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Abstract: Access to renal transplantation guarantees a substantial improvement in the clinical
condition and quality of life (QoL) for end-stage renal disease (ESRD) patients. In recent years, a
greater number of older patients starting renal replacement therapies (RRT) have shown the long-
term impact of conservative therapies for advanced CKD and the consequences of the uremic milieu,
with a frail clinical condition that impacts not only their survival but also limits their access to
transplantation. This process, referred to as “inflammaging,” might be reversible with a tailored
approach, such as RRT accompanied by specific nutritional support. In this review, we summarize
the evidence demonstrating the presence of several proinflammatory substances in the Western diet
(WD) and the positive effect of unprocessed food consumption and increased fruit and vegetable
intake, suggesting a new approach to reduce inflammaging with the improvement of ESRD clinical
status. We conclude that the Mediterranean diet (MD), because of its modulative effects on microbiota
and its anti-inflammaging properties, may be a cornerstone in a more precise nutritional support for
patients on the waiting list for kidney transplantation.

Keywords: end-stage renal disease; inflammaging; nutrition; microbiota; Mediterranean diet;
dialysis; transplantation

1. Introduction

Inflammation is a typical feature of end-stage renal disease (ESRD) and contributes to
cardiovascular disease (CVD), protein-energy wasting (PEW) and premature death [1–3].

ERSD is linked to a chronic proinflammatory cytokine production and reduced clear-
ance due to the progressive renal failure with retention of high molecular weight toxins
and protein bund toxins (PBUT) that are responsible for oxidative damage. In patients on
Renal Replacement Therapies (RRT), this inflammatory state is worsened by overhydration,
poor dialyzer membrane biocompatibility, anticoagulation, vascular inflammation, and
comorbidities such as diabetes, hypertension, obesity, malnutrition, and heart failure [4].

Recently, it has been recognized the possibility of a nutritional approach tailored to
deal with this state of persistent, low-grade, chronic inflammation by reducing proinflam-
matory cytokines levels such as IL-1B, IL-6, IL-8, and IL-18 [5,6]. Therefore, the modulation
of inflammaging processes might be at the center of a multidisciplinary scientific debate,
with the primary objective to reduce red meat consumption and increase dietary fiber,
leading to a modulation of macronutrients intake to improve the clinical conditions of
patients in RRT waiting for kidney transplantation [7].

2. Epidemiology

According to USRDS, in 2017, almost the 50% of incident dialysis patients in the USA
were older than 65 years. This trend is similar in all the western countries, with only
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3–5% of patients accessing peritoneal dialysis (PD) and 1–2% receiving kidney transplanta-
tion [8]. Patients older than 65 years on dialysis have a higher mortality rate compared to
younger patients, and their survival is conditioned by comorbidities such as vascular and
cardiac disease. These conditions are tightly connected to ESRD and RRT and are related
to unchangeable risk factors (age, sex, and cardiovascular disease familiarity) and change-
able risk factors (lifestyle, hypertension, dyslipidemia, diabetes, and immunosuppressive
drugs), defining a pattern of “Renal Frailty Phenotype” [9,10].

Tamura and colleagues evaluated elderly functional status before and after RRT,
demonstrating a significant and permanent decline in patients’ functional status [11]. This
impairment was also observed by van Loon, who assessed the clear relationship between
malnutrition, frailty, and mortality and demonstrated the cognitive and functional im-
pairment that led to increased mortality rate [12]. Interestingly, Dalton and colleagues
identified a pattern of systemic inflammation in patients with serious psychological eating
disorders related to anorexia nervosa, characterized by higher IL-6 serological levels com-
pared to those detected in healthy controls [13]. Also, clinical depression is characterized
by increased systemic inflammation, suggesting a possible influence on mental health and
wellbeing [14]. These associations with poor outcomes have also been reported in other
studies, suggesting the pattern of a multisystemic frailty condition [15,16].

On the contrary, kidney transplantation improves life expectancy, guarantees a sur-
vival advantage compared to other RRT, and has a lower financial burden compared to
dialysis, offering a better quality of life (QoL) [17]. This is the reason why transplantation
considered the gold standard for ESRD treatment [18,19]. Effectively, the mortality for
kidney recipients is 68% lower than that for waiting list patients on RRT [18]. Gill and
colleagues showed a 4-year life expectancy gain in non-elderly kidney transplant recipients
when compared to waiting list patients [20], while recipients aged between 70–74 years old
had an increased life expectancy of 1 year when compared to dialysis patients.

Epidemiological data has also shown that a fast-growing portion of patients affected by
ESRD on the waiting list is becoming older and frailer [21]. A great number of hemodialysis
patients expire before kidney transplant [22], and RRT patients’ clinical conditions often
worsen on the waiting list, making them unfit for transplantation if compared to non-frail
patients [23]. Recent data showed a 44% prevalence of frailty in dialysis patients aged less
than 40 years and a 78% in patients above 70 years, with an increased functional decline
during the first 6 months of RRT in older patients [24]. Moreover, the incidence of frailty
on waiting list patients ranges from 20% to 40% [25]. The absence of specific guidelines
that define a fragility score threshold to exclude a patient from the waiting list leads to an
underestimation of this problem and the consequent onset of post-transplant comorbidities,
with increased graft failure and mortality.

Even for these patients, recent literature has shown good results in terms of QoL and
survival after kidney transplantation [26,27], as well as in the setting of elderly recipients
accepting suboptimal kidneys [28]. The European and American International Societies
have consequently edited their guidelines for kidney transplantation without specific age
contraindications [29], thus increasing the number of older patients on the waiting list.
Therefore, the clinical monitoring of these changes [30] and their correction could be crucial
to reduce the negative impact on graft and patient survival after transplantation [31].

3. Inflammaging in ESRD Patients

A first definition of “inflammaging” was developed by Franceschi and colleagues [32].
Starting from the “Disposable Soma Theory” [33] and according to the “Network Theory of
Ageing” [34], they redefined the aging process, according to longevity models, as a “global
reduction in the capability to handle with a variety of stressors and a concomitant pro-
gressive increase in the proinflammatory status,” thus including in a more comprehensive
theory the previous MARS (Mitochondria, aberrant proteins, radicals, scavengers) model
for intracellular damage and allowing the transition from “stochastic” toward “network”
theories of aging.



Nutrients 2021, 13, 267 3 of 17

In the setting, frailty could be considered the clinical manifestation of inflammaging,
with a loss of resilience and reduced capacity to respond to health stressors [35]. In 2010,
Brown and Johansson [36] suggested that frailty was a more powerful prognostic predictor
than simple age due to its stronger correlation with 1-year mortality and hospitalizations
rate. Inflammaging is common in the CKD population [37]. A cross-sectional analysis of the
baseline data in the FEPOD (Frail Elderly Patient Outcomes on Dialysis) study showed that
inflammaging is associated with worse QoL scores for patients on dialysis, independently
of RRT modality [38]. Moreover, inflammaging is also associated with increased cognitive
dysfunction [23] and mortality [39] and contributes to an increased vulnerability to external
stressors in pre-dialysis and dialysis patients [10].

Behind clinical manifestations of frailty, the inflammaging process is characterized by
biological alterations in the setting of CKD. Metabolic acidosis is responsible for a negative
protein balance [40] that reduces protein synthesis and induces GH resistance. This is
consequent to intracellular protein degradation mechanisms and to the upregulation of
caspase-3 and the ubiquitin-proteasome system [41], the latter being related to a condi-
tion of insulin resistance that determines a decreased availability of phosphatidylinositol
3 kinase (PI3K) [42]. Also, TNF-α and IL-6, overexpressed in CKD patients, exert their
catabolic effects with the stimulation of the ubiquitin proteasome complex and through
the downregulation of anabolic pathways mediated by IGF and the dysregulation of
the mTOR pathway [43]. Inflammatory processes are also implicated in autoimmune
glomerulonephritis and transplant rejection, leading to progressive endothelial and tubular
dysfunction [44,45].

Frail and uremic patients share increased apoptosis processes linked to the activation
of NF-kB and Caspase 8, thus suggesting a process of accelerated aging [46] that is also sus-
tained by Oxidative Stress (OS), a major contributor to biological aging. OS is particularly
increased in ESRD [47] because of dysfunctional mitochondria, dysregulation of calcium,
phosphate metabolism, and the mutation in Klotho genes [48], which are strongly linked to
cancer development [49,50].

Damaged DNA and related epigenetic changes are also responsible for accelerated
kidney senescence [51] in a vicious circle that makes cells more prone to uremic toxins
and OS damage [52]. Recent literature has suggested a pivotal role for the Nuclear Factor
Erythroid 2 Related factor (Nrf2). Patients with chronic inflammatory diseases such as
CKD show reduced Nrf2 expression, which exerts cytoprotective effects against damage
induced by ROS, upregulating an incredible range of genes with anti-inflammatory and
antioxidative functions. This crosstalk between NF-kB and Nrf2 might led to improve
effective anti-aging strategies [53].

Moreover, patients affected by ESRD or in RRT are subject to accelerated aging phe-
nomena [54], with alterations displayed at the intracellular level and senescence of all
physiological domains, particularly of the immune system. Through the evaluation of
relative telomere length [RTL], Crepin and colleagues showed a comparable senescence
status in 40-year-old uremic patients and 75-year-old healthy controls [55]. Uremic patients
showed a reduction of circulating B cells, increased cellular apoptosis and progressive
lymphopenia [56], and decreased number of plasmacytoid dendritic cells, natural killer
(NK) cells and lymphoid T cells [57,58].

Because of inflammaging, B and T cells are premature not only by number but also
by function, showing increased proapoptotic molecules that make cells more prone to
death [59]. In addition, reduced circulating naive T-cells are not only responsible for less
efficient immunosurveillance and, consequently, higher neoplastic risk, but their oligoclonal
TCR profile is involved in a process of progressive loss of immunological specificity, making
their function less efficient [60]. Low hormonal levels, malnutrition, decreased growth
factors, and cytokines such as IL-2 or IL-7 [61–63] may contribute to this premature-aging
phenotype.

According to this new vision and the interplay between genetic and environmental
components, nowadays we can clinically define inflammaging characterized by sarcopenia,
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vascular calcifications, cardiovascular hypertrophy. We can also biologically define inflam-
maging by premature immune senescence with consequent susceptibility to infections,
malignancy, and chronic inflammation [51,64,65]. At the same time, a great interest has
been developed about the interaction of this process with environment and nutrition [66],
particularly for CKD and RRT patients.

4. Inflammaging, Western Diet and CKD/RRT Patients

Lesson learned from nonhuman primates reveal how the adoption of energy-dense
food, as in the Western diet (WD), is not only related to the development of chronic diseases
such as CVD, CKD, and diabetes [67], but also modifies the microbiome [68], increasing
inflammation, cellular damage, and the risk of neoplasia. Colorectal cancer has a major
diffusion in western countries because of the increased red meat consumption [69], and is a
pathology of particular interest. Colorectal cancer is at the center of progressive microbiota
modifications, including accelerated senescence mechanism due to inflammation, hyper-
phosphatemia [70], and progressive lack of anti-inflammatory pathways such as Nrf2 and
its crosstalk with NF-kB [53].

Data collected from the USA Center for Disease Control and Prevention show a 32.4%
prevalence of obesity with BMI higher than 30 compared to a 30.5% prevalence of BMI val-
ues associated with normal weight. This condition is evident worldwide [71], and is related
to the availability of energy-dense food and connected to the rising prevalence of chronic
diseases [72], with direct connection to a disproportionate red meat consumption [73]. This
switch toward an imbalance diet, which lies on specific social and cultural environment,
favors inflammaging. Moreover, social and economic factors seem to influence food avail-
ability, variety, and its protective CV effect: Higher educational qualification is associated
with better competence in food choice. This could be also part of the high obesity rate
observed in USA population. Large metropolitan centers, because of the demographic and
social pressure, offer small housing with reduce or lacking cooking spaces. Food is chosen,
not cooked, because of psychosocial and cultural practice, with preference for fast and
tasty red meat. The unconscious development of chronic diseases is linked to the lack of
antioxidant agents and impaired protective cellular mechanism [74,75].

Lifestyle factors such as sedentary attitude, reduced exercise and wrong alimentary
regimens, as well as environmental factors may influence and modify inflammaging
processes in patients on RRT with detrimental effects on the immune system and accelerated
aging phenomena [76]. In the setting of dialyzed patients, a sedentary lifestyle with poor
physical activity, due to fatigue on dialysis days or reduced available time, motivation,
physical problems, and pain, is considered a modifiable risk factor and may influence
cardiovascular risk [77]. Conversely, physical activity and exercise could reduce depressive
symptoms and increase self-well-being, energy supply, and appetite [78].

In addition, ESRD patients should control inorganic phosphate assumption, since it is
often added to processed food and widely used for meat-derived preparations as a taste
enhancer [79]. This phosphate is rapidly absorbable and more dangerous than the organic
one. The necessity to control its assumption [80] is suggested among RRT patients and
the general population [81,82]. In addition, animal-derived food presents high potassium
content [83] and should be avoided in favor of plant-derived food, which has been reduced
or banned in old nutritional programs [84]. The WD should also be avoided in RRT for
the well-recognized proinflammatory effects related to its high sugar [85] and saturated
fats intake [86], reduced content in fiber, complex carbohydrates, micronutrients, and lack
of bioactive molecules such as omega-3 polyunsaturated fatty acids and polyphenols [87].
The increased red meat consumption in WD, especially the consumption of processed meat,
leads to a microbiome imbalance toward a putrefactive profile and to increased phosphate
assumption. In turn, this leads to alterations in Klotho genes that favor not only chronic
inflammatory disease, but also progeria [48], probably through the downregulation of Nrf2
with consequent exposure to increased ROS damage [53] (Figure 1).
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Figure 1. The Mediterranean diet, compared to Western diet, is based on the increased intake of long-chain fatty acids from
fish and plant oils; fibers through legumes, fruits, and vegetables; and whole food grains. This approach may lead to better
controls of inflammaging and malnutrition in end-stage renal disease (ESRD) with successful renal transplantation.

Inflammation due to prolonged exposure to WD also determines an increased uptake
of LPS, because of amplified gut leakiness interacting with TLR4 and innate immune
system activation [88–90]. These alterations are consisted with reports suggesting higher
colorectal cancer risk for red and processed meat consumer [91] compared to the protective
effects related to higher doses of vegetal proteins [92].

5. Microbiome, Inflammaging and CKD/RRT Patients

In CKD patients, the large intestine assumes an excretive role to remove uremic
toxins and preserve noble molecules, acting as a compensatory mechanism for nephron
failure [93]. This massive uremic load affects colonic bacterial environment [94], worsening
the uremic state until the complete loss of renal excretion function and the consequent
block of their clearance [95]. At the same time, CKD patients present higher levels of C
Reactive Protein (CRP), IL-6, and TNF-α compared to healthy controls [96,97], which are
related to uremic toxins retention linked to intestinal dysbiosis [63].

This chronic inflammatory condition is characterized by a progressive alteration of
the resident microbes of the gut, the microbiota, and by its gene heritage and coding
capacity connected to the environment, the microbiome, exerting a pivotal role promot-
ing or sustaining CVD, inflammatory bowel disease (IBD), diabetes, obesity, cancer, and
malnutrition [98].

The gut microbiota is a dynamic supplementary organ, residing in the large intestine.
The gut microbiota is metabolically active, in the middle of a dense network with the
kidney, heart, immune system and many other organs [99]. It affects general health status,
exerting protective and trophic functions influencing local and systemic metabolism and
immunity [100,101]. Its microbial community includes about 1014 bacterial cells, located
mostly in the colon, and represents the widest container of no self-antigens in human
body [102]. It takes part in realizing digestion, facilitating complex carbohydrates adsorp-
tion, and preserving micronutrient homeostasis, such as amino acids and vitamins [103].
According to microbiota composition, microbiome exerts a pivotal role preserving immune
homeostasis and enhancing anti-inflammatory conditions. In particular, the gastrointestinal
apparat seems to attend immune tolerance aside from reacting to pathogenic stimuli [104].
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The microbiome controls the metabolism and immunological network via two main
catabolic pathways: The saccharolytic way, where bacteria fermenting carbohydrates work,
and the proteolytic way, involving bacteria dominantly fermenting proteins. When species
like Clostridium, Bacteroides, and Enterobacterium prevail, gut microbiota plays out pro-
tein fermentation or “putrefaction” with increased production of urea, ammonia, indoles,
phenols, and other microbial uremic toxins as catabolic end products, thus switching micro-
biome potential to a proinflammatory profile [105]. Increased red meat consumption and
lack of traditional food observed in WD perfectly fits this outline [98], impairing oxidant
defense in mammalian cells [106].

On the contrary, protective symbiotic colonic microbes, primarily Bifidobacterium and
Lactobacilli, execute saccharolytic fermentation, converting polysaccharides in monomeric
sugars which are finally hydrolyzed in short-chain fatty acids (SCFA) [107]. Acetate,
butyrate, and propionate are saturated SCFA, produced through dietary fiber fermen-
tation by anaerobic colonic bacteria. In experimental allergic inflammation, mice were
protected when fed with high-fiber diets, showing increased levels of SCFAs bound to
GPR41 and GPR43 receptors [108]. In particular, Butyrate displays immune-modulating
and anti-inflammatory competences [109] through the production of transforming grow
factor-beta (TGF- β) and the ability to lower proinflammatory cytokines, such as IL-6, IL-17
and interferon-γ (INF-γ) [110,111]. Through the “microbe-associated molecular patterns
(MAMPs)” production, the saccharolytic pathway promotes the enterocyte secretion of
TGF- β, Il-25, and IL-33, which preserve the intestinal epithelial barrier and the tolerogenic
environment [110]. TGF-β stimulates T-reg cells proliferation [112], and the bacteria com-
ponent LPS increases forkhead box p3 (Foxp3) T-reg cells in mesenteric lymph nodes [113].
The polysaccharide A from Bacteroides Fragilis influences Th1-Th2 interplay, activating
CD4+ cells [114]. In turn, CD4+ cells become Foxp3 T-reg cells, an important source of
IL-10, an anti-inflammatory cytokine [115].

To understand the relationship between metabolic diseases and its effects on mi-
crobiome, several studies have investigated CKD-related gut dysbiosis and its link with
diet [116] according to the strong relationship between humans, the environment, and
illness [98]. RRT patients follow a strict dietetic regimen where fruits, vegetables and high-
fiber foods are often reduced or forbidden, and protein products are the most available
food [117]. This dietary restriction induces changes in microbiota composition, and the
consequent microbiome switch from a saccharolytic to proteolytic profile, thus enhancing
uremic toxin production, mainly urea, ammonia, p-cresyl sulfate (PCS), and indoxyl sul-
phate (IS) [118]. Many authors have described the effects of PCS, IS, and other uremic toxins
against the gut epithelial barrier itself: They cause derangement of the epithelial tight junc-
tions up to the loss of its integrity [119], which is important for gut activities [120]. When
the gut barrier is opened, mucosal antigens are exposed and bacteria can translocate to the
blood circulation, resulting in endotoxemia, consequent immunological impairment, and
systemic inflammation [121]. Moreover, uremic molecules increase pathological reactive
oxygen species (ROS) production, aberrant cellular proliferation, and cellular senescence
with the secretion of proinflammatory cytokines [122].

6. Nutritional Intervention Against Inflammaging in CKD/RRT Patients

Given the adequate depurative dose by RRT, patients, particularly those on the waiting
list for kidney transplantation, should modulate their quantity and quality of food [123].
To avoid malnutrition, in ESRD and hemodialysis patients, a general energy intake of 30
Kcal/Kg/day with a 1 g/Kg/day daily protein assumption is suggested. This intake should
be maintained in the first months after transplantation and then reduced to 0.8 g/Kg/day
in transplant recipients with adequate graft function. Protein and energy intake should be
always adjusted for gender, age, and levels of physical activity according to international
indications [124], ensuring caloric supplementation during the dialysis session [125] or
acute kidney injury [126]. Oral nutritional supplements, with no added phosphate, should
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be used for short periods to satisfy specific clinical needs, with a balanced composition of
macronutrients tailored for patients’ necessities [127,128].

According to recent nutritional evidence, dietary habits should be more focused on
avoiding processed foods than on limiting the consumption of plant-derived aliments [7,129]
(Figure 1). Higher consumption of plant-based proteins should be suggested for all CKD
stages to reduce the burden of inorganic phosphate [130]. This nutritional approach is
“desirable” considering the burden of potassium, phosphate, and chemical products, such
as taste enhancers and chemical colorants daily consumed for the large consumption of
industrial-processed foods [131]. Adequate nutrient intake is possible for the availability
of new and more efficient drugs and RRT tailored for potassium and phosphate removal
and intake [84].

According to the general view, the potassium content in fruit and vegetables discour-
ages its implementation because of the risk hyperkaliemia. However, recent literature [84]
sustains a different approach according to the efficiency of new dialytic techniques. Accord-
ing to the American Kidney Fund (https://www.kidneyfund.org/assets/pdf/training/
potassium-and-kidney-disease.pdf), The daily assumption of potassium for patients under
RRT should be around 2500 mg. Interestingly, it is possible to observe that a 150 g serving
of apple or pear contains less than 200 mg of potassium, a profile shared with other fruits
such as strawberries, oranges, and pineapple. Moreover, vegetables with higher fiber
content have 280 mg of potassium per 100 g serving. In addition, the potassium content of
medium fish is less than the potassium estimated for beef, sheep, chicken, or turkey breast
(higher than 350 mg for 100 g).

Moreover, less restrictions and more individualized approaches in ESRD hold bene-
ficial effects compared to dietary restrictions [84]. Selective diets decrease patient’s QoL
and could be harmful, because vegetable, fruit, and legume consumption is associated
with higher fiber intake and its beneficial effect on gut microbiota and peristalsis, with
reduced production of proinflammatory cytokines [132]. For this reason, if possible, even
for RRT patients, a daily intake of six portions of fruit and vegetables is suggested [132].
Interestingly, 97% of hemodialysis patients have a daily consumption of dietary fiber lower
than 25 g [133] and a reduced fiber intake comparable to healthy population [134]. This
scenario should be taken into consideration, since the importance of dietary fiber was
underscored in the 1999–2000 NHANES study through the evaluation of 4900 subjects. The
subjects in the third- and fourth-highest quartiles of fiber consumption had a lower risk of
elevated CPR compared to the other quartiles [135].

In addition, fibers decrease the serum levels of creatinine and urea [136] and the
plasma concentration of several protein-bound gut-derived uremic toxins, such as p-cresyl-
sulfate and indoxyl-sulfate, which are not efficiently removed by RRT [137] and are related
to poor outcomes because of their accumulation [138]. In addition, fiber supplementation
showed positive effect on mortality in CKD patients [134], but its optimal intake in this
population has not been defined [136]. Therefore, there is consensus that the dietary fiber
intake CKD/ESRD patients should be comparable to healthy population, about 25 g/day.

7. Mediterranean Diet, Inflammaging and CKD/RRT Patients

The recently published 2020 Nutritional KDIGO guidelines provide low-grade nutri-
tional indications considering calories and protein intake and opinion-based nutritional
indications for micronutrients and protein origins [139]. However, adherence to healthy
diet was recently associated with lower risk for CKD progression and all-cause mortal-
ity [140]. In addition, adherence to the Mediterranean diet (MD) was associated with better
graft function in kidney transplant recipients [141].

MD is characterized by a substantial intake of long-chain fatty acids derived from
plant oils and fish, fibers through legumes, vegetables, fruits, and whole grains. This diet
leads to reduced dyslipidemia and protection against lipid peroxidation and inflammation.
This diet can also increase, when necessary, the dietary caloric load to control malnutrition
by setting patients in a satisfactory nutritional status [142] (Figure 1). Fiber, abundantly

https://www.kidneyfund.org/assets/pdf/training/potassium-and-kidney-disease.pdf
https://www.kidneyfund.org/assets/pdf/training/potassium-and-kidney-disease.pdf
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present in fruits, vegetables, and legumes which are widely consumed in MD, is related
to better glycemic control, as well as antioxidant and anti-inflammatory effects. At the
same time, MD leads to higher concentration of adiponectin, which is known for its
anti-inflammatory properties, with a potential shift and improvement of the intestinal
microbiota. MD is also associated with the reduced risk of chronic disease such as CVD,
cancer, and neurological diseases such as Alzheimer [143]. Recent literature has shown
only a substantial role for typical nutrients introduced with MD and their effect on healthy
ageing, but also the use of simple cooking techniques to reduce the exposure to polycyclic
aromatic carcinogens [144].

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in olive oil and fish, abundant in
MD, are essential fatty acids notoriously known for their protective and anti-inflammatory
properties against CVD [145,146] (Figure 2). Studies in healthy elderly patients have
suggested thatω-3 PUFAs also hinder anabolic resistance and sarcopenia and tickle muscle
protein synthesis [147]. Compared to general population, RRT patients have reduced
serological levels ofω-3 PUFAs, which are probably linked to a reduced intake of fish [146].
In 110 hemodialysis patients, after 12 weeks of ω-3 PUFAs and ω-3 PUFAs + vitamin E
supplementation, there was a significant improvement in the subjective global assessment
score (SGA-score) and other metabolic parameters improved [148]. Likewise, a 4-month
supplementation of ω-3 PUFAs to RRT patients improved inflammatory markers, such
as C-reactive protein, IL-6, IL-10, and TNF-α, with no effect on nutritional status markers
such as bodyweight, albumin, pre-albumin, and transferrin [149].

Figure 2. Effects of micronutrients on the modulation of innate and adaptive immunity systems. Abbreviations: ROS,
Reactive Oxygen Species; RNS, Reactive Nitrogen Species; NK, Natural Killer; Ab, Antibodies; Ag, Antigens; Aa, Amino
Acids; Ig, Immunoglobulins; TCR, T Cell Receptor. Green up arrows: upregulation; Red down arrows: down-regulation.
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Long-chain ω-3 PUFA exerts their anti-inflammatory effects by inhibiting TLR ex-
pression and by reducing proinflammatory cytokine production, with a specific effect also
on TLR4 [150]. Increased consumption of fish products and reduced intake of vegetable
oils improves theω-3/ω-6 ratio, thus controlling the balance between anti-inflammatory
and proinflammatory processes. Theω-3 anti-inflammatory profile depends on its ability
to replace ω-6 in several metabolic pathways, thus reducing the levels of proinflamma-
tory mediators [151]. ω-3 PUFA modulate proinflammatory gene expression through the
inhibition of nuclear factor-kB (NF-kB) activity, and through the reduced expression of
intracellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and
E-selectin [152] (Figure 2). If ω-6-rich diets increase the risk for inflammatory diseases,
ω-3 consumption, instead, decreases this risk related to cancer development [153]. In vivo,
dietaryω-3 PUFAs also exert anti-inflammatory effects via the inhibition of T cell prolif-
eration and the production of IFN- γ and IL-17 [154] (Figure 2). Evidence from in vitro
and animal models has shown the ability of dietaryω-3 PUFAs to increase pro-resolving
functions of neutrophils and re-establish balanced innate immune responses [155].

MD also provides an adequate intake of micronutrients. Through a food frequency
questionnaire, HD patients also showed a reduced intake of vitamin C, vitamin D, magne-
sium, zinc, lycopene, kryptoxanthin, and lutein [156]. Vitamin D, magnesium, and zinc
also have anti-inflammatory effects [157,158] (Figure 2). Vitamin D, whose activation is
impaired with progressive kidney failure, modulates the immune system through VDR
receptors [157], while magnesium, which is stored in advanced CKD, reduces inflamma-
tion and is inversely associated with CRP levels [159]. Zinc, instead, acts as cofactor for
enzymatic activities and influences T lymphocytes’ function. In addition, zinc, manganese,
selenium, and copper deficiencies may determine impaired intracellular glutathione per-
oxidase function with its antioxidant. Because of their efficacy to neutralize free radicals,
they should be monitored in restrictive, low-calorie diets and in patients in ESRD [156].
Dietary polyphenols, bioactive compounds found in vegetables and fruits, have shown
a role in the regulation of inflammation [160] and have proven immunomodulatory and
anti-inflammatory effects, lowering the risk for the development of CVD, cancer, and
neurological diseases [161] (Figure 2).

MD could also positively impact the microbiome. Considering its plasticity and
the nutrition capacity to dysregulate intestinal bacterial composition and physiological
functions, dietary adjustments could be considered therapeutic interventions in these
pathological conditions [162]. Nutritional strategies directly targeting gut microbiota
might represent a correct way to restore human-microbiome relationship [163]. Selecting
saccharolytic over proteolytic microbial colonies using dietary intervention represents
the best method to directly modulate intestinal bacteria proliferation by blocking colonic
adsorption of uremic toxins and subsequently decreasing systemic inflammation [164]. A
large body of evidence has shown that plant-derived fibers, legumes, and unrefined cereals
benefit intestinal health and improve microbiota metabolism and composition, stimulating
the saccharolytic pathway and releasing SCFA [165].

In addition, increasing attention is now given to prebiotics, probiotics, and sym-
biotics [166]. Prebiotics are nondigestible substances contained in aliments, as well as
water-soluble fibers, including beta-glucans, oligosaccharides, and soy oligosaccharides.
These fermentation substrates ease the probiotics, the “good” intestinal bacteria, favoring
their proliferation and working [167]. For this reason, World Health Organization has de-
fined a probiotic as a “live microorganism which when administered in adequate amounts
confer a health benefit on the host.” Symbiotics represent prebiotics and probiotics working
synergically to ameliorate the probiotics’ environment and to provide adequate substrates
to resident microbiome. Several researches have shown the capability of prebiotics, pro-
biotics and symbiotics to remove uremic toxins and, consequently, to keep inflammation
cascade, immune system impairment, disease progression, and related comorbidities under
control [168].
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8. Conclusions

Patients in ESRD or RRT are often characterized by malnutrition and frailty that are
clinical manifestations of inflammaging. In this contest, a dietary approach based on MD,
according to its immunomodulatory properties and antioxidant abundance, might prevent
its detrimental effects.

A recent multinational cohort study conducted for 3 years involving over 8000 patients
showed that compared to general population’s recommendations, HD patient’s intake of
fruit and vegetable was consistently low. At the same time, a higher consumption was
associated with all-cause mortality and non-cardiovascular death. Particularly, the higher
consumption of fruit and vegetables was observed in Italy with a median of 12 serving per
week [169]. These data are consistent with the Moli-sani study report on adherence to MD
and cardiovascular protection in general population [170].

For this reason, the ongoing Kidney Disease Outcomes Quality Initiative (KDOQI)
guideline recommends that every patient and/or caretaker should receive nutrition counsel-
ing when starting RRT. The choice of a nutrition able to fulfill these indications and support
immune response is referred to as immune-nutrition, and different approaches have been
studied to understand its possible effects [171]. In this effort, a tailored nutritional sup-
port, if associated with physical exercise [172], could guarantee a good nutritional status
for ESRD patients and possibly reverse the clinical signs of frailty and musculoskeletal
senescence [173].

Nutritional counseling should embrace not only the quantity and quality of food but
also the environmental and social behaviors of patients with kidney disease. A proactive
attitude against inflammaging, particularly in kidney transplant recipient, should be con-
sidered a necessary challenge to counteract CKD progression and preserve graft function.
In this scenario, MD could represent a model to refer to for personalized nutritional pro-
grams in CKD/RRT patients in order to improve clinical conditions and outcomes in time
for this particular population of patients.
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