

accelerated shelf-life period increased the variability of the sample reducing the prediction 

capacity of the WC and SSC using a Vis/NIR device, compared to prediction performance that 

can be found in literature for these parameters using NIR spectroscopy.  

Regarding the prediction of physico-chemical parameters of the stipe the results were instead 

different from those obtained from the cap. The best result was obtained for the prediction of 

WC (R2 0.78 and RPD 2.15) while for firmness and SSC poor results were achieved. In this 

case the reduced colour changes of the stipe compared to those of the cap showed less 

influence on the possibility to calibrate an acceptable model for WC, also using the Vis/NIR 

range. 

Results for senescence monitoring of fresh-cut baby leaf salad  

A PLS-RCA technique was applied on Valerianella locusta L. spectra. The standardized 

regression coefficients of PLS models were used to select the relevant variables, representing 

the most useful information of full spectral region. In this case study, the four selected 

wavelengths were 520 nm, 680 nm, 710 nm and 720 nm. Statistics of the MLR models for pH, 

moisture and TP prediction are reported in Table 3. A comparison between PLS derived from 
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the full Vis/NIR spectra (400-1000 nm) and MLR arising only from the four wavelengths showed 

that the overall calibration and prediction results of the MLR models, for all the parameters, 

were satisfactory, although the performance of the MLR models was slightly worse compared 

to PLS models, as expected. RPD value for pH decreased from 2.54 for PLS to 1.83 for MLR, 

regarding the MC, RPD showed a slight decrement from 2.25 to 2.08, and for TP from 3.19 to 

2.48 for PLS and MLR respectively (Table 3). 

 

Table 3. Statistics of the MLR models, based on the four selected wavelengths (520, 680, 710, 720 nm) to predict 
the freshness level of Valerianella locusta L. leaf samples, and of the PLS models (cross-validation) (Beghi et al., 
2014).  

Quality 

parameters 

Calibration MLR Cross-validation MLR Cross-validation PLS 

R2 RMSEC RPD R2 RMSECV RPD R2 RMSECV RPD 

pH 0.82 0.13 2.54 0.70 0.18 1.83 0.86 0.13 2.54 

TP (mg/100g) 0.88 12.38 3.26 0.80 16.28 2.48 0.89 12.64 3.19 

MC (%) 0.87 0.09 3 0.75 0.13 2.08 0.84 0.12 2.25 

RPD=Ratio Performance Deviation 

 

CONCLUSIONS 

Different feasibility studies were performed on several pre- and post-harvest matrices. 

Correlations between the optical data and reference parameters were carried out using PLS 

regression for spectra and using MLR for data from the effective wavelengths selected for the 

different applications.  

The overall calibration and prediction results of the MLR models were satisfactory, although 

the performance of the MLR models was generally slightly worse than the PLS models. A small 

loss of information using only the selected wavelengths is noticeable. Consequently, the 

applicability of LED lightning system and inexpensive hardware could be envisaged to build 

simplified optical systems.  

It is desirable the design of prototypes of pocket-size, inexpensive and easy to use optical 

devices for ripeness analysis, paying attention to versatility and modularity. The possibility to 

adjust light sources with a specific choice of wavelengths for LEDs, makes it possible a future 

use of the same simplified optical device for many different applications (i.e. ripeness 
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evaluation, chemicals and physical properties prediction or shelf life analysis) and for different 

food matrix.  
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2.4 Visible near-infrared spectroscopy as a green technology  
 

Nowadays the reduction of solvents used and of energy consumption became a crucial aspect 

to be investigated. The non-destructive optical methods based on optical sensing (e.g. vis/NIR 

spectroscopy) represent a simple, rapid, and easy-to-use method to predict quality parameters 

and hence for objectively evaluating indices of different fruit and vegetable products (Nicolaï 

et al., 2007; Beghi et al., 2017). Once calibrated, a vis/NIR device can analyse samples in a 

non-destructive way and in few seconds, without sample processing and without expert 

personnel able to use complex laboratory instrumentations. Compared to vis/NIR technology, 

chemical techniques result time-consuming, require samples preparation and the use of 

chemical reagents, resulting also expensive due to the need of expert laboratory technicians 

(Table 2.1) (Guidetti et al., 2010). 

Table 2.1. Comparison between optical sensing and chemical analysis highlighting the peculiar aspects. 

 Optical sensing 
Chemical 
analysis 

Rapidity x - 
More parameters analysed at the same 

time 
x - 

Non-destructive analysis x - 
Direct measurement - x 

Accuracy 
High number of samples 

required 
x 

Use of chemicals - x 

 

For instance, the replacement of the analytical tools and reagents related to chemical analyses 

with one vis/NIR spectrometer could reduce the environmental impact of analyses. Thus, in 

order to define vis/NIR spectroscopy as green technology, it is necessary to focus the attention 

on sustainability aspects. The environmental impact of vis/NIR spectroscopical systems can 

be assessed using Life Cycle Assessment (LCA) (Marquez et al., 2005). LCA is a tool to 

analyse the energy loads and environmental impacts associated with the different phases of 

the entire life cycle of a product or service: from cradle to grave (from the extraction of raw 

materials to the stages of transformation, production, distribution, use and finally disposal or 

recycling). An LCA can be an excellent support tool for sustainable design, and its drafting is 

defined by the ISO 14040 and ISO 14044 standards (ISO, 2021).  

Thanks to an accurate LCA, it will be possible to identify for a given product or service: the 

critical phases from an environmental point of view, the subjects who can mediate to change 

the situation and the data necessary to be able to carry out adequate environmental 

improvement interventions.  
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In this paper, the contribution of sustainability experts was needed to quantify for the first time 

the sustainable advantages of the proximal sensing techniques (in the olive oil production in 

this case). Here, the PhD candidate dealt with the LCA experts to provide data and 

methodologies in order to build a flow sheet of input and output quantifying the environmental 

impacts using a from cradle to grave approach. 

PAPER 2: Environmental advantages of visible and near infrared spectroscopy 
for the prediction of intact olive ripeness 
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Abstract 

Conventional ripeness analyses performed on olives require different analytical tools, 

chemicals, sample preparation and they are time consuming. The same analyses performed 

using an optical and non-destructive technology as visible and near infrared (vis/NIR) 

spectroscopy allow to predict ripeness parameters in a simple and quickly way. The purpose 

of this work is to compare the environmental impact of conventional ripeness analyses and 

optical one performed on olives fruits. The conventional analyses identified as reference were: 

moisture, oil and phenol content. The Life Cycle Assessment was applied to assess the 

environmental impact. The approach “from cradle to grave” considered all the inputs and 

outputs of each analysis, enclosing machineries, reagents and energy necessary for analyses. 

Furthermore, for the optical analysis were also considered the activities required for the 

instrument calibration. Quantifying the environmental damage, the results showed clear 

advantages for optical analysis allowing to define vis/NIR spectroscopy as green technology. 

Keywords: green technology; optical analysis; sustainability; agro-food sector; LCA; efficiency  
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INTRODUCTION 

Olive oil yield and quality are influenced by different field factors defined as “primary” or 

“uncontrollable”. These include genetic (olive variety) and environmental aspects (soil 

characteristics, pest attacks and climatic condition which may vary every year) (Criado et al., 

2004; Beltrán et al., 2005). Furthermore “secondary” or “controllable” factors need to be 

considered, as the agronomic practices which can damage the fruit physiology (irrigation, 

fertilization and harvesting) and technological procedures which could alter the olive oil 

composition (processing and storage activities) (Baccouri et al., 2008). The secondary 

activities can alter the olive quality, as change in weight, pulp ratio, chemical composition and 

oil accumulation (Jemai et al., 2009; Desouky et al., 2009). If the secondary factors can be 

controlled and optimized by critical control point analyses or by best practices controls, the 

primary factors cannot be easily modified. In this scenario, the activities aimed to monitor the 

olives ripening to decide the best harvesting period is a critical control and fundamental step 

in extra-virgin olive oil production chain (Nasini & Proietti, 2014). 

Optimizing olive harvest means obtaining the highest amount of oil preserving the quality. Even 

if the main requirement in the olive oil sector could be the yield, in most of cases, the harvesting 

decision is determined by the olive oil quality. Therefore, based on suitable sensory and 

analytical requirements, the olive yield is overshadowed by the quality (Nasini & Proietti, 2014). 

To satisfy quality requirements, laboratory analyses on olives are needed to objectify the 

quality parameters. Most of quality analyses is standardized and optimized by Regulations 

(EEC/2568/91) and Association of Official Agricultural Chemists (A.O.A.C.) methods. Even if 

the procedures are standardized, they represent criticisms because of they are time 

consuming (from sampling to results, the time could vary from hours to days) and energy 

consuming (long execution times and type of analytical tools). Moreover, the conventional 

methods result dangerous due to the reagents use (A.O.A.C., 1975; European Communities, 

2003; Fernández -Espinosa, 2016). Finally, most of these methods are expensive, labour-

intensive, and require previous treatment of samples. 

As a solution to these technical problems the visible/near-infrared (vis/NIR) spectroscopy could 

be identified as a suitable analytical method. It doesn’t require any treatment of the sample, it 

is a fast and easy analysis and it can be automatized. The vis/NIR technology is widely used 

in the agro-food sector and for rapid quality fruit and vegetable monitoring (Beghi et al., 2017; 

Magwaza et al., 2012; Nicolai et al., 2007). Agro-food production has a large impact on 
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environment (Notarnicola et al., 2019; Roy et al., 2019; Guarino et al., 2019; Recchia et al., 

2019) and current food processes set-up are not optimised (Van der Goot et al., 2016), 

therefore more sustainable food products are desirable. 

The vis/NIR technology represents also a rapid technique to characterise physical and 

chemical parameters, providing real-time results directly in field to help operators to take 

decision (Fernández -Espinosa, 2016). This technology is widely used in the olive oil sector to 

estimate different quality parameters on intact olives (Cayuela et al., 2010; Bellincontro et al., 

2012; Salguero-Chaparro et al., 2012; Giovenzana et al., 2015). 

Since the use of spectroscopy generally gives predictions comparable with the conventional 

results (Giovenzana et al., 2018; Fernández-Espinosa, 2016) and does not require sample 

preparation and reagents use, it could reach the qualification of green-technology. In literature, 

few studies based on environmental approach define and quantify the environmental damage 

due to optical analyses (Casson et al, 2019). 

This study aims to quantify and compare the environmental impact related to the olive ripeness 

analyses. The Life Cycle Assessment (LCA) was applied to evaluate and compare the 

conventional method to the optical one. This kind of environmental evaluation defines the 

impact related to a service and not to a product. The results of this study could be useful to 

enforce the green aspect associated to non-destructive analyses. 

MATERIALS AND METHODS 

Life Cycle Assessment (ISO 14040, 2006) is a standardized method used to evaluate the 

environmental impacts throughout the study of the life cycle of a product or a service. It 

accounts all the input and output factors from the raw material extraction, through the 

production, transportation and use processes, till the final stage of the product life cycle. The 

following environmental analysis is developed in compliance with the international standards 

of series 14000 which divide the LCA method into four phases as follow (ISO 14040-14044, 

2006). 

Goal and scope definition 

The goal of this study is to quantify the environmental profile of two methods, conventional and 

optical, to monitor the olives ripeness, considering the measurement of three main parameters 

capable to characterize olive samples (reference parameters). According to the olive mill 
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requirements, the two main parameters analysed are moisture and oil content. In fact, the 

measurement of these parameters allows to determine the payment amount to the growers 

and the olives destinations (acceptability or rejection for milling) (Salguero-Chapparo et al., 

2013). The third one parameter considered, is the phenols content which is important to 

quantify the fruit ripeness and it is directly linked to sensory characteristics (Rodrigues et al., 

2019). 

The functional unit, especially in a comparative LCA, as far as possible should be related to a 

function of the product rather than to the product itself (ISO 14040, 2006). In this study the 

functional unit was identified with the analysis service provided by the laboratory to obtain the 

three parameters analysed, i.e. three chemical analyses for the conventional method and one 

non-destructive analysis (to provide the estimation of the three reference parameters) for the 

optical method. 

An approach called “from cradle to grave” was used to study the system considering all the 

input from the extraction of raw materials, through the construction of the tools, electronic 

devices and laboratory materials, considering the energy and water supply and all the outputs 

of the analyses from dangerous material to wastewater, paying also attention to end of life of 

every inputs previously quantified and inserted in the analysis. 

The system under study considers the services provided by four conventional laboratories 

located in different Italian provinces (Bari, Reggio Calabria, Sassari and Teramo) which are 

specialized on olives ripeness analyses and serve on average 90 olive growers each. A study 

performed on olive should consider a reference period of a year (Casson et al., 2019), while 

the ripening analyses can be performed only for three months (in Italian provinces analysed, 

from October to December). Considering that all the 90 olive growers request to perform 5 

samplings during olive ripening, the laboratory capacity should be defined equal to 450 

analyses year-1. 

For the conventional analyses, the studied laboratories perform the analyses during the three 

months of ripening period, the same tools are not used for other tasks and in another period. 

To measure the reference parameters, as alternative to conventional method, spectroscopy 

was chosen (Giovenzana et al., 2018; Trapani, et al., 2016; Bellincontro et al., 2012). 
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Life Cycle inventory (LCI) 

The inventory phase is based on to the Regulation EEC/2568/91 and on the AOAC methods. 

Even if the procedures are standardized and the quantity of solvents are precisely defined, 

data referred to the procedures of each analysis were obtained with surveys sent to the 

laboratories in order to identify the differences between the standard procedures and the real 

execution parameters of the analyses (times, number of samples used, type and obsolete 

degree of tools). 

The survey helped (i) to identify the different analytical tools used, (ii) to figure out the 

machineries composition quantifying the main components as plastic, metal, glass and 

electronic components (46% steel, 32% plastic, 14% printed wiring board and 8 % of cable of 

various type) (Table 1), and (iii) to quantify the lifetime of each machinery and of laboratory 

materials used for the analyses, defined in years, ranged from 1 to 15, or in number of 

analyses, ranged from 1 to 6750 based on the nature of the tool used. Table 1 summarizes 

information obtained from survey elaboration relating to laboratory analytical tools. Starting 

from average capacity of the laboratory to carried out conventional and optical analyses 

identified as 450 analyses year-1 (concentrated in three months) and considering the 

laboratory works equal to 25 days month-1 (75 days in three months), the laboratory was sized 

considering a number of analyses equal to 6 samples day-1. 

Considering the aim of the study, no attention was paid to equal activities performed in both 

the conventional and the optical analyses (farming, harvesting and transporting). 

The inventory of every analysis was performed separately and reported below. 
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Table 1. Material composition, weight, electric power and number of analytical tools in the laboratory 

Analytical tool Composition 
Total 

weight (kg) 
Electric 

power (kW) 
Number of 

machineries 

Balance 
60% Electronic components 

40% Stainless steel 
5 0.13 1 

Centrifuge 
83% Electronic components 

17% Stainless steel 
30 0.75 1 

Computer 100% Electronic components 13 0.13 1 

Vis/NIR device 
93% Electronic components 

7% Glass fibre 
15 0.24 1 

Olive mill 
87.5% Steel 

12.5% Electronic components 
8 1.00 1 

Oven 
91% Steel 

9% Electronic components 
54 1.00 1 

Spectrophotome
ter 

90% Electronic components 

100% Steel 
10 0.13 1 

Suction hood 

36% Glass 

36% Steel 

28% Electronic components 

55 0.44 3 

Water heater 100% Stainless steel 10 1.00 5 

 

Moisture determination LCI 

The olives are crushed with a portable and miniaturized mill (crushing time 2 min) to obtain 

olive paste, the sample is then weighed, inserted in the oven to be dried until reaching constant 

weight and then weighed again (A.O.A.C., 1975). In this analysis the oven used could vary the 

time necessary to perform the analysis. Oven capacity allows to dry more than one sample 

simultaneously. Moreover, oven use is also required in the oil content analysis. Therefore, 

considering the oven samples capacity and the analysis typology, an allocation procedure 

must be performed to allocate the electricity consumption and the material composition of the 

oven to the functional unit. 
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For each input (Table 2), an allocation factor ranged from 0 to 1 identifies the allocation 

percentage considering the time of usage and the multiple use of the input for the different 

reference parameters. Moreover, as performed in a previous study (Casson et al., 2019) in 

order to calculate the amount per analysis (Apa) for each input and output, equation 1 was 

calculated: 

 

Apa=(Q*Af)/Noa              (1) 

Where: 

Q: Quantity 

Af: Allocation factor 

Noa: Number of analyses 

 

Table 2. Quantity, allocation factors, lifetime and amount per analyses for moisture determination analysis 

Input 
Quantity 

(Q) 

Allocation 
factor 

(Af) 

Lifetime Amount 
per 

analysis 
(Apa) 

Unit 
Years 

Number of 
analyses 

(Noa) 

Olive mill 8 0.33 15 6750 0.00039 kg 

Balance 5 0.59 10 4500 0.00066 kg 

Oven 54 0.94 15 6750 0.00752 kg 

Dryer 3 0.50 10 4500 0.00033 kg 

Pottery dish 18 1.00 10 4500 0.004 kg 

Dryer silica 50 0.50 / 1000 0.025 g 

Refractory material 15 1.00 / 1000 0.015 g 

Electricity 3.8 1.00 / 1 3.8 kWh 

Output       

Inert waste 500 / / / 500 g 
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Oil content analysis LCI 

The olives are crushed using portable and miniaturized mill (crushing time 2 min) to obtain 

olive paste and then dried in the oven for two hours. The obtained dried olive paste passed 

through different steps to extract the oil (EEC/2568/91). The extraction method implies the use 

of different Soxhlet extractors and five water heaters equipped by three units each working 

simultaneously. This method requires long execution time (6 hours) and high quantity of diethyl 

ether (750 ml) per analysis. As for the water heaters also for the glass extractor the method 

requires twelve extractors to satisfy the 6 samples per day capacity, considering two replicates 

per sample. 

The amount of diethyl ether necessary for one analysis is 750 ml but in most of the laboratories 

under study this reagent is majorly recovered (around 95%) through distillation procedure. 

Moreover, the water demanded by this analysis is around 600 litres. This large water amount 

is required to condense the diethyl ether which is subsequently used to extract the oil from the 

pomace. Input and output data related to this analysis are reported in Table 3. 
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Table 3. Quantity, allocation factors, lifetime and amount per analyses for oil content analysis 

Input 
Quantity 

(Q) 

Allocation 
factor 

(Af) 

Lifetime 
Amount 

per 
analysis 

(Apa) 

Unit 
Years 

Number 
of 

analyses 
(Noa) 

Olive mill 8 0.33 15 6750 0.00039 kg 

Balance 5 0.21 10 4500 0.00023 kg 

Oven 54 0.06 15 6750 0.00048 kg 

Suction hood 110 0.75 15 6750 0.01222 kg 

Water heater 50 1.00 15 6750 0.00740 kg 

Textile woven 0.9 1.00 / 1 0.9 g 

Glass 90 1.00 10 4500 0.02 kg 

Carbon filters 10 0.75 / 2000 0.00375 kg 

Dryer silica 3 0.50 10 4500 0.00033 kg 

Dryer silica 50 0.50 10 1000 0.025 g 

Diethyl ether 750 1.00 / 20 37.5 g 

Tap water 600 1.00 / 1 600 kg 

Electricity 6.023 1.00 / 1 6.023 kWh 

Output       

Inert waste 0.9 / / / 0.9 g 

Hazardous waste 37.5 / / / 37.5 g 

Wastewater 600 / / / 600 l 

 

Phenols determination LCI 

The olive samples, after crushing using the portable and miniaturized mill, are added of a 

quantity of hexane and then undergone into an extraction phase of the fat fraction content 

using the centrifuge. The extracted fraction is than filtered using a mono-use syringe and nylon 

filter. Folin-reactive and sodium carbonate are added to the filtered solution and conditioned. 

The solution is analysed using the spectrophotometer at a defined wavelength to calculate the 

phenols content (A.O.A.C., 1975). This analysis is less time-consuming respect to the others 

(1.5 hour). However, it requires different chemicals and analytical tools to be performed. Input 

and output data related to this analysis are reported in Table 4. 
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Table 4. Quantity, allocation factors, lifetime and amount per analyses for phenols determination analysis 

Input 
Quantity 

(Q) 

Allocation 
factor 

(Af) 

Lifetime Amount per 
analysis 

(Apa) 
Unit 

Years 
Number of 

analyses (Noa) 

Olive mill 8 0.33 15 6750 0.00039 kg 

Centrifuge 30 1.00 10 4500 0.00667 kg 

Balance 5 0.20 10 4500 0.00022 kg 

Spectrophotometer 10 1.00 10 4500 0.00222 kg 

Computer 13 1.00 15 6750 0.00193 kg 

Suction hood 55 0.50 15 6750 0.00407 kg 

Packaging glass 12 1.00 1 1 12 g 

Carbon filter 600 1.00 10 4500 0.13333 kg 

Nylon filters 12 1.00 / 1 12 g 

PVC cuvette 5 0.50 / 2000 0.00125 g 

Hexane 3 1.00 / 1 3 ml 

Methanol 12 1.00 / 1 12 ml 

Folin-reactive 0.375 1.00 / 1 0.375 ml 

Sodium carbonate 3.75 1.00 / 1 3.75 mg 

Electricity 1.04 1.00 / 1 1.04 kWh 

Output       

Solvent mixture 20 / / / 20 g 

Plastic 12 / / / 12 g 

 

Vis/NIR spectroscopy LCI 

The intact olive samples are analysed using light emission deriving from vis/NIR 

spectrophotometer, without any sample preparation. The spectra obtained from the light 

reflection by olive is then analysed using software for model calibration installed on a computer. 

Multiple information can be deducted from the same spectral dataset. This technology implies 

the use of only two analytical tools: the vis/NIR device and the computer. No chemicals and 
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no expertise of laboratory procedure are necessary, the samples could be analysed directly in 

field, on intact olives, reducing any waste product. 

Also, in this case an allocation procedure based on the usage time of the tools was considered 

to calculate the environmental impact of vis/NIR spectroscopy analysis. Input data related to 

this analysis are reported in Table 5. No outputs were produced. 

Table 5. Quantity, allocation factors, lifetime and amount per analyses for vis/NIR spectroscopy analysis 

Input 
Quantity 

(Q) 

Allocation 
factor 

(Af) 

Lifetime 
Amount per 

analysis 
(Apa) 

Unit 
Years 

Number of 
analyses 

(Noa) 

Vis/NIR 15 1.00 15 6750 0.00222 kg 

Computer 13 1.00 15 6750 0.00192 kg 

Calibration 2100 0.015 15 6750 0.31 n 

Electricity 0.12 1.00 / 1 0.12 kWh 

 

The calibration of the vis/NIR device is a fundamental phase to obtain reliable results. The 

vis/NIR spectroscopy analysis gives not a measure of the parameters but, basing on a model 

built with the calibration, gives an estimation of them. The calibration is intended as the activity 

which requests to perform 700 conventional analyses, per parameter, correlating with the 

respective 700 optical analyses, performed on the same samples. Most of the 700 calibration 

analyses (500) were performed at the beginning of the implementation of the optical method 

(initial instrument training), while the others (200) were used as validation set. In this scenario, 

three models for moisture, oil and phenols content, were allocated to the 6750 analyses 

performed in 15 years. 

Life Cycle Impact Assessment (LCIA) 

According to Wolf et al. (2012), ILCD 2011 (International Life Cycle Data System) midpoint 

method was used to provide indicators to compare environmental impact in a more detailed 

level (16  categories) respect to the endpoint level (4 aggregated categories).  Table 6 reports 

the impact categories used to evaluate the environmental impact related to the two methods 

to measure the three reference parameters to characterise olive samples, the conventional 

laboratory analyses and the optical system. The study was conducted according to the 
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reference standards for LCA ISO 14040-14044:2006 (ISO 14040, 2006), using the software of 

analysis SimaPro (version 9) (PRé Sustainability, Amersfoort, The Netherlands). 

 

Table 6. Impact categories, acronyms and unit of ILCD 2011 midpoint method 

Impact category Acronyms Unit 

Climate change CC kg CO2 eq 

Ozone depletion OD kg CFC-11 eq 

Human toxicity, non-cancer effects HT-NC CTUh 

Human toxicity, cancer effects HT-C CTUh 

Particulate matter PM kg PM2.5 eq 

Ionizing radiation HH IRHH kBq U235 eq 

Ionizing radiation E (interim) IRE CTUe 

Photochemical ozone formation POF kg NMVOC eq 

Acidification ACID molc H+ eq 

Terrestrial eutrophication TEU molc N eq 

Freshwater eutrophication FEU kg P eq 

Marine eutrophication MEU kg N eq 

Freshwater ecotoxicity FECO CTUe 

Land use LU kg C deficit 

Water resource depletion WRD m3 water eq 

Mineral, fossil & ren resource depletion RRD kg Sb eq 

 

RESULTS AND DISCUSSION 

According to the purpose of the study, the two analyses methods were firstly analysed 

separately and then compared. While for the single study of the different analyses methods 

the hotspot identification criterion was used, for the comparison a numerical and quantitative 

rationale is needed in order to move from a single percentage consideration. The first method 

helps to identify the hotspots which are, in this paper, thus defined as activities or factors 

throughout the life cycle of the different analyses that are associated with higher environmental 

impacts. 
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Conventional methods 

Figure 1 shows the environmental impact in percentage values, identifying the different 

hotspots obtained from the elaboration of the inputs and outputs determined for conventional 

analyses. 

 

Figure 1. Hotspots for conventional analyses based on the reference parameters. Impact categories and 
acronyms are defined in table 6. 

 

In Figure 1, the overall impact is divided in the three conventional analyses performed to obtain 

three reference parameters, allowing to quantify environmental damaging. The higher 

percentage of impact comes from the measurement of the oil content. The high demand of 

water necessary for the condensation of the hexane (600 L analysis-1) lets the oil content 

analysis reach 89% in WRD impact category. For the other impact categories, the 

responsibilities percentage of oil content analysis is balanced around 54%, apart for the impact 

category RRD (33%), in which the oil content analysis has lower level of responsibilities due 

to the limited number of analytical tools respect to the moisture and phenol determination 

analyses. 

Figure 1 identify the most environmental impactful analysis but is not capable to highlight the 

motivation. Therefore, the three conventional analyses need to be considered as a single 

conventional analysis (Figure 2). To consider the set of three analyses as one allows to 

subdivide the inputs and outputs in 6 factors: analytical tools, energy, chemicals, waste 

treatment, laboratory materials and water and allows to identify the hotspots. 
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Figure 2. Hotspots for conventional analyses based on a factor subdivision. Impact categories and acronyms are 
defined in table 6. 

 

For most of the impact categories reported in Figure 2, the higher contribution derives from the 

energy due to the demand coming from the analytical tools (Table 1). The energy power 

absorption and the usage time of each electronic tool let the environmental damage increase 

due to the energy contribution with a medium percentage of 76%. The impact categories 

related to the human health as for HT-NC and HT-C shows different behaviours regarding the 

energy hotspot, in HT-NC the major impact (63%) comes from the analytical tools. The same 

consideration can be reached regarding the RRD. The extraction of metals and polymers for 

the construction of the machineries justify also the 81% related to the analytical tools. 

Even if the impacts of the analytical tools are positive in most of the impact categories, 

regarding the WRD impact category the construction of the machineries shows a negative 

percentage value (-5%) which, related to the environment, represent a positive aspect. This 

negative value finds justifications in the extraction companies behaviour which recycle or use 

recycled water to reduce water loss in this process which requires large amount of water. 

As shown in Figure 1, WRD impact category was mainly allocated to the oil content analysis 

(89%). Matching this consideration whit results in Figure 2, the high level of impact can be 

justified by the water used in this analysis 69%. 

The impact related to the chemicals showed lower values respect all the other factors (lower 

than 5% in all the impact categories). 
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Vis/NIR spectroscopy method 

The vis/NIR method does not require the same inputs and outputs of the conventional one, the 

subdivision in inputs and outputs criteria showed the necessity to identify only 3 factors: 

analytical tools, calibration, and energy. 

Figure 3 reports the environmental impact of the vis/NIR method. The LCA analysis not only 

considers the execution of the optical analysis, but also include all the background activities 

relating to the spectrophotometer calibration. Among the impact categories, the major hotspot 

is the calibration due to the large amount of conventional analyses to calibrate the predictive 

model to estimate reference parameters for olive characterization. 

 

Figure 3. Hotspots for optical analysis based on a factor subdivision. Impact categories and acronyms are defined 
in table 6. 

 

The second hotspot, especially for the impact categories directly correlated to the metal and 

to the electronics industries, for example HT-C, HT-NC and RRD, is the analytical tools factor. 

The minerals extraction and the electronic devices construction lead the impact in higher 

percentages of human health impact categories (HT-C 54% and HT-NC 74%) and non-

renewable impact categories as for RRD 78%, respect to the other factors. 

To compare the environmental impact of conventional and optical analyses, quantitative values 

are needed. According to the functional unit defined in section 2.1, the comparison results 

showed the impact related to the two method of analyses for each impact category (Table 7). 
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Table 7. Impact values related to the execution of the two methods (conventional and optical) to measure the 
three reference parameters to characterize olive. 

Impact category Unit 
Conventional 

method 

Optical 

method 

Ratio 

level 

Climate change kg CO2 eq 5.95 0.35214 16.88 

Ozone depletion kg CFC-11 eq 6.56 x 10-7 3.76 x 10-8 17.44 

Human toxicity, 
non-cancer 

effects 
CTUh 3.93 x 10-6 5.95 x 10-7 6.61 

Human toxicity, 
cancer effects 

CTUh 5.30 x 10-7 4.47 x 10-8 11.84 

Particulate matter kg PM2.5 eq 0.00323 0.00023 13.53 

Ionizing radiation 
HH 

kBq U235 eq 9.15 x 10-1 0.05036 18.16 

Ionizing radiation 
E (interim) 

CTUe 2.39 x 10-6 1.40 x 10-7 17.08 

Photochemical 
ozone formation 

kg NMVOC eq 0.01521 0.00104 14.58 

Acidification molc H+ eq 0.05733 0.00328 17.48 

Terrestrial 
eutrophication 

molc N eq 0.16818 0.00899 18.69 

Freshwater 
eutrophication 

kg P eq 0.003464 0.00042 8.17 

Marine 
eutrophication 

kg N eq 0.00630 0.00042 15.00 

Freshwater 
ecotoxicity 

CTUe 180.9074 19.14027 9.45 

Land use kg C deficit 12.7167 0.73403 17.32 

Water resource 
depletion 

m3 water eq 0.13356 0.00367 36.37 

Mineral, fossil & 
ren resource 

depletion 
kg Sb eq 0.00065 0.00011 5.89 

 

As showed in table 7, the conventional method implies higher impacts. They accounted for 

human health in HT-NC for 3,93x10-06 and HT-C for 5,30 x10-07 Comparative toxic unit 

(CTUh), while for the vis/NIR method the impact is respectively 5,95x10-07 and 4,47x10-08 
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CTUh. These two impact categories with FEU and RRD showed ratio values lower than 10, 

due to the analytical tools, as noticeable in Figures 2 and 3. Regarding all the other impact 

categories, the ratio level ranged 17-20 (WRD reaches 36 ratio level), this means that for most 

of the impact categories the vis/NIR method present lower environmental impact respect to the 

conventional method. 

Considering the obtained results for the studied parameters, the optical, non-destructive and 

rapid method can be defined 15 times greener respect to the conventional methods. 

This value cannot be assumed as final ratio value, in the conventional methods, the higher 

criticism is linked to the possibility to perform the same analysis in different ways, using 

different analytical tools. In order to evaluate the change of impact due to a change in 

procedure, the conventional moisture content analysis was replaced with an alternative 

method using the thermobalance and a sensitivity analysis was performed. 

Sensitivity analysis 

The thermobalance is an analytical tool which can substitute the conventional oven, an energy 

consuming analytical tool. The thermobalance can analyse few grams of sample per time but 

in less time and with lower energy respect to the method using the conventional oven. 

Considering the possibility to substitute the conventional moisture content analysis performed 

using oven with the thermobalance (weight 8 kg; electric power equal to 0.23 kW), the aim of 

the sensitivity analysis is to assess the variation in term of allocation for those analytical tools 

used in the three conventional analyses and evaluate the impact assessment that derived from 

changing one analytical tool. 
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Figure 4. Hotspots for conventional analyses based on the reference parameters, replacing oven with 
thermobalance for moisture determination analysis. Impact categories and acronyms are defined in table 6. 

 

As showed in Figure 4, considering the moisture determination analysis, significant reduction 

of the impact from the change in analytical tools can be seen in most of the impact categories 

(medium decrease of 24%). The decrease of the environmental impact due to introduction of 

thermobalance, cause on the contrary an increase of the percentage responsibilities related to 

oil and phenols content analyses. The complete allocation of the oven on the oil content 

analysis lets this method increase the percentage responsibility in all the impact category 

(+19% CC, +10% HT-C, +11% WRD). 

Table 8 shows the impact assessment using oven or thermobalance for moisture determination 

analysis among conventional analyses. Despite the increase of impact related to the oil content 

and phenols determination analysis and the decrease in the moisture content, the overall 

impact of the conventional method decreases of about 18%. The only one impact category 

which shows a negative result is the RRD with an increase of impact equal to +6.2%. This 

increase, linked also to the impact categories HT-C and HT-NC which show lower 

environmental benefits, is due to the use of thermobalance which not replace the oven that 

results still necessary for the oil content analysis. Moreover, although the use of thermobalance 

imply an increase of environmental impact due to an additional analytical tool, it results in a 

decrease of energy consumption compare to the use of the oven only. Considering the new 

environmental impact due to the use of thermobalance instead of oven, the overall ratio gap 

between the conventional and the optical methods decrease from 15.28 to 12.24. 
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Table 8. Impact values related to the execution of the two methods (conventional using thermobalance instead 
oven for moisture determination analysis and optical) to measure the three reference parameters to characterize 

olive 

Impact 
category 

Unit 
Conventional 
method using 

thermobalance 

Reduction 
respect to oven 

Optical 
method 

New 

ratio 

Climate change kg CO2 eq 4.47 -24.8% 0.3521 12.69 

Ozone 
depletion 

kg CFC-11 eq 4.94 x 10-7 -24.7% 3.76 x 10-8 13.13 

Human toxicity, 
non-cancer 

effects 
CTUh 3.87 x 10-6 -1.6% 5.95 x 10-7 6.50 

Human toxicity, 
cancer effects 

CTUh 4.83 x 10-7 -8.9% 4.47 x 10-8 10.78 

Particulate 
matter 

kg PM2.5 eq 0.0025 -21.5% 0.0002 10.62 

Ionizing 
radiation HH 

kBq U235 eq 0.6721 -26.5% 0.0503 13.35 

Ionizing 
radiation E 

(interim) 
CTUe 1.79 x 10-6 -25.2% 1.40 x 10-7 12.78 

Photochemical 
ozone formation 

kg NMVOC eq 0.0119 -21.5% 0.0010 11.44 

Acidification molc H+ eq 0.0417 -27.3% 0.0033 12.71 

Terrestrial 
eutrophication 

molc N eq 0.1194 -28.9% 0.0089 13.28 

Freshwater 
eutrophication 

kg P eq 0.0032 -7.6% 0.0004 7.55 

Marine 
eutrophication 

kg N eq 0.0049 -21.1% 0.0004 11.83 

Freshwater 
ecotoxicity 

CTUe 153.5268 -15.1% 19.1403 8.02 

Land use kg C deficit 9.2266 -27.4% 0.7340 12.57 

Water resource 
depletion 

m3 water eq 0.1185 -11.2% 0.0037 32.28 

Mineral, fossil & 
ren resource 

depletion 
kg Sb eq 0.0007 +6.2% 0.0001 6.26 
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Overall, the use of optical analysis in order to characterize olive imply a reduction in kg of CO2 

released. The use of the oven for conventional method releases 2677.5 kg of CO2; using the 

thermobalance the overall emission of CO2 decreased (-666 kg of CO2), but remain high 

(2011.5 kg CO2). Considering replacing the conventional method with the vis/NIR 

spectrophotometer, the reduction in CO2 reaches 157.5 kg CO2, avoiding 2520 kg of CO2 

emitted every year. 

If 14.1 kg CO2 eq is considered as the mean value of carbon footprint of one litre of packaged 

olive oil (Pattara et al., 2016), 5.95 kg CO2 eq is the carbon footprint of the conventional 

method and 0.35 kg CO2 eq is related to the optical one. The environmental impact of the 

analysis compared to the impact of the entire production process depend on the sampling 

frequency. The conventional analysis method weights 21 % of the total impact when analysis 

frequency is every 10 dm3 of oil sample, 7 % in case of analyses every 100 dm3 of oil sample 

and 0.2 % for analyses performed every 1000 dm3 of oil sample. These values decrease if the 

conventional analyses are replaced by the optical one, the percentage obtained are 

respectively equal to 1.2 % (10 dm3), 0.12 % (100 dm3) and 0.012 % (1000 dm3). 

CONCLUSIONS 

In this study the environmental impact of two methods of analyses, conventional and optical, 

to characterize and evaluate the olive ripening process, were analysed and compared. The 

LCA study highlighted how the chemicals used and the waste management are not the main 

responsible of the environmental damages. 

The achieved results in terms of energy and analytical tools are the main drivers of the 

environmental impact in the conventional method, while the calibration for the optical one. 

More in details, due to the electric power absorption of the analytical tools and the relative 

construction, the conventional method shows a considerably higher impact respect to the 

vis/NIR spectroscopy (15 times more). Moreover, the sensitivity analysis identified highly 

variability of results due to the type of conventional analyses studied. Finally, future research 

activities should consider an expansion of the system boundary to consider the implementation 

of different parameters to analyse using vis/NIR devices. 

Overall, quantifying the environmental damage, the results showed clear advantages for 

optical analysis defining spectroscopy as green technology. Moreover, this technology is also 

time-saving, non-destructive and user-friendly (an expert of laboratory procedure is not 
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required). Considering that food production has a large impact on environment, for the future, 

adopting spectroscopy for routine analyses could be helpful to reach more sustainable food 

processes. 
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This PhD project regards different applications of non-destructive optical techniques to 

evaluate the quality of agri-food products as well as the development of customized optical 

devices to fulfil the needs of the agri-food chain which is going toward a concept of industry 

4.0. 

In the agri-food sector, the limited adoption of spectroscopy can be attributed to the poor 

knowledge of the method of analysis and costs. Therefore, in order to support the companies, 

this PhD thesis gives a complete overview about what concern: 

1. Models development; 

2. Methods comparison; 

3. Variables selection; 

4. Sensors design. 

Concerning models development, methods comparison and variable selection (both for 

benchtop/process and portable commercial devices), different fields of applications have been 

explored (in this case, in the coffee and olive supply chain) in order to give a wider overview 

of the potentialities of this technique to predict qualitative features of intact food products 

revolutionising the quality monitoring systems and going toward an industry 4.0 approach. 

Moreover, optical hand-held and stand-alone prototypes were designed, built, and tested in 

order to shift the current paradigm of grape maturation monitoring (based on lab analysis) with 

a new one that allows a cost-effective non-destructive real-time monitoring providing 

information with temporal and spatial resolution thanks to an infrastructure IoT. 

Finally, given the evidence that this proposed proximal sensing technology has a considerable 

impact on many fields, a further step has been moved (during the experience abroad) in terms 

of cost reduction for a more complex optical technique which can gather even more 

information, the hyperspectral imaging. Indeed, thanks to the presence of the spatial 

information provided by an hyperspectral imaging approach it could solve different issues in 

terms of data accuracy and application in real operative conditions.  
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In spectroscopy, three main types of devices can be identified: benchtop instruments for 

applications in research centres or in industry laboratories, in-line or on-line process devices 

for application directly at the process line, portable devices (hand-held) for the use also in the 

field. Moreover, thanks to the technological evolution in terms of cost and miniaturization, the 

application of stan-alone vis/NIR optical devices is starting to spread in agriculture for the user 

directly in the field for real-time monitoring. Table 4.1 shows the main differences between the 

three types of NIRs devices (Beghi et al., 2017). 

Table 4.1. Characteristics of the four main categories of vis/NIR devices. 

Instrument 
type 

Application 
area 

Flexibility 
of use 

Applicability 
Measurement 
accuracy and 

reproducibility 
Cost 

Laboratory 
devices 

Research/Indu
stry 

Adaptable 
to different 
matrices 

Fixed system Optimal High 

Process 
devices 

Industry 
Specific 

categories 
of products 

Fixed system Fair Average/high 

Hand-held 
devices 

Also in field 

Dedicated 
for 

individual 
products 

Portable Fair Average/low 

Stan-alone 
devices 

Also in field 

Dedicated 
for 

individual 
products 

Fixed and 
portable 

Fair Low 

 

In this chapter, a complete overview of studies has been done about the use and the 

development of vis/NIR devices in different supply chains with a high added value on the final 

product (coffee, olive, olive oil and grape for wine production). 
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4.1 Benchtop and process analytical instruments 
 

PAPER 3: A reliable tool based on near-infrared spectroscopy for the monitoring 
of moisture content in roasted and ground coffee: a comparative study with 
thermogravimetric analysis 
 

Alessio Tugnoloa, Valentina Giovenzanaa, Cristina Malegorib*, Paolo Oliverib, Andrea Cassona, 

Matteo Curatitolia, Riccardo Guidettia, and Roberto Beghia 
aDepartment of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di 

Milano, via G. Celoria 2, 20133 Milan, Italy. 

bDepartment of Pharmacy (DIFAR), Università degli Studi di Genova, viale Cembrano 4, 16148 

Genoa, Italy. 

* Corresponding author: malegori@difar.unige.it 

Abstract 

Moisture content (MC) is one of the main issues that the coffee industry has to monitor. The 

international standards (ISO 11817 and ISO 11294) for MC evaluation are incompatible with 

the rhythm of a modern productive chain. As an alternative, thermogravimetric moisture 

analyzers (TMA) are widely applied, but they cannot provide a real-time monitoring and 

management of MC. The present research aims at evaluating the performance of a near-

infrared (NIR) spectrophotometer in measuring the MC of roasted beans and ground coffee, in 

comparison with a TMA. PLS regression models provided high predictive performances 

(R2
Pred=0.95 and RMSEP= 0.15%, and R2

Pred=0.97 and RMSEC= 0.13% for roasted and 

ground coffee, respectively). Passing-Bablok regression was performed to compare NIR and 

TMA measurements, but no significant differences were highlighted. The residual dispersion 

index (RDI%) was proposed, showing the higher predictive accuracy of the NIR 

spectrophotometer, envisaging this technology as a routine standard method for coffee MC 

evaluation.   
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INTRODUCTION 

Millions of people around the world enjoy coffee every day. Currently, this hot beverage is 

consumed especially in Europe where, in 2019-2020, the coffee demand has exceeded 55 

million bags (of 60 kg each), with an increment, since 2016-2017, of the Compound Annual 

Growth Rate (CAGR) by 2.1% (International Coffee Organization, 2020). The leading outcome 

is a highly competitive market, thus the quality of the product becomes even a more crucial 

aspect and is strictly related to the chemical composition of the roasted beans, which is 

affected by the composition of the green beans and by postharvest processing conditions 

(Alessandrini et al., 2008). 

In particular, the moisture content (MC) is a critical parameter for the whole coffee production 

chain. In fact, it is constantly monitored from the harvest of the berries (MC of more than 60%), 

passing from the drying phase, leading to the green coffee, up to the roasting and grinding 

phases (Adnan et al., 2017). MC in green coffee, indeed, governs fermentation and mold 

growth during storage and transport, which could lead either to the development of off-flavors 

at the cup level and/or to the formation of mycotoxins (MC 8–13% enables safe transportation 

and storage). Besides, from an economical point of view, the coffee is paid by weight and 

buyers are thus more interested in buying solid coffee materials than water which, additionally, 

affects the bean shelf life (Reh et al., 2006; Mendonça, Franca and Oliveira, 2007). As for 

green coffee, an inadequate MC after the roasting phase reduces the shelf life of the final 

product. Moreover, it produces unwanted biochemical transformations like lipid oxidation, 

which causes a loss of taste and body at the cup level (Caporaso et al., 2018). This is due to 

the fact that the grinding of coffee beans with a high moisture content (higher than 6 g/100 g) 

leads to unacceptable particle size distribution. For these reasons, and considering also 

economical aspects of the ratio weight/cost, the legal limit for MC in roasted coffee is fixed at 

5 g/100 g (Baggenstoss, Perren and Escher, 2008). In light of these considerations, it is 

possible to state that the drying and roasting phases are crucial for MC and, consequently, for 

the whole coffee production chain. 

Regarding the analytical determination of MC, for roasted and ground coffee, two international 

standards are available: the ISO 11817, based on the Karl Fischer Titration (KFT), and the 

oven-based drying, governed by ISO 11294. The first one is basically a reaction of water and 

sulfur dioxide with iodine in an alcoholic solution (De Caro, Aichert and Walter, 2001), while 

the oven-based drying is performed by the determination of the loss in mass at 103 °С till 
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constant weight (Martín, Pablos and González, 1999). Due to their laboriousness and 

consequent lack of speed, these standards are practically incompatible with a productive chain 

of the modern industries, where technology has reduced the roasting time down to almost 2-4 

minutes (Catelani et al., 2018) followed by few minutes of grinding. Thus, to overcome this 

drawback, the thermogravimetric analysis (TGA) using thermogravimetric moisture analyzers 

(TMA) are widely utilized in the companies to obtain a fast analysis of MC. This procedure 

involves the measurement of 5 g of ground roasted coffee and it takes around 2–5 minutes for 

reaching a stable result. Despite the advantages of being solvent-free and rapid, the TMA is a 

benchtop equipment that has to be used off-line in a laboratory environment and usually needs 

a sample preparation (grinding the roasted beans). For these reasons, an off-line system like 

TMA may lead to undesired downtime of the production process. Currently, it is becoming 

essential to develop specialized, robust and low-maintenance moisture measurement systems 

that could allow the analysts to retrieve in real-time the MC (Cataldo et al., 2017). Moreover, it 

is important to employ systems that could be integrated with the production chain, able to 

extensively analyze the whole coffee mass and whose measurement output can be made 

readily available to the process control systems (in this way, direct process interventions could 

be handled remotely, through tele-control). In this context, near-infrared (NIR) spectroscopy 

can be an adequate solution, thanks to its well-recognized efficiency as a process analytical 

technology (Bakeev, 2010). 

NIR spectroscopy, combined with chemometric techniques, was already tested for the 

determination of MC (and other qualitative parameters) in several dry food products. In more 

detail, Ferreira et al. (2014) compared the promising prediction capability of NIR and MIR (mid-

infrared) techniques to determine MC, proteins, lipids and ash in soybeans; several works are 

also available on maize, and Zhang & Guo (2020) realized an accurate detection of MC using 

the hyperspectral imaging in the visible/near‐infrared (Vis/NIR) and NIR regions; on wheat, 

Miralbe & La Meta (2003) showed the high attitude of this tool to predict the main chemical 

parameters, including MC. 

In the present work, NIR spectroscopy is proposed as an innovative technique to support 

coffee industry operators by providing an efficient and fast tool for the control and management 

of MC immediately after coffee roasting and grinding. To reach this goal, a multivariate 

predictive function that models the covariance structure between a block of predictor, the NIR 
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spectra, and a chemical response, MC, is developed thanks to the application of the partial 

least squares (PLS) regression method. 

The reference analyses of MC were performed following the oven-based drying, governed by 

ISO 11294 (ISO); moreover, all the samples were analyzed by TMA. The collected dataset 

permitted to perform, for the first time, a direct comparison between NIR spectroscopy and 

TMA regarding the accuracy in determining MC in roasted and ground coffee. 

An important return of this study is the possibility to propose the NIR-based approach as an 

international standard, with the advantage of implementing it directly on-line, in a view of a 

continuous process monitoring. 

MATERIALS AND METHODS 

Sampling 

The experimental activity took place from May 2019 to January 2020, analyzing 287 samples 

of roasted coffee beans (200 g each one) from six blends of Arabica and Robusta varieties. 

The six blends were produced according to different roasting protocols that vary depending on 

the time-temperature conditions. Thus, the sampling scheme was defined in order to cover the 

widest humidity range and, consequently, to include the maximum MC variability. The samples 

were collected directly in the production line, after the roasting phase, and then stored at 0–

4°C under vacuum in polylaminate bags equipped with a valve, which ensured an appropriate 

degassing of CO2, and suitable for food contact. The bags were then shipped to the 

Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy 

(DISAA), Università degli Studi di Milano, Milano, Italy for the analyses. 

Before lab analyses, the samples of roasted coffee beans were equilibrated at room 

temperature (22±2°C) and then, from each bag, three aliquots of 20 g each were prepared, as 

outlined in Figure 1. Subsequently, one aliquot was divided into three sub-aliquots of 5.0±0.2 

g each, while the remaining two aliquots were milled using a laboratory mill (MIGNON, Eureka, 

Italy) and, then, separated into six samples of 5.0±0.2 g each. The coffee beans sub-aliquots 

were analyzed firstly with the NIR spectrophotometer and, then, following the ISO MC 

determination. For the ground coffee samples, three of them were analyzed using the benchtop 

TMA (which cannot be applied on intact coffee beans), while other three sub-aliquots were 

analyzed with the NIR spectrophotometer and, then, following the ISO MC determination. 

Therefore, from 287 samples of roasted coffee beans (200 g each one), 861 aliquots (5.0±0.2 
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g each) of coffee samples were obtained: 287 of coffee beans and 574 of ground coffee, 

respectively. 

 

Figure 1. Description of the experimental activity performed for each coffee blend. 

 

Oven-based drying analysis (ISO 11294) 

The oven-based drying analysis, governed by ISO 11294:1994 (1994), is an International 

Standard which specifies a routine method for the determination of the loss in mass at 103 °C 

of roasted ground coffee. This method, as reported by 11294:1994 (1994), was demonstrated 

to give results comparable, on average, to those obtained by Karl Fischer method, reported in 

ISO 11817. 

In the present work, according to the ISO 11294 procedure, each sub-aliquot of coffee (roasted 

beans and ground) was placed in a crucible and the weight was recorded using an analytical 

balance (LAZ 30P, Sartorius Lab Holding GmbH, Goettingen, Germany). Then, all the 

crucibles were placed in a lab oven (UNB400, Memmert GmbH & Co, Schwabach, Germany) 

set at 103°C and capable of maintaining the chamber temperature within ±1.5°C. The samples 
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were dried until constant weight (for around 24 h) and, then, placed in the desiccator with silica-

gel, to keep the humidity constant, for 30 minutes. When the samples reached the room 

temperature, the crucibles were re-weighed for the MC determination: 

𝑀𝐶 (%) = ∗ 100          (1) 

where mi is the weight before the analysis and mf is the final weight after cooling. The MC 

value is expressed in percentage. 

Thermogravimetric moisture analysis 

The thermogravimetric moisture analyzer used in the present work is the benchtop device 

HC103 Moisture Analyzer (Mettler Toledo®, Ohio, USA). This TMA works according to the 

thermogravimetric principle: the sample initial weight is recorded, then a halogen radiator dries 

it at 105°C, while an integrated balance continually records the sample weight. The drying 

process takes place through the absorption, by the sample, of infrared radiation from the 

halogen lamp. This heating element consists of a glass pipe filled with halogen gas, which 

works in combination with a gold-plated reflector enabling the distribution of the thermal 

radiation over the entire sample surface. The constant weight is reached after 3-5 minutes and 

the total loss in weight is automatically calculated. This value is interpreted as the MC and it is 

expressed in percentage. 

NIR spectral acquisitions 

Spectroscopic analyses were performed under controlled laboratory conditions, without any 

sample preparation, on both beans and ground coffee samples. A NIR spectrophotometer 

(Corona Extreme, Zeiss, Germany) for on-line measurements, equipped with a halogen light 

source, a diode array detector NIR module (960–1650 nm, spectral resolution 10 nm) and a 

plane grating spectrometer polychromator was used. To simulate the desirable final use of NIR 

measurements, directly on the product line, the spectrophotometer was equipped with a 

rotating acquisition system (TURNSTEP, Zeiss, Germany) dedicated to the analysis of large 

quantities of non-homogeneous samples (in the present work, 5.0±0.2 g for each sub-aliquot) 

within a short period of time. At the end of the acquisition phase, which takes about 10 s, the 

spectrum of each sample is automatically calculated as the average of 50 scans, in order to 

obtain a more representative spectrum and a higher signal-to-noise ratio. 



 Post-print_Paper 3 
Food Control 

67 | P a g e  

  

Data processing 

The data processing strategy can be divided in two steps: the first part was focused on 

developing regression functions, finding the correlation structure between the NIR data and 

the ISO determination of MC. The final aim of this first step was to obtain predictive models for 

the non-destructive and real-time quantification of MC by means of NIR spectroscopy. The 

second step was performed with the aim of statistically comparing the NIR-based predictions 

with the well-established TMA determination of MC. The whole data processing was performed 

on both coffee beans and ground coffee. 

Outliers detection 

The reference analysis (ISO 11294, in the present study) is the key element for the construction 

and the final performance of the calibration models. Therefore, a lack of accuracy of the 

reference method produces an increased error in the prediction from secondary techniques, 

like NIR spectroscopy (Reh et al., 2006). Considering the numerous phases of the ISO 

analysis, even though performed by skilled personel, an evaluation of the inner variability 

between the three replicates (sub-aliquots of 5.0±0.2 g) was performed, with the aim of 

removing any possible gross error from the dataset. Therefore, following Vinutha et al. (2018), 

the Interquartile Range (IQR) to detect outlier for the ISO analysis was used. Moreover, a 

principal component analysis (PCA) was applied to detect possible outliers in the NIR spectral 

profiles (Croce et al., 2020). 

Regression models for MC prediction 

Multivariate data analysis was performed in the Matlab® environment, version 2019b (The 

MathWorks, Inc., Natick, MA, USA) using both the PLSToolbox package (Eigenvector 

Research, Inc. Manson, Washington) and in-house functions. 

Different spectral preprocessing techniques were tested to remove any irrelevant information 

which can negatively affect the regression models. Considering the inhomogeneous physical 

structure of the samples (both beans and ground coffee), a correction of the baseline vertical 

shifts (offsets) and of the global intensity effects (typically arising from unwanted light 

scattering) was performed, applying the Standard Normal Variate (SNV) transform. The 

Savitzky and Golay second derivative (Der 2), with a third-degree polynomial order and a 

window size equal to 7 datapoints, was used to enhance the resolution and minimize the 
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spectra offset and drifts. Finally, the spectra were mean-centered column-wise, to minimize 

location differences between spectral variables (Biancolillo and Marini, 2018; Oliveri et al., 

2019). 

After preprocessing, data were divided in two sub-sets by means of the Kennard and Stone 

duplex algorithm (Kennard and Stone, 1969): 66% of the samples was used for calibration 

purposes while the remaining 33% was used to perform validation. 

A latent variable modelling using the PLS method, which maximizes the covariance among the 

NIR spectra and the ISO MC analysis, was performed (Oliveri et al., 2020). Model accuracy 

was evaluated using the RMSE (root mean square error), as well as bias and R2 (coefficient 

of determination); the lower the error and the bias and the higher the R2 (as maximum equal 

to 1), the better the model performances. Besides, the RPD (residual prediction deviation, i.e. 

the ratio between the standard deviation of the response variable and RMSE) was calculated. 

An RPD between 1.5 and 2 indicates that the model can distinguish low from high values of 

the response variable; a value between 2 and 2.5 indicates that rough quantitative predictions 

are possible, and a value between 2.5 and 3 or above corresponds to good and excellent 

prediction accuracy, respectively (Nicolaï et al., 2007). The whole set of parameters for the 

evaluation of model goodness was calculated not only in calibration but also in validation, and 

it was used to choose the optimal number of latent variables (model complexity) for maximizing 

model reliability, balancing good predictions and overfitting. 

Methods comparison 

For a better understanding of the practical applicability of the proposed approach, the NIR-

based predictions ability was compared with the TMA determinations, already accepted in the 

coffee industry as a valid alternative to ISO measurement. To do that, the Passing-Bablok 

regression method (Passing and Bablok, 2009) was applied on the MC values obtained by the 

different approaches (NIR, TMA and ISO) on the same set of samples (the validation set), in 

pairs. This regression method is particularly suitable for method comparison, since it is a 

symmetrical non-parametric technique, which can build regression models also when both 

variables (independent and dependent) have a non-negligible experimental error. For 

statistically evaluating the similarity/diversity between these two independent estimations, 

slope and intercept of the fitted line were calculated, and a significance bivariate test was 

conducted. The null hypothesis (H0) was verified when the slope was not significantly different 
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from 1 and, simultaneously, the intercept was not significantly different from 0, meaning that 

there were no significant differences between the two methods, at a 95% confidence level 

(Mustorgi et al., 2020). 

So far, this statistical test did not provide any consideration regarding the magnitude of the 

similarity between two models considered statistically comparable. For overcoming this 

limitation, the information included in the residual sum of squares (RSS) of the Passing-Bablok 

regression was used, for the first time, as an index for quantify the similarity between two 

analytical methods. In more detail, a residuals dispersion index (RDI%) is proposed: 

𝑅𝐷𝐼% =  

∑ ( ŷ)
 

ȳ
∗ 100        (2) 

where ∑ (𝑦 − ŷ)  is the RSS, 𝑁 is the number of samples included in the validation set and 

ȳ is the MC average value (obtained using the reference method – TB or ISO depending on 

the comparison that is carried out). The index is multiplied by 100 for making the interpretation 

even more simple: the higher the RDI% the higher the discrepancy between the two sets of 

data used for building the regression model. The advantage of this index is the possibility to 

evaluate the comparison between two methods regardless of the dataset used for performing 

the comparison. In the present work, it was used to evaluate comparability of NIR spectroscopy 

with ISO, for both coffee beans and ground coffee. 

The Passing-Bablok regression function, in fact, was applied for every pair of analytical 

methods, analyzing the differences between the two instruments (NIR and TMA) and with the 

reference data (ISO) (Malegori et al., 2017). This comprehensive comparison was carried out 

on ground coffee samples, where the TMA analysis was available, while for coffee beans only 

the comparison between NIR and ISO determinations was feasible. 

RESULTS AND DISCUSSION 

Outlier detection 

Analyzing the MC data variance of each triplet of coffee sub-aliquots (from both ISO and TMA 

analysis), a UB value from each dataset was determined through the IQR technique (as 

detailed in Materials and method, section 2.5.1). 
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Concerning the MC determination according to the ISO procedure, the UB for roasted coffee 

was equal to 2.23*10-2 % while the UB for ground coffee was 3.67*10-2 %. According to the 

outlier detection strategy, the variance between each triplet of roasted and ground coffee was 

determined and, if the value was higher than the UB, the sample (all the sub-aliquots belonging 

to it) was considered as a potential outlier and excluded from the dataset. Starting from a total 

287 samples, a total of 32 and 35 samples were excluded from the data sets of roasted and 

ground coffee, respectively. 

Concerning the MC analysis using the TMA data, the same procedure was followed but no 

outliers were identified. 

NIR spectra exploration and regression 

Initially, a visual interpretation of the NIR spectral data, presented in Figure 2, was performed; 

no differences were highlighted from the spectra of roasted and ground coffee in terms of 

chemical assignments. However, it was possible to notice that a lower amount of radiation was 

reflected by the roasted beans if compared with the ground coffee (data not shown). This 

phenomenon, mainly ascribable to scattering effects, is strictly related to the physical 

differences (in terms of particle size and compression degree) among the coffee beans and 

the powder (Pizarro et al., 2004). 

 

Figure 2. Raw (2a) and pretreated spectra (2b; SNV and Der 2 transformation) of ground coffee labeled according 
to the ISO analysis of MC (%). 

 

As an example, Figure 2a shows the raw spectra of the ground coffee; the color bar ranges 

between blue (low values) and yellow (high values) of MC (ISO determination). As expected, 
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the predominant band of the NIR profile is approximately at 1450 nm, dominated by the water 

absorption bands due to the first overtone of O–H stretching (Barbin et al., 2014). In the region 

between 1100 and 1250 nm, it was possible to notice the characteristic bands (related to the 

second stretching overtone of C–H) mainly linked to the absorption of lipids, carbohydrates 

and quinic acid, coming from the degradation of chlorogenic acids during roasting (Zhang et 

al., 2013). Besides, due to the high content of methylxanthines, another band around 1300-

1350 was identified and it is mainly relate to caffeine absorption (Osborne et al., 1993; X. 

Zhang et al., 2013). Lastly, another absorption was highlighted around 1550 nm, mostly related 

to carbohydrates compounds, amino acids and chlorogenic acids not degraded (Barbin et al., 

2014). Figure 2b shows the pretreated spectra, after the application of the SNV transform and 

second derivative; this procedure ensured a correction of the global intensity effect – due to 

physical scattering of the sample surface – together with the baseline drift, typically ascribable 

to the use of portable devices. 

Figure 3 shows the outcomes of PCA performed on the pretreated spectra. The score plot 

(Figure 3a) shows the behavior of the samples colored according to MC (determined by ISO 

analysis) in the orthogonal space defined by PC1 and PC3. Almost 48% of the total variance 

is resumed by PC1 and it is positively related to MC; in more detail, low MC values are 

encountered at negative values of PC1 scores, while high MC values are detectable at positive 

values of PC1 scores. Adding to PC1 the contribution of PC3 (10.84 % of the total variance), 

six groups of samples related to the six blends of coffee used to perform this study were 

detected and graphically highlighted with convex hulls, which enclose samples belonging to 

each blend. To complete the discussion, the loading plot is reported in Figure 3b and, even if 

loadings are inevitably affected by data pretreatment, it can confirm the importance of the 

variables described above and, in particular, the water absorption band. The joint interpretation 

of PCA outcomes, in fact, allows to confirm that moisture, easily detectable by the NIR 

spectrometer, is the most informative factor that differentiates between the samples used in 

this study. 
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Figure 3. PCA outcomes: 3a) score plot, colored according to MC (determined by ISO analysis, expressed in %) 
and grouped according to the six coffee blends; 3b) loading plot of the 3 lower order components. 

 

Thanks to the encouraging results of this exploratory step of data processing, regression 

models for the prediction of MC starting from NIR data were implemented, by means of the 

PLS method. The parameters used for evaluating the model goodness are presented in Table 

1, for both roasted and ground coffee. In the same table, some descriptive statistics useful to 

an in-depth understanding of the dataset are detailed. 

Table 1. MC descriptive statistics and figures of merit of the PLS models for roasted and ground coffee. 

Matrix Mean SD 

MC 

(%) 

Range 

LVs 
Cal. 

samples 

Pred. 

samples 
R

2

Cal 
RMSEC 

(%) 
R

2

Pred 
RMSEP 

(%) 

Pred 

Bias 

RPD 

(%) 

Roasted 

coffee 
1.84 0.77 

[0.79, 

4.04] 
4 505 260 0.96 0.17 0.95 0.15 

-

0.02 
5.13 

Ground 

coffee 
2.21 0.73 

[1.03, 

4.97] 
4 499 257 0.97 0.13 0.97 0.13 0.02 5.61 

SD = standard deviation, LVs = latent variables, Cal = calibration, Pred = prediction. 

 

Regarding R2 and RMSE, it is interesting to underline the minimal differences between the 

performance of the models in calibration (R2
Cal=0.96 and RMSEC= 0.17% for roasted coffee 

and R2
Cal=0.97 and RMSEC= 0.13% for ground coffee) and in prediction (R2

Pred=0.95 and 

RMSEP= 0.15% for roasted coffee and R2
 Pred=0.97 and RMSEC= 0.13% for ground coffee), 
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confirming the reliability of the model in predicting MC of unknown samples. Besides, the high 

RPD values around 5 (5.13 and 5.61 for roasted and ground coffee, respectively) confirm that 

the models are adequate for an industrial application, as a routine method. 

To complete the information presented in Table 1, Figure 4 shows the reference vs. predicted 

graph, in which experimental values of MC (ISO measurement) are reported in a scatter plot 

versus the respective values predicted by the NIR-based model; samples represented in the 

graphs belong to the validation set of ground (Figure 4a) and roasted (Figure 4b) coffee. The 

target line, that is the bisector of the quadrant, is represented as the reference ideal line (dotted 

red line). As expected, the cloud of samples is more disperse for coffee beans (roasted 

samples) – indicating a less accurate prediction – in respect to the ground coffee, due to a 

more intense light scattering effect on NIR spectra. 

 

Figure 4. Reference vs. predicted graph for: 4a) ground coffee; 4b) roasted coffee. 

 

Methods comparison 

To evaluate whether significant differences of the performance between the NIR 

spectrophotometer and the TMA in determining the MC exist, the Passing–Bablok regression 

was performed on the same data used for validation of the PLS models. Using a joint test on 

slopes and intercepts, the three methods (NIR, TMA and ISO) were compared in pairs 

analyzing the differences between the two instruments (NIR and TMA), always using the ISO 

measurements as reference data. No statistical differences between the instruments were 

highlighted from the Passing–Bablok tests, at a confidence level of 95%. Therefore, the null 
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hypothesis (slope not significantly different from 1 and intercept not significantly different from 

0) was accepted for all the paired comparisons: ISO vs. TMA, ISO vs. NIR (for ground coffee) 

and ISO vs. NIR (for roasted coffee). In Figure 5, the three Passing–Bablok regression lines 

are presented (solid blue lines) and the confidence interval at 95% is highlighted with dashed 

blue lines. The bisector of the quadrants (ideal lines) are represented, for comparison, as 

dotted red lines. Figure 5a reports the comparison between ISO and TMA for ground coffee, 

Figure 5b reports the comparison between ISO and NIR for ground coffee and Figure 5c 

reports the comparison between ISO and NIR for coffee beans (remembering that TMA 

measurements cannot be performed on coffee beans). It is possible to notice that, even if the 

null hypothesis of the test was accepted for all the pairs of measurements, the distribution of 

the samples around the regression line (solid blue line) is different, in shape and extent, in the 

three cases. 

 

 

Figure 5: Passing–Bablok regression outcomes: 5a) comparison between ISO and TMA for ground coffee; 5b) 
comparison between ISO and NIR for ground coffee; 5c) comparison between ISO and NIR for coffee beans. 

 

To understand this different behavior, another processing step was performed with the final 

aim of quantifying the magnitude of the similarity between the two instruments, NIR and TMA; 

therefore, the RDI% index was calculated as an informative index, which takes into account 

the information included into the RSS of the Passing-Bablok regression. Concerning the 

ground coffee, the residuals measured from ISO vs. TMA (Figure 5a) show an RDI equal to 

9.68%, noticeably higher than the RDI coming from the comparison between ISO and NIR and 

equal to 5.93%. This indicates that, even if the TMA measurements and the NIR prediction can 

be considered statistically comparable, the NIR-based model is providing a more precise and 



 Post-print_Paper 3 
Food Control 

75 | P a g e  

  

accurate prediction. In more detail, the TMA measurements present higher residual values 

along the whole range of variability of the MC, if compared with the ISO measurements (Figure 

5a), especially for low MC values (between 1 and 2.5%). Conversely, the NIR-based prediction 

presents a lower dispersion of the samples along the entire MC range, including the low MC 

values. 

The RDI% was also calculated for roasted coffee, comparing the data from ISO and NIR 

(Figure 5c). An RDI equal to 8.54% was obtained, highlighting the reliability of the NIR 

spectrophotometer not only after but also before the grinding process, with a predictive 

performance higher than TMA on ground coffee. This can represent a huge advantage, from 

a practical point of view, in the application of the NIR technology in the coffee industry. 

CONCLUSIONS 

A diode array NIR spectrophotometer (suitable for on-line measurements) was demonstrated 

to be a reliable tool for determining the MC in coffee samples, both roasted and ground. Thanks 

to PLS regression, reliable prediction models were developed, with coefficients of 

determination higher than 0.95 and errors in prediction lower than 0.15%. In order to 

understand the advantage in applying such a device in the coffee industry, in respect to the 

more established TMA, a comparison between the techniques was performed, using the ISO 

measurement as the reference values. The joint statistical test on slope and intercept, based 

on the Passing–Bablok regression, did not highlight significant differences between the two 

approaches. On the other hand, the proposed RDI% index indicated a higher accuracy and 

precision of the NIR-based predictions (RDI%=5.93), in respect to the TMA determinations 

(RDI%=9.68), along the whole MC range of variability. 

The present work lays the foundation for implementing a real-scale application of the NIR 

technology as a routine standard method for MC evaluation of coffee, directly on-line. The final 

aim can be the proposal of this strategy as an international standard, paving the way for the 

application of NIR spectroscopy in the coffee industry as a process analytical technology. 
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In this paper, the candidate was responsible of the formal analysis and the curation of the 
data along the whole sampling campaign. 
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Abstract 

This work proposes classification models for the prediction of olive maturity index based on 

Fourier Transform-Near Infrared (FT-NIR) spectra of intact drupes. An image analysis (IA) 

method was purposely developed for the objective evaluation of the maturity index. Thirteen 

cultivars at different ripening stages were harvested along three years. The reliability of the IA 

method was confirmed by the highly significant correlation with the common visual evaluation 

of maturity index. Classification models were developed with Partial Least Square-Discriminant 

Analysis (PLS-DA), using IA results and FT-NIR spectra of olives collected in diffuse 

reflectance. Most PLS-DA models calculated separately for olive origin gave sensitivity and 

specificity values in prediction higher than 81%. The global model performed slightly worse 

(sensitivity, 79%; specificity, 75%), but it is definitely more robust and can provide the olive 

sector with a fast, green and non-destructive olive sorting method for the production of high 

quality virgin oil. 

Keywords: Olive quality, Maturity index, Intact fruit Image analysis, Near infrared 

spectroscopy  
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Abbreviations 

AR, Abruzzo Region; CA, Calabria Region; CV, cross-validation; EVOO, extra virgin olive oil; 

FN, false negative; FP, false positive; FT-NIR, Fourier Transform-Near Infrared; IA, image 

analysis; LV, Latent Variable; NIR, Near Infrared; MI, Maturity Index; PC, Principal Component; 

PCA, Principal Component Analysis; PLS-DA, Partial Least Square-Discriminant Analysis; PR, 

Apulia Region; ROI, Region of Interest; SCI, Surface Colorimetric Index; SENS, sensitivity; 

SPEC, specificity; SR, Sardinia Region; SNV, Standard Normal Variate; TP, true positive; TN, 

true negative. 

INTRODUCTION 

The quality of virgin and extra virgin olive oils is strongly related to the physiological conditions 

and the ripening stage of the fruits from which they are extracted. In general, a progressive 

deterioration of oil quality is observed as fruit ripening progresses, but different behaviours 

have been registered in distinct olive cultivars (Camposeo et al., 2013; Garcia et al., 1996). To 

date, the optimal harvest time has been selected mainly using traditional approaches and 

personnel experience rather than scientific criteria (Garcia et al., 1996), thus making difficult 

the objective optimisation of the oil quality. 

The most common method used to define the optimal harvest time is based on olive visual 

inspection (Uceda & Frías, 1975), but other evaluations have been proposed over the years, 

such as the measurement of fruit detachment force and fresh weight (Camposeo et al., 2013), 

the determination of flesh firmness (Garcia et al., 1996) or respiration rate (Ranalli et al., 1998), 

as well as the drupe oil (Allalout et al., 2011; Correa et al., 2019) and polyphenol (Morello ´ et 

al., 2004) content. However, all these methods are laborious and time-consuming, thus limiting 

the efficiency of controls and preventing the possibility to develop in-line applications for the 

olive oil industries. In order to overcome these issues and develop rapid, reliable and automatic 

methods for the assessment of olive ripening stage, computer vision and near infrared (NIR) 

spectroscopy approaches have been recently studied. For instance, Guzman ´ et al. (2015) 

proposed a machine vision system based on the use of infrared and visible images for the 

prediction of maturity index of Picual olives determined by a panel of experienced evaluators. 

Soto et al. (2018) presented a proposal to automatically determine olive oil quality parameters 
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by processing images acquired from olive fruits. They tested 84 batches of olives and the 

image processing was guided by experts’ assessment of fruit conditions. Ram et al. (2010) 

applied image processing to the prediction of oil quantity in Picual and Souri olives during the 

ripening season. As for vibrational spectroscopy, Gracia and Leon ´ (2011) studied the 

evolution of oil and moisture content in intact olives during the maturity process by using a 

portable NIR device and testing eight Spanish cultivars. Cayuela and Camino (2010) carried 

out a similar study, testing the usefulness of a portable Vis/NIR spectrometer for the prediction 

of fruit moisture, oil content, fruit maturity index and oil free acidity of two Spanish olive 

varieties. Bellincontro et al. (2012) applied a portable NIR-AOTF (Acousto Optically Tunable 

Filter) device for the prediction of the main phenolic compounds (oleuropein, verbascoside, 

and 3, 4-DHPEA-EDA) and total phenols of three Italian olive cultivars. All these studies 

investigated the quality parameters by collecting spectra on the single fruits and considering 

only one harvest season. 

Salguero-Chaparro et al. (2013) analysed 250 samples of intact olives belonging to fifty 

varieties and harvested in two crop seasons in order to test a NIR device set on a conveyor 

belt for the on-line determination of the oil content, moisture, and free acidity. Other similar 

works were reviewed by Stella et al. (2015), who concluded that the advantages of NIR 

spectroscopy over traditional analytical methods are clear, but the robustness of the developed 

models is affected by small datasets. Similarly, Nenadis and Tsimidou (2017) reviewed papers 

focused on vibrational techniques addressing quality and authenticity issues of olives and 

virgin olive oils and they discussed the need for validation guidelines and open-access spectral 

databanks in order to standardize these techniques and use them in the official control. They 

also pointed out the importance of the reference analytical methods for the successful 

calibration of chemometric models and the reduction of errors. In this respect, the use of visual 

inspection evaluations as references for the calibration of olive classification models based on 

maturity index can represent a source of errors preventing the development of reliable 

methods. Thus, the aim of this work was the development of a classification model based on 

Fourier Transform-Near Infrared (FT-NIR) spectra of aliquots of intact olives using as a priori 

information the olive maturity index objectively evaluated through an image analysis method 

purposely developed. A big dataset was used to set up the proposed methodology, considering 

thirteen Italian olive cultivars at different ripening stages, harvested during three crop seasons 

(from 2016 to 2018), for a total of 303 samples corresponding to as many olive aliquots. 
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MATERIALS AND METHODS 

Experimental plan 

Olives at different maturity stages were collected from September to December over three 

harvesting years (2016, 2017, and 2018). Thirteen cultivars typical of four different Italian 

regions were sampled as detailed in Table 1. For each sampling time (from T1 up to T5) and 

cultivar, three sample units (500 g each) were collected from different labelled trees of the 

same grove. The Maturity Index (MI) was evaluated picking olives from the three sample units; 

furthermore, two aliquots (100 g each) were withdrawn from each sample unit, to be used for 

surface colorimetric index assessment, image analysis, and FT-NIR spectroscopy. A total of 

303 aliquots of olives in adequate hygienic and qualitative conditions were analysed after 

wiping olive surface with paper towel. 

Table 1. Overview of the olive sampling plan. T1-T5 represent the different sampling times over the ripening period. 

Sampling times per harvesting year 

Region Cultivar 2016 2017 2018 
Number of 

aliquots 

Abruzzo 

(AR) 

Dritta 

 

T1-T2-T3-T4  23 

Gentile T1-T2-T3-T4 T1-T2-T3 25 

Tortiglione T1-T2-T3-T4 T1-T2 29 

Calabria 

(CR) 

Calipa 

 

T1-T2-T3-T4-T5 T1-T2-T3-T4-T5 26 

Cannavà T1-T2-T3-T4-T5 T1-T2-T3-T4-T5 19 

Ciciariello T1-T2-T3-T4-T5 T1-T2-T3 23 

Filogaso T1-T2-T3-T4-T5  21 

Apulia 

(PR) 

Bambina  T1-T2-T3 T1-T2-T3 28 

Cima di melfi T1-T2-T3 T1-T2-T3 T1-T2-T3 32 

Oliva Rossa T1-T2 T1-T2-T3 T1-T2 15 

Sardinia 

(SR) 

Corsicana T1-T2-T3-T4 T1-T2-T3-T4 T1 20 

Semidana T1-T2-T3-T4 T1-T2-T3-T4 T1 22 

Sivigliana T1-T2-T3-T4 T1-T2-T3-T4 T1 20 
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Visual assessment of ripening stage 

Maturity index 

From each olive sample unit, 100 drupes were randomly collected to assess the MI according 

to the visual approach proposed by Uceda and Frías (1975). The method classifies olives in 

eight classes according to both skin and pulp colour and then MI is calculated following 

equation (1): 

𝑀𝐼 =  ∑
  

     (1) 

where i is the class number, ni is the number of olives belonging to the i class, and N is the 

total number of considered olives (100). 

Surface colorimetric index 

Each olive aliquot was evaluated by a non-destructive visual assessment of the ripening stage, 

considering only the skin colour as reported in Table 2. Results were expressed by an index 

referred as Surface Colorimetric Index (SCI) calculated according to equation (2): 

𝑆𝐶𝐼 =  ∑
  

     (2) 

where i is the class number, ni is the number of olives belonging to the i class, and N is the 

total number of considered olives (60). 

Table 2. Olive maturity classes considered in the Surface Colorimetric Index (SCI). 

Class number Olive skin colour 

1 100% green 

2 <50% turning red, purple or black 

3 >50% turning red, purple or black 

4 100% purple or black 

Image analysis 
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Images of each olive aliquot were collected using a flatbed scanner (Scanjet 8300, HP Inc., 

Palo Alto, CA, USA) controlled by VueScan software (v. 9.4, 2016, Hamrick Software, Sunny 

Isles Beach, FL, USA). The entire aliquot was placed on the scanner glass and covered with 

a black box to prevent light losses and avoid noise from the environment. Two images were 

acquired for each aliquot, at 600 dpi resolution, with a 24 bit colour depth and saved in TIFF 

format; the olives were blended inbetween the two acquisitions. Images were then elaborated 

using a Matlab (v. 2016a, Mathworks, Inc., Natick, MA, USA) routine purposely developed to 

objectively assess the olive ripening stage. At first, in order to distinguish olives from 

background, a Region of Interest (ROI) was segmented applying the Superpixel algorithm on 

each RGB channel. The algorithm performs a simple linear iterative clustering (Achanta et al., 

2012) in order to group pixels into regions with similar intensity values. From a practical point 

of view, this algorithm groups together neighbour pixels based on their RGB intensity values 

and allows the background removal. An example of the original image and the segmented one 

is reported in Fig. 1. The average red channel intensity of the segmented mask, containing 

only the olive pixels, was then calculated and used to assign each olive aliquot to a maturity 

class (named IA). 

 
Figure 1. Example of an olive image before (left) and after (right) the segmentation by using the Superpixel 

algorithm. 
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FT-NIR spectroscopy 

Each olive aliquot was placed in a glass Petri dish and analysed in diffuse reflectance by a FT-

NIR spectrometer (MPA, Bruker Optics, Milan, Italy) equipped with an integrating sphere (Fig. 

2). Spectra were collected in the whole NIR region (12,500–4000 cm− 1 ), with a resolution of 

8 cm− 1 and 32 scans for both sample and background. Two spectra were collected for each 

aliquot, blending the olives in-between measurements. 

 

Figure 2. Image of the FT-NIR spectrometer (MPA, Bruker Optics, Milan, Italy) equipped with an integrating 
sphere used for the spectral data collection. The detail shows the glass Petri dish containing an olive aliquot 

under analysis. 

 

Data analysis 

Linear correlations between the maturity class indices (i.e. MI vs SCI and SCI vs IA) were 

evaluated calculating Pearson correlation coefficients and the corresponding significance (p-

value). The two FT-NIR spectra collected from each olive aliquot were averaged and organised 

in a global dataset. Furthermore, four independent datasets were created according to olive 

origin (AR, CR, PR, and SR). Spectra were reduced in the 10,500–4000 cm− 1 range and 

pretreated with smoothing, Standard Normal Variate (SNV), and first derivative, alone or in 

combination. Before further analyses, spectral data were explored by Principal Component 

Analysis (PCA). Then, the maturity classes identified by image analysis were used as a priori 

information for the development of classification models based on Partial Least Square-

Discriminant Analysis (PLS-DA). A dataset (206 samples) constructed with aliquots of olives 
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collected in 2017 was used for model calibration and cross-validation (venetian blinds, ten 

splits). A test set for external validation was created merging data collected during 2016 and 

2018 (97 aliquots). The PLS-DA model performance was evaluated by comparing the 

reference class of each sample (IA) with the class predicted by the model. The most probable 

approach was applied to assign samples to classes. Samples were assigned to the class 

reaching the highest probability regardless the probability magnitude, thus no probability 

threshold was considered. This approach is advantageous if there is the need of unambiguous 

class assignment when “no class” o “multiple class” has no meaning. Sensitivity and specificity 

were calculated for each maturity class in calibration, cross-validation and prediction. 

Sensitivity (SENS, equation (3)) expresses the model capability to correctly recognize samples 

belonging to the considered class. Specificity (SPEC, equation (4)) describes the model 

capability to correctly reject samples that do not belong to the considered class (Ballabio & 

Consonni, 2013). 

𝑆𝐸𝑁𝑆 =  
( )

∗ 100 (3) 

 

𝑆𝑃𝐸𝐶 =  
( )

∗ 100 (4) 

where TP are the true positive samples, FN are the false negative samples, TN are the true 

negative samples, and FP are the false positive samples. Both SENS and SPEC can assume 

values between 0% and 100%, being 100% the totally correct classification of TP and the 

totally correct rejection of TN for sensitivity and specificity, respectively. All data analyses were 

performed in Matlab environment (v. 2016a, Mathworks, Inc., Natick, MA, USA), using the PLS 

toolbox (v. 8.5, Eigenvector Research, Inc., Seattle, WA, USA). 

RESULTS AND DISCUSSION 

Objective assessment of olive maturity class by image analysis 

MI of olive samples ranged from 0 to 5.9, with a total mean of 2.4 and a standard deviation 

value of 1.4. The highest mean values (3.0–3.3) were reached by the cultivars Filogaso (CR), 

Corsicana (SR), Sivigliana (SR), and Dritta (AR), while the cultivar Semidana (SR) had an 

average MI lower than 1.0. Thus, despite the long harvesting period considered (about 4 

months), none of the olive cultivars reached the highest possible value of MI (7.0). This is in 
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agreement with results of previous published works, in which MI ranged from 0 to 6 (Baccouri 

et al., 2007) or from 0 to 3 (Vidal et al., 2019), depending on the considered olive cultivars. In 

general, it has been reported that the best results in terms of both oil quantity and quality (mill 

extraction yield, induction time, polyphenol content, aromatic compounds, sensory score) are 

obtained with olives harvested when their degreening is limited to the skin, i.e. with a maturity 

index less than 4 in a 0–7 scale (Camposeo et al., 2013). The MI assessment is very time-

consuming and the obtained results strongly depend on the experience of the evaluator, the 

olive health and physical state, and the environmental conditions, such as lighting (Guzman ´ 

et al., 2015). Due to these issues, a simpler and non-destructive visual evaluation based only 

on skin colour was also performed on all the olive samples. The resulting SCI ranged from 1 

to 4, with a total mean of 2.3 and a standard deviation value of 1.0. MI and SCI values resulted 

highly correlated (r = 0.95; p < 0.001), thus indicating the effectiveness of the procedure 

developed for SCI assessment, and the higher importance of the skin colour with respect to 

the pulp one. However, also the SCI determination is highly dependent on analysis conditions 

and evaluator experience, whereas a vision system approach could overcome these 

drawbacks. In fact, the scanning procedure allows lighting standardisation, and image analysis 

gives more objective and reproducible results. Thus, a suitable image analysis procedure was 

developed and the average value of the red channel was used to assign the olive aliquots to 

a maturity class. A simpler method, based on three-class maturity assignment, as reported in 

Table 3, was considered instead of the four-class division of SCI. A global red channel 

thresholding was defined by considering the images of all the olive cultivars and sampling 

times of the crop seasons 2016 and 2018. The reliability of the thresholding was assessed on 

the images acquired in 2017. The IA index had a global mean of 2, with a standard deviation 

value of 1. Also in this case, a highly significant correlation was found between IA and SCI 

values (r = 0.85, p < 0.001), thus demonstrating that the subjective visual inspection can be 

substituted by the objective vision system approach, enabling the standardisation and 

automation of the maturity index evaluation. Furthermore, samples of the Interquartile Range 

(IQR) of the three IA classes had MI ranges of 0.80–1.55, 1.65–3.00, and 3.40–4.55, for class 

1, 2, and 3, respectively, thus demonstrating the reliability of the IA method in discriminating 

olives with different ripening degree.  
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Table 2. Olive maturity classes defined according to the red channel average intensity calculated with the 
developed image analysis procedure. 

Class number Olive skin colour Red channel average intensity 

1 100% green 250.0 – 90.0 

2 <50% turning red, purple or black 89.9 – 71.0 

3 >50% turning red, purple or black 70.9 – 0.0 

 

Interpretation of olive FT-NIR spectra 

The raw spectra acquired for each aliquot of olives are reported in Fig. 3a. In the region 

between 9000 and 8000 cm− 1 it is possible to notice the characteristic bands mainly linked to 

the absorption of fats and oils (Correa et al., 2019). Indeed, the absorbance at 8733 and 8620 

cm− 1 is related to the stretching of the C–O bonds of aliphatic esters, while the second 

overtone of C–H stretching vibrations of alkyl groups and alkenes occurs at 8245 and 8030 

cm− 1 (Fernandez-Espinosa, ́  2016). Other characteristic bands are present around 6900 cm− 

1 (6842 cm− 1 , –CH2– 2C–H stretch + C–H deformation; 6900 cm− 1 , first overtone of –OH 

bond) and in the region between 6700 and 5300 cm− 1 , characterised by CH3–CH stretch 

(5950 cm− 1 ) and OH, –CO stretch (5500 cm− 1 ). The absorbance around 5200 cm− 1 is 

related to the harmonic and combination bands of O–H bonds in hydroxyl groups (Fernandez-

Espinosa, 2016; Trapani et al., 2017). Besides, the relevant differences in absorbance intensity 

within 4500 and 4000 cm− 1 are linked to the combination of CH stretching with other 

vibrational modes (Casale & Simonetti, 2014). The peak at 4085 cm− 1 was characteristic of 

the olives assigned to the IA classes 1 (100% green skin colour) and 2 (<50% of the skin colour 

turning red). Actually, this peak disappeared with the ripening progress, being replaced in the 

spectra of the class 3 olives by two peaks at 4335 cm− 1 (CH second overtone) and 4262 cm− 

1 (CH2 second overtone) (Trapani et al., 2017). 
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Figure 3. FT-NIR spectra of olives at different ripening stages, identified according to the image analysis maturity 
class (class 1, green line; class 2, red line; class 3, blue): a) raw spectra; b) reduced spectra after smoothing and 
first derivative transformation. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article). 

 

Due to its scarce relevance, the region between 12,500 and 10,500 cm− 1 was removed before 

further analyses and the spectra were pretreated with smoothing (Savitzky–Golay, zero 

polynomial order, 15 points) and first derivative (Savitzky–Golay, second polynomial order, 15 

points) to enhance differences (Fig. 3b). The pre-treated spectra collected from olive samples 

of the IA class 3 better highlighted the changes occurring with the olive ripening. In particular, 

the higher absorbance in the region 8600–8330 cm− 1 and at 5800 cm− 1 and the lower 

intensity in the 8350–8000 and 5850–5580 cm− 1 ranges of the completely ripe drupes (class 

3) are linked to the higher oil content with respect to the less ripe fruits (Hernandez-Sanchez 

& Gomez-del-Campo, 2018). 

Qualitative inspection of spectral data 

The observed differences in spectra of olive samples were investigated by performing a PCA. 

The best differentiation among IA classes was observed for the spectra transformed by 

smoothing and first derivative. Sample distribution along the first two PCs (around 80% of the 

explained variance) was marked according to the maturity stage (Fig. 4a) and origin (Fig. 4b). 

The green skin drupes (IA class 1) generally had positive PC1 and PC2 values, whereas IA 

class 3 samples were characterised by negative PC1 scores (Fig. 4a). Accordingly, the 

samples with an intermediate ripening stage (IA class 2) were distributed in-between the other 

two classes. By the loading inspection it was possible to associate samples with positive PC1 
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scores, i.e. drupes with green skin colour, to higher absorbance at 6900 cm− 1 (first overtone 

of –OH bond), 5850–5580 cm− 1 (OH stretch, –CO stretch), and 4500–4000 cm− 1 (Fig. 4c). 

Sample distinction based on olive origin (Fig. 4b) was not clear, remarking that the main 

differences among the olives were related to the maturation progress, rather than the growing 

area or the cultivar. Similarly, Fernandez-Espinosa ´ (2016) reported difficulties in 

discriminating olive varieties using AOTF-NIR spectra. The data exploration did the 

groundwork for the development of a classification model able to discriminate olives according 

to the maturity class identified by image analysis. 

 

Figure 4. Principal Component Analysis results of the FT-NIR spectra of olives at different ripening stages after 
smoothing and first derivative: a) score plot with sample identification according to the image analysis maturity 
classes (dark gray, class 1; light gray, class 2; black, class 3); b) score plot with sample identification according to 
the origin (reversed triangle, Abruzzo region; square, Calabria region; diamond, Apulia region; triangle, Sardinia 
region); c) loading plot (black line, PC1; gray line, PC2). 
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FT-NIR spectroscopy for the assessment of olive maturity class 

Olive classification models based on IA maturity classes were developed applying the PLS-DA 

algorithm, based on the optimisation of covariance between X and Y, substituting the Y with a 

dummy variable having three levels, i.e. the number of IA classes. After the regression 

procedure, the y predicted values for each sample were translated into class membership 

(classification procedure). The class assignation was then performed based on probability, in 

a way that each sample was assigned to the class that had the highest probability regardless 

of the magnitude of the probability (Ballabio & Consonni, 2013). The performance of the global 

model (based on data of all the olive samples) and the origin models (one model for each 

region of provenance of the olives) was evaluated in terms of SENS and SPEC in calibration, 

cross-validation, and prediction (Table 4). Different spectral pre-treatments were evaluated for 

the classification model development; the best performance was achieved when spectra were 

transformed by smoothing and first derivative. SENS and SPEC average values in prediction 

for the global model were 79% and 75%, respectively, being mainly affected by the high SENS 

value of classes 1 and 3 (>85%) and the low SENS and SPEC values of class 2 (64% and 

72%, respectively). This means that samples with MI values from 0.80 to 1.55 (the IQR for 

class 1) were correctly classified with a SENS of 85%, similarly to samples with MI values from 

3.40 to 4.55 (the IQR for class 3). The higher misclassification of the intermediate class was 

expected as the maturation steps are not circumscribable, but they are the result of continuous 

modifications along the biological process. The misclassification is also justified by the high 

variability of samples present in class 2. Indeed, the IQR of class 2 includes samples with a 

larger range of MI (from 1.65 to 3.00), and 10.7% of the samples included in this class (9 

samples out of 84) has MI values outside the IQR range. Due to the limited number of papers 

focused on the prediction of olive maturity stages by NIR spectroscopy, a comparison with 

previously published data is difficult, also because of the different chemometric models and 

performance figures used. For instance, the work by Cayuela and Camino (2010) assessed 

the olive MI using Vis-NIR data, but a PLS regression model was applied. They obtained a root 

mean square error of prediction (RMSEP) of 0.51 with a 1–6 MI range, i.e. a RMSEP% of 15.7, 

that was considered a good performance being the reference method susceptible of a large 

error. Even though the PCA demonstrated that there was not a clear distribution of samples 

based on olive origin, PLS-DA models for each region of provenance were in any case 

developed to assess if a better performance could be achieved. This was the case of AR, CR, 
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and PR models, being SENS and SPEC in prediction higher than 82% and 81%, respectively. 

On the contrary, the SR model reached values of SENS and SPEC in prediction of 75% and 

69%, respectively, lower than the figures of merit of the global model. The lower performance 

of the SR model could be ascribed to the lowest number of samples used to calibrate (43) and 

validate the model (20), which could lead to a model less stable, also considering the lower 

range of MI variability of the Semidana olives belonging to this dataset. Notwithstanding the 

slightly worse performance of the global model with respect to most of the origin-based ones, 

it should be considered that it is definitely more robust being constructed on a dataset of 303 

samples, i.e. aliquots of olives belonging to thirteen different cultivars harvested over three 

years. Thus, the global model could be used on a larger scale, no matter the olive cultivar or 

origin.  
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Table 3. Figures of merit of PLS-DA models developed for olive maturity class prediction based on FT-NIR spectral 
data after smoothing (Savitzky–Golay, zero polynomial order, 15 points) and first derivative (Savitzky–Golay, 
second polynomial order, 15 points) of all the olives (Global) or of the olives coming from Abruzzo Region (AR), 
Calabria Region (CA), Apulia Region (PR) and Sardinia Region (SR): number of latent variables (LV), number of 
samples used to calibrate the model (N-Cal) and to validate the model (N-Pred), calibration, cross-validation (CV) 
and prediction results in terms of sensitivity (SENS) and specificity (SPEC) percentages. 

 

 

CONCLUSIONS 

In conclusion, the work proposes FT-NIR classification models for the objective evaluation of 

olive ripening stage based on maturity classes objectively assessed by an image analysis 

method. The developed methodology is easy, green, and non-destructive and it overcomes 

the issues of the visual evaluations commonly applied in the olive sector. Moreover, the use of 

Dataset  Class 1 Class 2 Class 3 Average prediction 

 SENS SPEC SENS SPEC SENS SPEC SENS SPEC 

 N-Cal 78 61 67 206 

Global 
(7 LV) 

Calibration 86 84 66 61 92 87 82 78 

CV 83 83 66 57 90 85 80 76 

N-Pred 41 28 28 97 

Prediction 85 67 64 72 86 84 79 75 
 N-Cal 12 22 19 53 

AR 
(5 LV) 

Calibration 100 100 86 77 95 97 92 90 

CV 100 100 77 77 95 85 89 85 

N-Pred 8 9 7 24 

Prediction 100 94 67 80 100 94 87 89 

 N-Cal 27 17 20 64 

CR 
(5 LV) 

Calibration 100 100 100 96 100 100 100 99 

CV 89 89 71 85 95 100 86 91 

N-Pred 10 6 9 25 

Prediction 100 60 67 95 78 100 84 83 

 N-Cal 23 14 10 47 

PR 
(4 LV) 

Calibration 74 8 79 64 80 76 77 76 

CV 74 75 64 64 80 76 72 72 

N-Pred 16 7 5 28 

Prediction 81 92 86 62 80 74 82 81 
 N-Cal 16 11 18 45 

SR 
(4 LV) 

Calibration 94 100 75 59 100 79 93 83 

CV 94 100 62 56 100 79 90 83 

N-Pred 7 6 7 20 

Prediction 100 61 33 50 86 92 75 69 
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IA results for the calibration of classification models make them highly reliable, reducing the 

magnitude of the possible errors. Such a tool can be used for sorting olives directly at the 

entrance in the mill or even in field – if transferred in a portable device – thus providing olive 

growers and oil producers with an important decision-making support for the optimisation of 

virgin and extra virgin olive oil, with a major economic potential for all the olive oil chain. 

Moreover, it has to be pointed out that the implementation of NIR systems do the groundwork 

for the prediction of olive and oil quality parameters, thus justifying the use of spectroscopy 

over the IA used for the calibration step. 

Funding sources 

This work was supported by AGER 2 Project, grant no. 2016–0105. 

CRediT authorship contribution statement 

Cristina Alamprese: Conceptualization, Methodology, Supervision, Writing - original draft. 

Silvia Grassi: Conceptualization, Methodology, Software, Formal analysis, Data curation, 

Writing - original draft, preparation. Alessio Tugnolo: Formal analysis, Data curation. Ernestina 

Casiraghi: Conceptualization, Supervision, Project administration, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

References 

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels 

compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 34(11), 2274–2282. 

Allalout, A., Krichene, D., Methenni, K., Taamalli, A., Daoud, D., & Zarrouk, M. (2011). 

Behaviour of super-intensive Spanish and Greek olive cultivars grown in Northern Tunisia. 

Journal of Food Biochemistry, 35, 27–43. 

Baccouri, B., Zarrouk, W., Krichene, D., Nouairi, I., Youssef, N. B., Daoud, D., & Zarrouk, M. 

(2007). Influence of fruit ripening and crop yield on chemical properties of virgin olive oils from 

seven selected oleasters (Olea europea L.). Journal of Agronomy, 6, 388–396. 



 Post-print_Paper 4 
Food Control 

98 | P a g e  

  

Ballabio, D., & Consonni, V. (2013). Classification tools in chemistry. Part 1: Linear models. 

PLS-DA. Analytical Methods, 5, 3790–3798. 

Bellincontro, A., Taticchi, A., Servili, M., Esposto, S., Farinelli, D., & Mencarelli, F. (2012). 

Feasible application of a portable NIR-AOTF tool for on-field prediction of phenolic compounds 

during the ripening of olives for oil production. Journal of Agricultural and Food Chemistry, 60, 

2665–2673. 

Camposeo, S., Vivaldi, G. A., & Gattullo, C. E. (2013). Ripening indices and harvesting times 

of different olive cultivars for continuous harvest. Scientia Horticulturae, 151, 1–10. 

Casale, M., & Simonetti, R. (2014). Near infrared spectroscopy for analysing olive oils. Journal 

of Near Infrared Spectroscopy, 22, 59–80. 

Cayuela, J. A., & Camino, M. D. C. P. (2010). Prediction of quality of intact olives by near 

infrared spectroscopy. European Journal of Lipid Science and Technology, 112(11), 1209–

1217. 

Correa, E. C., Roger, J. M., Lleo, ´ L., Hernandez-S ´ anchez, ´ N., Barreiro, P., & Diezma, B. 

(2019). Optimal management of oil content variability in olive mill batches by NIR spectroscopy. 

Scientific Reports, 9, 1–11. 

Fernandez-Espinosa, A. J. (2016). Combining PLS regression with portable NIR spectroscopy 

to on-line monitor quality parameters in intact olives for determining optimal harvesting time. 

Talanta, 148, 216–228. 

Garcia, J. M., Seller, S., & P´erez-Camino, M. C. (1996). Influence of fruit ripening on olive oil 

quality. Journal of Agricultural and Food Chemistry, 44, 3516–3520. 

Gracia, A., & Leon, ´ L. (2011). Non-destructive assessment of olive fruit ripening by portable 

near infrared spectroscopy. Grasas Y Aceites, 62(3), 268–274. 

Guzman, E., Baeten, V., Fernandez ´ Pierna, J. A., & García-Mes, J. A. (2015). Determination 

of the olive maturity index of intact fruits using image analysis. Journal of Food Science & 

Technology, 52, 1462–1470. 

Hernandez-Sanchez, N., & Gomez-del-Campo, ´ M. (2018). From NIR spectra to singular 

wavelengths for the estimation of the oil and water contents in olive fruits. Grasas Y Aceites, 

69(4), e278. 



 Post-print_Paper 4 
Food Control 

99 | P a g e  

  

Morellò, J.-R., Romero, M.-P., & Motilva, M.-J. (2004). Effect of the maturation process of the 

olive fruit on the phenolic fraction of drupes and oils from Arbequina, Farga, and Morrut 

cultivars. Journal of Agricultural and Food Chemistry, 52, 6002–6009. 

Nenadis, N., & Tsimidou, M. Z. (2017). Perspective of vibrational spectroscopy analytical 

methods in on-field/official control of olives and virgin olive oil. European Journal of Lipid 

Science and Technology, 119, Article 1600148. 

Ram, T., Wiesman, Z., Parmet, I., & Edan, Y. (2010). Olive oil content prediction models based 

on image processing. Biosystems Engineering, 105, 221–232. 

Ranalli, A., Tombesi, A., Ferrante, M. L., & De Mattia, G. (1998). Respiratory rate of olive 

drupes during their ripening cycle and quality of oil extracted. Journal of the Science of Food 

and Agriculture, 77, 359–367. 

Salguero-Chaparro, L., Baeten, V., Fernandez-Pierna, ´ J. A., & Pena-Rodríguez, ˜ F. (2013). 

Near infrared spectroscopy (NIRS) for on-line determination of quality parameters in intact 

olives. Food Chemistry, 139, 1121–1126. 

Soto, J. N., Martínez, S. S., Gila, D. M., Ortega, J. G., & García, J. G. (2018). Fast and reliable 

determination of virgin olive oil quality by fruit inspection using computer vision. Sensors, 18, 

3826. 

Stella, E., Moscetti, R., Haff, R. P., Monarca, D., Cecchini, M., Contini, M., & Massantini, R. 

(2015). Recent advances in the use of non-destructive near infrared spectroscopy for intact 

olive fruits. Journal of Near Infrared Spectroscopy, 23(4), 197–208. 

Trapani, S., Migliorini, M., Cherubini, C., Cecchi, L., Canuti, V., Fia, G., & Zanoni, B. (2017). 

Direct quantitative indices for ripening of olive oil fruits to predict harvest time. European 

Journal of Lipid Science and Technology, 118, 1202–1212. 

Uceda, M., & Frías, L. (1975). Epocas de recoleccion.  Evolucion del contenido graso del fruto 

y de la composicion y calidad del aceite. (Seasons of harvest. Changes on fruit oil content, oil 

composition and oil quality). In Proceeding of II seminario oleícola internacional. Cordoba, 

Spain: International Olive-oil Council. 

Vidal, A. M., Alcala, S., de Torres, A., Moya, M., & Espínola, F. (2019). Characterization of 

olive oils from superintensive crops with different ripening degree, irrigation management, and 



 Post-print_Paper 4 
Food Control 

100 | P a g e  

  

cultivar: Arbequina, Koroneiki, and Arbosana. European Journal of Lipid Science and 

Technology, 121(4), Article 1800360.  



 

101 | P a g e  
  

4.2 Portable analytical devices 
 

The availability of handheld spectrophotometers has opened up the possibility of use them in 

many agricultural food chains for monitoring the fruit ripeness and quality. Handheld 

instrumentations have been made due to the rapid progress on sensing technologies such as 

Linear Variable Filters (LVF) or micro-electro-mechanical systems (MEMS) and its integration 

with micro-optics (MOEMS). The precise dimensions and alignment of MEMS devices, 

combined with the mechanical stability that comes with miniaturisation, make optical MEMS 

sensors well suited to a variety of challenging measurements. Moreover, these portable 

devices have been recently developed with attention to their simplification, by integrating user 

friendly software for statistical processing and partial automation of analysis, with the aim to fit 

less skilful users (Pu et al., 2021). 
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Abstract 

A diagnostic visible/near infrared tool calibrated by means of image analysis,was proposed to 

evaluate the maturation degree of oil olives in order to replace traditional subjective methods 

in a view of future fully automated applications. 

Thirteen varieties of Olea europaea deriving from four regions of the south of Italy were 

analyzed. In order to objectify the ripening stage assessment, the RGB image was acquired. 

Spectroscopic analyses were performed using a benchtop FT-NIR and a portable vis/NIR 

instrument. The benchtop device was equipped with an optical fiber probe and the spectra 

were collected over the 800-2500 nm range, nominal resolution of 1.6 nm; the portable 

spectrophotometer cover the range of 400-1000 nm, nominal resolution 0.3 nm. The olive 

spectral data were modelled using Partial Least Squares - Discriminant Analysis (PLS-DA). 

The prediction capability reached by the global model (13 varieties were used) obtained from 

data acquired with both the devices results promising. The PLS-DA models calculated on the 

olives from Calabria, Sardinia and Abruzzo revealed high prediction capabilities, i.e. sensitivity, 

specificity and accuracy higher than 83%. The prediction capability of Apulia samples could be 

improved increasing the variability of the samples since for this region only 3 sampling times 

were considered. To compare the modelling performance between the benchtop FT-NIR and 

the portable vis/NIR device, a McNemar’s test was performed resulting no significant difference 

between the PLS-DA global models. Finally, considering the good performance of the vis/NIR 



Post-print_Paper 5 
  Computers and Electronics in Agriculture 

103 | P a g e  

   

model, a variable selection using the interval PLS (iPLS) algorithm was applied. To reduce the 

complexity keeping the performance of the model built using the whole vis/NIR spectra (1647 

variables), 12 bands (1.5 nm wide) were selected. The new model showed an improvement in 

terms of model stability and complexity (Sensitivity 86%; Specificity 87 %; Accuracy 87%) than 

the two global models built with the whole vis/NIR and NIR range. 

The classification performance provided the groundwork for the development of (i) simplified 

systems for a direct olives ripening determination on the olive tree, and (ii) automated systems 

to be applied both in field and at the mill for olives sorting according to the ripening degree. 

Graphical abstract 

 

Keywords: chemometrics, optical analysis, instrument comparison, wavelenght selection, 

field  
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INTRODUCTION 

Olea europaea L. is a small evergreen tree which grows between 8 and 15 m tall. It is a slow-

growing and extremely long-lived species, with a life expectancy up to 1000 years 

(Rhizopoulou, 2007). This olive tree originated from the eastern Mediterranean area and it has 

been cultivated for millennia for its oily fruits. The sensory and nutritional characteristics of 

these fruits have led to a sharp boost of the demand for the main derivative products (table 

olives and olive oil) in traditional producing areas and elsewhere in the world. 

Olive ripening begins after a period of 25 weeks of cell growth. During this phase, the fruit 

reaches its final size maintaining the original green color. Therefore, this stage is known as the 

“green stage” corresponding to green mature fruits. Subsequently, the chlorophyll content 

decreases, being replaced by anthocyanins. This allows dividing the ripening process into 

stages according to the exhibited concentration of anthocyanins. Thus, it is possible to identify 

a “spotted stage”, a “purple stage”, and a “black stage” according to the skin color of the fruits 

(Uceda and Frias, 1975). 

Olive main constituents are water and oil. During the ripening period, the oil begins to form by 

synthesis of triglycerides from fatty acids, mainly oleic acid. At a certain stage, the lipids lose 

their capacity to be synthesized. At this point the olive oil is of the highest quality and 

consequently, the harvest should begin (Fernández-Espinosa, 2016). These quality features 

are of great commercial importance as they influence the quality and shelf-life of olive oil. 

Therefore, monitoring olives ripeness is essential in order to define the most appropriate 

degree of ripeness to obtain a finished product of high-quality (Trapani et al., 2017). 

Several destructive techniques have been used to assess the degree of olives ripeness. 

Besides being expensive and time-consuming, they are often not sustainable for the 

environment due to the use of chemical reagents (Casson et al., 2020). For these reasons, 

these types of analyses are hardly applied by the growers. Therefore, Uceda and Frias (1975) 

proposed the Maturity Index (MI), a cheap and easy destructive technique for the visual 

determination of the best harvesting moment. This method, based on the color changes of skin 

and pulp, classifies 100 olives into eight groups or categories from intense green (category 0) 

to black with 100% purple flesh (category 7). Although it is the most used method, MI depends 
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on the operator experience, thus being subjective and strongly affected by human error. 

Besides, color changes are dramatically different among cultivars (Guzmán et al., 2015). 

Computer vision holds considerable potential for the agriculture industry thanks to its simplicity 

and capability to provide accurate and consistent information. In fact, the image processing 

has been successfully applied in several applications on different fruits and vegetables, like 

tomato, mandarin, table olives, and potatoes, for the estimation of color, size, shape, and 

texture (Ram et al., 2010). However, automatic detection of quality and grading is still difficult 

due to some existing challenges such as the influence of physical and biological variability (e.g. 

fruit size and composition), canopy effects, whole surface exploration, environmental 

conditions (e.g. sun and moon light exposition, relative humidity and temperature), 

discrimination between defects and stems/calyxes, unobvious defect detection, the robustness 

of the features and algorithms, as well as rapid optical detection system development. These 

issues can compromize the fruit or vegetable quality inspection accuracy, reducing the 

possibility to automize quality inspection and product grading (Zhang et al., 2018). 

Among non-destructive techniques, near infrared spectroscopy (NIR) is particularly interesting, 

being capable to account for the chemical changes always associated to olive ripening, 

irrespective the color modification. In recent years, the development of new technologies used 

in the construction of NIR spectrometers has resulted in a significant reduction in size and cost 

of these devices, also in vision of fully mechanized sorting systems (Salguero-Chaparro et al., 

2013; Giovenzana et al., 2018). Several studies have shown that handheld vis/NIR and NIR 

spectrometers can be suitably used for the determination of quality parameters, providing 

performance similar to that of the benchtop spectrometers (Jha et al., 2014). Moreover, due to 

the problems related to the image analysis, the handheld spectrophotometric systems have 

shown clear advantages, and despite the need of the operator, they remain a good 

compromise in terms of performance of the analysis (Beghi et al, 2020). 

Several works in literature checked the feasibility of individual technologies application, such 

as image analysis, visible/near infrared (vis/NIR) spectroscopy, hyperspectral imaging 

(González-Cabrera, et al., 2018), and low resolution nuclear magnetic resonance (Ram et al., 

2010) for the analysis of ripening of fruits in general, and olives in particular. It is necessary to 

undertake a further step that involves the development of complete automated diagnostic tools 

that are not based on subjective data or subjective classifications (i.e. MI index). This is crucial 

for the introduction of these tools in fully mechanized or robotic sorting systems, whose study 
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and application is booming (Zhao et al., 2016). A combined use of image analysis and vis/NIR 

spectroscopy can be an interesting solution (Gatica et al., 2013). In addition, for a real diffusion 

in an operative framework, the calculation of predictive models useful for a wide range of 

cultivars is desirable. 

Therefore, the aim of this study was to evaluate a diagnostic visible/near infrared tool, coupled 

with chemometrics and calibrated by means of image analysis , capable to evaluate the 

maturation degree of oil olives in order to replace traditional subjective methods in a view of 

future fully automated applications. In detail, an objective method to classify ripeness degree 

by using image analysis was estabilished. Afterward, the ripening classes were combined with 

Fourier-Transformed NIR (FT-NIR) and vis/NIR spectra to develop classification models 

capable to predict olive ripening degree. A comparison of modelling performance between 

benchtop FT-NIR spectrophotometer and portable vis/NIR device was also performed. 

Moreover, a wavelength selection was applied to identify the most informative optical bands in 

view of a future instrumental simplification. 

 

MATERIALS AND METHODS 

Sampling 

The experimental activity took place in the south of Italy during the ripening period of one crop 

season, from September to December. Thirteen non-climacteric varieties of Olea europaea 

coming from Apulia (Bambina, Cima di Melfi, and Oliva Rossa), Calabria (Ciciariello, 

Ottobratica Calipa, Ottobratica Cannavà, and Tonda di Filogaso), Sardinia (Corsicana, 

Semidana, and Sivigliana) and Abruzzo (Dritta, Gentile D'Aquila, and Tortiglione) were 

analyzed. The several olive varieties studied allowed to account for a wide range of agronomic 

traits, including oil content, fruit size, and veraison process. Samples of each variety were 

picked in 3 quotas (A, B, C), every two weeks, from the same trees, and delivered (in 

refrigerated condition) to the Università degli Studi di Milano labs for the analyses. 

Two portions of about 100 g of olives were weighed from each quota in order to obtain 

representative portion of olives (A1, A2, B1, B2, C1, C2) to perform the analyses (Figure 1). 
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Figure 1. Sampling plan for each variety. 

 

Each portion of olives (A1, A2, B1, B2, C1, C2) was analyzed according to the Surface 

Colorimetric Index (SCI), which sorts the olives into 4 different ripeness classes according only 

to the skin color (Figure 2): 

- Class 1: totally green; 

- Class 2: olives with less than 50% of purple/black surface; 

- Class 3: olives with more than 50% of purple/black surface; 

- Class 4: totally purple/black. 

 

 

Figure 2. Olives used as a standard for classification in each of the four classes (Class 1: totally green; Class 2: 
olives with less than 50% of purple/black surface; Class 3: olives with more than 50% of purple/black surface; 

Class 4: totally purple/black). 

 

This method is similar to MI (Uceda and Frias, 1975), but it involves a visual evaluation of the 

skin color only, without considering the flesh and it was applied in a perspective of simplifying 

the MI procedure. The olives were evaluated always by the same trained observer, under 

constant laboratory illumination conditions, on a white background. The SCI calculation is 

based on the same equation of MI (Guzmán et al., 2013): 
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𝑆𝐶𝐼 =
1

𝑁
 (𝑖 × 𝑛𝑖) 

where i is the group number, ni is the number of olives in the group and N is the total number 

of olives considered. 

From each portion (A1, A2, B1, B2, C1, C2), ten olives were selected according to the SCI 

classes’ frequency. Therefore, for each variety of each sampling time, 60 olives were used to 

perform the optical and image analyses, for a total of 3180 olives. 

Image acquisition and analysis 

In order to objectify the ripening stage assessment, the RGB image of the ten olives of each 

portion was acquired using a flatbed scanner HP Scanjet 8300 (HP Inc., Palo Alto, CA, USA), 

covered with a black box to prevent light losses, and managed by VueScan software (v. 9.4, 

2016, Hamrick Software, Sunny Isles Beach, FL, USA). A resolution of 600 DPI and a color 

depth of 24 bits were applied for the image acquisition. 

After digitalization, images were analyzed using MATLAB® (v. R2017b, The MathWorks, Inc., 

Natick, MA, USA). A script was set up in order to frame a Region of Interest (ROI) which 

includes the olive keeping out the background. The red channel has been selected as the most 

powerful channel in distinguishing the olives from the background (using a cut-off of 0.1). Then 

the ROI was converted into a vectorial image (HSV). The intensity values (0-255) of the pixels 

belonging to each olive were averaged in order to obtain a mean value representative of the 

whole olive. The results obtained were used to build the objective method for olive ripeness 

assessment, the Image Analysis Classification (IAC). 

Spectral acquisitions 

Optical analyses were performed using a benchtop FT-NIR (MPA, Bruker Optics, Milan, Italy) 

and a portable vis/NIR (Jaz Modular Optical Sensing Suite, OceanOptics, Inc., Dunedin, FL, 

USA) spectrophotometer. The benchtop device was equipped with an optical fiber probe and 

the spectra were collected over the 12500-4000 cm-1 (800-2500 nm) range, with a resolution 

of 8 cm-1 and 32 scans for both sample and Spectralon background. The collection of each 

spectrum lasted 30 s. Instrument control was managed by using the OPUS software (v. 6.0 

Bruker Optics, Milan, Italy). The portable vis/NIR spectrophotometer (400 -1000 nm) works 

using a bifurcated fiber that conveys the light from the halogen lamp to the sample and back 
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to the detector. The tip of the fiber was equipped with a cap that standardized the analysis 

distance (about 2 mm) and reduced the environmental light interference. The background was 

realized using a white (100% of light reflected) and a black (0% of light reflected) standard. 

Besides, an integration time of 50 ms was set in order to collect the best spectral dynamics 

using a light intensity of 1095 lumen. For both instruments, two spectra were acquired in 

reflectance at opposite sides of each olive. These spectra were subsequently averaged to 

obtain a mean spectrum that is representative of the whole olive. 

Data processing 

Regarding the image analysis, two thresholds were identified to separate the olives according 

to the degree of ripeness. To the aim, the whole dataset composed by the average values of 

the red channel of each olive was randomly divided into a calibration (70% of the data) and a 

validation set (30% of the data) The calibration set was used to assess the two thresholds, 

then, the training set was tested for the capability of the thresholds in discriminating the three 

maturation classes: 100% of the skin color green, skin color partially purple/black, 100% of the 

skin color purple/black olives. 

Spectral data were explored by Principal Component Analysis (data not shown). This method 

was applied to extract the useful information from the spectra acquired from each olive (using 

FT-NIR and the portable vis/NIR). This method is recommended as the initial step of any 

multivariate analysis to give a first look at the data structure and for other aims, including the 

outlier detection (Wold, Esbensen and Geladi, 1987). The spectra collected with each 

instrument were organized in different datasets, one for each of the four Italian regions and 

one including all the olive samples. Before data analysis, spectra were pre-treated as follows: 

- Benchtop FT-NIR: smoothing (Savitzky-Golay method, filter width 15 points; polynomial 

order 1), Standard Normal Variate (SNV); 

- Portable vis/NIR: smoothing (Savitzky-Golay method, filter width 19 points; polynomial 

order 3), SNV. 

The olive spectral data were modeled using Partial Least Squares - Discriminant Analysis 

(PLS-DA). Its objective is to allow the maximum separation among classes of objects. PLS-DA 

is based on the PLS regression algorithm. In detail, it is a PLS 2 (a variant of PLS algorithm 

that can handle multi responses) applied, in this case study,on a dummy matrix representing 

the membership at one of the four ripening classes of the IAC index. PLS-DA transforms the 
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class vector (containing the membership of samples at the G classes) into a dummy matrix Y, 

with n rows (samples) and G columns (the class information). Each entry yig of Y represents 

the membership of the i-th sample at the g-th class expressed with binary code (1 or 0). 

Therefore, the n-dimensional class vector is transformed into a binary Y matrix constituted by 

n rows and G columns. Afterward, PLS 2 algorithm is applied on Y matrix. The estimated class 

values are not either 1 or 0 perfectly, thus the most probable prediction was used to identify 

the membership at a specific class. This technique chooses the class that has the highest 

probability regardless of the magnitude of that probability (Ballabio and Consonni, 2013). The 

model calibration was performed using 66.6% of the samples of each dataset. The external 

validation used the remaining 33.3% of the samples, systematically extracted from every 

dataset by a Venetian blinds approach. 

The model prediction performance was assessed using the following indicators: 

1) Sensitivity (%) = ∗ 100 

2) Specificity (%) = ∗ 100 

3) Classification accuracy (%) = *100 

 

The values of true positive (TP), true negative (TN), false negative (FN), and false positive 

(FP) were calculated from the confusion matrix. TP and TN values correspond, respectively, 

to the correctly classified olives that belong or not to a specific class, whereas FN and FP are 

the olives erroneously classified in a specific class (). 

The ‘testcholdout’ function implemented in MATLAB® was used to statistically compare the 

predictive accuracies of the PLS-DA models obtained from both benchtop and portable device 

data. This function performs a one-tailed, mid-P-value McNemar test, which is a particular case 

of Fisher’s sign test. It compares the predicted labels against the true labels, and then it detects 

whether the difference between the misclassification rates is statistically significant. Thus, the 

test reveals if the models obtained from the two instruments have the same performance based 

on P-value. P-values higher than 0.05 confirm the acceptance of the null hypothesis, i.e. that 

the two models are not significantly different (Fagerland, Lydersen, and Laake, 2013; Giraudo 

et.al, 2019). 
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Therefore, the performances of the models were compared by the calculation of McNemar’s 

value (χ2) on the prediction results, according to Eq. (1). 

(1) 𝑥 =
( )

 

where n12 represents the number of samples misclassified (both FP and FN) by the FT-NIR 

model and n21 stands for the number of samples misclassified (both FP and FN) by the vis/NIR 

model. 

Finally, a variable selection was proposed based on vis/NIR data, considering the future 

objective of building an easy to use and more cost-effective device for in-field application. In 

this context, the interval PLS (iPLS) algorithm was applied. iPLS builds local PLS-DA models 

after the division of the spectra into equal non-overlapping intervals “m” with a specific number 

of variables “n”. The main intervals (m = 12 and n = 5 in this study) capable to build a PLS-DA 

model with the lowest Root Mean Square Error in Cross-Validation (RMSECV) were 

selected(Nørgaard et al., 2000; Miaw et al.,2018). The prediction performance of the new 

model with few wavelengths was compared to the model including all the wavelengths in the 

Vis/NIR region. 

All data processing was carried out in MATLAB® environment (v. 2019b, Mathworks, Inc., 

Natick, MA, USA), applying algorithms from the PLS Toolbox, version 8.8 (Eigenvector 

Research, Inc). 

 

RESULTS AND DISCUSSIONS 

 

Image analysis 

Figure 3 shows the three main steps of the developed image analysis procedure. As stated, 

10 olives were selected from each portion (Figure 3A) based on the skin color classification 

(SCI value). Each olive was processed individually defining the ROI (Figure 3B, 3C). The red 

channel information of all the pixel constituting the ROI were averaged and a three-class 

segmentation was proposed. The reduction of the maturity classes to three, instead of the four 

classes defined by SCI, was proposed as the image information originated from one olive side 

and not from the global drupe surface. Thus, the SCI classes 2 (olives with less than 50% of 

purple/black surface) and 3 (olives with more than 50% of purple/black surface) were merged 



Post-print_Paper 5 
  Computers and Electronics in Agriculture 

112 | P a g e  

   

in a single class containing olives characterised by red channel values referred to skin color 

partially purple/black (Table 1). 

 

Figure 3. Image analysis process. (A) Image acquisition; (B) olive individualization; (C) background and olive 
isolation. 

 
Table 1. Olive maturity classes according to red channel intensity calculated from image analysis. 

IAC Class Number Description Red channel intensity 

1 100% of the skin color green 255-120 
2 skin color partially purple/black 119.9-60 
3 100% of the skin color purple/black 59.9-0 

 

Spectral analysis 

Figure 4 shows the vis/NIR diffuse reflectance spectra (A, B) and FT-NIR absorbance spectra 

(C, D) obtained from Filogaso (a variety subject to veraison) and Semidana olives (a variety 

that is not subjected to veraison). In green were represented the spectra at the beginning of 

the crop season (t1) and in purple the spectra at the end of the ripening process (t5/t4). The 

main absorption peaks in the visible region are around 540 and 680 nm due to external color 

differences in the samples which are related to changes in the amount of pigment 

(anthocyanins) causing a decrease in reflectance in the visible band associated with the 

absorption peak at 540 nm. A high reflectance absorption could be noticed around the 

chlorophyll absorption peak at 680 nm (Abu-Khalaf and Hmidat, 2020). Instead, in the NIR 

region, the relevant peaks, located at 978, 1454 and 1930 nm, can be related to water 

absorption bands, since the moisture content in the olive fruits is higher than 60%. In particular, 

the bands at 978, 1454 and 1930 nm are related to the OH second overtone, the OH stretch 

first overtone and the harmonic and combination bands of OH bonds in hydroxyl groups, 

respectively. The absorbance at 1145 and 1160 nm is related to the stretching of the CO bonds 

of aliphatic esters, while the second overtone of CH stretching vibrations of alkyl groups and 
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alkenes occurs at 1212 and 1245 nm (Fernández-Espinosa, 2016). In the region between 1500 

and 1900 nm, the spectra are characterized by CH3-CH stretch (1680 nm) and OH, -CO stretch 

(1820 nm) (Fernández-Espinosa, 2016; Trapani et al., 2017). Besides, the relevant differences 

in absorbance intensity within 2200 and 2500 nm are linked to the combination of CH stretching 

with other vibrational modes (Casale and Simonetti, 2014). 

 

Figure 5. Vis/NIR diffuse reflectance spectra (A, B) and FT-NIR absorbance spectra (C, D) obtained from Filogaso 
olives, a variety subject to veraison (A, C), and Semidana olives, a variety that is not subjected to veraison (B, D). 
In green (t1) the spectra at the beginning of the maturation process are reported and in purple (t5/t4) the spectra 
obtained at the end of the ripening process. 

 

Overall, strong evidence of the maturation process is highlighted in Figures 4A and 4C 

(Filogaso variety). This variety is subjected to veraison and shows a higher absorbance for 

both instruments at the end of the crop season. Figures 4B and 4D show the spectra of the 

maturation process of the variety Semidana. These olives are not subjected to veraison, thus 

a lower difference of absorbance is showed between 500 and 700 nm. Anyway, going towards 
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the pure NIR region, a higher absorbance at the final stage of the maturation process (t4) is 

highlighted for both devices. 

Then, the PCA was applied to find two indices of distance (Hotelling’s T2 and squared 

prediction error) useful for the outliers detection (Mahmoud, Lotfi and Langensiepen, 2016). 

Data, from each region, were explored and, excluding outliers, the final amount of samples 

correctly acquired was 3033. In table 2 were reported the number of samples for each IAC 

class. 

Table 2. Overview of the number of olive samples for each IAC class which were analyzed and used to build 
(66.6%) and validate (33.3%) the PLS-DA models. 

Region 
N° of 

varieties 

N° of 
samples in calibration 

N° of 
samples in prediction 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Apulia 3 86 206 62 41 103 32 

Calabria 4 355 131 234 172 72 116 

Sardinia 3 157 146 171 72 79 85 

Abruzzo 3 172 189 115 90 94 53 

Total 3033 

 

Models results 

The spectral data were used for the elaboration of PLS-DA classification models capable to 

classify olives according to the IAC. Table 3 shows the results obtained from the global model 

(considering all the olive varieties) and from the dataset of each considered region (Apulia, 

Calabria, Sardinia and Abruzzo). For each PLS-DA model, the performance was expressed in 

terms of weighted average in prediction, in terms of sensitivity, specificity and classification 

accuracy. 
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Table 3. Sensitivity (Sen.), specificity (Spec.), classification accuracy (Acc.), and the number of latent variables 
(LVs) for PLS-DA models derived from data of the benchtop FT- NIR and portable vis/NIR spectrophotometers. 

The average results in prediction are reported. 

Models 
Average prediction 

Benchtop FT- NIR Portable vis/NIR 

 N° 
of samples 

LVs Sen. (%) Spec. (%) Acc. (%) LVs Sen. (%) Spec. (%) Acc. (%) 

Global 1011 14 81 82 81 4 85 87 86 

Apulia 176 14 74 81 78 5 74 76 75 

Calabria 360 14 86 88 87 8 91 93 92 

Sardinia 236 14 83 84 83 4 86 90 88 

Abruzzo 237 14 88 83 86 4 87 88 88 

 

Overall, the results from both devices are satisfactory, considering also a large number of 

varieties analyzed (13). Each PLS-DA model shows good performance predicting each sample 

in its class. The olives of the Apulia region show the lower classification accuracy (78% and 

75% for the benchtop FT- NIR and the portable Vis/NIR device, respectively). This result could 

probably be improved increasing the variability of the samples since for this region only 3 

sampling times were considered. Instead, the models built with the olives from Calabria, 

Sardinia and Abruzzo revealed high prediction capabilities, i.e. sensitivity, specificity and 

accuracy higher than 83%. The prediction capability reached by the global model (13 varieties 

were used) obtained from data acquired with both the devices results promising. Indeed, the 

global models are the more prompt to robust prediction of the olive ripening stage, as they do 

consider a high number of olive varieties with different physiological and maturation 

characteristics. 

To objectively explore if there is a significant difference between the PLS-DA models obtained 

with the benchtop FT-NIR and the portable vis/NIR data, a McNemar’s test was performed on 

the prediction results of the global models. The analysis was conducted to test if the model 

built with the vis/NIR region data through a cost-effective device is significantly different from 

the model built with data in the NIR region collected with a more expensive benchtop 

spectrophotometer. The McNemar’s test gave a p-value equal to 1, thus the two global models 

resulted comparable. Being the vis/NIR instrument a portable and cheap instrument its use is 

advisable to substitute the benchtop FT-NIR analysis. 
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Finally, considering the good performance of the vis/NIR model, a variable selection using the 

iPLS algorithm was proposed. To reduce the complexity, keeping the performance of the 

model built using the whole vis/NIR spectra (1647 variables), 12 bands were selected (figure 

5). The number of the selected optical bands was envisaged on the basis of Authors’previous 

reserch (Beghi et al. 2020). Each band is composed by 5 variables, therefore, considering the 

portable vis/NIR resolution equal to 0.3 nm, the interval of interest is 1.5 nm wide. In a view of 

building a simplified optical device, the proposed selection represents a good compromise 

among commercial availability of light sources, constructive simplicity and cost-effective. 

Overall, the larger part of the usefull wavelengths comes from the pure visible region (from 500 

to 660 nm) where the contribution of olive color, due to molecules like 

 

Figure 6. Variable selection performed on the vis/NIR portable device dataset using the iPLS algorithm. 

 

chlorophylls, carotenoids, anthocyanins and polyphenols, has a great weight being the 

expression of the relevant changes occurring during ripening. Moreover, two interesting bands 

were selected in the NIR region (about 780 and 965 nm) where the -OH and -CH functional 

groups absorb, thus, describing the chemical modification related to water reduction and lipid 

synthesis during ripening. 

Using the variables selected through iPLS, a new PLS-DA global model was calculated. Table 

4 shows the obtained results, comparing them with the PLS-DA models obtained using the 
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complete FT-NIR and vis/NIR spectra. iPLS only slightly improved the performance in 

prediction (sensitivity 86%; specificity 87%; accuracy 87%) compared to those obtained using 

the full spectra. However, the sharp reduction of the wavelengths boosts the stability and 

reduce the complexity of the model even if 7 LVs (few variables model) were used instead of 

4 LVs (full-range model). The results of this approach agree with the results obtained by Miaw 

et al. (2018) where three variable selection methods (iPLS, Variable Importance in Projection 

“VIP” scores and a Genetic Algorithm “GA”) were tested to improve the effectiveness of the 

classification models (SIMCA and PLS-DA). 

Table 4. Sensitivity (Sen.), specificity (Spec.), classification accuracy (Acc.), and the number of latent variables 
(LVs) for PLS-DA models calculated with the data of the benchtop FT- NIR and portable vis/NIR devices. The 

average results in prediction are reported. 
    Average prediction 

Model N°of  variables range LVs Sen. (%) Spec. (%) Acc. (%) 

Global 

1816 NIR 14 81 82 81 

1647 Vis/NIR 4 85 87 86 

60 (12 bands * 5 points wide) Vis/NIR 7 86 87 87 

 

 

CONCLUSIONS 

In this work, a fully automated diagnostic visible/near infrared tool was proposed to evaluate 

the maturation degree of oil olives in order to replace traditional subjective methods. Through 

the analysis of the sample images, it was possible to objectify the olive classification on 

ripeness basis. Besides, it has been shown that starting from ripeness classes created by this 

analysis, it is possible to use FT-NIR and Vis/NIR techniques to automate olive ripening 

classification, in a view of future fully automated application. In fact, the global classification 

models developed for both instruments reached high classification accuracy (above 81%) and 

comparable (p=1.00) prediction capabilities. Thus, the portable vis/NIR device showed the 

potential to be used for in-field applications, overcoming the costs and management problems 

of a benchtop instrument. To further simplify the hardware (i.e., the instrument) and the 

software (i.e., the computation of the classification model), a variable selection strategy was 

proposed by the application of the iPLS algorithm on the vis/NIR range. The new model has 

shown an improvement in terms of model stability and complexity (Sensitivity 86%; Specificity 

87 %; Accuracy 87%). This very good performance provides the groundwork for the 
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development of (i) simplified systems available to small olive growers for the rapid, non-

destructive and direct determination of the degree of maturity of the olives from the olive tree, 

and (ii) automated systems to be applied both in field and at the mill for olives sorting according 

to the ripening degree. To achieve these objectives and reach the step of a real scale 

application of the proposed vis/NIR technology for the automatic detection of olive quality, 

some challenges have to be faced. Some issues such as environmental conditions due to 

canopy effects, sunlight interferences, effects related to temperature and humidity have to be 

overcome. Therefore further prototyping work is needed to propose an upgraded version of 

the device, including a compensatory system for stray light and temperature. 
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Abstract 

Poorly emphasized aspects for a sustainable olive oil system are chemical analysis 

replacement and quality design of the final product. In this context, near infrared spectroscopy 

(NIRS) can play a pivotal role. Thus, this study aims at comparing performances of different 

NIRS systems for the prediction of moisture, oil content, soluble solids, total phenolic content, 

and antioxidant activity of intact olive drupes. The results obtained by a Fourier transform (FT)-

NIR spectrometer, equipped with both an integrating sphere and a fiber optic probe, and a 

Vis/NIR handheld device are discussed. Almost all the partial least squares regression models 

were encouraging in predicting the quality parameters (0.64 < R2
pred < 0.84), with small and 

comparable biases (p > 0.05). The pair-wise comparison between the standard deviations 

demonstrated that the FT-NIR models were always similar except for moisture (p < 0.05), 
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whereas a slightly lower performance of the Vis/NIR models was assessed. Summarizing, 

while on-line or in-line applications of the FT-NIR optical probe should be promoted in oil mills 

in order to quickly classify the drupes for a better quality design of the olive oil, the portable 

and cheaper Vis/NIR device could be useful for preliminary quality evaluation of olive drupes 

directly in the field. 

Keywords: antioxidant activity; harvesting time; olive composition; olive cultivars; olive 

ripening; phenolic compounds; PLS regression model; portable device; quality parameters; 

sustainability 

 

INTRODUCTION 

The economic significance of olive industries to the European Union is unquestionable. 

Europe contributed almost 70% of the world olive oil production in the 2018–2019 harvest year 

campaign and the resultant revenue was to the tune of five billion euro [1]. This large and 

continuously expanding industry is also associated with many negative environmental 

problems stemmed from waste production and inappropriate disposal, soil depletion, and 

atmospheric emissions [2]. Every phase in the olive chain is characterized by different 

environmental concerns. In the agronomic phase, the use of pesticides, herbicides, and 

fertilizers has been identified as the principal contributor to ecological challenges [3]. In the 

cultivation phase, activities such as irrigation, pruning, soil management, and fertilizer 

applications can negatively affect the environment. The impacts of these primary phases are 

minor when compared to olive oil production and its unit operations. Oil extraction generates 

the most potentially hazardous organic compounds that accompany olive wastewater and 

pomace, depending on the techniques [4]. Laudable efforts have been made to adopt 

sustainable agricultural and industrial practices in the olive value chain to mitigate these 

problems. For instance, adoption of organic integrated agricultural systems in the farming and 

cultivation of olives is an example of sustainable agricultural practice. Industrially, practices 

such as the two-phase olive extraction method, which reduces water consumption, extraction 

of bioactive phytonutrients from by-products, and overall valorization of the olive production 

chain have significantly reduced the negative impacts of the industry on the environment [5,6]. 

However, a rather less emphasized aspect of the sustainable olive system is solvent reduction 

and replacement strategies during laboratory chemical analyses of olives and olive oils. 

These chemical analyses are fundamental to monitor olive ripeness, estimate oil 

extraction efficiency, and control oil quality. Free acidity, moisture, and oil contents are 

examples of chemical parameters serving as quick tests on olive drupes before extraction [7]. 
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On-field information of these chemical parameters can suggest suitable harvest time and 

overall orchard management [8,9]. Immediate first-hand knowledge of moisture and oil content 

of olive drupes prior to processing can reliably predict the economic viability of the entire 

production process, therefore informing producers about the raw material composition is of 

crucial relevance [10,11]. Similarly, prediction of minor constituents such as phenols, pigments, 

and antioxidants contents of olives can facilitate instant classification of the resultant oils even 

before production, making official standard compliance and product consistency easier. 

Commonly used wet methods, such as Soxhlet extraction technique, gravimetry, and 

chromatography have many unsustainable limitations such as excess solvent consumption, 

limited sample size, destructive sample preparation, slow response, and technical demand [7]. 

Thus, for effective processing and quality control of the olive system, application of green, 

sustainable eco-friendly, energy-efficient, non-destructive, non-invasive, easy-to-use, and 

inexpensive spectroscopic methods become inevitable. 

From the technological point of view, the importance of these rapid determinations before 

oil extraction may lie in the possibility of modulating the extraction systems based on the drupe 

characteristics and type of desired product. For instance, operative conditions safeguarding 

the phenolic content can be adopted if phenolic substances are not so high in the drupes or, 

vice versa, the outstanding phenolic content of some drupes can be lowered if the final product 

is intended for consumers who do not like bitter/pungent oil [12,13]. Knowing how to set the 

equipment before starting the process instead of correcting the settings once the oil has been 

extracted and analyzed might be of interest. 

Near infrared spectroscopy (NIRS) has gained prominence in the last decade and has 

contributed economically to food and feed industries by ensuring on-time processing and 

quality control [14,15]. The technology is a formidable green chemistry tool and 

environmentally sustainable analytical technique capable of handling a large sample size in 

solid and liquid forms and it provides quick answers to quality questions. NIRS, in conjunction 

with appropriate chemometrics, has become a routine analytical tool for the determination of 

intact olive drupes moisture and fat contents [16,17]. Using a portable Vis/NIR spectral 

acquisition device equipped with multiple detectors, it was possible to predict several 

economically important olive mill parameters such as maturity index, moisture, oil content, 

acidity, and dry matter [18]. Another type of NIRS system with a wavelength selection tool 

(acousto-optically tunable filter—AOTF) was satisfactorily applied to predict phenolic 

compounds and to monitor ripening of olives [19,20]. In addition to intact or crushed olive 

quality assessment, NIRS has been found to be handy in evaluation of olive oils and olive by-

products [21,22]. However, comparative performance evaluations of NIRS using different 
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signal acquisition devices are relatively uncommon especially for olive drupes. In this study the 

results obtained by a Fourier transform (FT)-NIR spectrometer (equipped with both integrating 

sphere and fiber optic probe) and a Vis/NIR handheld device for the prediction of quality 

parameters of intact olives of 13 different cultivars collected in three harvest years are 

discussed. In particular, the objective was to evaluate the different performance of the 

acquisition systems in the prediction of moisture, oil content, soluble solids, total phenol 

content, and antioxidant activity, in vision of suitable tools to be applied both in the field and at 

the mill for quick answers to quality questions in a sustainable way. 

 

MATERIALS AND METHODS  

Olive Samples 

Samples of olives belonging to 13 different cultivars from Abruzzo, Apulia, Calabria, and 

Sardinia regions (Italy) were used; sampling was carried out at different ripening degrees. For 

each sampling and cultivar, three sample units (500 g each) were picked from different 

identified trees of the same grove, for a total of 267 sample units. Each unit was independently 

analyzed for the chemical parameters (moisture, oil content, soluble solid content, total 

phenolic content, and antioxidant activity). Two aliquots (100 g each) were taken from each 

sample unit for FT-NIR analysis with the integrating sphere. From each aliquot, 10 olives were 

selected as representative of the ripening stage [23] and used for analyses with both the FT-

NIR and Vis/NIR fiber optical probes. 

 

Chemical Analyses 

Determination of moisture content (%) was carried out according to the AOAC 934.06 

official method [24]. Oil content (% on fresh weight) was determined gravimetrically after the 

extraction of the oil from 10 g of dehydrated olive paste in a Soxhlet apparatus using petroleum 

ether as solvent [25]. Total soluble solids content (°Bx) was measured according to a 

previously published procedure [26]. Briefly, the sugar aqueous solution was prepared by 

homogenizing olive paste (20 g) in distilled water (40 mL) and stirring for 2 min. After 

centrifugation (11,000× g for 10 min), the supernatant solution was analyzed through a digital 

refractometer. Total phenol content (TPC) was determined as follows: olive pulp (1 g) was 

extracted using hexane (3 mL) and methanol:water (70:30 v/v; 15 mL), by stirring for 10 min 

at room temperature. After centrifugation (6000× g at 4 °C for 10 min), the supernatant phase 

was collected and further centrifuged (13,600× g, 5 min, room temperature). The obtained 

extracts were filtered through nylon syringe filters (pore size 0.45 μm; LLG Syringe Filter CA, 

Carlo Erba, Milano, Italy), properly diluted, and spectrophotometrically analyzed at 750 nm 
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using the Folin-Ciocalteau reagent [27]. Calibration curves were made using gallic acid and 

the results were expressed as grams of gallic acid equivalent per kilogram olive pulp (gGA/kg). 

Antioxidant activity (% inhibition/mg olive pulp) was determined on the same extracts used for 

TPC, applying the radical 2,2 diphenyl-1-picrylhydrazyl (DPPH•) method [28]. Briefly, 200 μL 

extract (previously diluted 1:20 in methanol) was made to react with 2.8 mL DPPH• methanol 

solution (6 × 10−5 M) for 1 h at 22 °C, measuring the discoloration at 515 nm. All reagents were 

from Sigma-Aldrich (St. Louis, MO, USA).  

 

Spectra Collection 

Spectra were collected by using a benchtop FT-NIR spectrometer (MPA, Bruker Optics, 

Milan, Italy), equipped with both an integrating sphere and a fiber-optic probe, and a handheld 

portable Vis/NIR device (Jaz, OceanOptics Inc., Dunedin, FL, USA). The FT-NIR spectra of 

the two aliquots (100 g each) of each olive sample unit were collected in duplicate in diffuse 

reflectance by means of the integrating sphere system. The optical fiber was used to acquire, 

in duplicate, the FT-NIR spectra of the 10 single olives selected from each aliquot based on 

ripening degree [23]. For both FT-NIR sampling systems, spectra were collected within a 

12,500–3600 cm−1 spectral range, at 8 cm−1 resolution and with 32 scans. The background for 

the integrating sphere was performed by closing the internal reference wheel of the module, 

while for the fiber-optic probe a Spectralon standard was used. A dedicated software (OPUS 

v. 6.5, Bruker Optics, Ettlingen, Germany) was used to manage the instrument. The same 

single olives were analyzed in duplicate also by using the Vis/NIR portable device (500–1000 

nm, i.e., 20,000–10,000 cm−1; 0.3 nm resolution; 5 scans) equipped with a bifurcated optical 

fiber provided with a cap that standardizes the distance between the head of the probe and 

the sample (about 2 mm) and reduces the environmental light interference. A white reference 

(99% reflection) was used to set the maximum reflection. Spectrum acquisition lasted 18 s for 

both the integrating sphere and the probe of the benchtop FT-NIR spectrometer, and 1 s for 

the portable Vis/NIR device. Measurements were conducted with both instruments on the 

same day, thus making sample storage between analyses unnecessary. 

 

Data Analysis 

Data elaborations were performed using the Unscrambler X software (v. 10.4, CAMO ASA, 

Oslo, Norway). The replicated spectra were averaged in order to have one spectrum for each 

sample unit. For FT-NIR probe and sphere, spectral ranges were reduced to eliminate non-

informative and noisy regions (i.e., 3600–4000 and 10,500–12,500 cm−1), whereas in the case 

of the portable Vis/NIR device, the whole spectral range was used. The spectral data were 
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independently pre-processed by standard normal variate (SNV), which removes possible 

interferences due to light scattering [29]. Chemical variables and all spectral data were merged 

in a single matrix (267 sample units × 5024 variables) and used to perform principal component 

analysis (PCA), autoscaling all the variables to overcome the heteroscedasticity nature of the 

data. The coordinate transformation of the merged spectral–chemical data matrix allowed for 

the selection of a calibration and a prediction data set, using the Kennard–Stone (KS) algorithm 

[30]. The algorithm partitioned the data in order to have 70% of samples (187 sample units) in 

the calibration set and 30% (80 sample units) in the prediction set. 

Prediction of olive chemical characteristics based on spectral data was performed 

applying the partial least squares (PLS) regression to the calibration set of each spectral matrix 

(187 sample units x 1686 variables for the FT-NIR systems; 187 sample units × 1647 variables 

for the Vis/NIR equipment) using nonlinear iterative partial least squares (NIPALS) algorithm. 

Different pre-treatments of spectral data were tested: SNV, first derivative (d1; Savitzky–Golay 

algorithm, second order polynomial, 11-window size), which allows removal of baseline offset 

[31], and their combination. After calibration, the models were validated internally, through 

cross-validation (Venetian blind, 10 cancellation segments). The number of components to be 

considered for each model was determined based on the plot of calibration and cross-

validation errors as a function of the number of latent variables (LVs). The optimal number of 

LVs was chosen as the number of LV allowing to minimize the cross-validation error. 

Afterwards, the models were externally validated by independently using the prediction set 

previously created with KS. Model performance was evaluated in terms of determination 

coefficients for calibration (R2
cal), cross-validation (R2

cv), and prediction (R2
pred), as well as by 

root mean square error of calibration (RMSEC), cross-validation (RMSECV), and prediction 

(RMSEP), and standard error of prediction (SEP). 

Prediction performances of the models obtained by the three spectral acquisition systems 

were compared by different approaches: (i) comparison of intermediate precisions expressed 

as standard error of laboratory (SEL); (ii) comparison of SEP with SEL of reference analyses; 

(iii) statistical tests proposed in the scientific literature [32,33]. SEL of the reference analyses 

and NIRS acquisition systems was calculated as follows [34]: 

𝑆𝐸𝐿 =  
∑ (𝑥 − 𝑥 )

𝑚
 

 

where m is the number of olive samples and x1 − x2 is the absolute value of the difference 

between replicate results. In the third approach (i.e., statistical tests), first, the model biases, 

i.e., differences between the reference method results and those of the models predicting the 
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chemical parameters, were compared by a t confidence interval for paired samples with a 95% 

confidence interval. The null hypothesis (H0) states that model biases are not different. If the 

calculated Fisher value is higher than the F critical value, the H0 is rejected and the hypothesis 

H1 is true (i.e., differences between models are significant) [32]. Furthermore, a pairwise 

comparison of the model standard deviations was performed by the calculation of the 

correlation coefficient between each two sets of prediction errors (r). Then, K index is 

calculated by the following equation: 

K = 1 + {[2(1 − r2)t2n−2,0.025]/(n − 2)} (1)

 

where tn−2,0.025 is the upper 2.5% point of the t distribution on n − 2 degrees of freedom. 

Subsequentially, L index is calculated as follows [33]: 

L = √[K + √((K2 − 1))] (2)

 

Then, the 95% confidence interval for the ratio of the standard deviations (L-lower and L-upper 

limits) was calculated. If the L interval includes 1, the standard deviations are not significantly 

different (p > 0.05). The model comparison was performed in MATLAB environment (v. 

R2017b, The MathWorks, Inc., Natick, MA, USA). 

 

RESULTS AND DISCUSSION 

Chemical Parameters 

Descriptive statistics of the chemical variables are presented in Figure 1 as box and 

whisker plots. The box lines represent the first and third quartiles and the median. The mean 

value is indicated by a cross sign. Whiskers correspond to the minimum and maximum 

measured values. Genetic, environmental, and cultivation factors affect olive composition, 

which changes during growth together with the drupe weight [5]. Actually, the tested cultivars 

and the different ripening stages and crop seasons accounted for a high range of variability of 

all the chemical parameters. This is an important point for the development of prediction 

models useful for different production sites. Variation ranges of the chemical parameters for 

the different olive cultivars are reported in Table S1. 
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Figure 1. Box and whisker plots showing the descriptive statistics for the chemical variables tested on 
olive drupes. TPC: total phenol content; GA: gallic acid equivalent; DPPH•: radical 2,2 diphenyl-1-
picrylhydrazyl; inhib.: inhibition. 

 

Moisture represents the main constituent alongside oil. In the considered drupes, moisture 

content ranged from 39.3 to 87.2%. The obtained results agree with previously published data 

[18,35], considering that the moisture mean value was 63.3%, while the highest values (>80%) 

were obtained only in three out of thirteen cultivars, all from Calabria region. Excluding those 

three cultivars, the maximum value for moisture was 73.7%. 

Commonly, olives intended for oil production have approximately 20% oil [36]. The samples 

here considered had a wide range of oil content (1.9–26.0%), suggesting the high influence of 

cultivar and ripening degree on this parameter. A general increase in oil content ranging from 

2 to 12% was observed over ripening, depending on the considered cultivar. 

TPC is an approximate estimation of total phenolic acids, phenolic alcohols, flavonoids, and 

secoiridoids in olive drupes. These compounds confer the bitter taste and pungent sensation 

on olive oils and are responsible for the well-known antioxidant properties. TPC values of the 

samples had a wide range of variation (2.5–60.6 gGA/kg), with the highest levels (>35 gGA/kg) 

found in three cultivars from Sardinia region. The antioxidant activity too was very different in 

the various samples, ranging from 2.4 to 165.0% inhibition/mg. Unexpectedly, the highest 

values (>70% inhibition/mg) were not found in the olives with the highest TPC, but in two 

cultivars from the Apulia region.  
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Spectral Features 

Figure 2 shows the spectra of the olives obtained from the three acquisition systems. Visual 

features and patterns of the spectra conform with those previously reported for intact olive 

drupes [37,38]. 

Aside from the visual differences in band intensities among samples, FT-NIR spectra from the 

integrating sphere and the fiber-optic probe (Figure 2a,b) are quite similar, with the latter 

exhibiting higher absorbances in most of the observable peaks. 

 

Figure 2. Spectra of olive drupes acquired with: (a) FT-NIR integrating sphere; (b) FT-NIR fiber-optic probe; 
(c) portable Vis/NIR device. 

 

The low absorbance band around 8600 cm−1 represents a combined symmetric and 

asymmetric OH stretching and bending vibrations. This is followed by the second overtone of 

CH stretching vibrations at 8300 cm−1 that corresponds to methyl (-CH3), methylene (-CH2), 

and olefin (-CH=CH-) bonds [37]. The high water content of the olive drupes (39–87%) explains 

the two absorption bands at 7500–6100 and 5400–4500 cm−1. These bands are designated 

as the combination of first overtone of symmetric and asymmetric OH-bending and OH-

stretching bands (6900 cm−1) and combined OH-bending and OH-stretching bands (5200 

cm−1), respectively [39]. Similarly to the second overtone of CH stretching vibrations at 8300 

cm−1, the two bands at 5800 and 5650 cm−1 represent the first overtone of CH-stretching 

vibrations present in the same CH3, CH2, and CH=CH functional groups. At the far end of the 

FT-NIR spectral range, two peaks at 4335 and 4262 cm−1 represent CH and CH2 s overtones, 

respectively [35]. However, the intermediate bands between the overtones (i.e., 8600, 5800–

5650, and 4350–4250 cm−1) have been attributed to the oil content of the drupes [40]. 

Regarding olive fruit phenols, there are no reported NIR correlated bands in the literature. 

However, a previous study suggested that some regions (i.e., 8700–8300 and 5800–5650 

cm−1) are correlated with TPC of olives [19]. 

In the case of Vis/NIR spectra (Figure 2c), more peak variations among samples were 

observed, especially within the visible (550–680 nm) and near-infrared (700–790 nm) regions. 
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The changes around 550–680 nm correspond to some varying pigment indices. Specifically, 

the peak around 540 nm has been associated with anthocyanin, while that at 680 nm has been 

linked to chlorophyll [41]. Thus, changes in reflectance along these peaks may be due to 

maturation differences among the drupes. Other parameters, such as soluble solids, pH, and 

firmness, have been implicated within these regions in pears, especially around 340–740 nm 

[42]. Changes in the two absorption peaks around 750 and 850 nm could be assigned to the 

third overtone of H2O and C-H functional group, respectively [43].  

 

Principal Component Analysis 

Figure 3 shows the score and loading plots of the PCA model built on the merged chemical 

and spectral database. The first two principal components (PCs) represent 59% of total data 

variance. The application of KS algorithm after PCA allowed to select evenly distributed 

samples for the calibration and prediction sets, highlighted with different colors in the score 

plot of Figure 3a. Few samples were seemingly outliers, but they were not removed in order to 

avoid presumptive assumption that they might adversely affect the model. Anyway, KS data 

splitting algorithm retained to a large extent as much variability as possible within the 

calibration and validation sets and this is a prerequisite for model robustness and validity in 

prediction. The loading plot (Figure 3b) shows a balanced contribution of both the chemical 

parameters and the three spectral ranges to sample distribution and consequently to the 

dataset partitioning. 

 

Figure 3. PCA results: (a) score plot showing the distribution of calibration (blue) and prediction (orange) set 
samples selected by Kennard-Stone algorithm applied on the merged chemical and spectral dataset of olive 

drupes; (b) loading plot of PC1 (blue) and PC2 (orange). 
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Regression Models 

PLS regression models were built with FT-NIR and Vis/NIR spectra to quantify moisture, oil 

content, soluble solids, TPC, and antioxidant activity of olive drupes. In order to make data 

more evenly distributed, TPC and DPPH• results were transformed in the inverse and the 

logarithmic values, respectively. The best models based on determination coefficients and 

errors are reported in Table 1 for each spectral acquisition system. Predicted vs. measured 

plots of the models are reported in the supplementary Figure S1. In general, performances of 

the three acquisition systems were similar in calibration and cross-validation, while in 

prediction FT-NIR spectra gave better results, maybe due to the wider NIR range and the low 

complexity of the models resulting in a higher stability. 

With respect to moisture content prediction, the three acquisition systems exhibited promising 

and similar prediction outcomes. The determination coefficients ranged from 0.77 to 0.92, with 

reasonably low values of errors (from 2.67 to 4.75%). However, the model calculated with the 

Vis/NIR spectra transformed in d1 showed a higher number of LVs (16 vs. 8 and 7 for the 

sphere and the probe, respectively), maybe due to the higher resolution of the spectra and the 

limited NIR range considered. 

Oil content was better predicted by FT-NIR spectra, pre-treated with SNV and d1. Prediction 

coefficients of determination were higher than those of the portable acquisition system (0.77 

and 0.78 vs. 0.64), with lower RMSEP values (2.92 and 2.86% vs. 3.74%) and LVs (9 and 5 

vs. 16). The outcomes of calibration and cross-validation coefficients of determination for the 

FT-NIR sphere and probe (0.77–0.93) were comparable to those reported in the literature 

(0.78–0.84) for a smaller number of samples (183) [18]. 

Considering soluble solids, the regression model reliability appeared even more promising for 

FT-NIR spectrometer than for the portable device. Both the FT-NIR sphere and fiber-optic 

spectra pre-treated with a combination of SNV and d1 resulted in satisfactory determination 

coefficients in prediction (0.70 and 0.74, respectively) and low RMSEP (2.39 and 2.23 °Bx, 

respectively). The precision of the models was comparable to those observed for other fruits 

as, to the best of our knowledge, there is no study on NIR prediction of soluble solids in intact 

olives. For instance, quantitative determination of soluble solid content for quality prediction of 

intact strawberries using a handheld micro-electro-mechanical NIR system, resulted in R2
pred 

of 0.37–0.47 and RMSEP of 1.02–0.87% [44]. With the spectra in the Vis/NIR range, the 

coefficient of determination in prediction decreased to 0.58, with a RMSEP of 3.02 °Bx. 

Similar model performances in calibration and cross-validation were obtained for 1/TPC for all 

the spectral acquisition systems (R2 range, 0.76–0.89), whereas in prediction FT-NIR spectra, 

gave better results (R2
pred = 0.77–0.76) than Vis/NIR spectra (R2

pred = 0.69). FT-NIR models 
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are better than those reported in the literature for a filter-based NIR spectrometer [35]. The 

authors attributed the unsatisfactory output of their model (R2
cal, 0.72; SEP, 13.35 g 

oleuropein/kgdm) to the exclusion of 8600–6900 cm−1 range from the spectral bands, which was 

instead here considered. Our models were more promising also when compared to grape TPC 

prediction models developed using a portable NIR-AOTF [45]; the authors observed 

determination coefficient values of 0.77 and 0.62 in calibration and cross-validation, 

respectively. 

Table 1. Figures of merit of the best PLS regression models for olive chemical parameter prediction 
based on spectroscopic data. 

    Calibration Cross-Validation Prediction 

Parameter NIR System Pre-treatment LVs R2
cal RMSEC R2

cv RMSECV R2
pred RMSEP 

Moisture content 

(%) 

Sphere SNV+d1 8 0.92 2.67 0.85 3.66 0.77 4.59 

Probe SNV+d1 7 0.88 3.56 0.85 3.87 0.84 3.97 

Portable  d1 16 0.87 3.68 0.77 4.77 0.77 4.75 

Oil content (%) 

Sphere SNV+d1 9 0.93 1.62 0.82 2.62 0.77 2.92 

Probe SNV+d1 5 0.79 2.87 0.77 2.99 0.78 2.86 

Portable  SNV+d1 16 0.81 2.72 0.67 3.58 0.64 3.74 

Soluble solids (°Bx) 

Sphere SNV+d1 9 0.90 1.45 0.75 2.36 0.70 2.39 

Probe SNV+d1 11 0.87 1.66 0.80 2.06 0.74 2.23 

Portable  SNV 13 0.79 2.11 0.75 2.34 0.58 3.02 

1/TPC (kg/gGA) 

Sphere SNV 13 0.89 0.04 0.81 0.04 0.77 0.04 

Probe SNV+d1 13 0.87 0.04 0.76 0.05 0.76 0.04 

Portable  SNV+d1 9 0.83 0.05 0.79 0.05 0.69 0.05 

logDPPH• (log % 

inhib./mg) 

Sphere SNV 15 0.84 0.20 0.68 0.29 0.68 0.29 

Probe SNV+d1 16 0.93 0.14 0.79 0.24 0.73 0.27 

Portable  d1 13 0.79 0.23 0.72 0.27 0.41 0.39 

TPC: total phenolic content; GA: gallic acid equivalent; inhib.: inhibition; DPPH•: radical 2,2 diphenyl-1-
picrylhydrazyl; LVs: latent variables; R2

cal: calibration coefficient of determination; R2
cv: cross-validation 

coefficient of determination; R2
pred: prediction coefficient of determination; RMSEC, RMSECV, and RMSEP: 

root mean square errors of calibration, cross-validation, and prediction, respectively; SNV: standard normal 
variate; d1: first derivative. 
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To the best of our knowledge, there is no other published paper in which the antioxidant activity 

of olive drupes is tentatively determined using rapid spectroscopic techniques. Therefore, our 

models seem fair especially when the FT-NIR probe was used, which generated comparatively 

highest R2
pred and lowest RMSEP among the three spectral acquisition systems. The dynamic 

nature of this in vitro antioxidant activity makes its adaptation to spectroscopic techniques 

somewhat difficult. A more accurate NIR prediction of DPPH radical scavenging activity was 

recorded in bean flours (R2
cal, 0.94–0.99; R2

val, 0.85–0.97) [46]. On the contrary, for a more 

bioactive horticultural product like Hibiscus sabdariffa, calibration and prediction determination 

coefficients are reported in the literature in the ranges 0.82–0.87 and 0.75–0.86, respectively, 

depending on spectra pretreatments [47]. 

From the inspection of the weighted regression coefficients of PLS models, for both the FT-

NIR sphere and the probe the relevance of 7500–6100 and 5400–4500 cm−1 regions for 

moisture and soluble solid prediction was confirmed. Moreover, the PLS model developed for 

oil content prediction were highly influenced by the 5800–5650 and 4350–4250 cm−1 regions, 

attributed to the oil content of the drupes [40]. The same regions showed high weighted 

regression coefficients for TPC and DPPH models, which were also characterized by high 

relevance of the 8700–8300 cm−1 region, previously related to TPC of olives [19]. 

As for the model developed with the Vis/NIR spectra, the inspection of the weighted regression 

coefficients revealed that both visible and NIR range influenced the prediction of moisture, oil 

content, and soluble solids. In particular, the range 880–970 nm showed the highest influence 

in the models for moisture and oil content prediction, whereas the maximum recorded weight 

for soluble solids corresponded to 970 nm. Moving to TPC and DPPH prediction, it has been 

noticed that the highest values of the weighted regression coefficients were related to the 

visible range (550–700 nm), maybe linked to the olive color modification occurring during 

ripening, due to compounds like chlorophylls, carotenoids, anthocyanins, and polyphenols. 

Actually, other authors demonstrated that during olive ripening a rise in some bands of the 

visible range occurs (i.e., 600–650 and 550–625 nm), due to the presence of anthocyanin and 

other pigments related to reddish as well as green and yellow color [18]. 

 

Regression Model Comparison 

The effectiveness of the prediction ability was at first established comparing the intermediate 

precisions (SEL) of the regression models with those of the reference methods (Table 2). The 

SEL values for the different NIR systems were generally higher than those obtained for the 

reference analyses, except for the SEL of the oil content predicted by the FT-NIR probe 

measurements. Indeed, the SEL values of NIR systems are more affected by the drupe 
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heterogeneity, since spectra are collected on entire olives without the sample preparation 

phase of the chemical analyses, which is carried out by grinding and homogenizing the olive 

pulp. 

The SELref values were also compared with the prediction performances of the models in terms 

of SEP. As expected, SEP values were always higher than those of SELref, because they 

include not only the sampling and analysis errors, but also the spectroscopy and model errors. 

The SEP obtained for the FT-NIR probe models were the lowest and the closest to the 

corresponding SELref values. If the SEP is <2SELref, the prediction performance of the model 

should be considered as good [48]. This was the case of models developed from FT-NIR probe 

spectra for moisture, oil content, and 1/TPC prediction.  

Furthermore, the t-test for paired samples demonstrated that the biases for the models 

developed with the three spectral acquisition systems were comparable, i.e., the null 

hypothesis was confirmed (p values between 0.1 and 0.8; data not shown). On the other hand, 

the comparison between the standard deviations of the models [33] returned some differences 

as reported in the last three columns of Table 2. For moisture, the FT-NIR probe model resulted 

significantly different from those based on sphere and portable device spectra, due to a better 

performance resulting in a lower RMSEP (Table 1). All the other comparisons resulted in 

similar performance of the FT-NIR sphere and probe models, whereas the portable device 

models resulted significantly different because of the worse performance in terms of R2
pred, 

RMSEP, and SEP. 
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Table 2. Comparison of regression models calculated for olive chemical parameter prediction 
based on three different FT-NIR and Vis-NIR acquisition systems. 

Parameter SELref NIR System SELNIR SEP 
NIR System 

Sphere Probe Portable Device 

Moisture content 

(%) 
2.00 

Sphere 4.41 4.56 - * n.s. 

Probe 3.21 3.99 * - * 

Portable  4.49 4.72 n.s. * - 

Oil content (%) 2.29 

Sphere 3.13 2.94 - n.s. * 

Probe 2.18 2.88 n.s. - * 

Portable  2.95 3.77 * * - 

Soluble solids 

(°Bx) 
1.02 

Sphere 2.21 2.41 - n.s. * 

Probe 2.31 2.24 n.s. - * 

Portable  1.88 3.03 * * - 

1/TPC (kg/gGAE) 0.023 

Sphere 0.045 0.044 - n.s. * 

Probe 0.044 0.043 n.s. - * 

Portable  0.036 0.052 * * - 

logDPPH• (log % 

inhib./mg) 
0.106 

Sphere 0.257 0.287 - n.s. * 

Probe 0.282 0.267 n.s. - * 

Portable  0.223 0.390 * * - 

TPC: total phenolic content; GA: gallic acid equivalent; DPPH•: radical 2,2 diphenyl-1-picrylhydrazyl; inhib.: 
inhibition; SELref: standard error of laboratory for reference analyses; SELNIR: standard error of laboratory for 
NIR systems; SEP: standard error of prediction; n.s.: not significantly different standard deviation values (p > 
0.05); *: statistically different standard deviation values (p ≤ 0.05). 

 
 

CONCLUSIONS 

The benefits of different NIRS acquisition systems as green technology for quality 

characterization of intact olive drupes were explored. Generally, the calculated PLS models 

were remarkably encouraging in terms of determination coefficients and errors, both in internal 

validation and prediction. The model comparison highlighted a general better performance of 

both the FT-NIR sphere and probe acquisition systems with respect to the handheld device. 

However, the Vis/NIR device, being portable and relatively cheaper, is worthy of further 

investigations, because its use could be in any case very useful for preliminary quick quality 

assessment of olive drupes directly in the field. On the contrary, an on-line or in-line application 

of the FT-NIR optical probe in the olive mill should be promoted in order to quickly classify the 

drupes for a better quality design of the olive oil and a more sustainable management of the 

production chain. 
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Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, 

Figure S1: Regression lines obtained for the prediction of entire olive chemical parameters 

with models developed by FT-NIR integrating sphere, FT-NIR fiber-optic probe, and portable 

Vis/NIR device. Table S1: Variation ranges of the chemical parameters for the different olive 

cultivars. 
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4.3 Design and development of optical prototypes 
 

In this chapter, optical IoT devices for real-time grape monitoring were designed, built, and 

tested. In particular, the viticulture sector has been taken into account because is one of the 

supply chains where the presence of optical instruments is increasing day by day. 

In the winemaking industry, grape maturation control is a complex process that is critical to 

produce high-quality wines, but currently, maturation control is cumbersome and inefficient. 

This inefficient control of the maturation is related to a reduced value of the wine. 

The current state of the art for grape maturation control is based on multiple wet-chemistry 

assays that are: (i) destructive, (ii) time consuming, (iii) labour intensive, (iv) performed on a 

sparse basis and (v) based in on complex sampling process. 

Therefore, to shift the current paradigm of grape maturation monitoring (based on lab analysis) 

it is needed a new technology that: (i) allows a real-time and stand-alone monitoring with a 

low-cost, (ii) is non-destructive and chemical free, (iii) is capable to drastically reduce the need 

of manpower and (iv) provides information with temporal and spatial resolution. 

Optical instruments have been present into the winery laboratories for several years but, 

nowadays, the trends is to move from the laboratory (especially for the classical analysis of 

technological and phenolic maturation) into the field where researchers have demonstrated 

alternative optical methods and instruments of proximal and remote sensing that allowed a 

more cost-effective evaluation of the condition of the grapevines directly in the field (Power et 

al., 2019). 

The market proposes portable instruments which use a set of discrete commercial modules 

(LED arrays, white light sources, photodiodes, filters, micro-spectrometers) on a package. 

These instruments provide wide bulk of information, but, currently, they require a human 

operator for data. 
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4.3.1 Hand-held optical device development 
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Abstract 

Monitoring the grape ripening until the harvest is a crucial issue since berry quality is closely 

related to it. Therefore, the research for non-destructive methods which could explore many 

samples and give a rapid and comprehensive overview of ripening would be helpful. The aim 

of the research was to design, build and test prototypes of cost-effective and user-friendly 

device to support small-scale growers in planning the optimal harvest date according to grape 

ripening degree. A pre-prototype version of a fully integrated optical device which incorporates 

sensors (tuned photodiode arrays, interference filters, LEDS, optics) was presented. The 

system is equipped with two digital 6-channel sensors for spectral identification in the visible 

and SW-NIR. The sensors cover 12 independent on-device optical filters from 450 nm to 860 

nm. It was tested on Nebbiolo grape red variety.  The optical data were collected on grape 

bunches and single grape berries using the pre-prototype. Besides, reference parameters 

through traditional laboratory analyses of Soluble Solids Content (SSC), Titratable Acidity (TA), 

Extractability of Anthocyanins (EA) and pH were carried out on each sample. The MLR 

correlation models between the optical data from the prototypes and the reference parameters 

were calculated. A promising determination coefficient in cross validation (r2cv) was obtained 

for the prediction of SSC (r2cv=0.86) while, the models for TA, EA and pH (r2cv from 0.4 to 

0.5) can be considered enough accurate to allow an initial field screening of the trend of these 

parameters. 

Keywords: effective wavelengths, vis/NIR spectroscopy, simplified system, ripening, 

chemometrics 

Graphical abstract 



Post-print_Paper 7 
  Computers and Electronics in Agriculture 

144 | P a g e  
  

 

 

INTRODUCTION 

Europe is one of the world leaders for the production of high-quality wine. In 2019 the sold 

European (EU) production of wine was around 16 billion litres of which 7.1 billion were exported 

(Eurostat, 2019). 

The wine sector is evolving in an increasingly competitive international scenario characterised 

by new producing countries with innovative strategies in production and trade. In this highly 

competitive market, it is now well accepted that the quality of a wine depends mainly on the 

qualitative features in terms of chemical characteristics of the grapes used to produce it 

(Giovenzana et al., 2018).  

This is well understood by the consumers which are also more exigent on everything is related 

to the sensory characteristics of a specific wine. Moreover, sustainability aspects are becoming 

one of the crucial factors which define the added value of the final product (Vallone et al., 

2019).  This is causing a growing interest in sustainable high-quality production especially in 

the agro-food sector where the use of more sustainable, automated and precise non-

destructive monitoring analytical systems have become a crucial and competitive aspect 

(Miranda et al., 2019). In vinification, the phenolic (anthocyanin and polyphenols) and 

technological (soluble solids content, pH and acidity) features of the grape (defined by 

chemical analysis) can influence the decision making for the wine production. 
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The optimal harvest decision is made by winegrowers and winemakers who work closely 

together using an integrated approach toward maturity assessment/monitoring. Therefore, to 

support the growers in these fundamental decisions, many techniques starting from the simply 

visual evaluation of the grape (by the operator) going toward more sophisticated techniques 

(which belong to a new concept of viticulture defined "viticulture 4.0") are available (Aleixandre-

Tudo et al., 2019). 

The conventional grape maturation assessment methodologies rely on wet-chemistry analysis 

of the grape composition in the laboratory. These methods are reliable but they are affected 

by the limited number of samples tested, the distance to field and sometime a time gap 

between sample collection and results. Furthermore, they are (i) destructive, (ii) time-

consuming, (iii) labour-intensive, and (iv) generate significant amounts of chemical waste 

which are critical factors in a view of a more sustainable production (Casson et al., 2019).  

Over the years, many approaches have been followed towards more effective methods which 

could explore a large number of samples and give a rapid and comprehensive overview of the 

ripening process. Optical sensing techniques based on ultra-violet (UV), visible (Vis) and 

infrared (IR) are widely used in agriculture and for food fingerprinting. Most of these techniques 

offer the possibility of analysing many samples in a non-destructive way allowing a 

simultaneous determination of several chemical properties. Moreover, they are more 

sustainable than the traditional physical and chemical methods (Tugnolo et al., 2021, Casson 

et al., 2019). 

In literature, optical techniques showed a good ability to assess the quality parameters of fruit 

and vegetables (Nicolaı et al., 2007). In grape and wine field, several works were performed. 

Boca-Bocanegra et al. (2019) studied spectra of intact grapes and skins at harvest in two crop 

seasons (2016 and 2017) using a portable NIR device (908-1676 nm) to evaluate the capability 

to determine the levels of extractable phenolic compounds of red grapes. Costa et al. (2019) 

used a spectroradiometer (450-1800 nm) to develop predictive models for quality and 

maturation stage attributes (SSC, total anthocyanins and yellow flavonoids) of wine grapes. 

Even though several studies were performed using portable NIR spectrometers, the 

development of a new generation of simplified and customised optical sensors have not been 

fully studied, especially in practical conditions. 

Potential users, in particular personnel from the agri-food sector, are interested in scientific 

studies regarding the prediction performance and practical application of these equipment 

(Donis-González I et al., 2020). 
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The limited adoption of NIR technology by the viticulture sector can be attributed to the costs 

and technical limitations (Magwaza et al., 2012). Therefore, in order to support the 

winemakers, the research is moving towards simplified, easy to use, low-cost systems for real-

time assessment of fruit ripeness directly in-situ (Giovenzana et al., 2015). 

Giovenzana et al. (2015) and Ribera-Fonseca et al. (2016) investigated the potential use of a 

portable device based on few wavelengths (630, 690, 750, 850 nm and 560,640 nm 

respectively), to measure parameters as SSC, titratable acidity, firmness and anthocyanins 

getting promising results. The predictive multiple linear models for SSC and TA developed by 

Giovenzana et al. (2015) showed (in validation) a determination coefficient (R2) of 0.66 and 

0.85 and a root mean square error (RMSE) of 1.9 and 1.8 respectively. The model developed 

by Ribera-Fonseca et al. (2016) instead, showed that IAD (Index of Absorbance Difference) 

values were significantly correlated to SSC (R2 = 0.92), TA (R2 = 0.87), firmness (R2 = 0.89), 

and monomeric and total anthocyanin concentration (R2 ranging from 0.68 to 0.97). 

Donis-Gonzàlez et al. (2020) have conducted analyses between 740 and 1070 nm using two 

commercially available portable spectrometers to determine table grape and peach quality 

attributes, showing significative variations of the two instrument's performance potentially due 

to their design.  

All these innovative approaches are becoming crucial in a view of a more efficient and 

completely inter-connected wine production process (Lee et al., 2015). For winemakers, the 

development of optical instrumentation equipped with very inexpensive sensors that can be 

placed directly in contact with the fruits for continuous monitoring without operator (thanks to 

cloud data storage) could be an interesting opportunity of development. In the context of 

precision agriculture, the development of new sensors, especially based on spectroscopy, 

enables high resolution data acquisition that could be used to track crop development and 

ripening. The capability to assess ripening in a fast, non-destructive way would substantially 

and positively impact the processes of harvesting (operating procedures, scheduling and 

classification). 

Nowadays, costs (instruments plus operation) are still an issue for large-scale application in 

agri-food chains, discouraging, in many cases, the technology transfer of the laboratory 

research. For this reason, the aim of the research was to design, build and test prototypes of 

miniaturised low-cost and user-friendly devices to support small-scale growers in determining 

the optimal harvest date according to grape ripening degree. The optical bench can be made 

up of highly miniaturized and robust components now available on the market from 

(multinational) producers of optoelectronic components. This peculiarity guarantees the quality 
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of the components at an extremely low cost. The development of new simple and 

interconnected optical systems would also allow the creation of remote storage of optical 

databases, allowing the continuous updating and refinement of the prediction performance of 

the predictive models with the aim of a continuous upgrading of the control services at different 

and crucial levels of the winemaking process. 

 

MATERIALS AND METHODS 

Prototype layout 

The new optical prototype (technology readiness level estimated equal to 3, Fig. 1) is 

composed by tuned photodiode arrays, interference filters, LEDs, optics. In detail, the device 

incorporates MEMS (Micro Electro-Mechanical Systems) equipped with 6-channel digital 

sensors each one (AMS, models AS7262 visible and AS7263 NIR, Premstaetten, Austria-

Europe) for spectral measurement in the visible (vis) and Short Wave Near-infrared (SW-NIR) 

region. The vis and SW-NIR sensors are 4.5 × 4.4 mm in size and are classified as ultra-low 

power consumption sensors. They have a 16-bit radiometric resolution and 12 independent 

on-device optical filters from 450 nm to 860 nm as summarized in table 1. 

 

Figure 1. Prototype layout and optical acquisition setup carried out on bunches and single berries. 

 

Table 1. Sensors wavelengths description. 

 Wavelengths (nm) 

Sensor 1 450 500 550 570 600 650 

Sensor 2 610 680 730 760 810 860 
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The prototype enables chip-scale spectral analysis by integrating Gaussian filters into standard 

complementary metal-oxide-semiconductor (CMOS) silicon via nano-optic deposited 

interference filter technology. The six-channel vis sensor is sensitive to the 400 - 700 nm 

spectral range with centre wavelengths of 450 nm, 500 nm, 550 nm, 570 nm, 600 nm, and 650 

nm (interesting to get also colour information, a crucial feature to get indications regarding the 

ripening progress). The full-width half-maximum of the sensors is 40 nm. The six-channel SW-

NIR sensor is sensitive to the 600 - 900 nm spectral range. Centre wavelengths of the six 

sensors are 610 nm, 680 nm, 730 nm, 760 nm, 810 nm, and 860 nm. The full-width half-

maximum of these sensors is 20 nm. 

The visible and short wave near-infrared sensitive spectrometers are available in the form of 

breakout boards, which include sensors and auxiliary electronic components (Fletcher & 

Fisher, 2018).  
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Sampling 

The experimental activity took place in the viticulture area of Treiso at “Azienda Agricola 

Renato Fenocchio” (Cuneo, Piedmont, Italy, 44°41′21.2″N 8°05′13.1″) during the ripening 

period among August and October 2019 in order to make the last sampling date coincide with 

the harvest date. 

Sampling was performed on Nebbiolo grape (Vitis vinifera L.) on a hillside with ~20-degree 

slope and a western exposure. Nebbiolo is one of the most important and autochthonous red 

cultivars of the north of Italy used to produce high-quality aged wines such as Barolo and 

Barbaresco. Nebbiolo is very sensitive to terroir and is characterized by high vigour and 

reduced berry skin colour.  

A total of 150 bunches were analysed weekly till the harvest for five sampling dates (30 

bunches each date). The samples were collected (for each sampling date) from 30 grapevines 

placed in different areas of the vineyard in order to be representative at best of the ripening 

process of the whole estate. Furthermore, a specific sampling on 180 single berries was also 

performed in the same dates. 

Optical analysis 

Optical acquisitions were performed (straight away before the wet-chem reference analyses) 

on bunches and single berries directly in the winery laboratory without any sample preparation 

and immediately after the sampling in the vineyard. In order to avoid any sample degradation, 

samples were conserved in refrigerated conditions and analysed within 15 minutes after 

picking. Data were acquired using the LED fully integrated pre-prototype (Fig. 1).  

The wavelengths used in the sensors are characteristic of certain peaks of absorption: 630 

and 690 nm are near chlorophyll peak, 730 nm is close to the third overtone of OH stretching, 

while 810 and 860 nm are close to the combination band of OH group of sugars (Giovenzana 

et al., 2015). 

The same measurements were carried out using both optical sensors. For each grape bunch, 

5 optical measurements randomly from the top to the bottom of the bunches were performed 

and then averaged to obtain a mean value while, for each berry the optical measurements 

were 2 as shown in figure 1. Therefore, two different datasets have been obtained (one from 

the bunch data collection and one from the berry data collection). In particular, since the berry 

dataset contains an optical output of each berry, the optical acquisitions have been collected 

following a colour criterion from green to purple in order to cover at best the variability 

associated with the grape ripening stage. 
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The pre-prototype was configurated (using a portable computer) to perform an average of 10 

scans for each acquisition point in order to reduce the experimental noise related to the light 

source. 

Chemical analyses 

The wet-chemical analyses (reference parameters) were also performed on the same 

samples. Soluble Solids Content (SSC) was measured both on single berries (one 

measurement) and on bunches (three averaged replicates from each bunch) using a digital 

refractometer (PAL-1 ATAGO, Tokyo, Japan, accuracy refractive index ±0.2 °Brix) which 

measures the refractive index of the juice derived from the mashing of the sample due to the 

total content of soluble solids and expresses the result in °Brix. Moreover, on each bunch were 

defined the Titratable Acidity (TA, three averaged replicates from each bunch), the 

Extractability of Anthocyanins (EA, three averaged replicates from each bunch) and pH (three 

averaged replicates from each bunch).  TA (gtartaric acid dm-3) was identified using an 

automatic titrator (TitroMatic KF 1S, Crison Instruments, Milan, Italy). EA (%), or the capacity 

of the grapes to release anthocyanins, was calculated by means of Glories method (Ribéreau-

Gayon et al., 2006) based on the optical density (OD) measurement at 280 and 520 nm using 

an UV/vis spectrophotometer. This technique involves the rapid extraction of anthocyanins 

from the sample using hydrochloric acid which can facilitate the process by destroying the cell 

membranes of the grape. Finally, pH was defined using a portable pH meter PCE-PHD 1 (PCE 

Inst. GmbH, Meschede, Germany). 

Data processing 

The reference parameters (SSC, TA, EA and pH) and the optical reflectance data obtained 

from the LED pre-prototype were analysed using The Unscrambler X software package (Camo 

Software, Oslo, Norway). In this first phase of analysis, the data obtained from the two sensors 

were processed and analysed as data obtained from one single pre-prototype in order to take 

advantage of all wavelengths considered. 

Principal Component Analysis (PCA) was carried out in order to understand the relationships 

among all variables and among variables and samples (Giovenzana et al., 2018; Malegori et 

al., 2018).  Considering the inhomogeneous physical structure of the grape samples (size and 

shape) and the various positions and distances where the sample can interact with the sensor, 

a correction of the baseline vertical shifts (offsets) and of the global intensity effects (typically 

arising from unwanted light scattering) was performed, applying the Standard Normal Variate 

(SNV) transform. Afterwards, a data scaling phase was performed in order to make the 

different variables comparable in importance before applying scale-dependent multivariate 
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analysis methods (such as PCA or Multiple Linear Regression, MLR). For this purpose, the 

unit variance scaling (or autoscaling) where variables are divided by their respective standard 

deviations was applied. The method is commonly used to data sets containing variables with 

different units and scales in order toto impose equal weights in the analysis (Marini et al., 2017, 

Tugnolo et al., 2019). Moreover, an outlier detection procedure was applied on PCA scores 

using the ‘Hotelling T2 computation’ function (𝛼 value was set to 0.05).  

The reference parameters on bunches (SSC, TA, EA and pH) and on single berries (SSC) 

were used for the calculation of MLR predictive models, since the number of these parameters 

is not particularly high, and since they can be considered independent from each other but all 

linearly related to the response variable. The MLR, indeed, allows to relate the variations in a 

response variable (reference parameter) to the variations of several predictors (optical data 

from pre-prototype) (Livingstone et al., 2005). Finally, the prediction capability of the MLR 

models was verified to evaluate the efficiency of the selected wavelengths. 

To evaluate MLR model accuracy, the statistical parameters used were the RMSE (root mean 

square error), as well as bias and R2 (coefficient of determination); the lower the error and the 

bias and the higher the R2 (as maximum equal to 1), the better the model performances. 

Besides, the RPD (ratio between the standard deviation of the response variable and RMSE) 

was calculated. An RPD between 1.5 and 2 means that the model can discriminate low from 

high values of the response variable; a value between 2 and 2.5 indicates that coarse 

quantitative predictions are possible, and a value between 2.5 and 3 or above corresponds to 

good and excellent prediction accuracy, respectively (Nicolaï et al., 2007). The whole set of 

parameters for the evaluation of model goodness were calculated not only in calibration but 

also in cross-validation (CV, internal validation method in which some samples are omitted 

from the calibration and used for validation) leave more out (venetian blinds with five 

cancellation groups).  

RESULTS AND DISCUSSIONS 

Figure 2 shows the sensors’ readouts (12 wavelengths). The data have been handled by 

merging both sensors. However, even though the data do not come from a single sensor, the 

final output provide a complete profile which is comparable with the typical vis/NIR spectrum 

of dark grape berries as reported by Beghi et. al 2015. 
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Figure 2. Sensors readouts on single berries (a) and bunches (b) grouped according to three arbitrary levels of 
soluble solids content (SSC) (Table 2). 

 

The optical outputs come from two different sampling methods: on single berries (a) and 

bunches (b) which have generated two different datasets.  The single berry method of analysis 

provides an optical output which comes from a single berry. Instead, the bunch method of 

analysis provides an optical output which comes from an average of five acquisitions 

performed randomly on the grape bunch.  

Due to these two different sampling methods, two different reflectance intensities have been 

highlighted in figure 2. Indeed, higher reflectance values were obtained from the optical 

analyses on single berries (Figure 2a). The high optical output is related to complete green 

samples (very unripe berries). This feature is typical at the beginning of the ripening process 

where the concentration of anthocyanins is still low. Then, as the maturation progresses, the 

colour evolution due to the accumulation of phenolic compounds lead to lower absorbance 

values. 

Concerning the bunch analysis, lower reflectance values have been obtained (figure 2b). The 

random averaging process has reduced the reflected light intensity between 550 and 650 nm 

due to the presence largely of already pigmented berry in the bunch (Bigard et al., 2019). In 

order to describe at best the data, the samples were labelled according to arbitrary levels of 

SSC (low, medium and high concentration) as described in Table 2. 

Table 2. Arbitrary levels of Soluble Solids Content (SSC) used for sample grouping. 

 Low Medium High 

SSC of single berries (°Brix) 13.0-17.5 17.6-21.9 22.0-26.4 

SSC bunches (°Brix) 16.5-22.5 22.6-24.0 24.1-25.9 
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Observing the readouts is evident how the reflectance values decrease as SSC interval 

considered increases and this is consistent with the grape ripening process 

Figure 3 shows the PCA biplot used to explore the data structure deriving from the optical 

signals registered with the 12 wavelengths of the simplified LED based pre-prototype. The 

samples are divided into the same three levels of soluble solids content as reported in Table 

2. In these plots, both scores for samples and loading for variables are represented in the 

space of the two principal components (PCs) obtained from PCA. Thus, the relationships 

between samples and variables can be seen in the same plot. The biplots show the behaviour 

of the reflectance data obtained from the single berries (a) and grapes bunches (b). 

 

Figure 3. PCA biplot of the samples of single berries (a) and bunches (b) grouped according to three arbitrary 
levels of soluble solids content (SSC). 

 

Regarding PCA (a), PC1 and PC2 explained 61% and 20% of the total variability, respectively. 

While, regarding the PCA (b), the first two PCs explained 90% of the total data variance 

together. In general, the PCs show the ripening trend which goes from high positive values to 

high negative values of PC1 for the berries readouts (a) and from negative to positive for the 

bunches readouts (b). In spite of that, it was clear how the different variables (wavelengths) 

describe the chemicals characteristics (SSC) of the samples. Overall, a low concentration of 

sugars corresponds to high reflectance values in the pure visible region and low reflectance in 

the SW-NIR region as can also be seen in figure 2. However, from the berry dataset, PCA 

shows a quite clear sample grouping (two clusters) described by the first principal component 

suggesting that the main information contained into this dataset is given by the colour evolution 

(from green to purple). The wavelengths between 570 and 610 nm are the most important to 

describe the yellow/green berries (SSC between 13.0-17.5 °Brix) while the wavelengths 

between 680 and 860 describe the second major group characterized by the totally 

pigmentated samples where the chlorophyll concentration which express the green colour is 

low. On the contrary, no sample grouping was expressed in the dataset of the grape bunches 

due to the absence of totally green samples. However, a clear trend is highlighted in PC1 
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confirming the maturation progress starting from already pigmented samples. Moreover, 

seeing both components together, a slightly influence related to the coupling of two different 

sensors suggest that a more balanced integration of the sensors to reduce this impact is 

needed. 

At the same time, it was clear how according to the ripening process the SSC increase ad this 

is well described by the high values of reflectance obtained in the SW-NIR region. 

Besides, in order to detect the presence of outliers, a ‘Hotelling T2 computation’ function (𝛼 

value was set to 0.05) was included in score plots and revealed potential outliers lying outside 

the ellipse. In Table 3 was summarised the data of PCA results for the optical acquisition, the 

pre-treatments and the number of outliers detected. 

 

Table 3. Principal Component Analysis (PCA) performed on the optical data of single berry and bunch datasets 
pre-treated using Standard Normal Variate (SNV) and autoscaling. The amount of explained variance were 

reported in percentage for the first and the second Principal Component (PC1 and PC2). 

 

In Table 4 are summarized the descriptive statistics related to the reference analyses for grape 

ripening parameters (SSC, TA, pH and EA). The dataset, based on the individual berries, 

showed a lower mean value for SSC than that referred to the bunches. This was possible 

thanks to the collection of totally unripe to very ripe single berries, while for the bunches the 

experimentation began on samples already pigmented and closest to ripeness. For the same 

reason, the bunches did not show a large variability for the four parameters considered. 

 

Table 4. Descriptive statistics of the sample of single berries and grapes bunches for ripeness parameters (SSC, 
TA, pH and EA).1 

Sample Property Units No. Mean Median SD Min. Max. 

Berry SSC °Brix 180 20.6 21.6 4.0 13.0 26.4 

Bunch SSC °Brix 150 22.9 23.2 1.9 16.5 25.9 

Bunch TA 
g tartaric 

acid dm-3 
150 6.9 6.7 1.2 4.8 10.2 

Bunch pH  150 3.33 3.34 0.12 3.06 3.67 

Bunch EA % 150 36.30 37.01 7.64 18.86 52.64 

 Pre-treatments 
PC1 explained 

variance 

PC2 explained 

variance 
Outliers 

180 (Single berries) SNV + 

autoscaling 

61% 20% 6 

150 (Bunches) 57% 33% 8 
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1 SSC = soluble solids content, TA = titratable acidity, EA = extractible anthocyanins, SD = standard deviation, 
Min. = minimum and Max. = maximum. 

 

In Table 5 are reported the MLR models obtained by the two pre-prototypes system for grape 

ripening parameters (SSC, TA, pH and TP). In the table is also reported the values of RPD 

defined as the ratio of the standard deviation of the response variable to RMSECV.  

Table 5. Figure of merit of the Multiple Linear Regression (MLR) models (for grape berries and bunches) 
calculated using optical data pre-treated with Standard Normal Variate (SNV) and autoscaling.2 

Sample Property No Treatment R2
cal RMSEC r2

CV RMSECV RPD 

Berry SSC 174 
SNV + 

autoscaling 

0.88 

 
1.37 0.86 1.51 2.65 

Bunch SSC 

142 
SNV + 

autoscaling 

0.50 1.19 0.40 1.31 1.45 

Bunch TA 0.57 0.75 0.47 0.83 1.44 

Bunch pH 0.55 0.08 0.45 0.09 1.33 

Bunch EA 0.59 4.72 0.50 5.21 1.46 

2 N° = number of samples; R2
cal = coefficient of determination in calibration; RMSEC = root mean square error of 

calibration; r2
cv = coefficient of determination in cross-validation; RMSECV = root mean square error of cross 

validation. 
 

For SSC, a r2cv = 0.86 and 0.40, RMSECV = 1.51 and 1.31 and RPD = 2.65 and 1.45 for 

single berries and bunches datasets have been obtained, respectively. SSC prediction showed 

better correlation and a comparable error for the berry dataset compared to bunch dataset. 

This behaviour could be justified by the one-to-one correlation (optical output and reference 

analysis) used for model calculation on single berry and by a wider ripening range available 

for the single berry’s dataset. Instead, the optical measurement on bunches showed low r2cv 

due to the lower variability which the bunch dataset has considered. However, the relatively 

slightly lower error for SSC prediction expresses the capability of the sensors to be able to 

obtain better results using a more complete dataset which includes samples coming from the 

whole maturation process.  

Instead, concerning TA, pH and EA models (from the bunch dataset) the r2cv are poor due to 

the low variability covered (as for the SSC model). However, the RMSECV and the RPD show 

the capability of the  models to be enough accurate to allow an initial field screening of the 

trend of these parameters. 

CONCLUSIONS  

In this work, a pre-prototype of a simplified optical vis/NIR device (12 wavelengths from 450 

nm to 860 nm) based on LED technology was tested for rapid estimation of the ripening 
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parameters of Nebbiolo grape. Correlations between the optical data matrix and some of the 

most interesting ripening parameters were carried out using the MLR method. 

Overall, very interesting results were obtained for the prediction of SSC. Instead, concerning 

TA, pH and EA models are still poor due to the low variability covered and further experimental 

activities with larger datasets will certainly be necessary. However, the research has shown 

the capability of the models to be enough accurate to allow an initial field screening of the 

maturation trend of these parameters.  

This new generation of optical devices could be a starting point to build a new concept of 

inexpensive IoT sensors which could be distributed in the vineyard at fruit set (open bunch) 

and that will then be enveloped by the grape bunch as the grape grows on it. The stand-alone 

instrument should be able to acquire and predict the most important ripening parameters 

directly from measurements in field inside the bunch. This approach could shift the current 

paradigm of grape maturation monitoring bringing the laboratory directly into the vineyard, 

without human intervention for data sampling. 

The integration of simple multivariate models in the microcontroller software would easy 

calculate and visualize the real-time values of the predicted parameters in the cloud (online 

data bank). The cost of the device is expected to be fairly low (about few tens of euros) in order 

to install many devices in crucial points of the vineyard to obtain an average value related to 

the ripening status of the whole vineyard. 

Therefore, further studies both for model improvement and for the design of the system in the 

vineyard that allows automated acquisitions, the remote control of the modules, and remote 

data sharing through cloud storage system, are needed. In a view of viticulture 4.0, a similar 

tool, in combination with the weather stations, will be able to lead to precise and rapid analyses 

that will be capable to guarantee better monitoring of the ripening process in order to predict 

the best moment of harvest and provide to the wineries grapes with specific features in terms 

of quality attributes. 
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4.3.2 Stand-alone optical device development 
 

Concerning the sensors development, a first step has been done designing optical sensors 

managed by the operators in the grape maturation control topic.  

However, the technology is in sharp development and is reaching a considerable level of 

miniaturization. The consumer electronics industry is driving the convergence of digital 

circuitry, wireless transceivers, and microelectro-mechanical systems (MEMS), which makes 

it possible to integrate sensing, data processing, wireless communication, and power supply 

into low-cost millimeter-scale devices (Spachos and Gregori, 2019). The resulting 

miniaturization and cost reduction of electronic components is leaving space to a completely 

new method of data acquisition and management using wireless sensor networks (WSNs) 

based on small battery-powered nodes. 

A WSN consist of small and low-cost Internet of Things (IoT) devices in a network of peripheral 

nodes. The nodes are equipped with sensors and a wireless module for data transmission to 

an online database, where the data are stored and accessible to the end-user. The nodes are 

energy independent and are installed in areas which are more representative of the vineyard 

variability (Spachos, 2020). WSN technology is widely used to monitor environmental factors 

(temperature, moisture, relative humidity, leaf wetness etc.) which are essential for the 

growers decision making (Patil and Thorat, 2016). 

Therefore, the final stage of this PhD journey is the development of a fully integrated, small, 

cost-effective, stand-alone smart system used for grape maturation monitoring. 

The main steps to fulfil the PhD project purpose were: 

a) setting up of a miniaturized low-cost and stand-alone optical prototype  

b) build multivariate predictive models for the prediction of the main grape ripening 

parameters; 

c) test the prototype in field conditions. 

The device consisted of an optical detection head (flexible strip or transparent canopy) 

connected into the grape bunch, including power, signal pre-processing, and wireless 

communications. The detection head is optically based on the integration of LED sources and 

photodiode/interference filter arrays (in the vis/NIR optical range) at wafer level or wafer 

package level. The sensor concept consisted of an optical detection head connected to the 

top of the grape bunch, including power, signal pre-processing, and communications. 

Reflectance measurements were used at various wavelengths to probe spectral signatures 
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for both technological (pH, total acidity and total soluble solids) and phenological (phenols and 

anthocyanins) maturation. 

As already highlighted in Paper 1 and 7, the literature reports different approaches based on 

both fluorescence and reflectance principles for grape maturation monitoring. This systematic 

analysis of the literature has made possible to identify the optical models or indexes that are 

more suited to be used as predictors of different parameters that are controlled during the 

maturation (classically using wet chemistry). 

At this stage, the bibliographic analysis on grape maturation control was complemented by 

the analysis of historical datasets from Sogrape (Portuguese winery that has collaborated in 

the development of these sensors) and data coming a previous experience (which includes 

detailed optical information and the respective chemical measurements from the cv. Nebbiolo, 

highlighted in Paper 7). This added a second layer of detailed information about the most 

promising reflectance bands that could be used in this new generation of prototypes totally 

designed in house. 

SPECIFICATIONS 

Even though a first design of optical sensors was presented (Paper 7), a new 

conceptualization of the sensor has been done thanks to the different features which the 

sensor should have in order to remain in the vineyard and pick data autonomously. Therefore, 

a more detailed bibliographic analysis has been done in order to have a more comprehensive 

idea about which wavelengths (thus, LEDs and photodetectors) to includes in the device. 

Tables 4.1 and 4.2 show an overview of the indices used to predict many interesting qualitative 

parameters of the grape. Several methods were identified in terms of optical techniques 

(reflectance and fluorescence) using ratio between wavelengths or a multivariate statistical 

approach which is required to extract the main information about quality attributes in the 

vis/NIR region. The multivariate approach is strongly required to manage optical data because 

the spectrum may be dependent by scattering effects, tissue heterogeneities, instrumental 

noise, ambient effects and other sources of variability. As a consequence, it is difficult to 

assign specific absorption bands to specific functional groups let alone chemical components 

(Nicolai et al., 2007; Wold et al., 2001).   
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Table 4.1 Reflectance bibliography indices; “R” is the percentage of reflectance of each wavelength,“I”is the 
intensity of each wavelength and “R2” is the coefficient of determination. 

Component Formula (nm) R2 Reference 

Total 
chlorophylls 

R800/R678 0.59 

Merzlyak, M. N.; Solovchenko, A. E.; Gitelson, A. A.; 
2003b: Reflectance spectral features and non-

destructive estimation of chlorophyll, carotenoid and 
anthocyanin content in apple fruit. Postharvest Biol. 

Technol. 27, 197-211. 
Chlorophyll a 

(CaI) 
log[(R800/R675)-

R800/R660)] 
0.66 

Rocchi, L., Rustioni, L., & Failla, O. (2016). 
Chlorophyll and carotenoid quantifications in white 

grape (Vitis vinifera L.) skins by reflectance 
spectroscopy. Vitis, 55(1), 11-16. 

Chlorophyll b 
(CbI) 

log[(R800/R650)-
R800/R630)] 

0.40 

Total 
chlorophylls 

(CtotI) 
CaI + CbI 0.62 

Carotenoids 
(CarI) 

a*CaI + b 0.72 

Total 
Polyphenols 

(TP) 

60.75*I670 –
254.93*I730 

+ 382.73*I780 – 
162.20 

0.70 Giovenzana, V., Beghi, R., Malegori, C., Civelli, R., & 
Guidetti, R. (2014). Wavelength selection with a view 

to a simplified handheld optical system to estimate 
grape ripeness. American Journal of Enology and 

Viticulture, 65(1), 117-123 Solids Soluble 
Content (SSC) 

13.15*I670 – 
38.55*I730 

+ 37.81*I780 + 
15.69 

0.71 

SSC 

Ratio between 
560 & 640 

 

0.92 
Ribera-Fonseca, A., Noferini, M., Jorquera-Fontena, 

E., & Rombolà, A. D. (2016). Assessment of 
technological maturity parameters and anthocyanins 

in berries of cv. Sangiovese (Vitis vinifera L.) by a 
portable vis/NIR device. Scientia Horticulturae, 209, 

229-235. 

Titratable 
Acidity (TA) 

0.87 

Durofel Index 
(DI_firmness) 

0.89 

Monomeric and 
total antocyanin 

0.68 
- 

0.97 
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Table 4.2 Fluorescence bibliography indices 

 

The literature analysis shows a redundancy of the use of specific wavelengths for the 

prediction of the several parameters which describe the maturation process. Therefore, 

considering the most interesting and used wavelengths in the bibliography and the physical 

characteristics of the optical prototype, the first generation of optical modules will be designed 

in order to accommodate a compromise among these requirements.  

Moreover, the possibility of applying fluorescence spectroscopy is particularly interesting for 

the evaluation of phenolic parameters (anthocyanins and flavonoids). In the Vis-NIR spectral 

range (400-800 nm) it is possible to exploit spectral bands for the excitation and the signal 

emission. In particular, it is possible to exploit the excitation bands of green (520-550 nm) and 

red (630-640 nm) and the emission bands of red (680-690 nm) and the far-red (730-780 nm). 

A robust literature is published on the prediction of anthocyanins content based on 

fluorescence acquisition at these spectral bands, reporting encouraging results (Table 4.2). 

Regarding flavonoids, it could be necessary to move to UV spectral range for the excitation 

(around 375 nm). The evolution of the literature based shows that there is a trend of using the 

far-red band for detecting the emission signal from chlorophyll. Although this band has lower 

Component 
Excitation 

(nm) 
Emission 

(nm) 
R2 Reference 

Anthocyanins 
550 (green) 

and 650 
(red) 

740 0.93 

Agati, G., Traversi, M. L., & Cerovic, Z. G. 
(2008). Chlorophyll fluorescence imaging for 
the noninvasive assessment of anthocyanins 

in whole grape (Vitis vinifera L.) bunches. 
Photochemistry and Photobiology, 84(6), 

1431-1434. 

Anthocyanins 
515 (green) 

and 630 
(red) 

red (RF) and 
far-red 
(FRF) 

0.75 
- 

0.83 

Agati, G., D’Onofrio, C., Ducci, E., Cuzzola, 
A., Remorini, D., Tuccio, L., ... & Mattii, G. 

(2013). Potential of a multiparametric optical 
sensor for determining in situ the maturity 
components of red and white Vitis vinifera 

wine grapes. Journal of agricultural and food 
chemistry, 61(50), 12211-12218. 

Anthocyanins 
516 (green) 

and 637 
(red) 

red (680-
690) and 

far-red (730-
780) 

0.87 

Tuccio, L., Remorini, D., Pinelli, P., Fierini, E., 
Tonutti, P., Scalabrelli, G., & Agati, G. (2011). 
Rapid and non‐destructive method to assess 

in the vineyard grape berry anthocyanins 
under different seasonal and water 

conditions. Australian Journal of Grape and 
Wine Research, 17(2), 181-189. 

Anthocyanins 
516 (green) 

and 637 
(red) 

red (680-
690) and 

far-red (730-
780) 

0.98 Cerovic, Z. G., Moise, N., Agati, G., 
Latouche, G., Ghozlen, N. B., & Meyer, S. 

(2008). New portable optical sensors for the 
assessment of winegrape phenolic maturity 

based on berry fluorescence. Journal of Food 
Composition and Analysis, 21(8), 650-654. Flavonoids UV (375) 

red (680-
690) and 

far-red (730-
780) 

0.91 
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sensitivity that the red band, it is less exposed to the absorption peak of the chlorophyll at 680 

nm, being less prone to inteferences from the auto-absorption of the chlorophyll. 

Historical dataset analysis 

 

Grape harvest decisions are critical for wine quality and relies upon the analysis of SSC (or 

TSS), organic acids, pH, berry weight, total polyphenol content, anthocyanin and tannins, 

evolution during the grape maturation period. Table 4.3 shows a list of the most important wet-

chemistry parameters used to assess grape maturation quality (Table 4.3). 

 

Table 4.3 Wet-chemistry parameters used to assess the grape quality. 

 

 

The literature highlighted TSS and the total acidity (TA) as the qualitative parameters most 

used by the vine-growers to determinate the harvesting date (Watson, 2003). Moreover, a 

strong effect of the phenolic compounds (polyphenols and anthocyanins) about the quality of 

the grape and wine (astringency, body, etc.) was recognized.  

To confirm these statements and identify the qualitative parameters to be measured, a wet-

chemical historical dataset provided by Sogrape was analysed. The dataset includes the 

above mentioned relevant wet-chemistry parameters used to assess grape maturation of 

samples, collected on a weekly-basis during grape ripening season, from different grape 

varieties (cv. Touriga Nacional, cv. Touriga Franca, cv. Tinta Roriz, cv. Tinta Barroca, cv. Tinto 

Cão) grown in different and well-characterized vineyard-blocks of the project’s pilot-vineyard 
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(Sogrape’s owned vineyards located in the Douro region), covering the time-period 1991-

2018. No grapevine spectral reflectance is provided for this dataset. 

Considering the large amount of data provided by the historical dataset of Sogrape, a 

chemometrics approach was followed to pick-up at best the information contained into the 

data. A qualitative Principal Component Analysis was performed using the Sogrape dataset 

with the goal to identify the qualitative parameters which show the highest variability during 

the ripening process (Figure 4.1). 

 

 

Figure 4.1 PCA (a) scores plot coloured according to increasing values of concentration of solids soluble arbitrary defined (Low 
6.9-11.6 °Brix; medium 11.7-16.3 °Brix; High 16.4-21.1 °Brix);  (b) loadings plot of the wet-chemical variables described by PC1 
and PC2 . 

 

Figure 4.1a shows the behaviour of the samples in the space of the Principal Components 

(PC). The samples were labelled according to the concentration of solids soluble content 

(SSC) arbitrary divided into three classes (Low 6.9-11.6 °Brix; medium 11.7-16.3 °Brix; High 

16.4-21.1 °Brix). As already described, the SSC is one of the most important quality 

parameters which describe the maturation process (Liu, H. F. et al., 2006) and constantly 

increase from the veraison till the end of the ripening process and, therefore, the moment of 

harvest. PC1 and PC2 together explained 65.09% of the total variability with a clear description 

of the ripening process from negative and positive values of PC1 and PC2 respectively and to 

positive and negative values of PC1 and PC2 respectively. Instead, to identify the most 

important parameters which describe the maturation process the loadings plot (Figure 1b) was 

analysed. PCA confirmed the results obtained from the analysis of the bibliography. Thus, 

potential alcohol (quantifiable also with TSS) and titratable acidity are the two most important 

inversely related parameters which describe the maturation process and the extractible 

anthocyanins and total phenols (directly related) are interesting for the quality of the wine. 
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Reflectance wavelengths definition  

 

In summary, based on the analysis of the historical datasets from Sogrape, on the information 

reported in the literature, and on the previous experiments using data from Nebbiolo variety 

(Paper 7), the most interesting parameters which have been considered for building predictive 

models for the ripening process were: 

- Total solid soluble (TSS); 

- potential alcohol (PA); 

- titratable acidity (TA); 

- polyphenols; 

- anthocyanins. 

Additionally, regarding the definition of the optical bands of interest, it was considered: (a) the 

wavelengths used in Paper 7, (b) the wavelengths most reported in literature, and (c) the 

availability of LED (Light emitting Diodes) light sources and the simplicity of the arrangement 

of the LEDs and PDs (Photodiodes) on the layout of the prototype. Therefore, four 

wavelengths were defined: 

- 530 nm; 

- 625 nm; 

- 690 nm; 

- 730 nm. 

Two different configurations for the modules were envisioned: (i) reflectance - white and red 

grapes, modules with 4 wavelengths (4 LEDs and 4 photodetectors, PDs) for prediction of 

TSS, PA, TA  and phenolics compounds and (ii) fluorescence for the prediction of phenolics 

compounds (which is still under investigation).  
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Sensor specs 

 

General assembling and use 

Concerning miniaturization and usability requirements in field, it was developed a “stripe” 

design in which the spectrometric components were mounted on a long, flexible substrate 

which can be placed onto or inside the grape bunch. The multiple spectrometers were placed 

along the stripe (currently 2, module 1, M1 and module 2, M2), enabling simultaneous 

measurements at different parts of the grape bunch to have more representative information 

of the entire bunch. Therefore, four light-emitting diodes (LEDs) were used for illumination of 

the grape (530 nm, green, 630 nm, orange, 690 nm, red and 730 nm, red). Placed close to 

these, but optically isolated using an opaque barrier, four photodiodes (with an active area of 

520 × 520 µm2) assembled with spectral filters to allow intensity measurements at the desired 

wavelengths (the relative spectra sensitivity is reported in figure 1b) have been used. The 

components were encapsulated in a hermetically sealed yet optically transparent layer, 

assuring weatherproof operation of the entire system and reducing stray light (Figure 4.2).  

 

 
 

Figure 4.2 Sensor specifications. 
 

The light emitted from each LED hits the sample and the diffuse reflectance light is collected 

by each PD. The electromagnetic signal is converted into electronic signal and expressed in 

counts (arbitrary units from 0 to 4095). From each sample, 20 readouts were obtained (one 

readout from each PD at each LED on and one with LEDs off for background info).  
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Finally, the device internal software was set in order to return the averaged optical values 

coming from 16 acquisitions. 

Concerning the data transmission, the sensors were configurated in order to share the optical 

outputs coming from the sensors placed in a target parcel to a local IoT gateway LoRaWAN 

(able to receive data from the sensors in a communication range about 15 km). Then, the local 

server broadcasts the data to a web app (IoT database) in order to process the data with the 

chemometric models developed during the sampling campaign 2020 using samples analysed 

in lab and direct in field (Figure 4.3). 

 

 

Figure 4.3 Sensor technical features, installation and data transmission. 
 

LEDs 

LEDs were the excitation light chosen for both reflectance and fluorescence measurements. 

The selected wavelengths are 530 nm, 630 nm, 690 nm and 730 nm. As already described, 

these bands are associated with the evolution of the maturation of the grapes.  

LEDs are commonly manufactured in other processes than CMOS, like AlInGaP which makes 

integration only possible at packaging level. Inexpensive LED light sources can thus be found 

in die format (wafer). Due to the non-uniformities at wafer-level fabrication, LEDs in the same 

wafer have large variations of its peak wavelength and therefore LED manufacturers do the 

LED binning guaranteeing that LEDs in that bin are within a certain wavelength range (5nm). 

As a consequence it was no possible to obtain the exact peak wavelength as defined above 

but close enough to the requirements of reflectance and fluorescence. 

LED dies are supplied in bulk, all with similar chip size dimensions at approximately 12mil 

(~313µm side). The following selection were the available bins provided by the manufacturers.   

• CREE C527E2290 with average peak at 530.3 nm, Vf = 3V, DC forward current 50mA 

• C4L C4L-S12T5 with average peak at 637.121 nm, Vf = 2.2V, DC forward current 70mA 

  

Target parcelLEDs

Photodetectors (PDs)

300-800 nm

PD PD

PDPD

730 nm

630 nm

690 nm

530 nm

Grape quality prediction

Total soluble solids
Potential alcohol

Total acidity
pH

IoT 
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• LA LAAI13WP3 with average peak at 685.7nm, Vf = 2.2V, DC forward current 70mA 

• LA LACI13WP3 with average peak at 730.7nm, Vf = 1.55V, DC forward current 100mA 

 

Photosensors 

The photosensors had a sensitivity from 500 nm up to 800 nm in order to be combined at best 

with the wavelengths of interest either for diffuse reflectance or fluorescence measurements.  

For the discrete module assembly, a commercial photodetector with the following specification 

has been used. The LA PD28AP1 Light Avenue Premium Edition detector series is designed 

for high performance consumer applications. This chip is a high speed and highly sensitive 

PIN photodiode chip with 0.27 mm2 sensitive area detecting visible light similar to the human 

eye and a peak sensitivity at 560 nm. Figure 4.4 shows the spectral sensitivity which is in line 

with spectral band requirements mentioned above. 

Figure 4.4: Spectral sensitivity for the LA PD28AP1 

 

Spectrometer architecture and configuration 

The architecture of the spectrometer has three main components: 

1. The optical module 

2. The host module that carries the optical module 

3. The controller board and power management 

The optical module has a combination of LEDs, Photodetectors. The assembly process was 

based on a conventional Chip-On-Board using a conductive resin to attach the LEDs and 

photodetectors to PCB (through the anode terminal). A single wire bonding completes the 

assembly process connecting the cathode to the PCB pad. A transparent glob top is dispensed 
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and cured on top of the LEDs and Photodetectors to protect dies and bond wires. Filters can 

be either directly fabricated onto the photodetectors or if needed incorporated onto the optical 

frame/mount. Figure 4.5 shows module assembled.  

 

 

Figure 4.5 Optical module. Left: PCB layout , Center: optical module assembled with LEDs and Photodiodes/filters, 
Right: Optical module assembled in host module. 

 

The host module is a generic and small PCB which was designed to be small in size as it would 

need to fit in the grape bunch. It includes a power down switch preventing the modules to draw 

power.  

 

Figure 4.6 Host module (LED driver and Photodiode signal acquisition). 

 

As mentioned before, the photodiode is biased in reverse mode and was used a low offset and 

drift, low-noise OPAMP from AMS (AS89000). This part provides 4 channel TIA and thus the 

number of channels necessary for the sensor which carries 4 photodetectors. The 

transimpedance (gain) can be set in 8 stages and its range is: 25kΩ, 100 kΩ, 500 kΩ, 1MΩ, 

2MΩ, 5MΩ, 10MΩ and 20MΩ. As for the ADC the choice was on the Maxim MAX11614 with 

12-bit resolution. This ADC had single supply operation at 5V.  

The controller module (Figure 4.7) is based on an ARM Cortex-M0+ microcontroller running at 

48MHz. This Microcontroller had ultra-low power performance consuming under 35 µA/MHz in 

active mode and 200nA in Sleep mode. The controller module also carried, battery 
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management (charger and step-up DC-DC), SD card data storage and a Lorawan module for 

wireless communications support (IoT).  

The controller module connects to host module via I2C bus and can support up to 4 modules 

with addresses physically set by two bits in the host module PCB. 

 

Figure 4.7 Controller module assembled. 

 

Data collection for models ‘computation 

 

Reference analysis 

The reference analyses of: (i) Total Soluble Solids (TSS, °Brix) using a digital pocket 

refractometer (PAL-1 ATAGO, Japan), (ii) Potential Alcohol (PA, % vol), (iii) Titratable Acidity 

(TA, gtartaric acid L-1) using an automatic titrator (TitroMatic KF 1S, Crison Instruments, Italy), (iv) 

Total Poliphenols (TP, mg dm-3)  calculated by means of the Folin-Ciocalteu method (Ough & 

Amerine, 1988), (v) Extractable Anthocyanins (EA, mg dm-3) calculated by means of Glories 

method (Ribéreau-Gayon et al., 2006) based on the Optical Density (OD) measurement at 280 

and 520 nm using an UV/vis spectrophotometer and (vi) pH (pH meter, PCE Inst. GmbH, 

Germany) were performed. 

 

Optical analysis 

The optical acquisitions were managed considering: (i) the noise produced by environmental 

light, (ii) the physical features of the grape berries, (iii) the increase in size of the bunch, (iv)  

the variable optical gap and (v) the position of the field sensor which change during the ripening 

process. In order to minimize these issues and maximize the info picked from the sensors, the 

measurements were performed overnight (for in field analysis, from midnight to 5 a.m.) and 

using a dark room (for in lab analysis). The readouts coming from each PD were analysed 

individually as a variable in order to obtain the maximum information that can be collected. 
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Therefore, a total of 16 optical variables (light emitted by 4 LEDs reads by 4 PDs) were used 

for the model building (Figure 4.2). 

 

Sampling methodology  

 

The experimental activity took place in the viticulture area of the Douro Valley (Sogrape’s 

owned Quinta do Seixo, Portugal) from the end of July to mid-September for a total of six 

sampling dates. Sampling was performed on cv. Touriga Nacional (TN) and Touriga Franca 

(TF) (from 18 parcels placed in different areas of the vineyard in order to be representative at 

best of the maturation stage of the whole vineyard) using the LED fully integrated stand-alone 

prototype (without any sample preparation) and wet-chemical analyses described above. 

To summarize, figure 4.8 shows the experimental setup to analyse each sample by the sensor 

and the conventional wet-chemistry assays. Therefore, from a random sampling (200 berries 

for each sample) performed in the pilot-vineyard, 30 berries were analysed optically and the 

entire amount of 200 berries (with the 30 included) were then analysed using the classic 

protocol based on wet chemistry assays adopted by the winery (Sogrape). 

 
Figure 4.8 Sampling experimental setup used during the lab-scale analysis. 

 

Modelling 

A multivariate analytical approach was followed in order to explore the variability contained 

into the data using PCA. A latent variable modelling using the PLS method, which maximizes 

the covariance among the sensor readouts and the reference qualitative parameters (TSS, 

PA, pH and TA), was performed (Oliveri et al., 2019). Model accuracy was evaluated (in 

calibration, cross-validation and in prediction) using the RMSE (root mean square error), as 
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well as bias and R2 (coefficient of determination); the lower the error and the bias and the 

higher the R2 (as maximum equal to 1), the better the model performances. The data 

elaboration was performed in Matlab environment (The MathWorks. Inc, USA) using both PLS-

Toolbox package (Eigenvector Research, Inc. Manson, Washington) and in-house functions.  

 

Models computation 

 

Figure 4.9 shows the optical outcome from the lab and field sensor (figure 4.9b and 4.9c) used 

for modelling. While for a better understanding of the grape optical behaviour, the general 

mean readout coming from the reading by each PD at all LEDs (including LED off) have been 

reported in figure 4.9a. 

 
Figure 4.9 Sensor readouts of each LED read by each PD.  a) mean optical outputs obtained each sampling time 
(including the background condition with LED off); (b) lab readouts (samples labelled according to the sampling 

times) and (c) field readouts (samples labelled according to rang of weeks) used for model calibration. 
 

 

The descriptive statistics of the wet-chemical analysis related to the grape ripening parameters 

(TSS, PA, pH and TA) are summarized in figure 4.12. Overall, the technological maturation 

curve of TN and TF grapes is well described by the sampling campaign performed during the 

crop season 2020. Each sample was analysed optically (by lab sensor) and chemically (by the 

reference instruments) to proceed with the models calculation. In addition, a reference 

measurement needs to be associated also to the optical outputs from the field sensor in order 

to develop general predictive models computing data from both lab and field. Therefore, the 

wet-chem outcome was used to develop the evolution curve (for each specific parameter) to 

extrapolate for each day the reference values to be associated with the optical outcomes 

deriving from the field sensor. 
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Figure 4.10 Descriptive statistics of the wet-chemical analysis for TSS (a), PA (b), pH (c) and TA (d) obtained 
from grape samples of cv. Touriga Nacional and Touriga Franca (campaign 2020). 

 

Four PLS models were developed for the prediction of the qualitative parameters of interest. 

The models were developed using 70% of the total amount of the data for calibration and 30% 

as external validation (prediction). 

In figure 4.11 were summarized the models figure of merit in pure prediction of the external 

validation set showing the relation between the measured values (using the reference 

instruments) and the predicted values (using the model based on the sensor readouts). The 

external validation samples set were labelled in diamonds (TF) and in squares (TN) for the 

samples coming from lab analysis and field samples labelled in triangles (B01). 

In detail, it was concluded that: 

- The best models were obtained for TSS, and consequently PA considering an R2 about 

0.90 and RMSEP of 2.22 and 1.54, respectively using 6 LVs; 

 

a b

dc
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- A very promising model was also obtained concerning the TA with an R2 equal to 0.93 

and RMSEP of 1.39 (using 4 LVs); 

- The pH model (using 4 LVs) showed a lower performance than previous parameters 

(R2 of 0.76 and RMSEP 0.15) but still with potential for being used with further 

improvements. 

 

Figure 4.11 Figure of merit of the PLS models. The prediction results were expressed in terms of Root Mean 
Squared Error in prediction (RMSEP), coefficient of determination (R2) and prediction bias. Lab samples labelled 

in diamonds (TF) and in squares (TN) and field samples labelled in triangles (B01). 
 

Field sensors outcome 

Once calibrated, the models have been integrated in the software online in order to compute 

the field data (Quinta do Seixo, Tabuaco, Portugal) coming from the distributed sensors. This 

system of management guarantees a real time evaluation of the maturity condition of the 

monitored grape bunch. Figure 4.12 shows the sensors in real operative conditions during the 

campaign 2021. Moreover, the relative readouts of the sensor’s measurements were reported 
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labelling the data according to the days of the crop season 2021. However, due to problems 

of sensor deployment (at the beginning of the crop season) and grape harvesting (at the end 

of the crop season) not all days of the 2021 campaign were monitored (as noticed in the 

colorbar) with these three sensors. 
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Figure 4.12 Field sensors (board 1, board 2, board 32) measurement from campaign 2021. 
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Figure 4.13 shows the predictions of the readouts coming from board 1, board 2, board 32. 

Overall, a good prediction has been obtained. Indeed, the maturation curve is consistent 

(especially for board 1 and 2) with the wet-chemical analysis performed by the winery during 

the crop season 2021 (Figure 4.14). Instead, for board 32 a lower performance (probably due 

to the late positioning of the sensor into the grape bunch) has been obtained. 

Figure 4.13 Optical prediction (TSS, PA, pH and TA) from field sensors (board 1, board 2, board 32) from the 
campaign 2021. 
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Figure 4.14 Descriptive statistics of the conventional wet-chemical analysis (TSS, PA, pH and TA) performed by 
the winery during campaign 2021. 

 

Conclusions and future studies 

To conclude, a good prediction capability has been reached for each qualitative parameter 

envisaging a real application of this device in a more sophisticated network of sensors in 

order to give the possibility to the wine industry to bring the laboratory to the field. However, 

further experiments must be carried out and different operational strategies to obtain reliable 

optical data need to be fine-tuned. 

Firstly, a filtering procedure on optical data coming from field sensors must be developed in 

order to detect possible failures on data acquisition due to: (i) technical issues (sensor breaks 

and errors in data transmission), (ii) possible detachment of the sensor from the bunch, (i) 

environmental conditions (e.g., precipitations) and (iv) deterioration of the grape bunch 

(infections and dehydration). 
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Then, in order to spread the application of this sensor for the whole viticulture sector, other 

models for the prediction of qualitative parameters need to be calibrated to include white grape 

varieties into the package of potential applications of this new type of sensors.  

Finally, given the low capability of these sensors (which work in diffuse reflectance in the 

vis/NIR range) to give back optical outputs strongly related to the concentration of polyphenols 

and anthocyanins (performance is consistent with previous works reported in literature, data 

not shown), the development of a fluorescence module is currently under study and it will be 

taken in consideration for a future sensor upgrade.
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5. GENERAL CONCLUSIONS 
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This PhD project regarded different applications of non-destructive optical techniques to 

evaluate the quality of agri-food products as well as the development of customized optical 

devices. 

In the coffee industry, this work laid the foundation for implementing a real-scale application of 

the NIR technology as a routine standard method for moisture content evaluation of coffee 

directly on-line proposing this method as an international standard.  

Instead, in the olive supply chain, several works have been done to highlight the advantages 

of optical sensing techniques. FT-NIR benchtop instruments and portable commercial devices 

were used to develop classification models for the objective evaluation of olive ripening stage 

based on maturity classes objectively assessed by an image analysis method. Moreover, 

predictive regression models (from FT-NIR benchtop instruments and portable commercial 

devices) were set up and compared in order to estimate qualitative parameters for olive 

maturation. The model comparison highlighted a general better performance the FT-NIR 

acquisition systems with respect to the portable device. However, the Vis / NIR device, being 

portable and relatively cheaper, is worthy of further investigation, because its use could be in 

any case very useful for preliminary quick quality assessment of olive drupes directly in the 

field. On the contrary, an on-line or in-line application of the FT-NIR optical device in the olive 

mill has been promoted in order to quickly classify the drupes for a better quality design of the 

olive oil and more sustainable management of the production chain. 

Moreover, to improve the production of high-quality wines, optical hand-held and stand-alone 

prototypes were designed, built, and tested. Overall, very interesting results were obtained for 

the prediction of solids soluble, potential alcohol, titratable acidity and pH. This new generation 

of optical devices could be the starting point to build a new concept of inexpensive IoT sensors 

used or distributed in the vineyard. The integration of simple multivariate models in the 

microcontroller software easily calculates and visualizes in real-time the values of the predicted 

parameters in the cloud (online data bank). The cost of these devices has to remain fairly low 

(about few tens of euros) in order to be able to install many devices in crucial points of the 

vineyard to obtain an average value related to the ripening status of the whole vineyard. 

Therefore, even though further studies have to be completed yet in terms of data filtering and 

interpretation from the field, good results were obtained envisaging a real application of these 

devices in a more sophisticated network of sensors in order to shift the current paradigm of 

grape maturation monitoring bringing the laboratory to the field. 

From these experiences (carried out during the three years of Ph.D.) the candidate has 

developed different skills in the analytical, chemometric, engineering and computational fields. 

in each work reported in the thesis, the multivariate data approach has always been the basis 
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of every activity during which he was able to combine concepts of sustainability, image 

analysis, software and hardware design. Therefore, thanks to the skills obtained and the desire 

to acquire new ones, a further challenge was faced and described in the chapter below, laying 

the foundations for possible further research activities.  
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Starting from benchtop and process instruments (developing optical predictive models) and 

finishing with the developments of cost- effective optical sensors, this thesis gave a complete 

overview about the application of vis/NIR spectroscopy and highlighted new frontier for the use 

of sensors base on it. 

Especially in the viticulture sector, the introduction of these new optical technologies as the 

one proposed for supporting vineyard management allows the efficiency and quality of 

production to be improved with simultaneously reduction of the environmental footprint with 

obvious cost gains. 

Recent technological developments have provided the necessary tools for the development of 

an integrated optical platform able to accommodate the required degree of customization 

necessary for each particular application. Regarding wine industry, this will make possible the 

implementation of an innovative sensing approach that will complement the current analytical 

tools (both proximal and remote) for the monitoring of the vineyard status. The results of the 

project have a strong economic relevance considering the control of the quality variability 

during the ripening process, and will significantly impact on multiple areas: 

 Economic Impact on the photonics Industry 

 Economic Impact on the IoT industry. 

 Economic Impact for the micro-systems component Industry (in the process monitoring 

efficiency in the food industry and reduction of the environmental impact of the 

production) 

 Economic impact for the agri-food industry-wine (increased competitiveness of the 

process and product monitoring equipment industry) 

Given the evidence that this proposed proximal sensing technology has a considerable impact 

on many fields (especially in the winemaking industry), a further step can be moved in terms 

of cost reduction for a more complex optical technique which can gather even more 

information, the hyperspectral imaging. As mentioned in chapter 2, the advantaging of imaging 

techniques is characterized by the presence of the spatial resolution (Sx and Sy) and the 

spectral resolution (Sλ) which measure the variations in illumination within the image pixels as 

a function of wavelength. The advantage of also having spatial information available makes (in 

some cases) this technique much more efficient and useful than normal spectroscopy. For 

example, remaining in the viticulture sector, the measurement of the water status based on the 

measurement of the water potential in pre-dawn (before the sun rises) by means of the 

Scholander pressure chamber is very explored in literature. For some time, attempts have 

been made to use optical techniques to replace or complement this measure. In particular, the 

vis/NIR spectroscopic techniques (De Bei et al., 2011; Giovenzana et al., 2017) have produced 
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encouraging results but with a strong need of improvement for the development of dedicated 

instruments and sensors. 

Thanks to the presence of the spatial information provided by an hyperspectral imaging 

approach could solve different issues in terms of data accuracy and application in real 

operative conditions. 

However, even though the costs for spectroscopic sensors can be easily affordable by 

industry, the common hyperspectral cameras available on the market are expensive and this 

is an issue to be solved in order to provide the advantages of this technology to wider users. 

For the companies, the cost limitations are not strictly related to the device itself but for the 

specific applications. Indeed, even though the hyperspectral imaging technique can collect a 

large amount of data, the application of only one device (in some cases) is not enough to cover 

all the critical points which an industry can have. The production process in a firm or the 

monitoring in field require systems which are distribute in different specific locations in order 

to collect data and provide information. In these circumstances, if we consider the application 

of several hyperspectral devices, the costs become prohibitive for the majority of the 

companies and the research is going toward the development of hyperspectral sensors taking 

into account a considerable cost reduction 

Therefore, during the experience abroad in this PhD, a first step for the development of a cost-

effective hyperspectral imaging device has been done and described below. 
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6.1 First steps for the development of an hyperspectral imaging device 
 

The proposed hyperspectral imaging (HSI) device can export hyperspectral images with 

116*110 pixels, up to 315 wavebands from 400–1052 nm, and a size of 35 Mb. This device 

has a total weight of 500 g, with a dimension of 18*9*7 cm.  

At this stage, the prototype spans the visible and part of the NIR spectral range and does not 

possess movable parts in order to decrease possible errors due to the vibrations. 

 

6.1.1 Hardware specs 
In Table 6.1 is reported the list of all the parts needed during the device building, the costs, the 

material type and the source where it was bought. 

 

Table 6.1: list of the components used for the HIS device  
 

Component 
Cost 

(€) 

Material 

Type 

Raspberry Pi 3 B + with charger 51 Electronics 

Raspberry Pi NoIR V2 Camera 8 Megapixels 37 Electronics 

Mini SD memory, 32 Gb 18 Electronics 

Macro + 10 lens 15 Optics 

35 mm C Series Fixed Focal Length Lens. Model: 59872 320 Optics 

Double-axis diffraction grating 11 Plastic 

Case ≈13 Resin 

Front lens ≈3 Resin 

Square aperture ≈1 Resin 

50mm extension ≈7 Resin 

50mm extension ≈7 Resin 

Diffraction grating ≈1 Resin 

Camera base ≈1 Resin 

Seal extension ≈2 Resin 

X extension ≈2 Resin 

Lid ≈3 Resin 

Hanger ≈4 Resin 

Hanger clip ≈1 Resin 

 Tot. ≈517€  

Figure 6.1 shows all the components which compose the  proposed HIS device. 
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Figure 6.1 HSI composition 1) Case; 2) Front lens; 3) Square aperture; 4-5) Extension 1 and 2; 6) Diffraction grating; 
7) Camera base; 8) Seal extension; 9) X extension; 10) Lid. 11) RPI01 Raspberry Pi 3 B+. 12) RPI02 Raspberry Pi 
NoIR V2 Camera 8 Megapixels. 13) PS02 Power Supply Connector. 14) PS03 Power On/Off Switch. 15) +10 Macro 
52 mm Lens. 16) LENS02 35 mm C Series. Edmundoptics, model 59872. 
 

6.1.2 Calibration 
 

After the hardware assembling, a calibration phase has been done in order associate the 

wavelengths split by the double axis diffraction grating. Firstly, in darkroom two images have 

been acquired using an halogen lamp (to have a diffracted light with a continues spectrum) 

and one image using a fluorescent lamp to have a diffracted light with three or more well-known 

wavelength peaks (405, 440, 545, 613, and 710 nm ) (Figure 6.2). These images were used 

to calibrate the device and set the region of interest (ROI), the blue, green and red peaks, and 

in conclusion the range limits in which the software has to find the spectral information. With 

this phase every photograph was red with the same pattern created and saved in a calibration 

function. 
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Figure 6.2 HSI calibration set-up in dark room. 
 

Figure 6.3 shows the three images acquired with incandescent and fluorescent lamp. The 

images show two distinguishable areas:  

1. Zero-order mode (ZM); 

2. first-order mode. 

ZM occurs when the light is not diffracted. It appears as a small square, located at the centre 

of the image. Instead, the first-order mode is the first time that the light is diffracted. It has a 

higher intensity than higher modes (e.g., second order diffraction mode) and its perimeter 

contains ZM. Hence, this area will contain the mayor amount of information and energy. 

Therefore, the first-order mode is the ROI (Figure 6.4). 

Figure 6.3a was used to define the ROI to be used. Figure 6.3b contains the diffracted light 

(produced using a fluorescent lamp) with three or more well-known wavelength peaks at 405, 

440, 545, 613, and 710 nm (figure 6.5). Instead, figure 6.3c contains diffracted light with a 

continues spectrum.  
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Figure 6.3 set of reference images. (a) image with halogen lamp and without darkroom. (b) image with fluorescent 
lamp in darkroom. (c) image with halogen lamp in darkroom. 

 

Figure 6.4 image with halogen lamp and without darkroom to define the zero-order mode (ZM) and the region of 
interest (ROI). 

Figure 6.5 Spectra of absorbance from the fluorescent lamp (acquired using a commercia spectrophotometer 
from Hamamatsu, C12880MA, spectral response range from 340 to 850 nm). 

 

Therefore, using the coordinates of the light’s origin (in ZM) and the coordinates of the 

diffracted wavelength peaks (first order diffraction) is possible to calculate the relationship 

between wavelength-to-pixels and vice versa and build the hypercube which includes spectral 

and spatial information. 
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6.1.3 Test 
This part has the aim to show the performance of the proposed device il lab-scale conditions. 

Firstly, an imaging system apparatus has been built in order to acquire images under controlled 

conditions (Figure 6.5). The system is composed by: 

1. Integrating sphere (hollow hemisphere with perfectly diffusing internal surface which 

allows a complete reflection of the light toward the sample); 

2. Camera holder (to keep the HSI at 70 cm from the sample); 

3. 4 Light bulbs. 

 

Figure 6.6 Imaging system apparatus. 

In particular, the four light bulbs were: two Incandescent and two cold LED. This set-up allows 

to have a source of light which cover at best the vis-NIR spectral range between 400 and 

1000nm. Figure 6.7 shows the light emitted from the Incandescent and cold LED lamp 

measured using a commercial vis/NIR spectrophotometer (Jaz, Ocean Optics, Dunedin, FL). 

Even though the shape of the spectrum depends also from the sensitivity of the 

spectrophotometer detector, it is clear that the incandescent lamp is poor at 400nm because 

the emission range of this type of lamps doesn’t cover waveband under 500nm. Therefore, this 

lack at low wavelength has been balanced by the cold LED lamp that have a pick of emission 

at around 400nm. Whereas, at high wavelength the LED lamp has a very poor emission, and 

this has been balanced by the incandescent lamp.  
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Figure 6.7 Emission of two different lamps. The blue line is referred to the incandescent lamp and the orange line 
to the cold LED lamp. 

 

Then, a first test has been performed using a common 3 x 3 Rubik’s cube in order to validate 

the calibration and the acquisition set-up. This experiment aimed to obtain an hyperspectral 

image (the hypercube) and use it to evaluate the accuracy of the hyperspectral device. The 

Rubik’s cube has been arranged with a white cross and four different colours (red, green, blue 

and yellow) at the corners (Figure 6.8). 

 

 

Figure 6.8  3 x 3 Rubik’s cube arrangement for the first test. 

 

Once the cube has been placed at 70 cm from the front lens of the device the system is ready 

for the image acquisition. Figure 6.9 shows the diffracted image taken using a Shutter Speed 

of 1500µs and a Square Shutter Speed of 2µs. These settings were the best compromise to 

improve the quality of the photograph. 
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Figure 6.9 Diffracted image of the 3 x 3 Rubik’s cube face. 

 

Once obtained the diffracted image, using the hypercube function it was possible to generate 

the hypercube to be processed in MATLAB environment. 

The hyperspectral cube has been evaluated using the software Hypertools (Graphical User 

Interface (GUI) for the analysis of multispectral and hyperspectral images in MATLAB). Figure 

6.10 shows, from the diffracted image (Figure 6.10a), the composite image (Figure 6.10a) in 

false colours generated by the diffracted image of the Rubik’s cube. Therefore, from each pixel 

which composes the composite image, it is possible to extract the relative spectral profile from 

400 to 1000 nm (Figure 6.10c). One pixel for each representative square was taken in order 

to visualize the spectra of each color of the Rubik’s cube. The final result is a spectral output 

which depends from the intensity of the environmental light (in the imaging system apparatus 

in lab-scale) and from the sensitivity of the image sensor of the Raspberry Pi NoIR V2 (CMOS 

image sensor, IMX219, Sony). Obviously, higher is the light reflected from the  Rubik’s cube 

(which depends from the color of the squares) higher is the magnitude of the relative spectrum. 

For instance, the white square shows the highest reflectance (as expected) and the three picks 

related to the red, green and blue peaks are clearly viewable. However, a shift about 100 nm 

is noticeable taking into account the real emission of the blu (around 450nm), the green 

(around 530nm) and the red (around 650nm) suggesting a non-perfect calibration of the 

camera or an inefficiency of the low-cost holographic transmissive grating. 
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Figure 6.10 (a) diffracted image; (b) composite image with pixels; (c) spectra of the selected pixels. 

 

Despite the obvious problem to centre the respective emission peaks at the correct 

wavelengths, a preliminary exploratory study was performed using PCA. PCA is usually 

performed on two-dimensional matrices, therefore, three-dimensional hypercube has to be 

unfolded in order to obtain the two-dimensional matrix with the wavelengths on the columns 

and pixels on the rows. 

At first, the image has been masked using the first PC scores of the PCA (with mean-centred 

data) in order to avoid any black border of the Rubik's cube. In real samples, the masking 

procedure (which can be carried out with different strategies) allows to remove the background 

or the uninformative pixels isolating the part that contains the real information. The final output 

of the masking phase is an hypercube with only the squares which compose the Rubik's cube. 

Then, another PCA (with mean-centred data) has been performed in other to see the remaining 

variability within the dataset. Figure 6.11 shows the PCA scores and loadings of the masked 

Rubik's cube dataset. 

Figure 6.11 PCA scores and loadings of the Rubik’s cube hyperspectral image. 
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The first and the second principal components, describe the 74,47% and 12,84% of the total 

variability present in the masked hyperspectral image, respectively. Looking at the scores of 

PC1, the differences are related to white squares with respect to the remaining colours while, 

PC2 (Figure 6.11b) highlight the differences between the coloured squares from blue (bottom 

right square) one to yellow one (bottom left square) with the green (up right square) in the 

middle of the colorbar as it comes from a mix of blue and yellow. Moreover, Figure 6.11 c and 

d show the behaviour of each pixel in the space of PC1 and PC2 and the weight of the original 

variables (wavelengths) that contribute to describe these two components. In these terms, no 

particular assumption could be done due to the problem of wavelengths shift already 

highlighted.  

6.1.4 Conclusions 
 

To concludes, this experience paved the ground for the development of cost-effective 

hyperspectral devices. Very interesting advantages in terms of costs (around 500€) have been 

reached using commercial stuff and products of additive manufacturing. However, several 

improvements need to be done in order to obtain a better resolution and in the final image (e.g. 

better calibration and better holographic diffraction grating). 

The applications of devices (like the one described) are various and after these 3 years of PhD 

more studies will be done in the field of precision agriculture which is one of the sectors where 

the presence of distributed low-cost devices able to monitor the crop conditions (e.g. water 

status) is strongly required.     
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Award 1: “WHAT FOR” AWARD 5th EDITION 
Sponsored by Federalimentare in collaboration with the national network of doctoral programs 
of research in food science, technology and biotechnology. 

  



 Awards 
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Award 2: Best oral presentation at NIRItalia online 2021 

 

  



 Awards 
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- Winner of the SISNIR grant offered by Società Italiana di Spettroscopia NIR to attend the 
19th biennial meeting of the International Council for NIR Spectroscopy (NIR2019) 
 

- Winner of the SISNIR grant offered by Società Italiana di Spettroscopia NIR to attend the 
20th biennial meeting of the International Council for NIR Spectroscopy (NIR2021) 



Conferences attendance 
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Conferences attendance 

Model-It, International Symposium on 
Applications of Modelling as an 

Innovative Technology in the 
Horticultural Supply Chain 

 
(2019) 

 
ORAL 

Design of prototypes of LED based devices for the 
evaluation of grape (Vitis Vinifera L.) ripeness 

 
POSTER 

Visible/near infrared spectroscopy for horticulture:case 
studies from pre-harvest to post-harvest 

 

International Conference of NIR 
Spectroscopy 

 
(2019) 

 
ORAL 

Miniaturised LED prototypes for ripeness evaluation 
directly in field: test on grape (Vitis Vinifera L.) 

 
POSTER 

NIR spectroscopy for coffee quality evaluation in a view 
of at-line and in-line applications 

 

XXIV Workshop on the developments in 
the italian PhD research on food 

science, technology and biotechnology 
 

(2019) 
 

POSTER 
Feasibility studies and engineering of optical simplified 
and stand-alone instruments for agro-food applications 

 



Conferences attendance 
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2° Workshop sull’innovazione nella 
meccanica e nell’impiantistica applicata 
ai biosistemi agro-alimentarie forestali  

 
(2019) 

 
ORAL 

Optical LED prototypes for ripeness evaluation of grape 
(Vitis Vinifera L.) 

 

XXV Workshop on the developments in 
the italian PhD research on food 

science, technology and biotechnology  
 

(2021) 
 

ORAL 
Feasibility studies and engineering of optical simplified 
and stand-alone instruments for agro-food applications 

 

 



Conferences attendance 
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NIRItalia Online 
 

(2021) 
 

ORAL 
Stand-alone LED sensors for future field monitoring of 

grape (Vitis vinifera L.) ripeness 

 

International Conference of NIR 
Spectroscopy  

 
(2021) 

 
ORAL 

Stand-alone LED sensors for future field monitoring of 
grape (Vitis vinifera L.) ripeness 
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Scientific training courses 

WINTER SCHOOL: Combining NIR 
Spectroscopy and Chemometrics 

(2019) 

 

School of Multivariate Analysis 
(2019) 

 

International School of Chemometrics 
(2020) 

 



Scientific training courses 
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International School of Chemometrics-
Challenges 

(2020) 

 

School of Experimental Design 
(2021) 
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Other experiences  
 

PhD period abroad 
July – October 2020: Braga (PT), International Nanotechnology Laboratory (INL)  

Tutor: Dott. Joao Piteira 

Research topic: design of cost-effective hyperspectral camera  
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Credits and Soft skills 

Course UNIMI catalogue Professor date 
Food Systems 

course 
cfu 

Advanced spectroscopic 
methods in food systems 

Bonomi May 2019 yes 3 

Introduction to statistical analysis 
of ecological and environmental 

data 

Roberto 
Ambrosini 

March 2019 no 5 

The methodology of life cycle 
assessment (LCA) in the food 

Riccardo Guidetti 
December-

2020 
yes 

4 
Total  12 

 

Journal Club oral presentation speaker extra hours duration (hours) cfu 

15/02/2019 yes 4 6 1.25 
24/01/2020 no   3 0.375 
26/02/2021 no   2.2 0.275 

Total 1.9 
 

"Food Systems" seminars speaker date 
duration 
(hours) 

cfu 

Recent research trends and funding sources in 
food and human nutrition in the US 

Klimis-
Zacas 

01/07/201
9 

1 0.125 

A South African perspective on grape cultivation 
during drought conditions 

Blancquaert 
01/07/201

9 
1 0.125 

Global metabolomics for discovery of natural 
product bioactivity 

Stevens 
11/12/201

8 
1 0.125 

Total 0.375 
 

Other "Food Systems" 
activities 

date 
presentatio

n 
speaker extra 

hours 
duration 
(hours) 

cfu 

workshop 2019 "Food PhD" 
11-

13/9/201
9 

  16 2 

Final exam 
18/02/20

21 
  4 0.5 

Final exam 
19/02/20

21 
  4 0.5 

workshop 2021 "Food PhD" 
14-

15/09202
1 

oral  32 13 9.625 

Final exam 
03/11/20

21 
  2 0.25 

Total 8.625 
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Other approved activities from-to  

oral or 
poster in 
internatio
nal event 

speaker/
poster 
extra 
hours 

duratio
n 

(hours) 
cfu 

Bet on the research: a warranty for 
the future 

26/11/2018   3 0.187 
 

WINTER SCHOOL: Combining NIR 
Spectroscopy and Chemometrics 

14-
18/01/2019 

  37 2.31 

NIR 2019 (International conference 
of Near Infrared Spectroscopy) 

15-20/9/2019 oral-poster 72 44 7.25 

Model-it (VI Symposium on 
applications of modelling an 
innovative technology in the 
horticultural supplay chain) 

9-12/6/2019 oral 64 24 5.5 

2° Workshop sull'innovazione nella 
meccanica e nell'impiantistica 
applicata ai biosistemi agro-

alimentari e forestali 

10/10/2019 oral 64 8 4.5 

School of multivariate analysis 
30/09/2019-
4/10/2019 

  32 2 

SIMEI 2019 20/11/2019 Oral 64 4 4.25 
International school of 

chemometrics (ISC 2020) 
08/10/2020-
20/11/2020 

  192 12 

NIR italia 
24-

25/02/2021 
Oral 64 10 4.625 

ICNIRS 2021  (International 
conference of Near Infrared 

Spectroscopy) 

18-
21/10/2021 

Oral 64 15 4.937 

School of experimental design 8-12/11/2021   37 2.312 

Total 45.875 
 

Thesis supervisor student bachelor/master cfu 
Valutazione del grado di maturazione di 

olive da olio mediante analisi dell’immagine 
e spettroscopia nel visibile e vicino 

infrarosso 

Marco Menegon master 0.5 

Applicazione della spettroscopia nel visibile 
e nel vicino infrarosso su caffè espresso: 

prove preliminari. 
Mattia Saulle master 0.5 

Analisi dell’immagine e sensoriale di un 
vino spumante prodotto con remuage 

ultrasonico 
Alessandro Salvini master 0.5 

Sviluppo di un sistema ottico semplificato 
per monitorare la maturazione di olive da 

olio 
Carlo Pozzi master 0.5 

The use of NIR spectroscopy to monitor the 
coffee production chain 

Matteo Curatitoli master 0.5 

Ingegnerizzazione e sperimentazione di un 
device ottico semplificato per l’analisi della 

maturazione del pomodoro 
Giulia Rossi master 0.5 

Sviluppo di un sensore stand alone per il 
monitoraggio della maturazione di uva in 

un’ottica di viticoltura 4.0 
Claudio Vanerio master 0.5 

Analisi impiantistica e proposte progettuali 
per una cantina a conduzione familiare 

Filippo Groppi 
Garlandini 

bachelor 0.25 
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Applicazione on-line di uno 
spettrofotometro 

nir per il monitoraggio del contenuto di  
umidita’ del caffe’ e confronto con metodi  

analitici consolidati 

Alice Bacchetta Master 0.5 

Evaluation of the ripening stage of 
Chardonnay  

grapes through non destructive optical 
techniques 

Alessia Pampuri Master 0.5 

Design of a cost-effective hyperspectral 
camera 

Giacomo Busnelli Master 0.5 

  Total 2 
 

 Total amount of cfu  74.775 
 

Transferable skills  date 

Open access – open data e il mondo delle pubblicazioni 13/12/2018 
Bet on the research: a warranty for the future (Assolombarda) 26/11/2018 

Valutazione della ricerca 01/02/2019 
L’importanza della comunicazione (Assolombarda) 18/02/2019 

Comunicare risultati complessi (Assolombarda) 04/03/2019 

Comunicare: principi comportamentali (Assolombarda) 11/03/2019 

Comunicare attraverso i digital media (Assolombarda) 25/03/2019 

Valutare la comunicazione (Assolombarda) 01/04/2019 
GRANTMANSHIP Parte I 20/01/2020 

Research Integrity 16/12/2019 
tutelare e valorizzare sul mercato i risultati della ricerca 29/11/2019 

FAKE NEWS, disinformazione,  
divulgazione e ricerca scientifica 09/04/2020  

Reasearch Integrity  20/05/2020 

SELF BRANDING - Dottorato e mercato del lavoro: 
spettive professionali e competenze da valorizzare 19/06/2020 

GRANTMANSHIP Parte I 14/09/2020 
Communication on new media parte 1 03/02/2021 
Communication on new media parte 2 11/02/2021 

Lezione avanzata sull'utilizzo dell'IP per fare innovazione 24/03/2021 
Lezione avanzata sull'utilizzo dell'IP per fare innovazione 09/04/2021 

Valorizzare Creando Impresa: Fare Spin off in Università degli Studi di Milano 
28/04/2021 
05/05/2021 
19/05/2021 
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