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Abstract

In this article, we consider the one-dimensional stochastic wave and heat equations driven
by a linear multiplicative Gaussian noise which is white in time and behaves in space like a
fractional Brownian motion with Hurst index H ∈ (1

4
, 1). We prove that the solution of each

of the above equations is continuous in terms of the index H , with respect to the convergence
in law in the space of continuous functions. The proof is based on a tightness criterion on
the plane and Malliavin calculus techniques in order to identify the limit law.
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1 Introduction

In this article, we consider the Hyperbolic Anderson Model
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The initial condition η ∈ R is assumed to be constant. The random perturbation ẆH is a
Gaussian noise which is white in time and behaves in space like a fractional Brownian motion
with Hurst index H ∈ (14 , 1). More precisely, it is given by a family of centered Gaussian random
variablesWH = {WH(ϕ), ϕ ∈ C∞

0 (R+×R)}, indexed in the space of C∞ functions with compact
support on R+ × R, with the following covariance structure:

E
[

WH(ϕ)WH(ψ)
]

=

∫ ∞

0

∫

R

Fϕ(t, ·)(ξ)Fψ(t, ·)(ξ)µH(dξ)dt,

for any ϕ,ψ ∈ C∞
0 (R+ × R), where the measure µH is given by µH(dξ) = cH |ξ|1−2Hdξ, with

cH =
Γ(2H + 1) sin(πH)

2π
. (1)

We denote by F the Fourier transform in the space variable, which is defined by

Ff(ξ) =
∫

R

e−iξxf(x)dx, f ∈ L1(R).

The solutions of (SWE) and (SHE) are understood in the mild Itô sense, as follows. We
fix a time horizon T > 0 and we denote by {FH

t , t ≥ 0} the filtration generated by the noise
WH (conveniently completed). Then, we say that an adapted and jointly measurable random
field uH = {uH(t, x), (t, x) ∈ [0, T ] × R} solves (SWE) (resp. (SHE)) if it holds, for all (t, x) ∈
[0, T ]× R:

uH(t, x) = η +

∫ t

0

∫

R

Gt−s(x− y)uH(s, y)WH(ds, dy), P-a.s. (2)

where G is the fundamental solution of the wave (resp. heat) equation in R. We recall that

Gt(x) =



















1
21{|x|<t}(x), wave equation,

1

(2πt)
1
2

exp
(

− |x|2
2t

)

, heat equation.

(3)

The stochastic integral appearing in (2) is understood in the Itô sense and will be described in
detail in Section 2.3.

In this paper, we are interested in studying the continuity in law, in the space of continuous
functions, of the solutions to (SWE) and (SHE) with respect to the Hurst index H. More
precisely, the main result of the paper is the following:

Theorem 1.1. Let T > 0. Let H0 ∈ (14 , 1) and {Hn, n ≥ 1} ⊂ (14 , 1) be any sequence converging
to H0. Then, uHn converges to uH0 , as n→ ∞, in law in the space C([0, T ]×R)) of continuous
functions, endowed with the metric of uniform convergence on compact sets.

We point out that we restrict to Hurst indices greater than 1
4 . This is due to the fact that,

as proved in [4, Prop. 3.7], H > 1
4 is also a necessary condition in order to have a solution to

(SWE) and (SHE).
The above theorem can be considered a continuation of the results obtained by the authors

in [12] (see Theorem 4.2 therein), where the same kind of problem has been addressed for one-
dimensional quasi-linear stochastic wave and heat equations with an additive fractional noise as
the one described above. The proof of the latter result, which is indeed valid for any H0 ∈ (0, 1),
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is based on the fact that the solution of the underlying SPDE can be represented as the image
of the stochastic convolution through a continuous functional on the space C([0, T ]×R)). In the
present paper, this technique cannot be applied anymore because of the structure of the linear
multiplicative noise. Instead, we consider the following strategy.

First, we prove that the sequence of probability measures induced by {uHn , n ≥ 1} is tight
in the space C([0, T ]× R) (see Section 3). Here, we split the proof taking into account that the
sequence of Hurst indices is contained in (14 ,

1
2 ] or [

1
2 , 1), for the definition and properties of the

stochastic integral in (2) differ significantly between those two cases. Indeed, the main diffi-
culty here is concentrated in the rough case, where we carefully extend some moment estimates
appearing in [4] in order to make them uniform with respect to H ∈ (14 ,

1
2).

Secondly, in order to identify the limit law, we prove the convergence of the corresponding
finite dimensional distributions (see Section 4). The main problem here comes from the fact
that the solution uH is not a Gaussian process, and so identifying its covariance structure is
not enough to characterize its law. However, thanks to a spectral representation in law of our
noiseWH in terms of a complex-valued Gaussian measure (extending of some classical results in
[21]), we are able to define the whole family of noises {WH , H ∈ (0, 1)} in a single probability
space and then check that, for any fixed (t, x) ∈ [0, T ] × R, uHn(t, x) converges to uH0(t, x) in
L2(Ω). For this, we will use techniques of the Malliavin calculus, precisely the Wiener chaos
expansion of the mild Skorohod solutions of (SWE) and (SHE). In the process of applying this
methodology, we provide three preliminary results which have their own interest and turn out
to be crucial in our main result’s proof:

(i) For any H ∈ (0, 1), we prove that any multiple Wiener integral with respect to WH

admits a representation as a multiple Wiener integral with respect to the above-mentioned
complex-valued Gaussian measure (see Theorem 2.7).

(ii) For any H ∈ (14 , 1), we prove an equivalence result between Itô and Skorohod stochastic
integrals with respect to WH (see Theorem 2.11). This result has already been proved in
[4, Thm. 4.2] for the case H < 1

2 , and we extend it to H ≥ 1
2 . We point out that the latter

case, in which the noise is more regular, entails some extra difficulties due to the fact that
the underlying Hilbert space associated to the noise’s covariance contains distributions.
An important consequence of Theorem 2.11 is that mild Itô and Skorohod solutions to
(SWE) (resp. (SHE)) coincide, and the corresponding Picard iteration scheme admits a
(finite) Wiener chaos decomposition.

(iii) In the setting H ∈ (14 ,
1
2), we prove a Sobolev embedding-type result for the norms of the

Banach space on which we define our solutions (see Lemma 2.17). This result is similar
to classical embedding results, e.g. the ones appearing in [11], but takes into account the
different nature of the Sobolev norm in our setting.

The above strategy will be made clearer in Section 4 below, but let us remark at this point
that the main strategy in this part of the paper does not require a separate analysis for the cases
H < 1

2 and H ≥ 1
2 . Furthermore, the methodology used in both results on tightness and the

limit identification cover equations (SWE) and (SHE) at the same time.
In the case of the stochastic heat equation (SHE) with H > 1

2 , the result in Theorem 1.1
is a particular case of [6, Thm. 1], where the author considers a general non-linear coefficient
σ(uH(t, x)) in front of the noise. We believe that such diffusion coefficient could be also con-
sidered in the case of the wave equation with H > 1

2 , but we have chosen to stick to the linear
multiplicative noise in order to find a unified result that covers also the case H < 1

2 , which is
more mathematically demanding.
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Concerning other related results, we point out the recent article [19], in which the authors
prove strong regularity properties in H ∈ (0, 1) of the Mandelbrot-van Ness representation of
the fractional Brownian motion. As a consequence, it is proved that the solution of a scalar
stochastic differential equation driven by the fractional Brownian motion is differentiable with
respect to the Hurst parameter.

Finally, we also mention that continuity in law with respect to the Hurst index has been
focused in other type of contexts beyond stochastic equations. For instance, in the series of
papers [16, 17, 18], the authors study weak continuity with respect to H for different types of
integrals with respect to fractional Brownian motion. In [15, 26], the same kind of continu-
ity property has been tackled for the local time of the fractional Brownian motion and other
Gaussian fields. Eventually, in the recent paper [1], the continuity property has been shown for
additive functionals of the sub-fractional Brownian motion.

The paper is organized as follows. In Section 2, we give some preliminary tools that will
be needed throughout the paper. Namely, we introduce the basic elements of the Malliavin
calculus, we provide a new integral representation for the multiple Wiener integral with respect
to WH , we recall the construction of the stochastic integral with respect to WH and, finally,
we report about the existing well-posedness results for equations (SWE) and (SHE). Section
3 is devoted to prove the tightness property of the family of laws induced by the solution uH ,
H ∈ (14 , 1). In Section 4, we deal with the limit identification, which allows us to conclude
the proof of Theorem 1.1. In the Appendix, we collect some technical results and a tightness
criterion that are used in the paper.

2 Preliminaries

2.1 Malliavin calculus

In this section, we recall some elements of Malliavin calculus and a useful result of [24]. We
refer the reader to [20] for more details. We will work in the Gaussian space determined by the
noise WH , which is defined as follows.

Let 〈ϕ,ψ〉H := E
[

WH(ϕ)WH(ψ)
]

and define HH as the completion of C∞
0 (R+ × R) with

respect to the inner product 〈·, ·〉H . Then HH defines a Hilbert space and it is well-known that,
if H ≤ 1

2 , it is a space of functions, while for H > 1
2 it contains distributions (see [5, Thm. 4.3]

and [14, Prop. 4.2]). Then, {WH(ϕ), ϕ ∈ C∞
0 (R+×R)} can be extended to a family of Gaussian

random variables indexed on the spaceHH , which we denote again byWH = {WH(ϕ), ϕ ∈ HH}.
This family defines an isonormal Gaussian process on the Hilbert space HH : for any ϕ ∈ HH ,
WH(ϕ) is a centered Gaussian variable and

E
[

WH(ϕ),WH (ψ)
]

= 〈ϕ,ψ〉H , ϕ, ψ ∈ HH .

Let GH be the σ-algebra generated by {WH(ϕ), ϕ ∈ HH}. Then, any GH -measurable random
variable F ∈ L2(Ω) admits the representation

F =
∑

n≥0

JH
n F, (4)

where JH
n F is the projection of F on the n-th Wiener chaos space HH,n, for n ≥ 1, and JH

0 F =
E[F ].

We denote by IHn the multiple Wiener integral of order n with respect to WH , which defines
a linear and continuous operator from H⊗n

H onto HH,n. We briefly recall the construction of IHn ,
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since we will use some of its steps in the sequel. Let {ek, k ≥ 1} be an orthonormal basis of HH

and consider an elementary element of H⊗n
H of the form

ϕ = ei1⊗̂ · · · ⊗̂ ein , (5)

where ⊗̂ denotes the symmetrized tensor product, for some i1, . . . , in ≥ 1. Recall that the set
of finite linear combinations of elementary elements is dense in H⊗n

H . An elementary element of
the form (5) can be more conveniently written as

ϕ = e⊗k1
j1

⊗̂ . . . ⊗̂ e⊗km
jm

, (6)

where all j1, . . . jm ≥ 1 are different and k1 + · · · + km = n. The n-th order multiple Wiener
integral of ϕ is defined as follows:

IHn (ϕ) = Pk1

(

WH(ej1)
)

· · ·Pkm

(

WH(ejm)
)

, (7)

where we denote by Pk the normalized k-th Hermite polynomial. The multiple Wiener integral
is then extended by linearity to all finite linear combinations of elementary elements, and finally
extended to the whole space HH by density.

We also remind that any element in the n-th chaos HH,n can be represented as IHn (f), for
some f ∈ H⊗n

H . Hence, representation (4) can be written as follows:

F = E[F ] +
∑

n≥1

IHn (fn),

where fn ∈ H⊗n
H , for all n ≥ 1. We recall that, for any f ∈ H⊗n

H ,

E
[

|IHn (f)|2
]

= E

[

|IHn (f̃)|2
]

= n! ‖f̃‖2
H⊗n

H

,

where f̃ stands for the symmetrization of f . We also remind that, for a general element f of
H⊗n

H , the norm ‖f‖H⊗n
H

is given by

‖f‖2
H⊗n

H

=

∫

Rn
+

∫

Rn

|Ff(t1, ·, t2, ·, . . . , tn, ·)(ξ1, . . . , ξn)|2µ(dξ1) · · · µ(dξn)dt1 · · · dtn.

Here, we still denoted by F the Fourier transform on the space of tempered distributions in R
n.

Let A ∈ B([0,∞)). We define, for every f ∈ H⊗n
H , the element f1⊗n

A ∈ H⊗n
H in the following

way: if f is a function, we define it obviously as the function f1⊗n
A . If f is a general element

of H⊗n
H , we take any sequence {fk, k ≥ 1} of functions in H⊗n

H such that fk → f in H⊗n
H , as

k → ∞, and we set
f1⊗n

A := lim
k→∞

fk1
⊗n
A .

This limit exists; indeed, we have that {fk, k ≥ 1} is Cauchy in H⊗n
H and

‖fk1⊗n
A − fℓ1

⊗n
A ‖H⊗n

H
≤ ‖fk − fℓ‖H⊗n

H
,

which implies that {fk1⊗n
A , k ≥ 1} is also a Cauchy sequence in H⊗n

H . The limit clearly does not
depend on the chosen approximating sequence. On the other hand, we define the σ-field

FH
A = σ{WH(1Dϕ), D ∈ B0(R+), D ⊂ A, ϕ ∈ C∞

0 (R)} ∨ N ,

where N are the null sets of F and B0(R+) are the bounded Borel sets of R+.
We have the following result:
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Lemma 2.1. Let F ∈ L2(Ω) with Wiener chaos expansion given by F = E[F ] +
∑

n≥1 I
H
n (fn),

where fn ∈ H⊗n
H are symmetric, and let A ∈ B([0,∞)). Then, it holds

E
[

F |FH
A

]

=
∑

n≥0

IHn
(

fn1
⊗n
A

)

.

Proof. The proof follows exactly as that of [4, Lem. A.1]. We only need to observe that, if
h ∈ H⊗n

H is symmetric, it can be written as the limit of a sequence of symmetric functions,
which in turn can be written as the limit of finite linear combinations of functions of the type
f⊗n, where f ∈ HH and ‖f‖HH

= 1.

Let us now introduce the Malliavin derivative operator and the Skorohod integral. Let S be
the class of random variables F of the form

F = f(WH(ϕ1), . . . ,W
H(ϕn)),

where f ∈ C∞
b (Rn) and ϕj ∈ HH , for every j = 1, . . . , n. For any F ∈ S, we define the Malliavin

derivative of F as the HH -valued random variable DF given by

DF =

n
∑

j=1

∂f

∂xj
(WH(ϕ1), . . . ,W

H(ϕn))ϕj .

If we endow S with the norm ‖F‖D1,2 := E
[

|F |2
]
1
2+E

[

‖DF‖2HH

] 1
2
, it turns out that the operator

D can be extended to the completion of S with respect to ‖ · ‖D1,2 , which we will denote by D
1,2.

We define now the divergence operator δ, which is the adjoint of D. The divergence operator
is defined on its domain Dom(δ), which is the space of HH -valued random variables such that
u ∈ L2(Ω;HH) and

|E [〈DF, u〉H ]| ≤ cE
[

|F |2
]
1
2 , for all F ∈ D

1,2,

where the constant c depends on u. Being the adjoint of D, the divergence operator δ(u) is
defined for any u ∈ Dom(δ) by the duality relation, holding for every F ∈ D

1,2:

E

[

〈DF, u〉H
]

= E[Fδ(u)].

From the duality relation one can deduce that E[δ(u)] = 0, for every u ∈ Dom(δ). For any
u ∈ Dom(δ), δ(u) is called the Skorohod integral of u and is denoted by

∫ ∞

0

∫

R

u(t, x)WH(δt, δx) := δ(u).

We will need the following two results involving the Skorohod integral (cf. Propositions 1.3.3
and 1.3.6 in [20]).

Lemma 2.2. Let F ∈ D
1,2 and u ∈ Dom(δ) such that Fu ∈ L2(Ω;HH). Then, Fu ∈ Dom(δ)

and it holds
δ(Fu) = Fδ(u) − 〈DF, u〉H .
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Lemma 2.3. Let u ∈ L2(Ω;HH) and {un, n ≥ 1} ⊂ Dom(δ) such that

lim
n→∞

E
[

||un − u||2HH

]

= 0.

Suppose that there exists a random variable G ∈ L2(Ω) such that, for all F ∈ S,

E [δ(un)F ] → E[GF ].

Then u ∈ Dom(δ) and δ(u) = G.

We now define the contraction ⊗1. For h ∈ H⊗n
H and any element e1⊗· · ·⊗en of the canonical

basis of H⊗n
H , we define

(e1 ⊗ · · · ⊗ en)⊗1 h := (e1 ⊗ · · · ⊗ en−1)〈en, h〉H ,

and we extend it to a generic f ∈ H⊗n
H by linearity and density. The following lemma can be

found in [24, Thm. 4.3.8]:

Lemma 2.4. Let F ∈ L2(Ω) with Wiener chaos expansion F = E[F ] +
∑

n≥1 I
H
n (fn), where

fn ∈ H⊗n
H is symmetric, for all n ≥ 1. Then F ∈ D

1,2 if and only if

∑

n≥1

nn!‖fn‖2H⊗n
H

<∞.

In this case, for every h ∈ HH , we have

〈DF, h〉H =
∑

n≥1

nIHn−1(fn ⊗1 h).

2.2 Spectral representation of WH

This section is devoted to prove that any multiple Wiener integral with respect to the noise
WH admits a representation as a multiple Wiener integral with respect to a complex-valued
Gaussian measure. For this, we will provide a suitable spectral representation of WH in terms
of such a complex-valued Gaussian measure. We point out that the results in the present section
will only be used in Section 4 in order to identify the underlying limit law.

Recall that {WH(ϕ), ϕ ∈ HH} denotes the underlying isonormal Gaussian process associated
to our noise WH . Using an approximation argument, one proves that, for any t > 0 and x ∈ R,
1[0,t]×[0,x] ∈ HH . Then, we can define the random field (making an abuse of notation)

WH(t, x) :=WH
(

1[0,t]×[0,x]

)

, (t, x) ∈ R+ × R, (8)

which is Gaussian, centered and satisfies, for all s, t > 0 and x, y ∈ R:

E
[

WH(t, x)WH(s, y)
]

=
1

2
(s ∧ t)

(

|x|2H + |y|2H − |x− y|2H
)

.

The latter equality is a consequence of the representation in law of the fractional Brownian
motion as a Wiener type integral with respect to a complex Brownian motion (see, for instance,
[21, p. 257]).
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Let W̃ : B0(R+ × R) → C be a complex-valued Gaussian measure which can be written as
W̃ = W̃1 + iW̃2, where W̃1 and W̃2 are independent real-valued centered Gaussian measures
such that, for any A,B ∈ B(R+ × R),

E
[

W̃j(A)W̃j(B)
]

=
|A ∩B|

2
, j = 1, 2,

where |A ∩ B| is the Lebesgue measure of A ∩ B. In particular, E
[

|W̃ (A)|2
]

= |A|, for all

A ∈ B0(R+ × R). Note that W̃1 and W̃2 are essentially white noises in the sense of [9, Page
6, Example 3.13]. One can define the integral of any deterministic function f ∈ L2(R+ × R;C)
with respect to W̃ , as follows:

∫

R+

∫

R

f(t, x)W̃ (dt, dx) :=

∫

R+

∫

R

f(t, x)W̃1(dt, dx) + i

∫

R+

∫

R

f(t, x)W̃2(dt, dx),

and, for j = 1, 2,
∫

R+

∫

R

f(t, x)W̃j(dt, dx) :=

∫

R+

∫

R

Re[f ](t, x)W̃j(dt, dx) + i

∫

R+

∫

R

Im[f ](t, x)W̃j(dt, dx).

The latter integrals can be interpreted, e.g., as integrals with respect to a martingale measure
(see [25]). It holds that, for any f, g ∈ L2(R+ × R;C),

E

[
∫

R+

∫

R

f(t, x)W̃ (dt, dx)

∫

R+

∫

R

g(t, x)W̃ (dt, dx)

]

=

∫

R+

∫

R

f(t, x)g(t, x) dxdt.

This yields, for all f ∈ L2(R+ × R;C), the isometry property

E

[

∣

∣

∣

∣

∫

R+

∫

R

f(t, x)W̃ (dt, dx)

∣

∣

∣

∣

2
]

=

∫

R+

∫

R

|f(t, x)|2 dxdt.

We have the following result, whose proof follows immediately.

Proposition 2.5. Set, for any (t, x) ∈ R+ × R,

W̃H(t, x) :=
√
cH

∫ t

0

∫

R

F [1[0,x]](ξ)|ξ|
1
2
−HW̃ (ds, dξ). (9)

Then, W̃H is a Gaussian process which has the same distribution as the random fieldWH defined
in (8).

At this point, we aim to extend the random field W̃H defined in (9) to an isonormal Gaussian
process in HH . We need the following corollary of [5, Thm. 4.3]:

Proposition 2.6. The space of finite linear combinations of functions of the form

f(r, z) = 1(s,t]×(x,y](r, z),

with 0 ≤ s < t and x < y, is dense in the Hilbert space HH .

Proof. The result is a direct consequence of [5, Thm. 4.3]. Indeed, in the latter paper it is proved
that any predictable process {X(t, x), (t, x) ∈ R+ ×R} belonging to L2(Ω;HH) can be approx-
imated by finite linear combinations of processes of the form (r, z, ω) 7→ 1G(ω)1(s,t](r)1(x,y](z),
for some G ∈ F . To prove our result, it suffices to observe that, if we choose a deterministic
element ϕ in their proof, also its approximating sequence ϕn is deterministic, and the norm in
the space L2(Ω;HH) coincides with the norm in HH for deterministic elements.
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Let us now define, for any (t, x) ∈ R+ × R,

W̃H
(

1[0,t]×[0,x]

)

:= W̃H(t, x)

(again making an abuse of notation). This definition can be extended by linearity to any simple
function on R+ × R. Then, thanks to Proposition 2.6 and using an approximation argument,
one constructs an isonormal Gaussian process {W̃H(ϕ), ϕ ∈ HH} which has exactly the same
law as {WH(ϕ), ϕ ∈ HH}.

For the remainder of the paper, we will assume, without any loss of generality, that our
Gaussian setting is the one determined by the isonormal Gaussian process W̃H = {W̃H(ϕ), ϕ ∈
HH}. For the sake of simplicity, we will use again the notation WH instead of W̃H . So, the
main implications of this setting are that, first, we have the representation

WH
(

1[0,t]×[0,x]

)

=
√
cH

∫ t

0

∫

R

F [1[0,x]](ξ)|ξ|
1
2
−HW̃ (ds, dξ) (10)

and, secondly, the whole family of processes {WH , H ∈ (0, 1)} are defined in a single probability
space, which is the one where the Gaussian measure W̃ is defined. This last fact will be crucial
in Section 4.

The main result of the section is the following:

Theorem 2.7. Let n ≥ 1, f ∈ H⊗n

H and IHn (f) be the multiple Wiener integral of f with respect

to WH . Let f̂ be the function defined by

f̂(t1, x1, t2, x2, . . . , tn, xn) = (cH)
n
2 F [f(t1, ·, t2, ·, . . . , tn, ·)](x1, . . . , xn) |x1|

1
2
−H · · · |xn|

1
2
−H ,

where we recall that the constant cH is given in (1) Then, it holds that

IHn (f) = Ĩn(f̂), P-a.s., (11)

where Ĩn is the n-th order Wiener integral with respect to the complex Gaussian measure W̃ .

Proof. We first check that the result is true for the first-order Wiener integral IH1 . We aim to
prove that, for any ϕ ∈ HH ,

IH1 (ϕ) = (cH)
1
2 Ĩ1

(

Fϕ(t, ·)(x) |x| 12−H
)

, (12)

which means that
∫

R+

∫

R

ϕ(t, x)WH(dt, dx) = (cH)
1
2

∫

R+

∫

R

Fϕ(t, ·)(x) |x| 12−HW̃ (dt, dx).

By (10) and the linearity of the Wiener integral, the latter equality clearly holds in the case
where ϕ(t, x) = 1(r,s]×(y,z](t, x), for 0 ≤ r < s and y < z. Moreover, owing to Proposition
2.6, it can also be extended to the whole space HH , hence proving the theorem’s statement for
first-order Wiener integrals.

Let us now prove (11) for n > 1. We first consider the case where f ∈ H⊗n
H is an elementary

element of the form (6). In this case, we use the definition of the multiple Wiener integral (see
(7)) and the validity of the case n = 1 (see (12)), as follows:

IHn (f) = Pk1

(

WH(ej1)
)

· · ·Pkm

(

WH(ejm)
)

= Pk1

(

Ĩ1(êj1)
)

· · ·Pkm

(

Ĩ1(êjm)
)

= Ĩn

(

ê
⊗k1
j1

⊗ · · · ⊗ ê
⊗km

jm

)

= Ĩn(f̂).
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The extension to any element of H⊗n
H can be proved by recalling that the set of finite linear

combinations of elementary elements of the form (6) is dense in H⊗n
H .

2.3 Itô and Skorohod stochastic integrals

This section is devoted to recall the definition of stochastic integrals with respect to WH , both
in the case H < 1

2 and H ≥ 1
2 , and to prove that the Skorohod integral with respect to WH

of an adapted process coincides with the corresponding Itô integral (see Theorem 2.11 below).
This result will allow us to express any Picard iteration associated to our underlying SDPEs as
a finite sum of multiple Wiener integrals, and this fact will be used in the proof of Theorem 4.1
in Section 4.

Recall that we have a complete probability space (Ω,F ,P) in which we have our complex-
valued Gaussian measure W̃ (see Section 2.2). Recall that our isonormal Gaussian process
WH = {WH(ϕ), ϕ ∈ HH} has been defined in such a way that we may assume that WH is
defined in (Ω,F ,P), for all H ∈ (0, 1). Regarding adaptability, we consider the natural filtration
generated by W̃ , which we denote by {Ft, t ≥ 0} and can be defined as Ft = σ(W̃ (s, x), (s, x) ∈
[0, t]× R), where

W̃ (s, x) :=

∫

R+

∫

R

1[0,s]×[0,x](r, z)W̃ (dr, dz).

Fix a time horizon T > 0. We denote by E the space of simple processes on [0, T ]× R, that
is the space of finite linear combinations of processes of the form

g(t, x, ω) := Y (ω)1(r,s]×(y,z](t, x), (13)

for some 0 ≤ r ≤ s ≤ T and y ≤ z, and for some Fr-measurable random variable Y . The (Itô)
stochastic integral of g with respect to WH is defined as follows: for any t ∈ [0, T ], set

∫ t

0

∫

R

g(τ, x)WH(dτ, dx) := Y
(

WH(t ∧ s, z)−WH(t ∧ s, y)−WH(t ∧ r, z) +WH(t ∧ r, y)
)

.

This definition can be extended to all elements of E by linearity. Following [8] and [2], we endow
E with the norm

‖g‖0 :=

(

E

[

cH

∫ T

0

∫

R

|Fg(t, ·)(ξ)|2 |ξ|1−2Hdξdt

])

1
2

,

and we define PT
0 as the completion of E with respect to the norm ‖ · ‖0. It turns out that

PT
0 is the space of predictable processes g for which ‖g‖0 < ∞. The stochastic integral can be

extended to the whole space PT
0 .

The following result is a particular case of [10, Prop. 2.9]:

Theorem 2.8. Suppose that H ∈ [12 , 1). Let Γ : [0, T ] × R → R be such that, for all t ∈ (0, T ],
the function Γ(t, ·) defines non-negative distribution with rapid decrease and

∫ T

0

∫

R

|FΓ(t, ·)(ξ)|2|ξ|1−2Hdξdt <∞.

Moreover, we assume that, for all t ∈ [0, T ], Γ(t, dx) := Γ(t, x)dx defines a non-negative measure
on R such that

sup
t∈[0,T ]

Γ(t,R) <∞.
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Let Z = {Z(t, x), (t, x) ∈ [0, T ]× R} be a predictable stochastic process satisfying

sup
(t,x)∈[0,T ]×R

E
[

|Z(t, x)|2
]

<∞.

Then, the process {S(t, x) := Z(t, x)Γ(t, x), (t, x) ∈ [0, T ] × R} belongs to PT
0 . Furthermore, if

Z satisfies, for some p ≥ 2, that

sup
(t,x)∈[0,T ]×R

E [|Z(t, x)|p] <∞,

then we have the following Burkholder-Davis-Gundy’s inequality:

E

[

∣

∣

∣

∣

∫ T

0

∫

R

S(s, x)WH(ds, dx)

∣

∣

∣

∣

p
]

(14)

≤ zp(νT,H)
p
2
−1

∫ T

0
sup
x∈R

E [|Z(s, x)|p]
∫

R

cH |FΓ(s, ·)(ξ)|2|ξ|1−2Hdξds,

where the constant zp is the one in the classical Burkholder-Davis-Gundy inequality for contin-
uous martingales, and νT,H is given by

νT,H := cH

∫ T

0

∫

R

|FΓ(s, ·)(ξ)|2|ξ|1−2Hdξds.

As far as the case H < 1
2 is concerned, we have the following result (see [2, Thm. 2.9]).

Theorem 2.9. Suppose that H ∈ (0, 12 ). Let {S(t, x), (t, x) ∈ [0, T ] × R} be a predictable
process such that, for every (ω, t), S(ω, t, ·) defines a tempered function whose Fourier transform
FS(ω, t, ·) is a locally integrable function satisfying

E

[∫ T

0

∫

R

|FS(t, ·)(ξ)|2|ξ|1−2Hdξdt

]

<∞.

Then, S ∈ PT
0 and we have the isometry

E

[

∣

∣

∣

∣

∫ T

0

∫

R

S(t, x)WH(dt, dx)

∣

∣

∣

∣

2
]

= E

[
∫ T

0

∫

R

|FS(t, ·)(ξ)|2cH |ξ|1−2Hdξdt

]

.

Moreover, we have the Burkholder-Davis-Gundy inequality: for any p ≥ 2,

E

[

∣

∣

∣

∣

∫ T

0

∫

R

S(t, x)WH(dt, dx)

∣

∣

∣

∣

p
]

≤ zp c
p
2
H E

[
∫ T

0

∫

R

|FS(t, ·)(ξ)|2|ξ|1−2Hdξdt

]

p
2

, (15)

where the constant zp is the constant appearing in the classical Burkholder-Davis-Gundy inequal-
ity for continuous martingales.

Remark 2.10. Owing to [2, Prop. 2.8], the isometry property in the above Theorem 2.9 can be
equivalently written as

E

[

∣

∣

∣

∣

∫ T

0

∫

R

S(t, x)WH(dy, dx)

∣

∣

∣

∣

2
]

= E

[

c̃H

∫ T

0

∫

R2

|S(t, x)− S(t, y)|2|x− y|2H−2dydxdt

]

,

where c̃H = H(1−2H)
2 . Hence, (15) becomes

E

[

∣

∣

∣

∣

∫ T

0

∫

R

S(t, x)WH(dy, dx)

∣

∣

∣

∣

p
]

≤ zp c̃
p
2
H E

[
∫ T

0

∫

R

|S(t, x)− S(t, y)|2|x− y|2H−2dydxdt

]

p
2

.
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The following result is an extension of [4, Thm. 4.2] to the case H > 1
2 . Note that, in this

latter case, though the noise is more regular in space than a white noise, the corresponding
Hilbert space HH may be rather big, and indeed contains genuine distributions. This makes
our proof different compared to the one of [4, Thm. 4.2], in which HH is a space of functions
(because H < 1

2).

Theorem 2.11. Let H ∈ [14 , 1) and u = {u(t, x), (t, x) ∈ [0,∞) × R} be a stochastic process
such that, restricted to t ∈ [0, T ], belongs to PT

0 . Then, for any t > 0, u1[0,t] ∈ Dom(δ) and its
Skorohod integral coincides with the Itô integral, that is

∫ ∞

0

∫

R

u(s, x)1[0,t](s)W
H(δs, δx) =

∫ t

0

∫

R

u(s, x)WH(ds, dx), P-a.s.

Proof. The proof is an adaptation of that of [4, Thm. 4.2]. The only difference is that, here, a
general element of HH is not necessarily a function. It is enough to prove the statement in the
case where u is an elementary process of the form (13). The extension to any arbitrary element
of PT

0 can be done exactly as in Case 2 of the proof of [4, Thm. 4.2].
Let g be an elementary process of the form g(τ, x, ω) = Y (ω)1(r,s](τ)1(y,z](x), with 0 ≤ r <

s ≤ T and y < z, where we assume that Y is Fr-measurable, bounded and belongs to D
1,2. We

have to check that g1[0,t] ∈ Dom(δ) and it holds

δ
(

g1[0,t]
)

=

∫ t

0

∫

R

g(τ, x)WH (dτ, dx).

First, we note that g1[0,t] = Y 1[r∧t,s∧t]×[y,z]. Since Y ∈ D
1,2 and 1[r∧t,s∧t]×[y,z] ∈ Dom(δ), we can

apply Lemma 2.2 to conclude that g1[0,t] ∈ Dom(δ) and

δ(g1[0,t]) = Y δ(1[r∧t,s∧t]×[y,z])− 〈DY, 1[r∧t,s∧t]×[y,z]〉H ,

if the right-hand side above belongs to L2(Ω). We clearly have that Y δ(1[r∧t,s∧t]×[y,z]) ∈ L2(Ω),
and we will show that 〈DY, 1[r∧t,s∧t]×[y,z]〉H = 0, which will allow us to conclude the proof.

Let h := 1[r∧t,s∧t]×[y,z]. Since Y is Fr-measurable, we have, by Lemma 2.1,

Y = E[Y |Fr] =
∑

n≥0

IHn
(

gn1
⊗n
[0,r]

)

,

for some symmetric gn ∈ H⊗n
H , n ≥ 1. By Lemma 2.4 we have that

〈DY, h〉H =
∑

n≥1

nIHn−1

(

gn1
⊗n
[0,r] ⊗1 h

)

.

We claim that g1⊗n
[0,r] ⊗1 h = 0, for all g ∈ H⊗n

H . Indeed, if g = e⊗n for some function e ∈ HH ,
we have

e⊗n1⊗n
[0,r] ⊗1 h = e⊗(n−1)1

⊗(n−1)
[0,r] 〈e1[0,r], h〉H ,

and we observe that

〈e1[0,r], h〉H =

∫ ∞

0

∫

R

Fe(s, ·)(ξ)1[0,r](s)F1[y,z](ξ)1[r∧t,s∧t](s)dξds = 0.

This can be extended to a generic element in H⊗n
H by linearity and density (using Lemma

2.3).
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2.4 Existence and uniqueness of solution

This section is devoted to recall the well-posedness results for equations (SWE) and (SHE) and
prove that the corresponding Picard iterations admit a suitable finite Wiener chaos expansion.

First, we recall that the solution to our equations is understood in the mild sense. Namely, an
adapted and jointly measurable random field uH = {uH(t, x), (t, x) ∈ [0, T ] × R} solves (SWE)
(resp. (SHE)) if it holds, for all (t, x) ∈ [0, T ]× R:

uH(t, x) = η +

∫ t

0

∫

R

Gt−s(x− y)uH(s, y)WH(ds, dy), (16)

where G is the fundamental solution of the wave (resp. heat) equation in R (see (3)).

The following result is a particular case of [10, Thm. 4.3], which covers the case H ≥ 1
2 .

Theorem 2.12. Let H ∈ [12 , 1). There exists a unique mild solution uH to equation (16).
Moreover, the solution uH is L2(Ω)-continuous and satisfies, for every p ≥ 1,

sup
(t,x)∈[0,T ]×R

E
[

|uH(t, x)|p
]

<∞.

Remark 2.13. The case H = 1
2 corresponds to the space-time white noise, while in the case

H ∈ (12 , 1) the noise’s spatial correlation is given by a Riesz kernel of order 2− 2H.

The case H ∈ (14 ,
1
2) has been considered in [2, Thm. 1.1]. In the latter reference, the authors

proved that condition H > 1
4 is necessary and sufficient in order to have a solution (see [2, Prop.

3.7]).

Theorem 2.14. Let H ∈ (14 ,
1
2). There exists a unique mild solution uH to (16). Moreover, the

solution uH is L2(Ω)-continuous and satisfies, for every p ≥ 2,

sup
(t,x)∈[0,T ]×R

E
[

|uH(t, x)|p
]

<∞ (17)

and

sup
(t,x)∈[0,T ]×R

∫ T

0

∫

R2

G2
t−s(x− y)

E
[

|uH(s, y)− uH(s, z)|p
]
2
p

|y − z|2−2H
dydzds <∞. (18)

Remark 2.15. In the case H ∈ (14 ,
1
2 ), the solution uH satisfies, in addition to (17), the further

constraint (18). This comes from the fact that, in [2], the solution of (16) was proved to exist in
the space of L2(Ω)-continuous, adapted and jointly measurable processes endowed with a Sobolev’s
type norm which included a term of the form (18).

In the case H ∈ (14 ,
1
2), the solution uH of (SWE) (and (SHE)) has been found in [2] as a

limit of the Picard iteration scheme, which is defined by

uH0 (t, x) := η

uHm+1(t, x) := η +

∫ t

0

∫

R

Gt−s(x− y)uHm(s, y)WH(ds, dy), m ≥ 0,

where (t, x) ∈ [0, T ]×R. The limit is found in the Banach space χp
H , for p ≥ 2, which is defined as

the space of L2(Ω)-continuous, adapted and jointly measurable processes Y = {Y (t, x), (t, x) ∈
[0, T ]× R} such that

‖Y ‖χp
H
:= ‖Y ‖χp

1
+ ‖Y ‖χp

H,2
<∞,
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where,

‖Y ‖χp
1
:= sup

(t,x)∈[0,T ]×R

E [|Y (t, x)|p]
1
p

and

‖Y ‖χp
H,2

:= sup
(t,x)∈[0,T ]×R

(

c̃H

∫ t

0

∫

R2

G2
t−s(x− y)

(E [|Y (s, y)− Y (s, z)|p])
2
p

|y − z|2−2H
dydzds

)
1
2

.

We recall that the constant c̃H has been defined in Remark 2.10. Notice that the Lp-part ‖ · ‖χp
1

of the norm ‖ · ‖χp
H

does not depend on H, as it is also pointed out by the notation itself, while

the Gagliardo-type part ‖ · ‖χp
H,2

does depend on H.

Remark 2.16. In [2], the norm ‖ · ‖χp
H,2

is defined without the constant c̃H = H(1−2H)
2 . Since

the two definitions give rise to equivalent norms, the results about existence and uniqueness of
solution for equation (16) when H ∈ (14 ,

1
2 ) still hold true. On the other hand, we will see how

adding this normalizing constant helps us proving some uniform (in H) results that will be needed
in the sequel.

Before stating the main result of the section, we consider the following Sobolev-type embed-
ding for the space χp

H , which could be of independent interest.

Lemma 2.17. Let p ≥ 2 and 1
4 < α ≤ β < 1

2 . Then, it holds:

χp
α →֒ χp

β.

This means that there exists a constant C such that, for every adapted, jointly measurable and
L2(Ω)-continuous process Y , we have

‖Y ‖χp
β
≤ C‖Y ‖χp

α
. (19)

Moreover, it holds the following stronger property for the Gagliardo-type seminorm ‖ · ‖χp
β,2

:

sup
β∈[α, 1

2
)

‖Y ‖χp
β,2

≤ C̃‖Y ‖χp
α

where the constant C̃ only depends on p and T .

Proof. We follow the same lines as in the proof of [11, Prop. 2.1]. It suffices to prove (19) for
the ‖ · ‖χp

H,2
-part of the norm. It holds:

(

c̃β

∫ t

0

∫

R2

G2
t−s(x− y)

(E [|Y (s, y)− Y (s, z)|p])
2
p

|y − z|2−2β
dydzds

)

1
2

=

(

c̃β

∫ t

0

∫

R2

G2
t−s(x− y)

(E [|Y (s, y)− Y (s, y − z)|p])
2
p

|z|2−2β
dydzds

)

1
2

≤ C(I1 + I2), (20)
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where we label I1 the term where we integrate in the variable z in the region |z| ≥ 1, and I2 the
term where we integrate in the region |z| < 1. First, we have

I1 =

(

c̃β

∫ t

0

∫

R

∫

|z|≥1
G2

t−s(x− y)
(E [|Y (s, y)− Y (s, y − z)|p])

2
p

|z|2−2β
dzdyds

)

1
2

≤ Cp sup
(t,x)∈[0,T ]×R

(E [|Y (t, x)|p])
1
p

(

c̃β

∫ t

0

∫

R

∫

|z|≥1
G2

t−s(x− y)
1

|z|2−2β
dzdyds

)
1
2

Note that
∫

|z|≥1
1

|z|2−2β dz = 2
1−2β . Hence,

c̃β

∫ t

0

∫

R

∫

|z|≥1
G2

t−s(x− y)
1

|z|2−2β
dzdyds

≤ β

∫ t

0

∫

R

G2
t−s(x− y) dyds ≤ βCT ≤ CT

2
.

Thus, we can conclude that

I1 ≤ Cp,T sup
(t,x)∈[0,T ]×R

(E [|Y (t, x)|p])
1
p .

Regarding I2, we observe that

I2 =

(

c̃β

∫ t

0

∫

R

∫

|z|<1
G2

t−s(x− y)
(E [|Y (s, y)− Y (s, y − z)|p])

2
p

|z|2−2β
dzdyds

)

1
2

≤
(

c̃α

∫ t

0

∫

R

∫

|z|<1
G2

t−s(x− y)
(E [|Y (s, y)− Y (s, y − z)|p])

2
p

|z|2−2α
dzdyds

)

1
2

≤
(

c̃α

∫ t

0

∫

R

∫

R

G2
t−s(x− y)

(E [|Y (s, y)− Y (s, y − z)|p])
2
p

|z|2−2α
dzdyds

)
1
2

≤ sup
(t,x)∈[0,T ]×R

(

c̃α

∫ t

0

∫

R

∫

R

G2
t−s(x− y)

(E [|Y (s, y)− Y (s, y − z)|p])
2
p

|z|2−2α
dzdyds

)
1
2

= ‖Y ‖χp
α,2
.

Notice that both the estimate for I1 and I2 are independent of (t, x) ∈ [0, T ]×R and β ∈ [α, 12).
Therefore, we can take the supremum with respect to (t, x) ∈ [0, T ] × R and β ∈ [α, 12 ) in the
left-hand side of (20) and we conclude

sup
β∈[α, 1

2
)

‖Y ‖χp
β,2

≤ Cp,T‖Y ‖χp
1
+ ‖Y ‖χp

α,2
≤ C̃‖Y ‖χp

α
,

which obviously implies

‖Y ‖χp
β
≤ (Cp,T + 1)‖Y ‖χp

1
+ ‖Y ‖χp

α,2
≤ C‖Y ‖χp

α
,

for some constant C.
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The path Hölder-continuity of the solution to (16) has been proved in [3] in the case
H ∈ (14 ,

1
2), while the case H ∈ [12 , 1) follows from the results in [25, 22, 23]. For the sake

of completeness, we state a result which unifies both cases, and whose proof follows, indeed, as
an immediate consequence of the stronger results Proposition 3.1 and Proposition 3.8 proven in
Section 3.

Theorem 2.18. Let H ∈ (14 , 1). Then, the solution uH to (16) satisfies the following: for any
p ≥ 2, there exists a constant Cp > 0 (which indeed does not depend on H) such that, for all
t, t′ ∈ [0, T ] and x, x′ ∈ R, it holds

sup
x∈R

E
[

|uH(t′, x)− uH(t, x)|p
]

≤ Cp|t′ − t|γp

and
sup

t∈[0,T ]
E
[

|uH(t, x′)− uH(t, x)|p
]

≤ Cp|x′ − x|Hp,

where γ = H for the wave equation and γ = H
2 for the heat equation. Thus, the process uH has

a modification whose trajectories are almost surely γ′-Hölder continuous in time, for all γ′ < γ,
and H ′-Hölder continuous in space for all H ′ < H.

Proof. As already mentioned, the result follows from Propositions 3.1 and 3.8 in Section 3, where
the same kind of estimates have obtained uniformly with respect to H.

The above Theorems 2.14 and 2.12, together with Theorem 2.11 on the equivalence between
Itô and Skorohod integrals, allow us to prove that equations (SWE) and (SHE) admit a unique
Skorohod mild solution. By definition, it is a square integrable random field {uH(t, x), (t, x) ∈
R+ × R} such that, for all (t, x) ∈ R+ × R,

uH(t, x) = η +

∫ t

0

∫

R

Gt−s(x− y)uH(s, y)WH(δs, δy), P-a.s., (21)

that is, the process v(t,x) := {1[0,t](s)Gt−s(x − y)uH(s, y), (s, y) ∈ R+ × R} belongs to Dom(δ)

and uH(t, x) = η + δ
(

v(t,x)
)

.

Theorem 2.19. Let H ∈ (14 , 1) and T > 0. Equation (21) admits a unique adapted solution in
[0, T ]× R.

Proof. This result has already been proved in [4, Thm. 4.3] for the wave equation in the case
H ∈ (14 ,

1
2). In [13, p. 49], the authors notice that it is also true for the heat equation, still under

the constraint H ∈ (14 ,
1
2). The statement’s validity in the case H ∈ [12 , 1) follows combining

Theorems 2.11 and 2.12.

Finally, the following result will be crucial in order to identify the limit law in Theorem 4.1.

Theorem 2.20. Let H ∈ (14 , 1) and uH be the solution to (16). Recall that the corresponding
Picard iteration scheme is defined as follows: for any m ≥ 0, set

uH0 (t, x) := η,

uHm+1(t, x) := η +

∫ t

0

∫

R

Gt−s(x− y)uHm(s, y)WH(ds, dy),

16



where (t, x) ∈ [0, T ]× R. Then, for any m ≥ 0, it holds

uHm(t, x) =
m
∑

n=0

IHn (gn(·, t, x)),

where IHn is the n-th multiple Wiener integral with respect to WH and the kernel gn(·, t, x) is
given by

gn(t1, x1, t2, x2, . . . , tn, xn, t, x) := Gt−tn(x− xn) · · ·Gt2−t1(x2 − x1) η1{0<t1<···<tn<t}. (22)

Proof. The case of the wave equation with H < 1
2 has already been proved in [4, Thm. 4.3].

Owing to Theorem 2.11, the arguments in the proof of the former theorem can be carried out
to easily extend the result to the case H ≥ 1

2 as well as to the heat equation.

3 Tightness

Recall that our main result (see Theorem 1.1) states that, ifH0 ∈ (14 , 1) and {Hn, n ∈ N} ⊂ (14 , 1)
is any sequence converging to H0, then u

Hn → uH0 in law in the space C([0, T ]×R) of continuous
functions. The first step in order to prove the above result consists in checking that the laws of
{uHn , n ∈ N} define a tight family of probability measures on C([0, T ] × R).

We split the computations in the case H0 ∈ (14 ,
1
2 ], which has more involved calculations,

and the case H0 ∈ [12 , 1), in which the calculations are more straightforward. We explain briefly
why: in the rough case, the Burkholder-Davis-Gundy inequality (15) forces us to consider the
Fourier transform of the whole integrand process, while in the case H ∈ [12 , 1), when we use the
Burkholder-Davis-Gundy inequality (14), we only have to compute the Fourier transform of the
deterministic part of the integrand process, which will be explicit in our case.

3.1 Tightness in the case (1
4
, 1
2
)

We suppose that the limiting Hurst exponent H0 ∈ (14 ,
1
2 ]. If H0 ∈ (14 ,

1
2 ), we can assume without

loss of generality that the whole sequence {Hn, n ∈ N} ⊂ [η1, η2] ⊂ (14 ,
1
2). If H0 = 1

2 , we can
assume at most that {Hn, n ∈ N} ⊂ [η1,

1
2) ⊂ (14 ,

1
2). From now on we will denote both type of

sets as K, meaning that K = [η1, η2] if H0 ∈ (14 ,
1
2) and K = [η1,

1
2) if H0 = 1

2 . Clearly, if the
limiting exponent H0 = 1

2 , we cannot suppose that Hn → H0 always from below. In Section
3.2, we will also handle families of Hurst exponents with K = (12 , η2], so that our result will be
complete (because the union of a finite number of tight families is a tight family itself).

We are ready to state the main result of the present section.

Proposition 3.1. Let UK := {uH , H ∈ K} be the family of solutions of (16), where K is either
of the form [η1, η2], with η1, η2 ∈ (14 ,

1
2) and η1 < η2, or K = [η1,

1
2 ), where η1 ∈ (14 ,

1
2). Then, the

family UK is tight in C([0, T ]×R), endowed with the metric of uniform convergence on compact
sets.

We postpone the proof of this result, since we need some preliminar results. We aim to apply
the tightness criterion Theorem A.5. Indeed, we will check that conditions (i) and (ii) in the
latter result are satisfied by the Picard iterations uHm, uniformly with respect to H, and then we
will pass to the limit as m→ ∞.

First of all, we show that the the Picard iterations {uHm, m ≥ 0} are well-defined and satisfy
some estimates uniformly with respect to H. The proof is very similar to that of [2, Thm. 3.7].
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In fact, we will follow the same steps in its proof and take care of the fact that we need all
estimates uniformly in H. Only the most significant parts of the proof will be written explicitly.

Proposition 3.2. Let p ≥ 2 and H ∈ (14 ,
1
2). For any m ≥ 0, we have that

(i) uHm(t, x) is well-defined, for any H ∈ K and (t, x) ∈ [0, T ] ×R.

(ii) It holds
sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[

|uHm(t, x)|p
]

<∞.

(iii) It holds

sup
H∈K

sup
(t,x)∈[0,T ]×R

c̃H

∫ t

0

∫

R2

G2
t−s(x− y)

(

E
[

|uHm(s, y)− uHm(s, z)|p
])

2
p

|y − z|2−2H
dydzds <∞.

Proof. Condition (i) is a direct consequence of [2, Thm. 3.7]. In order to prove (ii) and (iii), we
use an induction argument. First, note that these two conditions clearly hold for m = 0.

Assume that conditions (ii) and (iii) are satisfied by uHm. We prove that they are also fulfilled
by uHm+1. Precisely, arguing as in Step 2 in the proof of [2, Thm. 3.7] (see p. 18 therein), we
have

E
[

|uHm+1(t, x)|p
]

≤ C

{

ηp + E

[

∣

∣

∣

∣

c̃H

∫ T

0

∫

R2

|SH
m(s, y)− SH

m(s, z)|2
|y − z|2H−2

dydzds

∣

∣

∣

∣

p
2

]}

,

where we have used the notation SH
m(s, y) := Gt−s(x−y)uHm(s, y) and C is some positive constant.

The expectation on the right hand-side above can be bounded, up to some constant independent
of H, by IH1 + IH2 , where

IH1 =



c̃H

∫ T

0

∫

R2

G2
t−s(x− y)

(

E
[

|uHm(s, y)− uHm(s, z)|p
])

2
p

|y − z|2−2H
dydzds





p
2

and

IH2 =

(

c̃H

∫ T

0

∫

R2

(

E
[

|uHm(s, z)|p
])

2
p
|Gt−s(x− y)−Gt−s(x− z)|2

|y − z|2−2H
dydzds

)

p
2

By the induction hypothesis, the term IH1 is uniformly bounded in H and (t, x). Regarding IH2 ,
using again the induction hypothesis and applying [2, Prop. 2.8], we get

IH2 ≤ sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[

|uHm(t, x)|p
]

(

c̃H

∫ T

0

∫

R2

|Gt−s(x− y)−Gt−s(x− z)|2
|y − z|2−2H

dydzds

)

p
2

≤ C

(

cH

∫ T

0

∫

R

|FGt−s(ξ)|2|ξ|1−2Hdξds

)

p
2

,

where we recall that the constant cH is given by

cH =
Γ(1 + 2H) sin(πH)

2π
.
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Notice that cH ≤ 1
2π , for any H ∈ (14 ,

1
2). Moreover, by Lemma A.1, it holds that

∫ T

0

∫

R

|FGt−s(ξ)|2|ξ|1−2Hdξds ≤











22HC1−2H
1

1+2HT
1+2H wave equation,

1
HΓ(1−H)TH heat equation.

(23)

As explained in Step 1 of the proof of [12, Thm. 2.8], all constants appearing in (23) can be
bounded uniformly in H ∈ K. This let us conclude that uHm+1 satisfies condition (ii).

It remains to prove that uHm+1 verifies (iii). The computations follow exactly as in Step 3 of
the proof of [2, Thm. 3.7], in such a way that we apply the induction hypothesis, [2, Prop. 2.8]
and Lemmas A.1 and A.4. We omit the details. Nevertheless, we point out why the presence of
the constant c̃H in condition (iii) is crucial in order to get uniform estimates with respect to H.
Precisely, one of the terms appearing in the treatment of the expression in (iii) for uHm+1 can be
bounded by

A := c̃H C

∫ t

0

∫

R2

G2
t−s(x− y)

|z|2−2H
dyds

∫ s

0

∫

R

|1− e−iξz|2|FGs−r(ξ)|2|ξ|1−2H dξdr.

By Lemma A.4, we have

∫

R

|1− e−iξz|2
|z|2−2H

dz =
2Γ(2H + 1) sin(πH)

H(1− 2H)
|ξ|1−2H .

Hence,

A ≤ c̃H
2Γ(2H + 1) sin(πH)

H(1− 2H)
C

∫ t

0

∫

R

G2
t−s(x− y) dyds

∫ s

0

∫

R

|FGs−r(ξ)|2|ξ|2(1−2H) dξdr. (24)

Note that, by definition of c̃H (see Remark 2.10), it holds

c̃H
2Γ(2H + 1) sin(πH)

H(1− 2H)
= Γ(2H + 1) sin(πH),

and the latter is uniformly bounded for H ∈ K, since it is a continuous function of H. Regarding
the integrals in (24), they can be estimated using the explicit expressions of the fundamental
solutions of the wave and heat equations and applying Lemma A.1.

We need to extend condition (ii) in the above proposition to a uniform estimate with respect
to m ≥ 1. For this, we follow the arguments of [2, Section 3.3], so we first need the following
result, whose proof follows the same steps of [2, Thm. 3.8] and uses analogous arguments as
those in Proposition 3.2.

Proposition 3.3. Define, for any m ≥ 0 and t ∈ [0, T ],

Vm(t) := sup
H∈K

sup
x∈R

(

E
[

|uHm(t, x)− uHm−1(t, x)|p
])

2
p

and

Wm(t) := sup
H∈K

sup
x∈R

CH

∫ t

0

∫

R2

G2
t−s(x− y)|y − z|2H−2

×
(

E
[

|uHm(s, y)− uHm−1(s, y)− uHm(s, z) + uHm−1(s, z)|p
])

2
p dydzds.

19



Then,

Vm+1(t) ≤
∫ t

0
Vm(s)J1(t− s)ds+ CWm(t)

and

Wm+1(t) ≤
∫ t

0
Vm(s)J2(t− s)ds+

∫ t

0
Wm(s)J1(t− s)ds,

where J1 and J2 are non-negative integrable functions on [0, T ].

Next, we have the following result on the convergence of the underlying Picard iteration
scheme, which extends [2, Thm. 3.9]:

Theorem 3.4. Let H ∈ (14 ,
1
2 ) and p ≥ 2. The sequence {uHm, m ≥ 0} of Picard iterations

converges in the space χp
H to a process uH which is the unique mild solution of (16). Moreover,

it holds:
lim

m→∞
sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[

|uHm(t, x)− uH(t, x)|p
]

= 0. (25)

Proof. As in the proof of [2, Thm. 3.9], we have to check that the modified definitions of Vm
and Wm still work to show that the Picard iterations converge to the solution uH , uniformly
with respect to H ∈ K. There is no need to check that the solution is the same as the one found
in [2], since for any fixed value of H the norm ‖ · ‖χH is equivalent to the one defined in [2, Def.
3.6], as we noticed in Remark 2.16.

Set
Mm(t) := Vm(t) +Wm(t)

and
J(t) := C(J1(t) + J2(t)).

Then, by Proposition 3.3, we have

Mm+1(t) ≤
∫ t

0
(Mm(s) +Mm−1(s))J(t− s)ds.

The Grönwall type lemma [2, Lem. 3.10]) yields

∑

m≥1

sup
H∈K

‖uHm − uHm−1‖χp
H
<∞.

This implies that {uHm}m≥0 is a Cauchy sequence in χp
H , uniformly with respect to H ∈ K,

and so it converges, uniformly in H, to the limit uH , which we already know that exists and is
unique.

Corollary 3.5. Let H ∈ (14 ,
1
2) and p ≥ 2. Let K be of the form described in Proposition 3.1.

Then, it holds that
sup
H∈K

sup
m≥0

sup
(t,x)∈[0,T ]×R

E
[

|uHm(t, x)|p
]

<∞.

This corollary, together with the lemmas in the Appendix, allow us to prove the following
result, which is an adaptation of [3, Prop. 2.2]. Indeed, as in the preceding result, one just needs
to keep track on the constants depending on H.
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Proposition 3.6. Let h0 ∈ (0, 1) and p ≥ 2. Then, for all |h| ≤ h0,

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[

|uHm(t, x+ h)− uHm(t, x)|p
]

≤ Cm|h|η1p

and
sup
H∈K

sup
(t,x)∈[0,T∧(T−h)]×R

E
[

|uHm(t+ h, x)− uHm(t, x)|p
]

≤ Cm|h|η̃1p,

where η̃1 = η1 for the wave equation η̃1 =
η1
2 for the heat equation. The constant Cm satisfies

Cm ≤ C(c(h0) + c(h0)Cm−1),

where the functions c, c : R → R are non-negative and lim
h0→0

c(h0) = 0. We define C−1 = 0.

Putting together (25) and Proposition 3.6, and taking into account that the sequence {Cm, m ≥
0} in the latter result is bounded (see [3, Thm 1.1]), we finally have the following:

Proposition 3.7. Let p ≥ 2. There exists h0 > 0 such that, for every |h| ≤ h0, it holds:

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[

|uH(t, x+ h)− uH(t, x)|p
]

≤ C|h|η1p

and
sup
H∈K

sup
(t,x)∈[0,T∧(T−h)]×R

E
[

|uH(t+ h, x)− uH(t, x)|p
]

≤ C|h|η̃1p,

where C is a constant depending only on p, η̃1 = η1 for the wave equation and η̃1 = η1
2 for the

heat equation.

Now, we have all needed ingredients to prove our tightness result Proposition 3.1.

Proof of Proposition 3.1. We will apply Theorem A.5. First, we notice that condition (i) in this
criterion is clearly satisfied, since uH(0, 0) is deterministic and independent of H.

In order to check (ii) in Theorem A.5, we apply Proposition 3.7 and we deduce that, for any
t, t′ ∈ [0, T ] and x, x′ ∈ R such that |t′ − t| < h0 and |x′ − x| < h0, it holds:

E
[

|uH(t′, x′)− uH(t, x)|p
]

≤ C(|t′ − t|pη̃1 + |x′ − x|pη1). (26)

One can easily deduce that estimate (26) holds for any t, t′ ∈ [0, T ] and any x, x′ in a compact
set.

3.2 Tightness in the case [1
2
, 1)

We aim to prove an analogous tightness result as Proposition 3.1 for the case H ≥ 1
2 . We state

it in Proposition 3.8 below.
Now, we suppose that the limiting exponent H0 ∈ [12 , 1), so whenever Hn → H0 we can

suppose without loss of generality that Hn ∈ K, where K is of the form [η1, η2], with η1, η2 ∈
[12 , 1) and η1 ≤ η2. As we already observed at the beginning of Section 3.1, if we prove the
tightness of the family of laws of {uH , H ∈ K} also for K of the form considered here, this will
include also the case in which H0 =

1
2 and Hn → H0 either from above or from below.

The following tightness result will be proved directly, i.e. without going through the corre-
sponding Picard iteration scheme. This is because the Burkholder-Davies-Gundy type inequality
(14) is more practical than its rough counterpart (15).
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Proposition 3.8. Let UK := {uH , H ∈ K} be the family of solutions of (16), where K is of
the form [η1, η2], with η1, η2 ∈ [12 , 1) and η1 ≤ η2. Then, the family UK is tight in C([0, T ] × R),
endowed with the metric of uniform convergence on compact sets.

Proof. We will apply again Theorem A.5. We split the proof in three steps.

Step 1: We show the uniform estimate

sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

E
[

|uH(t, x)|p
]

<∞. (27)

We have

E
[

|uH(t, x)|p
]

≤ C

(

1 + E

[∣

∣

∣

∣

∫ t

0

∫

R

Gt−s(x− y)uH(s, y)WH(ds, dy)

∣

∣

∣

∣

p])

.

By Theorem 2.8, we obtain that the expectation in the right hand-side above can be bounded,
up to some positive constant, by

cH(νt,H)
p
2
−1

∫ t

0
sup

H∈[η1,η2]
sup
x∈R

E
[

|uH(s, x)|p
]

∫

R

|FGt−s(x− ·)(ξ)|2|ξ|1−2H dξds, (28)

where νt,H is defined by

νt,H = cH

∫ t

0

∫

R

|FGs(ξ)|2|ξ|1−2Hdξds.

We recall that cH = Γ(2H+1) sin(πH)
2π , which is bounded by 1

π , for all H. Moreover, by Lemma
A.1, it holds that

sup
H∈[η1,η2]

sup
t∈[0,T ]

νt,H <∞.

Note that this holds for both wave and heat equations. On the other hand, regarding the integral
in dξ in (28), we can argue as follows. In the case of the wave equation, we have

∫

R

|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξ = 2

∫ ∞

0

sin2((t− s)ξ)

ξ1+2H
dξ

= 2(t− s)2H22H−1C1−2H

≤ T 2H22HC1−2H ,

where the constant C1−2H is the same one appearing in Lemma A.1. As showed in the proof
of [12, Thm. 2.8], C1−2H defines a continuous function with respect to H ∈ (0, 1), so it can be
bounded by a constant when H ∈ [η1, η2]. Thus, for the wave equation we can conclude that

sup
H∈[η1,η2]

sup
x∈R

E
[

|uH(t, x)|p
]

≤ C

(

1 +

∫ t

0
sup

H∈[η1,η2]
sup
x∈R

E
[

|uH(s, x)|p
]

ds

)

.

Hence, Grönwall lemma implies (27).
In the case of the heat equation, we have

∫

R

|FGt−s(x− ·)(ξ)|2|ξ|1−2Hdξ =

∫

R

e−(t−s)|ξ|2 |ξ|1−2Hdξ

=
1

2
(t− s)H−1

∫ ∞

0
e−yy−Hdy

= Γ(1−H)(t− s)H−1.
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Observe that, for all H ∈ [η1, η2], it holds Γ(1−H)(t− s)H−1 ≤ g(t− s), where

g(r) := Γ(1− η2)

{

rη1−1, r < 1

1, r > 1.

Therefore,

sup
H∈[η1,η2]

sup
x∈R

E
[

|uH(t, x)|p
]

≤ C

(

1 +

∫ t

0
sup

H∈[η1,η2]
sup
x∈R

E
[

|uH(s, x)|p
]

g(t− s)ds

)

.

The Grönwall type lemma proved in [8, Lem. 15] let us conclude that (27) is also fulfilled in the
case of the heat equation.

Step 2: In this part of the proof, we deal with the moments of the space increments of the
solution uH . Precisely, owing to Theorem 2.8, the estimate (27) and Lemma A.2, we can infer
that, for all p ≥ 2 and |h| ≤ 1,

E
[

|uH(t, x+ h)− uH(t, x)|p
]

≤ C c
p
2
H

(∫ t

0

∫

R

|F (Gt−s(x− ·) +Gt−s(x+ h− ·)) (ξ)|2 |ξ|1−2H dξds

)

p
2

= C c
p
2
H

(
∫ t

0

∫

R

(1− cos(hξ))|FGs(ξ)|2|ξ|1−2H dξds

)

p
2

≤ C C̃
p
2
H |h|Hp.

The constant C̃H is the same appearing in [2, Lem. 3.4], and it is given by

C̃H :=

∫

R

(1− cos(θ))|θ|−1−2Hdθ <
1

H
+

1

1−H
≤ C,

provided that H ∈ [η1, η2]. Thus, we have proved that

sup
H∈[η1,η2]

sup
(t,x)∈[0,T ]×R

E
[

|uH(t, x+ h)− uH(t, x)|p
]

≤ C|h|η1p.

Step 3: Here, we aim to prove that, for any p ≥ 2 and |h| < 1,

sup
H∈[η1,η2]

sup
(t,x)∈[0∨(−h),T∧(T−h)]×R

E
[

|uH(t+ h, x) − uH(t, x)|p
]

≤
{

C|h|η1p wave equation,

C|h|
η1
2
p heat equation.

(29)
Assume that h > 0 (the case h < 0 is completely analogous). Then,

E

[

|uH(t+ h, x) − uH(t, x)|p
]

≤ C(B1 +B2),

where

B1 := E

[∣

∣

∣

∣

∫ t

0

∫

R

[Gt+h−s(x− y)−Gt−s(x− y)]uH(s, y)WH(ds, dy)

∣

∣

∣

∣

p]

,

B2 := E

[

∣

∣

∣

∣

∫ t+h

t

∫

R

Gt+h−s(x− y)uH(s, y)WH(ds, dy)

∣

∣

∣

∣

p
]

.
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Theorem 2.8, (27) and Lemma A.3 yield

B1 ≤ C c
p
2
H

(∫ t

0

∫

R

|F (Gt+h−s(x− ·)−Gt−s(x− ·)) (ξ)|2 |ξ|1−2Hdξds

)

p
2

≤ C c
p
2
H

(
∫ T

0

∫

R

|FGs+h(ξ)−FGs(ξ)|2 |ξ|1−2Hdξds

)

p
2

≤ C

{

|h|Hp, wave equation,

|h|H2 p, heat equation.
(30)

Regarding the term B2, we can argue as before but we apply Lemma A.1. Indeed, we have
that

B2 ≤ C c
p
2
H

(∫ t+h

t

∫

R

|FGt+h−s(x− ·)(ξ)|2|ξ|1−2Hdξds

)

p
2

= C c
p
2
H

∫ h

0

∫

R

|FGs(ξ)|2|ξ|1−2Hdξds

≤ C

{

|h| 1+2H
2

p, wave equation,

|h|H2 p, heat equation.
(31)

Putting together (30) and (31), and taking into account that H ∈ [η1, η2], we end up with (29).

Finally, the results in Steps 2 and 3 let us conclude that, for any t, t′ ∈ [0, T ] and x, x′ in a
compact of R, we have

E
[

|uH(t′, x′)− uH(t, x)|p
]

≤ C

{

|t′ − t|η1p + |x′ − x|η1p, wave equation,

|t′ − t|
η1
2
p + |x′ − x|η1p, heat equation

.

Thus, it suffices to take p > 4
η1

for the heat equation and p > 2
η1

for the wave equation to be
able to apply the tightness criterion Theorem A.5.

The following result extends Corollary 3.5 to the case H ≥ 1
2 . Its proof is very similar to

that of [8, Thm. 13], and the terms that need to be estimated uniformly with respect to H are
completely analogous as those appearing in Step 1 of the proof of the above Proposition 3.8.

Lemma 3.9. Let H ≥ 1
2 and {uHm, m ≥ 0} be the sequence of Picard iterations corresponding

to the mild formulation (16). Then, for any p ≥ 2, uHm converges in Lp(Ω) to the solution uH

uniformly with respect to H ∈ K, i.e.

lim
m→∞

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[

|uHm(t, x)− uH(t, x)|p
]

= 0

4 Identification of the limit

Let H0 ∈ (14 , 1) and {Hn, n ≥ 1} be any sequence such that Hn → H0, as n → ∞. We may
assume that there exists a compact setK ⊂ (14 , 1) such that Hn ∈ K, for all n ≥ 1. The tightness
results proved in Propositions 3.1 and 3.8 imply that there exists a subsequence {Hnk

, k ≥ 1}
such that {uHnk , k ≥ 1} converges in law in the space C([0, T ]×R) of contiuous functions. This
section is devoted to prove that the limit law is the distribution of uH0 .
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Our strategy can be summarized as follows. We will verify that the finite dimensional
distributions of uHn converge to those of uH0 (see [7, Thm. 2.6]). For this, it suffices to prove
that, for any fixed (t, x) ∈ [0, T ] × R, uHn(t, x) converges to uH0(t, x) in L2(Ω). This can be
done thanks to the fact that the whole family of noises {WH , H ∈ (0, 1)} can be defined on a
single probability space (see Section 2.2). In order to prove the above L2(Ω)-convergence, we
will check the same convergence for any of the corresponding Picard iterates, that is, for any
m ≥ 1, we show that uHn

m (t, x) → uH0
m (t, x) in L2(Ω), as n → ∞, and we will take into account

that the Picard iteration scheme converges to the soution uniformly with respect to the Hurst
index H. At this point, we recall (invoking Theorem 2.20) that any Picard iterate admits the
following Wiener chaos expansion:

uHn
m (t, x) =

m
∑

j=0

IHn

j (gj(·, t, x)),

where the latter is a finite sum of multiple Wiener integrals of order up to m and the kernels
gj are given by (22). Therefore, it will be sufficient to prove the L2(Ω)-convergence, as n→ ∞,
of any of the above multiple Wiener integrals, for which we will make use of the representation
result given in Theorem 2.7.

Here is the main result of the section:

Theorem 4.1. Let H0 ∈ (14 , 1) and {Hn, n ≥ 1} be any sequence such that Hn → H0, as
n → ∞. Let uHn

n and uH0 be the solutions of (16) corresponding the Hurst parameters Hn and
H0, respectively. Then, the finite dimensional distributions of uHn converge to those of uH0 , as
n→ ∞.

Proof. We split the proof in three steps.

Step 1: To start with, we recall that, owing to Corollary 3.5 and Lemma 3.9 in the particular
case p = 2, we have:

lim
m→∞

sup
H∈K

sup
(t,x)∈[0,T ]×R

E
[

|uHm(t, x)− uH(t, x)|2
]

= 0, (32)

where uHm denotes the associated mth Picard iterate.
As we already explained, in order to assure the statement’s validity it is sufficient to show

the following pointwise convergence in L2(Ω): for any fixed (t, x) ∈ [0, T ]× R, it holds

lim
n→∞

E
[

|uHn(t, x)− uH0(t, x)|2
]

= 0.

Note that

E
[

|uHn(t, x)− uH0(t, x)|2
]

≤ C
(

E
[

|uHn(t, x)− uHn
m (t, x)|2

]

+ E
[

|uHn
m (t, x)− uH0

m (t, x)|2
]

+ E
[

|uH0
m (t, x)− uH0(t, x)|2

])

=: I1(m,n) + I2(m,n) + I3(m).

By (32), we can infer that, for any ε > 0, we can choose m0 big enough such that, for every
m ≥ m0, we have

sup
n≥1

{I1(n,m) + I3(m)} < ε.

Thus, we are left to show that I2(m0, n) tends to zero as n → ∞. This means, in particular,
that the m0-th Picard iterate is continuous in L2(Ω), with respect to H.
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Theorem 2.20 implies that, for any H ∈ (14 , 1), u
H
m0

has the Wiener chaos expansion

uHm0
(t, x) =

m0
∑

j=0

IHj (gj(·, t, x)),

where the functions gj are defined by (22). Hence, in order to check that I2(m0, n) tends to
zero, it is enough to show that, for any j = 1, . . . ,m0, I

Hn

j (gj(·, t, x)) converges to IH0
j (gj(·, t, x))

in L2(Ω), as n→ ∞. Indeed, by Theorem 2.7 we have that

IHn

j (gj(·, t, x)) − IH0
j (gj(·, t, x))

=

∫

{[0,T ]×R}j

(

cjHn
|ξ1|

1
2
−Hn · · · |ξj|

1
2
−Hn − cjH0

|ξ1|
1
2
−H0 · · · |ξj|

1
2
−H0

)

×Fgj(t1, ·, . . . , tj , ·, t, x)(ξ1, . . . , ξn)W̃ (dt1, dξ1) · · · W̃ (dtj , dξj).

Hence

E

[

∣

∣

∣
IHn

j (gj(·, t, x)) − IH0
j (gj(·, t, x))

∣

∣

∣

2
]

=

∫

{[0,T ]×R}j

∣

∣

∣c
j
Hn

|ξ1|
1
2
−Hn · · · |ξj|

1
2
−Hn − cjH0

|ξ1|
1
2
−H0 · · · |ξj|

1
2
−H0

∣

∣

∣

2

× |Fgj(t1, ·, . . . , tj , ·, t, x)(ξ1, . . . , ξn)|2dξ1 · · · dξj dt1 · · · dtj .

We show that the last integral converges to 0 when n → ∞. To do this, we have to compute
explicitly the Fourier transform appearing in the above expression. Precisely, as detailed in [4,
p. 10], we have

Fgj(t1, ·, . . . , tj , ·, t, x)(ξ1, . . . , ξj)
= ηe−i(ξ1+···+ξj)x FGt2−t1(ξ1)FGt3−t2(ξ1 + ξ2) · · · FGt−tj (ξ1 + · · · + ξj) 1{0<t1<···<tj<t}

Therefore, making the change of variables ηℓ := ξ1 + · · ·+ ξℓ, for ℓ = 1, . . . , j, we end up with

E

[

|IHn

j (gj(·, t, x)) − IH0
j (gj(·, t, x))|2

]

≤
∫

Tj(t)

∫

Rj

η

j
∏

ℓ=1

|FGtℓ+1−tℓ(ηℓ)|2
∣

∣

∣c
j
Hn

|η1|
1
2
−Hn |η2 − η1|

1
2
−Hn · · · |ηj − ηj−1|

1
2
−Hn

− cjH0
|η1|

1
2
−H0 |η2 − η1|

1
2
−H0 · · · |ηj − ηj−1|

1
2
−H0

∣

∣

∣

2
dξ1 · · · dξj dt1 · · · dtj ,

where Tj(t) := {(t1, . . . , tj), 0 < t1 < · · · < tj < t}. We wish to prove that the latter integral
converges to 0 as n → ∞. For this, we will apply the Dominated convergence theorem. Note
that the integrand clearly converges to 0 pointwise on Tj(t)× R

j. Indeed, the constant cH (see
(1)) defines a continuous function of H ∈ (0, 1). Now, we proceed to bound the integrand by
an integrable function. First, we note that the integrand can be bounded, up to some positive
constant, by

j
∏

ℓ=1

|FGtℓ+1−tℓ(ηℓ)|2
(

c2jHn
|η1|1−2Hn |η2 − η1|1−2Hn · · · |ηj − ηj−1|1−2Hn

+ c2jH0
|η1|1−2H0 |η2 − η1|1−2H0 · · · |ηj − ηj−1|1−2H0

)

.
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The two resulting terms in the above sum are of the same type, except the fact that the first
one depends on n while the second does not, and they are equivalent to the integrands studied
in [4, p. 11-13] (only in the case of wave equation with H ∈ (14 ,

1
2)). From now on, we will only

consider the term of the integrand function that depends on n; the integrability of the other
term will be an immediate consequence of the treatment of the first one.

Hence, we will find a suitable estimate for the term

|η1|1−2Hn |η2 − η1|1−2Hn · · · |ηj − ηj−1|1−2Hn

j
∏

ℓ=1

|FGtℓ+1−tℓ(ηℓ)|2. (33)

Notice that we have bounded cHn by a constant, since we may assume that all Hn are included
in a compact set of (14 , 1). We distinguish the cases Hn <

1
2 and Hn ≥ 1

2 .

Step 2: In the case Hn <
1
2 , we use the following fact: whenever H ∈ (0, 12 ), we have

j
∏

ℓ=2

|ηℓ − ηℓ−1|1−2H ≤
∑

α∈Dj

j
∏

ℓ=1

|ηℓ|αℓ ,

where Dj is a set with cardinality 2j−1 and its elements are multi-indices α = (α1, . . . , αj) whose
component’s sum equals to (j − 1)(1 − 2H) and satisfy

α1 ∈ {0, 1 − 2H}, and αℓ ∈ {0, 1 − 2H, 2(1 − 2H)}, for ℓ = 2, . . . , j.

When H = Hn, the corresponding αℓ will be denoted by αℓ,n. Thus, the integrand (33) may be
bounded by

|η1|1−2Hn





∑

α∈Dj

j
∏

ℓ=1

|ηℓ|αℓ,n





(

j
∏

ℓ=1

∣

∣FGtℓ−tℓ−1
(ηℓ)

∣

∣

2

)

(34)

Let β := minn≥1Hn > 1/4 and define the functions f0, f1, f2 : R+ → R+ as follows: f0(r) = 1
and

f1(r) =

{

r1−2β , r ≥ 1,

1, r < 1,

f2(r) =

{

r2(1−2β), r ≥ 1,

1, r < 1.

We also set, for every αℓ,n,

N(αℓ,n) :=











0, αℓ,n = 0,

1, αℓ,n = 1− 2Hn,

2, αℓ,n = 2(1 − 2Hn).

Then, we have the following estimate for the term (34):

|η1|1−2Hn





∑

α∈Dj

j
∏

ℓ=1

|ηℓ|αℓ,n





(

j
∏

ℓ=1

∣

∣FGtℓ−tℓ−1
(ηℓ)

∣

∣

2

)

≤ f1(|η1|)





∑

α∈Dj

j
∏

ℓ=1

fN(αℓ,n)(|ηℓ|)





(

j
∏

ℓ=1

∣

∣FGtℓ−tℓ−1
(ηℓ)

∣

∣

2

)

.
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We have to prove that this function is integrable. To check this last fact, it is sufficient to show
it for a single integrand of the form

j
∏

ℓ=1

∣

∣

∣FGtℓ−tℓ−1
(ηℓ)

∣

∣

∣

2
|η1|β

j
∏

ℓ=1

|ηℓ|αℓ

where, now, αj does not take values in a discrete set, but they satisfy the weaker constraints:

α1 ∈ K1 ⊂ [0, 1/2), and αℓ ∈ K2 ⊂ [0, 1), for ℓ = 2, . . . , j,

where K1 = [0, 1 − 2minn≥1Hn] and K2 = [0, 2(1 − 2minn≥1Hn)] (we are assuming implicitly
that minn≥1Hn <

1
2 ; if this is not the case, then the entire sequence falls in the case Hn ≥ 1

2 ,
which will be studied afterwards). It is important to notice that the sets K1,K2 do not depend
on n. The fact that 1− 2minn≥1Hn <

1
2 and 2(1− 2minn≥1Hn) < 1 turns out to be crucial for

our estimates.
Thus, we want to prove that

∫

Tj(t)

(
∫

R

|FGt2−t1(η1)|2|η1|β+α1dη1

) j
∏

ℓ=2

(
∫

R

|FGtℓ+1−tℓ(ηℓ)|2|ηℓ|αℓdηℓ

)

dt1 · · · dtj <∞. (35)

At this point, we have to consider separately the case of the wave equation case from that of
the heat equation. It holds that, for any γ ∈ (−1, 1) (see the proof of Proposition 3.8):

∫

R

|FGt(ξ)|2|ξ|γdξ ≤
{

C ′
γ(2− γ)t1−γ , wave equation,

C ′′
γ
1−γ
2 t−

(γ+1)
2 , heat equation.

We recall that the constants C ′
γ and C ′′

γ are continuous with respect to γ ∈ (−1, 1). We will
apply the above estimate with γ = 1 − 2H and γ = 2(1 − 2H), and still we can bound them
uniformly with respect to H ∈ K ⊂ (14 ,

1
2 ], with K compact. Hence, for the heat equation, the

integral in (35) can be estimated by

∫

Tj(t)
(t2 − t1)

−β−α1
2

j
∏

ℓ=2

(tℓ+1 − tℓ)
−αℓ−1

2 dt1 · · · dtj,

which is finite because all exponents are strictly greater than −1. For the wave equation, we
end up with

∫

Tj(t)
(t2 − t1)

1−β−α1

j
∏

ℓ=2

(tℓ+1 − tℓ)
1−αℓdt1 · · · dtj ,

which is also finite since all exponents are even greater than 0. This concludes the proof in the
case H ∈ (14 ,

1
2 ].

Step 3: Let us now go back to expression (33), where we resettle the variables ξℓ by means of
the change of variables ξℓ = ηℓ − ηℓ−1. That is, we aim to bound the following term:

|ξ1|1−2Hn · · · |ξj|1−2Hn

j
∏

ℓ=1

∣

∣FGtℓ+1−tℓ(ξ1 + · · ·+ ξℓ)
∣

∣

2
, (36)
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where we assume that Hn ∈ [12 , 1). Here, the fact that 1 − 2Hn ≤ 0 helps us. Indeed, we can
define the bounding function in a quite straightforward way:

g(r) :=

{

1, r ≥ 1,

r1−2(maxn≥1 Hn), r < 1.

Clearly, the integrand function in (36) is bounded, for any n ≥ 1, by

g(|ξ1|) · · · g(|ξj |)
j
∏

ℓ=1

∣

∣FGtℓ+1−tℓ(ξ1 + · · ·+ ξℓ)
∣

∣

2
.

We check that this upper bound function is integrable, namely

∫

Tj−1(tj )

∫

Rj−1

j−1
∏

ℓ=1

∣

∣FGtℓ+1−tℓ(ξ1 + · · ·+ ξℓ)
∣

∣

2
g(|ξℓ|)

×
(

∫ t

tj−1

∫

R

∣

∣FGt−tj (ξ1 + · · ·+ ξj)
∣

∣

2
g(|ξj |)dξjdtj

)

dξ1 · · · dξj−1dt1 · · · dtj−1 <∞. (37)

We have that
∫ t

tj−1

∫

R

∣

∣FGt−tj (ξ1 + · · · + ξj)
∣

∣

2
g(|ξj |)dξjdtj

=

∫ t

tj−1

∫

|ξj |>1

∣

∣FGt−tj (ξ1 + · · ·+ ξj)
∣

∣

2
dξjdtj

+

∫ t

tj−1

∫

|ξj |≤1

∣

∣FGt−tj (ξ1 + · · ·+ ξj)
∣

∣

2 |ξj|1−2minn≥1 Hndξjdtj .

We do the computations separately for the wave and heat equations. To start with, in the case
of the wave equation, it clearly holds that

|FGt(ξ)| =
∣

∣

∣

∣

sin(t|ξ|)
|ξ|

∣

∣

∣

∣

≤ t,

for all (t, x) ∈ [0, T ] × R. Thus, we have
∫ t

tj−1

∫

|ξj |≤1

∣

∣FGt−tj (ξ1 + · · ·+ ξj)
∣

∣

2 |ξj |1−2minn≥1 Hndξjdtj

≤
∫ t

tj−1

∫

|ξj |≤1
|t− tj|2|ξj|1−2minn≥1 Hndξjdtj

≤ CT 3

1−minn≥1Hn
<∞,

and
∫ t

tj−1

∫

|ξj |>1

∣

∣FGt−tj (ξ1 + · · ·+ ξj)
∣

∣

2 |ξj|1−2minn≥1 Hn

≤
∫ t

tj−1

∫

R

sin2 [(t− tj)|ξ1 + · · · + ξj|]
|ξ1 + · · ·+ ξj|2

dξjdtj

≤ C

∫ t

tj−1

(t− tj)dtj <∞,
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since
∫

R

sin2(t|x|)
|x|2 dx = πt. Therefore, we have got rid of the integral with respect to dξjdtj in

(37). Iterating this procedure one proves that the whole integral (37) is finite.
It remains to prove the analogous result for the heat equation. Here, we have

|FGt(ξ)| = e−
t|ξ|2

2 ≤ 1,

for all (t, x) ∈ [0, T ] × R. Thus,

∫ t

tj

∫

|ξj |≤1

∣

∣FGt−tj (ξ1 + · · ·+ ξj)
∣

∣

2 |ξj |1−2minn≥1 Hndξjdtj

≤
∫ t

tj

∫

|ξj |≤1
|ξj |1−2minn≥1 Hndξjdtj

≤ T

1−minn≥1Hn
<∞,

and

∫ t

tj

∫

|ξj |>1

∣

∣FGt−tj (ξ1 + · · ·+ ξj)
∣

∣

2 |ξj |1−2minn≥1 Hndξjdtj

≤
∫ t

tj

∫

R

exp
(

−(t− tj)|ξ1 + · · ·+ ξj |2
)

dξjdtj

= C

∫ t

tj

√

t− tjdtj <∞,

which, again by iterating this computation, shows that the integral in (37) is bounded also in
the heat equation case. This completes the proof.

A Auxiliary results

In this section, we state some results that have been applied throughout the paper. We start
with four technical lemmas, proved in [2], which provide explicit estimates, depending on H, for
the norm in the space L2(R;µH) of terms involving the Fourier transforms of the fundamental
solutions of the wave and heat equations. Finally, we will also state a tightness criterion which
will be applied in Section 3.

We recall that, for the wave and heat equations, we have, respectively:

FGt(ξ) =
sin(t|ξ|)

|ξ| and FGt(ξ) = exp
(−tξ2

2

)

, t > 0, ξ ∈ R.

In the following three lemmas, we will denote either one of these two functions by FGt(ξ). We
recall that the spatial spectral measure is given by µH(dξ) = cH |ξ|1−2Hdξ .

Lemma A.1 ([2], Lemma 3.1). Let T > 0. Then, the integral

AT (α) :=

∫ T

0

∫

R

|FGt(ξ)|2|ξ|α dξ dt
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converges if and only if α ∈ (−1, 1). In this case, it holds:

AT (α) =



















21−αCα
1

2− α
T 2−α for the wave equation,

2

1− α
Γ
(α+ 1

2

)

T (1−α)/2 for the heat equation,

where the constant Cα is given by

Cα =



















Γ(α)

1− α
sin(πα/2), α ∈ (−1, 1) \ {0},

π

2
, α = 0.

Lemma A.2 ([2], Lemma 3.4). Let T > 0 and α ∈ (−1, 1). Then, for any h > 0, it holds:

∫ T

0

∫

R

(1− cos(ξh)) |FGt(ξ)|2|ξ|α dξ dt ≤
{

C|h|1−α for the heat equation,

CT |h|1−α for the wave equation,

where C =
∫

R
(1− cos η)|η|α−2dη.

Lemma A.3 ([2], Lemma 3.5). Let T > 0 and α ∈ (−1, 1). Then, for any h > 0, it holds:

∫ T

0

∫

R

|FGt+h(ξ)−FGt(ξ)|2|ξ|α dξ dt ≤
{

Cα|h|(1−α)/2 for the heat equation,

CαT |h|1−α for the wave equation,

where

Cα =

∫

R

(1− e−η2/2)2

|η|2−α
dη for the heat equation, and

Cα = 4

∫

R

min(1, |η|2)
|η|2−α

dη for the wave equation.

Lemma A.4 ([2], Lemma D.2). For any H ∈ (0, 12) and for any ξ ∈ R, we have:

∫

R

|1− e−iξx|2
|x|2−2H

dx = |ξ|1−2H 2Γ(2H + 1) sin(πH)

H(1− 2H)

The following tightness criterion on the plane was proved in [27, Prop. 2.3].

Theorem A.5. Let {Xλ}λ∈Λ be a family of random functions indexed on the set Λ and taking
values in the space C([0, T ] × R), in which we consider the metric of uniform convergence over
compact sets. Then, the family {Xλ}λ∈Λ is tight if, for any compact set J ⊂ R, there exist
p′, p > 0, δ > 2, and a constant C such that the following holds for any t′, t ∈ [0, T ] and
x′, x ∈ J :

(i) supλ∈Λ E

[

|Xλ(0, 0)|p
′
]

<∞,

(ii) supλ∈Λ E [|Xλ(t
′, x′)−Xλ(t, x)|p] ≤ C (|t′ − t|+ |x′ − x|)δ.
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