
Journal of Cosmology and
Astroparticle Physics

     

PAPER • OPEN ACCESS

The observed galaxy power spectrum in General
Relativity
To cite this article: Emanuele Castorina and Enea Di Dio JCAP01(2022)061

 

View the article online for updates and enhancements.

You may also like
Fourier optics, filtering and spectrometry
A Maréchal

-

The Diffraction of X-Rays by Distorted-
Crystal Aggregates III: Remarks on the
Interpretation of the Fourier Coefficients
J N Eastabrook and A J C Wilson

-

On the analytical summation of Fourier
series and its relation to the asymptotic
behaviour of Fourier transforms
S L Marshall

-

This content was downloaded from IP address 159.149.193.175 on 18/02/2022 at 16:06

https://doi.org/10.1088/1475-7516/2022/01/061
/article/10.1088/0335-7368/4/6/301
/article/10.1088/0370-1301/65/1/310
/article/10.1088/0370-1301/65/1/310
/article/10.1088/0370-1301/65/1/310
/article/10.1088/0305-4470/31/49/014
/article/10.1088/0305-4470/31/49/014
/article/10.1088/0305-4470/31/49/014
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsverGT9at9VxHPbnPwxP60OccgLbO_x7kiHWarQu_6EalWTKI6XaiFdgzRUxsNWLc15XGIs7e-_HyIp52aGE6jXwOmq3QHagR8p2FgRv7NEIEdypTHrnWWDaoWwF1AEzaYicHL2CPzSIwJbKev7sVLcRA0hIweobKg5p5fgEhMk1OUY9EPv473bw96XnA50strUekHYeLQJuLQvdgo03cbR95fK04ThbIYN8xt4LCDGF_U3wiRE2VAc_ir8caOAxBq80_McEuIhjcQwt6lzVkgKxRdcIAL7e6I&sig=Cg0ArKJSzIP92FjeGyLY&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


J
C
A
P
0
1
(
2
0
2
2
)
0
6
1

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

The observed galaxy power spectrum
in General Relativity
Emanuele Castorinaa,b,1 and Enea Di Diob,c
aDipartimento di Fisica ‘Aldo Pontremoli’, Università degli Studi di Milano,
Via Celoria 16, Milan, Italy
bTheoretical Physics Department, CERN,
1211 Geneva 23, Switzerland
cCenter for Theoretical Astrophysics and Cosmology,
Institute for Computational Science, University of Zurich,
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

E-mail: emanuele.castorina@unimi.it, enea.didio@cern.ch

Received July 6, 2021
Accepted December 22, 2021
Published January 27, 2022

Abstract. Measurements of the clustering of galaxies in Fourier space, and at low wavenum-
bers, offer a window into the early Universe via the possible presence of scale dependent
bias generated by Primordial Non Gaussianites. On such large scales a Newtonian treatment
of density perturbations might not be sufficient to describe the measurements, and a fully
relativistic calculation should be employed. The interpretation of the data is thus further
complicated by the fact that relativistic effects break statistical homogeneity and isotropy
and are potentially divergent in the Infra-Red (IR). In this work we compute for the first
time the ensemble average of the most used Fourier space estimator in spectroscopic surveys,
including all general relativistic (GR) effects, and allowing for an arbitrary choice of angular
and radial selection functions. We show that any observable is free of IR sensitivity once
all the GR terms, individually divergent, are taken into account, and that this cancellation
is a consequence of the presence of the Weinberg adiabatic mode as a solution to Einstein’s
equations. We then study the importance of GR effects, including lensing magnification, in
the interpretation of the galaxy power spectrum multipoles, finding that they are in gen-
eral a small, less than ten percent level, correction to the leading redshift space distortions
term. This work represents the baseline for future investigations of the interplay between
Primordial Non Gaussianities and GR effects on large scales and in Fourier space.
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1 Introduction

The cosmological interpretation of galaxy clustering data is complicated by the fact we ob-
serve the angular position and redshift of the galaxies, rather than their true physical position
on the lightcone. The mapping between these two systems of coordinates is distorted by a
number of observational effects.

The most important one is Redshift Space Distortions (RSD), i.e. the contribution of the
galaxies peculiar velocity, projected along the line of sight (LOS), to their observed redshift.
RSD select the observer’s location as a special place and therefore break the isotropy and
homogeneity of nth−point correlation functions. On the other hand, RSD give access to
information about the velocity field we would not be able to retrieve otherwise.

Other observational effects, arising from the perturbation of the observed redshifts and
angles, are proportional to the gravitational potential or its gradient and are therefore sup-
pressed on sub-horizon scales with respect to the underlying dark matter density field, while
becoming important only on very large scales. The relevant dimensionful parameter is the
Hubble scale, which separates sub-horizon modes where Netwonian physics applies from the
super-horizon scales where the full General Relativity machinery is at work. For this reason
these observational features are usually called general relativistic (GR) effects.1 Examples of
GR effects are lensing, doppler magnification and the Integrated Sachs-Wolfe (ISW) effect.
Galaxy clustering in a relativistic framework has been first derived in refs. [1–5] in linear
perturbation theory and then extended to higher orders in refs. [7–11]. It has been also
generalized to vector perturbations [12], non-flat FLRW universe [13], intensity mapping [14]
and Ly-α forest [15] observables.

GR effects are important for two main reasons. The first one is that they provide a
fully gauge-invariant framework to test gravity on the largest scales. Secondly, GR effects
could be a contaminant to measurements of local Primordial Non Gaussianities (PNG) in
the clustering of galaxies with scale dependent bias [16–19]. Local PNG appear as large
scale divergences, proportional to the primordial gravitational potential, in the clustering
of biased tracers. Local PNG arise from the coupling between the large and small scale
modes generated during inflation, and in the squeezed limit they cannot be generated by the
dynamics of GR at later times. However, projection effects, like the GR effects responsible
for the mapping between true and observed coordinates, could mimic PNG, since they also
contain terms proportional to the gravitational potential. The literature on the subject
is vast: for photometric surveys measuring angular power spectra, marginalizing over the
unknown free parameters that enter the full GR expression causes significant degradation
of the error on local PNG [20–23]. This is in part due to GR effects contributing mostly
to the cross correlation between different redshift bins, which would be zero in a standard
Newtonian approach. In Fourier-space (but in plane-parallel approximation and neglecting
integrated effects)ref. [24] concluded that the degeneracy is reduced, especially if one is able
to set priors on evolution and magnification biases, due to the different redshift evolution
between local PNG and relativistic effects. A deeper understanding of this issue is therefore
of utmost importance for future surveys that could improve over current CMB [25] and
Large-Scale Structure [26] constraints by an order of magnitude [27].

1Let us remark that Einstein’s equations are not required to derive the relativistic galaxy number counts,
see refs. [1–5]. However the cancellation of the infrared divergences discussed in this work relies on the
existence of the Weinberg adiabatic mode [6] as a solution of linearized Einstein’s field equations.
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On this topic, it has been recently argued in [28] that GR effects do not produce any
PNG-like feature at large scales in the galaxy power spectrum. This is interpreted as a
consequence of the equivalence principle. The cancellation of these terms holds for the
variance of the galaxy density field, and for a galaxy power spectrum the authors in [28]
define such that its variance corresponds to the observed one.

The goal of this work is to clarify on the issue of whether GR effects could be degenerate
with a measurement of local PNG. We will confirm the result in [28] for the variance of the
galaxy density field, but at the same time we will show the power spectrum as defined in [28]
is not observable, and that true observed power spectrum as estimated in galaxy redshift
surveys receives contributions proportional to the gravitational potential even in the absence
of PNG. However, these terms do not show any sensitivity to long wavelength modes, which
we will demonstrate is a consequence of the equivalence principle and of the existence of
Weinberg adiabatic modes [6]. Contributions to the power spectrum arising from local PNG
are instead genuinely sensitive long wavelength modes. For the first time we will also include
observational effects like an arbitrary survey geometry and selection function when discussing
the importance of GR effects on the power spectrum. Differently than previous analyses in
Fourier space, our approach will include also wide-angle and evolution effects consistently.

This paper is organized as follows. In section 2 we introduce the power spectrum esti-
mator and we discuss its interpretation and its connection to the theoretical modeling. In
section 3 we describe the fully relativistic galaxy number counts and then in section 4 we
discuss the cancellation of the IR divergences in the correlation function. In section 5 we
compute the power spectrum including all the relativistic effects and then we conclude in sec-
tion 6. Several appendices contain the details about azimuthally symmetric window functions
(appendix A), the full relativistic correlation function (appendix B) and the contribution of
the observer velocity (appendix C).

In this work we adopt the following Fourier convention for the Fourier transform

f (x) =
∫ d3k

(2π)3 f (k) eix·k , f (k) =
∫

d3xf (x) e−ix·k , (1.1)

and the Hankel transform

ξ` (s) = i`
∫ dk

2π2k
2P` (k) j` (ks) , P` (k) = 4π (−i)`

∫
dss2ξ` (s) j` (ks) . (1.2)

2 The power spectrum estimator

Given a catalog N(n, z) of galaxy positions in the sky, n, and redshifts z, we have several
ways to construct a quadratic estimator of the data. For the remainder of this work we
will focus on spectroscopic surveys, where redshift accuracy is obtained for each object in
the catalog. If one wants to work in the observed coordinates, then a spherical harmonics
approach leads to the measurements of as many angular power spectra as redshifts bins of the
data (plus their cross correlation). The advantage of this approach is that the implementation
of GR effects is simple and there is no need to assume a fiducial cosmology to perform the
measurements, the so called Alcock-Pacinski effect [29].2 There are two main drawbacks of
using angular power spectra. The first one is that, to achieve optimal signal extraction, the

2We have efficient and accurate numerical tools to compute the redshift-dependent angular power spectra
including all the relativistic effects: class [30–32] and cambsource [3].
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number of redshift bins has to be extremely large, see for instance refs. [33, 34]. This is more
of a concern for small scales analysis than for PNG ones, however in the latter case one has
to compute the cross correlation between all the different bins. This results in a large data
vector, which makes the estimation of the covariance matrix of the data a challenging task.
The second problem is that the connection to the perturbative approaches beyond linear
theory, required to properly model the small scales, is non trivial.3 Similar conclusions hold
for spherical-Fourier-Bessel (sFB) methods [37–44], where the redshift coordinate is radially
Fourier transformed.

The other main option to build a quadratic estimator of the data is to work in a 3D
coordinate system and measure the two-point correlation function or the power spectrum.
This approach assumes a fiducial cosmology to convert angular positions and redshifts into
distances. This causes no loss of information, but it requires some care if the assumed
fiducial cosmology is very different than the true underlying one. That is however not a
worry since Planck [45] and BAO [46, 47] measurements have constrained the distance-
redshift relation to a few percent. The advantages of 3D methods are the straightforward
connection to perturbation theory and the reduced dimensionality of data vector, comprising
of approximately 100 data points. The main drawback of 3D estimators is that GR effects
are not easily implemented, especially the ones integrated along the line of sight, like lensing
magnification, ISW and time-delay. One of the main goal of this work is to resolve this
issue as well, providing the exact interpretation of the estimator of the power spectrum. Due
to its practical advantages and robust theoretical interpretation the 3D methods should be
preferred in spectroscopic surveys, and Fourier ones in particular to constraints on PNG.

A generic estimator for the multipoles of the power spectrum can be written by summing
over all pairs of galaxies with the appropriate Fourier phases,

P̂L (k) = 2L+ 1
A

∫
dΩk
4π

∫
d3s1d3s2 ∆ (s1) ∆ (s2)φ (s1)φ (s2) eik·(s1−s2)LL

(
k̂ · d̂LOS

)
,

(2.1)
where A is a normalisation constant, ∆(s) denotes the galaxy density contrast, φ (s) is the
survey window function, and LL is the Legendre polynomial of order L. This is the so called
Yamamoto estimator [48], which reduces to the FKP estimator [49] for L = 0. Beyond the
monopole, the estimator depends explicitly on the choice of the line of sight, dLOS, for the
pair of galaxies at s1 and s2.

For an unbiased estimate of cosmological parameters it is therefore of utmost importance
to first understand the relation between the average of the estimator and the analytical
prediction. Some of the following considerations have appeared elsewhere before [50, 51], but
we report them here for clarity. In section 1 we said that RSD, and other GR effects, break
homogeneity and isotropy of correlation functions, making for instance the power spectrum
of the observed galaxy density field non-diagonal. This means that if we Fourier Transform
∆[s(n, z)] to ∆(k), we obtain

〈∆(k1)∆(k2) 〉 ≡ P (k1,k2) , (2.2)

while the Yamamoto estimator defined above is a function of a single wavenumber k. We
will now show that the relation of P (k1,k2) with P̂L (k) is LOS-dependent. Consider first
the midpoint as the line of sight, dLOS = dm ≡ (s1 + s2)/2, and assume that the window

3See [35, 36] for a recent solution to this issue.
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function is equal to unity everywhere inside the survey volume, which we take to cover the
whole sky. It is easy to see that in this case the average of the estimator is given by [50, 51]

〈
P̂L(k)

〉
= (2L+ 1)

A

∫
d3dm

∫ d3q

(2π)3 e
iq·dm

×
∫ dΩk

4π P (k + q/2,−k + q/2)LL(k̂ · d̂m) , (2.3)

revealing that the Yamamoto estimator further compresses the underlying power spectrum
by averaging over the wavenumber q associated to the line of sight dm. Another possible
choice for the line of sight is one of the two pair members, dLOS = s1, usually called the
endpoint line of sight. In this case

〈
P̂L (k)

〉
= 2L+ 1

A

∫ dΩk
4π

∫
d3s1

∫ d3q

(2π)3 P (q − k,k) eiq·s1LL
(
k̂ · ŝ1

)
, (2.4)

which shows how different choices of LOS result in different weighting of the momentum q.
A more compact expression for the average of the estimator can be obtained by noticing

that the configuration space two-point correlation function depends on the triangle formed
by the observer and the pair of galaxies

〈∆(s1)∆(s2) 〉 ≡ ξ(s2 − s1,dLOS) (2.5)

and it can therefore be formally Fourier transformed with respect to s ≡ s2 − s1 to define a
LOS dependent power spectrum

P (k,dLOS) ≡
∫

d3s e−ik·sξ(s,dLOS) . (2.6)

The Yamamoto estimator is then the LOS average of the LOS dependent power spectrum

〈
P̂L(k)

〉
= (2L+ 1)

A

∫ dΩk
4π

∫
d3dLOS P (k,dLOS)LL(k̂ · d̂LOS) . (2.7)

The above expression also clarifies how to take the plane-parallel limit of the estimator [50].

2.1 The convolution with a window function

For practical reasons the choice dLOS = s1 is usually preferred [51–53], since it requires fewer
Fourier Transforms than the identification of the LOS as the bisector between the two galax-
ies and the observer [50]. We shall use this choice, usually referred as the endpoint LOS in the
literature, for the remainder of this work. Although not strictly necessary, in our implemen-
tation we will assume that the window function can be separated into a radial and angular
part, i.e. φ(s) = φ(s)W (ŝ). Generalizations to non-separable masks are straightforward. If
we start from the following decomposition for the two-point correlation function

ξ(s, s1) =
∑
`

ξ`(s, s1)L`(µ) , (2.8)

– 5 –
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with µ ≡ ŝ · ŝ1, we arrive to a compact expression for the expectation value of the Yamamoto
estimator

〈P̂L (k)〉 = 2L+ 1
A

∑
`

(−i)L
∫

d3s1d3sξ` (s, s1)L` (ŝ1 · ŝ)LL (ŝ · ŝ1) jL (ks)φ (s1)φ (s2)

= 2L+ 1
A

∑
``1

(−i)L
(
L ` `1
0 0 0

)2

(2`1 + 1)

×
∫

d3s1d3sξ` (s, s1)L`1 (ŝ · ŝ1) jL (ks)φ (s1)φ (s2)

= 2L+ 1
A

∑
`,`1

(−i)L
(
L ` `1
0 0 0

)2

(2`1 + 1)

×
∫

ds1s
2
1dss2ξ` (s, s1) jL (ks)φ (s1)F`1 (s1, s) , (2.9)

where we have introduced

F`1 (s1, s) =
∫

dΩŝdΩŝ1φ (s2)W (ŝ1)W (ŝ2)L`1 (ŝ1 · ŝ) . (2.10)

The integration variable s1 serves to keep track of the redshift evolution of the sample within
the survey, and of the different dependence of the GR effects on the distance between the
observer and the galaxies. In real surveys the functions F`(s1, s) can be estimated using
traditional pair counting algorithms or Fast Fourier Transforms (FFT).

2.1.1 The effective redshift

A useful approximation often employed in the literature is to assume that the theoretical
prediction can be computed at some effective redshift. This allows to take the correlation
function multipoles outside of the ds1 integral in eq. (2.9), that can be computed once and for
all over the window function multipoles F`. The effective redshift approximation is motivated
by the fact that we are mostly interested in the clustering at separations much smaller than
the comoving distance associated to the redshift of the individual galaxies, that can therefore
be modeled at the same redshift. On the small scales relevant for BAO and RSD this has
been shown to be an excellent approximation [54], as well for PNG studies on small patches
of the sky [26]. To see how this works let us assume that the correlation function can be
written as a sum over different terms, each of them being the correlation function between
two operators O and O′ entering the expansion of the galaxy density field,

ξ`(s, s1) ≡
∑
OO′

ξ`,OO′(s, s1) . (2.11)

For each contribution to the correlation function we could therefore choose an effective red-
shift such that at a given, small enough, reference separation s̃, the model evaluated at this
suitably defined redshift exactly matches the full prediction in eq. (2.9). In practice, at small
scales the correlation function is dominated by the Newtonian terms in the plane parallel
limit, that allows us to define a single effective redshift for each multipole

ξ`,(s̃, zeff,`) ≡
∫

d3s1 ξ`(s̃, s1)φ(s1)2W (ŝ1)2∫
d3s1 φ(s1)2W (ŝ1)2 . (2.12)

– 6 –
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Notice this operation is always possible as long as the transfer function and the growth factors
are separable. Under the effective redshift approximation the average of the Yamamoto
estimator reads〈

P̂L(k)
〉

= 2L+ 1
A

∑
`,`1

(−i)L
(
L ` `1
0 0 0

)2

(2`1 + 1)
∫

dss2 ξ` (s, zeff,`) jL (ks)

×
∫

ds1s
2
1 φ (s1)F`1 (s1, s)

≡ 2L+ 1
A

∑
`,`1

(−i)L
(
L ` `1
0 0 0

)2 ∫
ds s2ξ` (s, zeff,`) jL (ks)Q`1(s) . (2.13)

The functions Q`1 can be easily estimated using FFT methods [55]. It is often the case that
the different multipoles have very similar zeff,`, and therefore a common effective redshift is
defined for the entire correlation function,4

zeff =
∫

d3s φ(s)2W (ŝ)2z(s)∫
d3s φ(s)2W (ŝ)2 . (2.14)

The definition above does not guarantee that the small scale power spectrum evaluated at zeff
converges to the true answer, but the difference can usually be reabsorbed by changing the
value of the unknown bias parameters. A global definition is also more prone to anisotropies in
the orientation of galaxy pairs in the survey, which could also bias the theoretical prediction,
as recently pointed out in [57].

The simple picture described above is complicated by those correlation function terms
which are integrated along the LOS, like lensing magnification and ISW. In this case, the
definition of effective redshift given above does not strictly hold. Nevertheless we will see in
the next sections (see figures 4 and 10) that our choices in eqs. (2.12) and (2.14) are accurate
enough for these terms as well, vastly simplifying the convolution with the window function.

2.1.2 The integral constraint
In redshift surveys the mean number density of the underlying galaxy population is usually
not known a priori, and it is estimated from the data themselves. The resulting overdensity
will therefore vanish when integrated over the entire volume of the survey, an effect known as
the Integral Constraint (IC). In addition, if the redshift selection function is also estimated
from the data, the overdensity has to vanish in radial bins when averaging over the angular
footprint. This is the so called Radial Integral Constraint (RIC). The mathematics behind
the two effects is very similar, therefore we will concentrate only the global IC. We follow
ref. [58], who showed that, to a very good accuracy, imposing the global IC boils down to
following replacement of the theory prediction〈

P̂L (k)
〉
→
〈
P̂L (k)

〉
−
〈
P̂0 (0)

〉 QL (k)
Q0 (0) ≡

〈
P̂L (k)

〉
− P ic

L (k) , (2.15)

where
QL (k) = 4π (−i)L

∫
ds s2 jL(ks)QL(s) (2.16)

Unless otherwise noted, all the figures and comparisons shown in the next sections always
include the global IC in the theoretical prediction.

4Another possible definition is the pair weighted effective redshifts, see for example [56].
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3 The relativistic galaxy number density

In the previous section we laid out the formalism required to compute the measured power
spectrum. The only missing ingredient is a model for the correlation function ξ(s, s1, µ)
including all the relativistic effects. From the galaxy catalog N (n, z) in terms of the observed
angle n and redshift z, we can defined the so-called galaxy number counts

∆ (n, z) = N (n, z)− 〈N (n, z)〉
〈N (n, z)〉 (3.1)

where 〈. . .〉 denotes the angular average at fixed observed redshift. Being ∆ (n, z) an observ-
able quantities we can express it in any gauge. We adopt therefore the Newtonian gauge

ds2 = a2(τ)
[
− (1 + 2Ψ) dτ2 + (1− 2Φ)dx2

]
(3.2)

where τ denotes the conformal time and the scalar metric perturbations Ψ and Φ are the
Bardeen potentials.

The full relativistic number counts to linear order in perturbation theory [1–5], including
the observer terms [28, 59], reads5

∆ (n, z) = b1Dm +H−1∂rv|| +
5sb − 2

2

∫ r

0
dr′

r − r′

rr′
∆Ω (Ψ + Φ)

+
(

5sb + 2− 5sb
Hr

+ Ḣ
H2 − fevo

)

×
(
H0Vo + Ψ−Ψo + v|| − v||o +

∫ τo

τ

(
Ψ̇ + Φ̇

)
dτ ′
)

+ (5sb − 2) Φ + Ψ + Φ̇H−1 + (fevo − 3)HV−2− 5sb
r

Vo − (2− 5sb) v||o

+2− 5sb
r

∫ τo

τ
(Ψ + Φ) dτ ′ , (3.3)

where we have only assumed the validity of the Euler equation for baryons and dark matter.
In the equation above V denotes the velocity potential and v|| = n · v, where n is the unit
vector pointing from the observer to the source, and v is the peculiar velocity in Newtonian
gauge. We denote the partial derivative with respect to conformal time τ with a dot. The
gauge-invariant density contrast Dm coincides with the density fluctuation in the comoving
gauge. To relation between dark matter and galaxies is parametrized by a galaxy bias
b1, a magnification bias sb and a evolution bias fevo. Terms with a subscript ‘o’ indicate
perturbations evaluated at the observer position which are needed for the gauge invariance
of all the expressions. For example the term Ψ−Ψo in the third line of the equation above

5In refs. [28, 59] the Authors implicitly assume that the surveys are limited in volume. However, considering
that current and upcoming surveys will be limited in flux we need to introduce also the magnification bias
sb, defined as the slope of the luminosity function at the luminosity threshold, following the same convention
of refs. [3, 13, 31]. Therefore by Taylor expanding around the threshold luminosity and considering that the
fractional fluctuation of the luminosity is twice the fractional fluctuation of the luminosity distance (δL/L̄ =
2δDL/D̄L), we need to replace

∆ (n, z)→ ∆ (n, z)− 5sb (z) δDL

D̄L

.

To obtain eq. (3.3), we have used the luminosity distance of ref. [59] to properly include also the terms
evaluated at the observer position.
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is the standard gravitational redshift which is proportional to the difference between the
gravitational potential at the source and the observer.

We group the different relativistic effects in the following equation as follows: standard
density plus RSD (first line), lensing (second line), Doppler (third line), local gravitational
potentials (fourth line), integrated gravitational potentials (fifth line),

∆ (n, z) = b1Dm +H−1∂rv||

+5sb − 2
2

∫ r

0
dr′

r − r′

rr′
∆Ω (Ψ + Φ)

+R
(
v|| − v||o

)
− (2− 5sb) v||o

+
{(
R−2− 5sb

H0r

)
H0Vo + (R+ 1) Ψ−RΨo + (5sb − 2) Φ + Φ̇H−1

+ (fevo − 3)HV
}

+2− 5sb
r

∫ τo

τ
(Ψ + Φ) dτ ′ +R

∫ τo

τ

(
Ψ̇ + Φ̇

)
dτ ′ , (3.4)

where we have introduced the redshift dependent parameter

R = 5sb + 2− 5sb
Hr

+ Ḣ
H2 − fevo . (3.5)

We can indeed think of the relativistic number counts as a sum of different operators O(n, z),
such that the total correlation function requires the computation of all possible terms of the
form

〈O (n1, z1)O′ (n2, z2)〉 = ξOO′ (s1, s2, ŝ1 · ŝ1) = ξOO′ (s, s1, µ) . (3.6)
The correlation function can be computed directly as a function of (s, s1, µ), or rotated
into this basis from another parametrization, for instance in terms of (s1, s2, ŝ1 · ŝ2). A
pictorial representation of both coordinates system is shown in figure 1 We have checked
that both methods give identical results, and we will use them interchangeably according
to our convenience. For comparison with previous work we will more often work in the
(s1, s2, ŝ1 · ŝ2) basis. The latter has the advantage of retaining a simple form even upon
dropping the effective redshift approximation.

So far we have not assumed any theory of gravity. Now, for the rest of the manuscript
we will adopt General Relativity. Therefore, by using Einstein equations to relate metric and
velocity perturbations to the density fluctuation we can write the correlation function as a
linear combination of the functions

In` (s) =
∫ dq

2π2 q
2P (q) j` (qs)

(qs)n , (3.7)

where P (q) is the linear matter power spectrum at z = 0. In our notation, we introduce a
differential operator DO associated to each O, which allows us to arrive to

ξOO′ (s1, s2, ŝ1 · ŝ2)

=
∫ d3q

(2π)3P (q)
∫ s1

0
dχ1

∫ s2

0
dχ2DO (q, s1, χ1)D′O (q, s2, χ2) eiq·(χ2ŝ2−χ1ŝ1)

=
∫ dq

2π2 q
2P (q)

∫ s1

0
dχ1

∫ s2

0
dχ2DO (q, s1, χ1)D′O (q, s2, χ2) j0 (qχ) , (3.8)
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θ

cos−1μ

s1

s2

̂s

Figure 1. We show the systems of coordinates adopted in this work: (s1, s2, θ) and (s, s1, µ). The
line of sight variables χ1 and χ2 run from the observer to the sources along the vectors s1 and s2,
respectively.

where χ =
√
χ2

1 + χ2
2 − 2χ1χ2 cos θ. These differential operators, acting on j0 (qχ) will lead

to the functions In` . To avoid confusion, in this work we will always call q the momentum
that enters the calculation of the correlation function, and k the wavenumber associated to
the actual measurement of P̂L(k). For the different perturbations we have

Dm (s1)→ Dδ = Tδ (s1) δD (s1 − χ1) ,

v|| (s1)→ Dv|| = δD (s1 − χ1) TV (s1)
q2 ∂χ1 , v||o → Dv||o = δD (χ1) TV (0)

q2 ∂χ1 ,

V (s1)→ DV = δD (s1 − χ1) TV (s1)
q2 , Vo → DVo = δD (χ1) TV (0)

q2 ,

Φ (s1)→ DΦ = δD (s1 − χ1) TΦ (s1)
q2 ,

Ψ (s1)→ DΨ = δD (s1 − χ1) TΨ (s1)
q2 , Ψo → DΨo = δD (χ1) Tψ (0)

q2 ,

Ψ (χ1)→ DΨ = TΨ (χ1)
q2 , Ψ̇ (χ1)→ DΨ̇ =

TΨ̇ (χ1)
q2 ,

Φ (χ1)→ DΦ = TΦ (χ1)
q2 Φ̇ (χ1)→ DΦ̇ =

TΦ̇ (χ1)
q2 .

(3.9)

Einstein gravity will constrain these transfer functions and, in particular in the absence of
anisotropic stress, we have a single scalar degree of freedom. In this case the transfer functions
are given by

Tδ = b1D1 , (3.10)
TV = −HfD1 , (3.11)

TΨ = TΦ = −3
2
H2

0
a

ΩM,0D1 , (3.12)

TΨ̇ = TΦ̇ = −3
2
H2

0
a

ΩM,0D1H (f − 1) . (3.13)

where D1 is the linear growth factor and f is the linear growth rate.
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The galaxy correlation function can be computed for instance using the public code
COFFE [60], which we expanded to include all possible correlations between the observer’s
and source terms, between perturbations evaluated at the observer location, and to allow the
multipole expansion in terms of the endpoint LOS.

The contributions arising from auto correlation of the observer terms represent the
variance of these operators as they would be measured by observers with the same τo, i.e. they
account for the difference between a randomly chosen and a preferred observer [61]. In
the cross correlations between the observer and the source what matters are instead the
fluctuations on very large scales, comparable to the distance to the source. These long
wavelength modes are stochastic in nature and cannot be known a priori. For example in a
determination of the observer’s velocity, what it is effectively being measured are the small
scale fluctuations on the scale of our Local Group, which are by far the largest contribution
to the observer’s velocity.

4 Infrared divergences of the correlation function

4.1 The variance of the galaxy density field and the 1/q4 terms

If the expression for the galaxy number counts in eq. (3.3) describes a gauge invariant and
observable quantity, then all the summary statistics we compute out of it must be finite.
However, a technical problem is immediately encountered in the calculation of the galaxy
correlation functions. Namely, the contribution from any two powers of the metric potentials,
for example

〈Φ(s1)Φ(s2) 〉 =
∫ ∞

0

dqq2

2π2 DΦ(q, s1)DΦ(q, s2)P (q)j0(qs) ∝
∫ ∞

0

dqq2

2π2 q
−4P (q)j0(qs) , (4.1)

diverges in the Infra-Red (IR) for typical ΛCDM power spectra, i.e. when the lower integration
limit is sent to zero. A healthy theory cannot have such a feature, which could resolve by
itself within the framework, or could indicate a breakdown of one of the model assumptions.

A practical solution would be to remove by hand these divergences. This approach
has been considered in [60], and we will now show that it is intimately related to the exact
cancellation of the divergent terms. Consider the different operators O and O′ contributing
to the divergent part of the correlation function

ξdiv(s, s1, µ) ≡
∑
OO′

ξdiv
OO′(s, s1, µ) (4.2)

where each term is proportional to I4
0 defined in eq. (3.7).6 One way to eliminate the IR

divergency is to subtract unity from the spherical Bessel function in the definition of I4
0

I4
0 (s)→ Ĩ4

0 (s) =
∫ dq

2π2 q
2P (q) j0 (qs)− 1

(qs)4 , (4.3)

which is equivalent to removing the variance of each of the divergent pieces

ξdiv (s, s1, µ) =
∑
OO′

ξdiv
OO′(s, s1, µ) =

∑
OO′

ξ̃div
OO′ +

∑
OO′

(σ2)div
OO′ , (4.4)

6The different terms are proportional to I4
0 for different arguments: s, s1, s2, χ1, χ2,√

s2
1 + χ2

2 − 2s1χ2 cos θ,
√
χ2

1 + s2
2 − 2χ1s2 cos θ and

√
χ2

1 + χ2
2 − 2χ1χ2 cos θ.
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where the new functions ξ̃div
OO′ are defined by the replacement of I4

0 with Ĩ4
0 . We can now

compute all the ξ̃’s, which are finite, but we are left with the problem of adding a number of
infinite terms at the end. However, it turns out that the sum of the variance of the divergent
pieces is identically zero, ∑

OO′
(σ2)div

OO′ = 0 , (4.5)

once all the terms have been taken into account. Crucially the terms computed at the
observer’s position are necessary for the cancellation.

This result implies that the lower integration limit in I4
0 (s) does not play any role once all

possible correlations have been taken into account, or equivalently that the final result is not
sensitive to the large scale gravitational potentials. The cancellation of the IR-divergent terms
in the variance of the galaxy density field however does not imply that the observed power
spectrum does not contain terms scaling like P (k)k−4. Subtracting a constant with respect to
s as in eq. (4.3) indeed changes only the zero mode, k = 0, of 〈PL(k) 〉. It is straightforward
to see that for any finite mode k > 0, the Hankel transform of Ĩ4

0 and I4
0 are the same7

4π
∫

dss2s4Ĩ4
0 (s) j0 (ks) = 4π

∫
dss2j0 (ks)

∫ dq
2π2 q

2P (q) j0 (qs)− 1
q4

= k−2
∫

dqq−2P (q)δD (q − k)− 2
π

∫ dq
q2 P (q)

∫
dss2j0 (ks)

(k>0)= P (k)k−4 . (4.6)

We therefore conclude that the true observed power spectrum will exhibit k−4P (k)-like
behavior, which can however be exactly computed without any ad hoc procedure to tame
the divergences.

The proof of eq. (4.5) is long and tedious, and it is easily implemented with symbolic
programming that can deal automatic with all the different pieces.8 It is however instructive
to look at a subset of terms, specifically the ones proportional to fevo, which cancels among
themselves since fevo is an arbitrary free parameter of the model. The derivation illustrates
the physical ingredients required for the cancellations. The terms we are interested in are

∆evo ≡ −fevo

(
H0Vo + Ψ−Ψo + v|| − v||o −HV +

∫ τo

τ

(
Ψ̇ + Φ̇

)
dτ ′
)
. (4.7)

By using eq. (3.9) we can compute the correlation function

ξ∆evo (s1, s2, cos θ) =
∫ dq

2π2 q
2P (q)

∫ s1

0
dχ1

∫ s2

0
dχ2Devo (q, s1, χ1)Devo (q, s2, χ2) j0 (qχ)

(4.8)
where Devo is the differential operator associated to eq. (4.7), through the mapping in
eq. (3.9). In order to show that IR divergent contributions to the variance vanish we need to
check that

lim
q→0

q4
∫ s1

0
dχ1

∫ s2

0
dχ2Devo (q, s1, χ1)Devo (q, s2, χ2) j0 (qχ) = 0 . (4.9)

7We used ∫
dss2j0 (ks) (k>0)= −

(
∂2

k + 2
k
∂k

)∫
dsj0 (ks) = −

(
∂2

k + 2
k
∂k

)
π

2k = 0 .

8A Mathematica notebook showing the cancellation is attached as supplementary data.

– 12 –



J
C
A
P
0
1
(
2
0
2
2
)
0
6
1

A little algebra shows that this condition is satisfied only if∫ s1

0
dχ1

(
TΨ̇(χ1) + TΦ̇(χ1)

)
−H(s1)TV (s1) +H0TV (0) + TΨ(s1)− TΨ(0) = 0 , (4.10)

which by integrating over χ1 reduces to

TΦ (s1) +H (s1)TV (s1) = TΦ (0) +H0TV (0) = constant . (4.11)

In terms of the metric perturbation and the peculiar velocity this condition reads

Φ (k, τ) + H (τ)
k

v (k, τ) = constant for k → 0 . (4.12)

It is easy to show that this condition is satisfied by the Weinberg adiabatic mode [6], under the
assumption that dark matter is the only clustering species. The existence of such adiabatic
mode indeed guarantees that the long wavelength gravitational potential is unobservable and
can always be reabsorbed with a change of coordinates. In this case for the dark matter
velocity we have

vM = k
Φ̇ +HΦ

4πGa2ρ̄M
= k

Φ̇ +HΦ
H2 − 3Ḣ

, (4.13)

where we have explicitly used Φ = Ψ. Then by plugging this expression into eq. (4.12) and
taking a time derivative we obtain a second order differential equation for Φ

Φ̈ + 3HΦ̇ +
(
H2 + 2Ḣ

)
Φ = 0 , (4.14)

where we have used
...
a = 2

a2

(
2aȧä− ȧ3

)
. (4.15)

The differential equation in eq. (4.14) is precisely solved by the Weinberg adiabatic mode9 [6,
62]

Ψ = Φ = C1

(H
a2

∫ τ

0
a2dτ ′ − 1

)
. (4.16)

Therefore we conclude that cancellation of the IR divergences is a direct consequence of the
existence of the Weinberg adiabatic mode as a solution of the Einstein field equations. We
also recognize that eq. (4.12) agrees with the spatial curvature perturbation on co-moving
spatial surface

−Rco (k, τ) = Φ (k, τ) + H (τ)
k

v (k, τ) (4.17)

which is conserved on super-Hubble scales for adiabatic perturbations in absence of
anisotropic stresses.

In presence of local Primordial Non Gaussianities, the sensitivity of the two-point func-
tion to the long-wavelength gravitational potential is physical, and it cannot therefore be
removed. In this case, the correlation between large and small scale modes is actually im-
printed during inflation. On the other hand, it is possible to show that the IR divergences are
solely due to the auto-correlation of the primordial gravitational potential, and are hence pro-
portional to f2

NL. The terms involving one power of fNL and a metric perturbation are all indi-
vidually divergent in the IR, but once again their sum is finite. This result is a consequence of
the fact that in the squeezed limit local PNG cannot be generated by gravitational evolution.

9In eq. (4.16) we have neglected the decaying mode.
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Finally we notice that from the expression derived in this section, eq. (4.9), directly
implies

lim
q→0

q3
∫ s1

0
dχ1

∫ s2

0
dχ2Devo (q, s1, χ1)Devo (q, s2, χ2) j0 (qχ) = 0 . (4.18)

4.2 The 1/q2 IR sensitivity

The terms involving one power of the metric potentials are not IR sensitive in a ΛCDM
Universe with parameters as determined by the Planck satellite [45]. Nevertheless, in the
limit q → 0 we expect the gravitational potentials to disappear from the correlation function
as shown in the previous section. This is an important consistency check of the theory,
because, if the cancellation is a property of General Relativity and of Gaussian and adiabatic
initial conditions, then long-wavelength modes are unobservable regardless of the actual value
of cosmological parameters. Following the example in the previous section we show this is
the case for the contribution in eq. (4.7), while a complete treatment can be easily obtained
through symbolic programming.

Inspection of eq. (4.7), reveals that we need to consider two set of terms to show the
cancellation of a single metric potential in the large scale limit. Indeed we do not only have
the contribution induced by the peculiar velocities, i.e. proportional to the gradient of the
gravitational potential, but also the terms proportional to two powers of the gravitational
potential combined with the expansion of the spherical Bessel at the order q2. In terms of
the transfer function TΨ, TΨ̇ and TV we arrive to

lim
q→0

q2
∫ s1

0
dχ1

∫ s2

0
dχ2Devo (q, s1, χ1)Devo (q, s2, χ2) j0 (qχ)

= (s1s2)−1 1
6

∫ s1

0
dχ1

∫ s2

0
dχ2

×
{

2χ2
1s1TΨ̇(χ1)(TΨ(0)−H0TV (0))− 4∆χ2s1s2TΨ̇(χ1)TΨ̇(χ2)

+ 4s1TΨ̇(χ1)TV (s2)(χ1y − s2)− 4χ1ys1TV (0)TΨ̇(χ1)
− 2∆χ2

1s1TΨ̇(χ1)(TΨ(s2)−H(s2)TV (s2))
+ 2χ2

2s2TΨ̇(χ2)(TΨ(0)−H0TV (0))
+ 4s2TΨ̇(χ2)TV (s1)(χ2y − s1)− 4χ2ys2TV (0)TΨ̇(χ2)
− 2∆χ2

2s2TΨ̇(χ2)(TΨ(s1)−H(s1)TV (s1))
+ 2TV (s1)(ys1TV (0)H(s1)− TV (0)(y +H0s1) + s1TΨ(0))
+ 2TV (s2)(ys2TV (0)H(s2)− TV (0)(y +H0s2) + s2TΨ(0))
+ 2TV (s2)(TV (s1)(H(s1)(s2 − ys1) +H(s2)(s1 − ys2) + y)
+ TΨ(s1)(ys1 − s2))− 2TV (s1)TΨ(s2)(s1 − ys2)
− 2ys1TV (0)TΨ(s1)− 2ys2TV (0)TΨ(s2) + 2yTV (0)2

+ s2
1(TΨ(0)−H0TV (0))(TΨ(s1)−H(s1)TV (s1))

+ s2
2(TΨ(0)−H0TV (0))(TΨ(s2)−H(s2)TV (s2))

−s2(TΨ(s1)−H(s1)TV (s1))(TΨ(s2)−H(s2)TV (s2))
}
, (4.19)

where we have introduced y = cos θ. Now combining the Euler equation

ṪV +HTV = TΨ (4.20)
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and the condition in eq. (4.12), which we remind is satisfied Weinberg the adiabatic mode,
we obtain

TΨ = 1
2
(
TΨ (0) +H0TV (0) + ṪV

)
(4.21)

or equivalently∫ s1

0
dχ1TΨ (χ1) = s1

2

[
TΨ (0) +H0TV (0) + 1

2 (TV (0)− TV (s1))
]
. (4.22)

After some integration by parts and using the Friedman Equation Ḣ = H2 − 3H2
0ΩM0
2a , we

obtain the desired cancellation

lim
q→0

q2
∫ s1

0
dχ1

∫ s2

0
dχ2Devo (q, s1, χ1)Devo (q, s2, χ2) j0 (qχ) = 0 , (4.23)

and as a consequence also that

lim
q→0

q

∫ s1

0
dχ1

∫ s2

0
dχ2Devo (q, s1, χ1)Devo (q, s2, χ2) j0 (qχ) = 0 . (4.24)

Similarly to the discussion of the divergent terms in the previous section, the cancellation
only affects the zero mode of the power spectrum, hence GR contributions proportional to
P (k)k−2 are present at any finite scale.

To summarise this section, we found that the existence of the Weinberg adiabatic mode
removes the IR sensitivity of the correlation function. The presence of the adiabatic mode is
guaranteed by Gaussian and adiabatic initial conditions and the diffeomorphism invariance of
General Relativity. Notice all three conditions are required. We already discussed how local
PNG induce correlation between long and short wavelength modes. If the initial conditions
contained some amount of isocuvature perturbations or new long range forces are present in
the dark sector, then the comoving curvature perturbation is not constant on super-horizon
scales and the correlation function could exhibit a weak IR dependence.

While our calculation addresses the specific problem of the computation of the galaxy
correlation function and power spectrum, similar arguments about the effects of long wave-
length gravitational potentials, or better said lack thereof, on cosmological observables have
long been known. For the late Universe, they usually exploit the Consistency Relations
for LSS [63–65], which are valid under the same conditions required by the cancellation we
showed above. For an application of the Consistency Relations to the relativistic bispectrum
see [66]. Our result also implies that GR effects are not coupled to any super sample value
of the gravitational potential and its spatial derivative, as it would be the case in presence
of local PNG [67].

Our findings are in disagreement with the recent work in [28]. They assume that the
observed power spectrum constructed from squaring the Fourier transform of the galaxy
overdensity field is diagonal, i.e. the field is homogeneous and isotropic. But as we discussed
in the introduction, RSD and GR effects break translational and rotational invariance, so
that the Yamamoto estimator is a function only of a single k mode because the other one has
been integrated out. The power spectrum discussed in [28] is therefore not directly related to
any observable. Where we agree with [28] is in the calculation of the variance of the galaxy
overdensity field, which does not receive contribution from the gravitational potential and its
first derivatives. As discussed above we clarified the physical conditions for this cancellation,
which requires more than just the equivalence principle to hold as suggested by [28]. The full
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two-point correlation function of the galaxy density field and any general estimator for the
power spectrum like the one eq. (2.1), are complicated average of all possible lines of sight
for each pair of galaxies and should not be compared with the variance of the field itself,
which is a function of a single line of sight.

Finally, one could argue that the any IR sensitivity of the model adopted here would be
anyway removed by the presence of an Integral Constraint. This is true, however this fact is
not built in the formulation of the relativistic galaxy number counts, which should provide
a finite answer regardless of the way the mean number of galaxy is measured. If one wants
to resort to the IC, the latter should be included at the level of the integrand in eq. (2.9),
carefully including the effect of the window function. In our approach we removed the IR
sensitivity in both eq. (2.9) and in the expression of the IC, which can be therefore discarded
for most practical applications.

The method described in this work to remove the IR divergences is also the only one
that can deal with observations in which the mean is not known. This is for instance the
case of the excess brightness temperature of the 21 cm line, or any intensity line, measured
with radio arrays in interefometric mode. With interferometers we directly have access to
the fluctuations in Fourier Space, and there is no IC to subtract to the measurements of the
power spectrum.

5 Relativistic effects in the galaxy power spectrum

Having resolved the issue of IR divergences in the correlation function we can now safely
proceed to compute the prediction for the observed galaxy power spectrum multipoles. Our
calculation of the correlation function includes the observer’s terms, in auto-correlation with
themselves and in cross-correlations with the source terms. Given the gauge invariant galaxy
number counts, eq. (3.3), we still have the freedom to perform a Lorentz boost to a preferred
reference frame. In particular we are allowed to move to the CMB rest frame, and remove the
terms proportional to the observer’s velocity. While this operation is harmless in the theoreti-
cal prediction, some care should be used when expressing the measurement in the CMB or any
other frame [68, 69]. Alternatively one can keep these terms and try to measure the induced
dipole to test the Copernican Principle. We provide expressions for this case in appendix C.

The other required model ingredients are the multipoles of the window functions
F`(s, s1), and the Fourier space windows functionsQL(k). While our expressions are fully gen-
eral, we choose a rather simple survey geometry, whose properties can be analytically calcu-
lated. We thus assume that the window function has an azimuthal symmetry around an axes,
for instance a spherical cap with a maximum opening angle θmax. We fix this angle by impos-
ing the hypothetical survey covers one third of the sky, fsky = 1/3. This assumption allows us
to sum over all values of ` and `1 in eq. (2.9). We also assume that the radial selection function
and angular footprint can be separated, which might not always be the case if different parts
of the sky have large depth variations. Finally we assume a constant selection functions within
a certain redshift range. We consider four redshift bins, [zmin = 0.05, zmax = 0.2], [0.5,1], [1,2]
and [1,4]. For these choices of window function, the convolution with the correlation function
further simplifies, as discussed in appendix A. Figure 2 shows the multipoles QL(s) and QL(k)
in our four reference surveys, for L = 0, 1, 2. The largest pair separation for an azimuthally
symmetric survey geometry is given by 2r(zmax) sin θmax, where θmax = cos−1 (1− 2fsky). We
see that the scale k ∼ 2π/ (2r(zmax) sin θmax) indicates the boundary of the survey volume
in Fourier space and we will display it in the other figures as well. The effect of the window
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Figure 2. We show the multipoles of the window functions considered in the manuscript QL (s)
and its Hankel transforms QL (k) for the monopole (L = 0), the dipole (L = 1) and the quadrupole
(L = 2), normalized to Q0 (k → 0) = 1. The window function is defined as φ (s1) = φ (s1)W (ŝ1) =
Θ (s1 − smin) Θ (smax − s1) Θ (θmax − θ1), where θmax = cos−1 (1− 2fsky) and we set fsky = 1/3. The
vertical lines correspond to the largest scales probed by the survey, i.e. 2r(zmax) sin θmax in real space
and 2π/ (2r(zmax) sin θmax) in Fourier space.

function is quite dramatic at low k, as one can see in figure 3. The black dashed lines show
the flat-sky prediction for the multipoles of the power spectrum without the window func-
tion, while the blue and red ones display the convolution with the window function, with
and without the Integral Constraint respectively. Notice that our asymmetric choice of LOS
generates a power spectrum dipole, as shown in the second row of figure 3.

5.1 Density and RSD

In the small angle limit the standard density and RSD correlation function and power spec-
trum correspond to the plane parallel limit of Kaiser [68]. For wide area surveys, like DESI
or Euclid, deviations from the plane parallel regime take the name of wide-angle effects. The
amplitude of these terms is controlled by kseff , where seff is the comoving distance to the
effective redshift, as opposed to k/H for the other relativistic effects. Therefore for surveys
of the size of the Hubble horizon, seff ∼ H−1, these effects are comparable, while for smaller
surveys wide-angle effects are more important.

To derive the correlation function induced by density and redshift perturbations,
i.e. what we denote by the standard Newtonian contribution to galaxy clustering, we fol-
low eq. (3.8),

ξnewt (s1, s2, ŝ1 · ŝ2) = 〈
(
b1Dm +H−1∂rv||

)
(s1)

(
b1Dm +H−1∂rv||

)
(s2)〉 =

=
∫ dq

2π2 q
2P (q)D1 (s1)D1 (s2)

(
b1 (s1)− f (s1) ∂2

qs1

) (
b1 (s2)− f (s2) ∂2

qs2

)
j0 (qs)

=
∑

i=0,2,4
Ji (s1, s2, cos θ) I0

i (s)D1 (s1)D1 (s2) , (5.1)
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Figure 3. We plot the monopole (top panels), the dipole (middle panels) and the quadrupole (bottom
panels) of the power spectrum for four different survey volumes. Different colors denote: the flat-sky
theoretical power spectrum without any window function (dashed black), the full-sky power spectrum
convoluted with the survey geometry (dotted red), including also the integral constraint (solid blue).
The vertical lines correspond to the largest scales probed by the survey, i.e. 2π/ (2r(zmax) sin θmax).

where

J0(s1,s2,cosθ) = 1
15
(
f(s1)

(
5b1(s2)+2cos2θf(s2)+f(s2)

)
+5b1(s1)(3b1(s2)+f(s2))

)
,(5.2)

J2(s1,s2,cosθ) = − 1
21s2

{(
7b1(s2)f(s1)

((
3cos2θ−1

)
s2

2−4cosθs1s2+2s2
1

)
+f(s2)

(
7b1(s1)

((
3cos2θ−1

)
s2

1−4cosθs1s2+2s2
2

)
+f(s1)

((
11cos2θ+1

)
s2

1−4cosθ
(
cos2θ+5

)
s1s2

+
(
11cos2θ+1

)
s2

2

)))}
, (5.3)

J4(s1,s2,cosθ) = f(s1)f(s2)
560s4s2

1s
2
2

{
4
(
30cos2θ−19

)
s6

1s
2
2−8cosθ

(
4cos2θ+39

)
s5

1s
3
2

+18
(
8cos2θ+23

)
s4

1s
4
2−8cosθ

(
4cos2θ+39

)
s3

1s
5
2

+4
(
30cos2θ−19

)
s2

1s
6
2+24cosθs7

1s2+24cosθs1s
7
2+3s8−3s8

1−3s8
2

}
. (5.4)

To use eq. (2.9) we need to adopt the end-point line-of-sight convention

s2 =
√
s2

1 + s2 + 2s1sµ and cos θ = µ
s

s2
+ s1
s2
. (5.5)
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Under the effective redshift approximation, the expression for the correlation function
of density + RSD takes a simple, but long, analytical form. We have

ξnewt(s, zeff , µ) = D1(zeff)2

105 (1 + x2 + 2xµ)

×
{

7I0
0 (s)

[
5b1(3b1 + f)

(
2µx+ x2 + 1

)
+ 5b1f

(
2µx+ x2 + 1

)
+ f2(x(2µ(µx+ 3) + x) + 3)

]
− 5I0

2 (s)
[
7b1f

(
−1 + 3µ2

) (
1 + 2µx+ x2

)
+ f [(7b1 + 6f)

×
(
−1 + 3µ2

)
+ 2µ

(
14b1 + 3f + 9fµ2

)
x+

(
14b1 + f + 11fµ2

)
x2]
]

+ 3I0
4 (s)f2

[
3 + 35µ4 − 24µx+ 40µ3x− 4x2 + 6µ2

(
−5 + 2x2

)]}
, (5.6)

where x = s/r(zeff) and b1 and f are evaluated at the effective redshift zeff . The above
expression can then be projected into multipoles. Notice that in linear theory all multipoles,
even and odd ones, are non zero, and only in the plane-parallel limit when x→ 0 we recover
the standard expressions in [68]. The accuracy of the effective approximation is shown in
figure 4, where we plot the ratio between the full prediction, i.e. integrated over s1, and the
power spectrum evaluated at the effective redshift, for the monopole, dipole and quadrupole.
The prediction includes only the density plus RSD piece. For the left panels we assumed
the linear bias scales with the growth factor, D(z)b1(z) = 1.5, while on the right ones we
fixed b1(z) = 1.5. Different colors show different surveys, and the vertical bars display the
largest scales measured in each of them. Continuous lines indicate the prediction evaluated
at the zeff, ` (see eq. (2.12)), which by definition are unbiased at sufficiently high k, while
dashed ones use the global zeff (see eq. (2.14)). Notice that for the dipole we only show the
global zeff since in the plane parallel limit there is no intrinsic dipole. This figure shows that
the effective redshift approximation with the zeff, `’s is in general a very good approximation,
better than a % in all cases except the more unrealistic scenario of a single redshift bin
galaxy survey between zmin = 1 and zmax = 4. The global zeff performs slightly worse, and
it is less accurate for constant galaxy bias. We also notice that the error introduced by the
effective redshift approximation is usually multiplicative, and it can therefore be absorbed in
a redefinition of the in principle unknown galaxy bias.

In real data the accuracy of the effective redshift prediction will depend on other ob-
servational effects, like completeness, that can be trivially included as additional redshift
weights in our theoretical predictions.

5.1.1 Full sky and s/s1 expansion
To obtain the estimated power spectrum we need to convolve the expression of the correlation
function with the multipoles of the window function. Because of the finite survey volume,
rather than computing the full ξ`(s, s1), a more practical approach for the convolution with
the window function is to expand the multipoles in powers of s/s1

ξ` (s1, s) =
∑
j

(
s

s1

)j
ξ

(j)
` (s) . (5.7)
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Figure 4. We plot the ratio between the power spectrum within the effective redshift approximation
and the full redshift dependence for the monopole (top panels), the dipole (middle panels) and the
quadrupole (bottom panels). The different colors are associated to the following constant redshift
selection functions: [0.05, 0.2] blue, [0.5, 1] red, [1, 2] green and [1, 4] orange. Solid lines refer to the
theoretical effective redshift defined in eq. (2.12), while dashed lines to the volume weighted mean
redshift, see eq. (2.14). The vertical lines correspond to the largest scales probed by the survey,
i.e. 2π/ (2r(zmax) sin θmax). In the left panels we consider b1 = 1.5/D1 (z), while on the right panels
b1 = 1.5.

Notice that in the above expression the ξ(j)
` might still explicit depend on s1 to account for

the redshift dependence of the growth factors.
The series expansion is certainly a bad approximation close to the survey boundary

where the separation s could approach the distance to the pair, and it eventually diverges,
but the finite size of the window function addresses many of these shortcomings. In figure 5
we show the ratio between the monopole of the predicted power spectrum up to a given
order in the series expansion, P̂ (j)

L (k), and the full calculation. In all four cases considered
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Figure 5. We plot the ratio between the monopole of power spectrum expanded up to different
order in the wide-angle parameter s/s1 and the full-sky power spectrum. The panels show the four
different surveys with increasing redshift coverage from left to right. The vertical orange line indicates
k = 2π/r(zeff), while the gray line refers to the largest scales within the survey geometry. In the top
panels we consider b1 = 1.5/D1 (z), while on the bottom panels b1 = 1.5.

we assume a sky fraction fsky = 1/3 and vary the redshift range of the measurements. We
find that the second order expansion in s/s1, usually employed in the literature [50, 55], is
always a very good approximation up to the survey boundary, indicated by the thick vertical
gray line in the panels. The difference of a few % is always well below the expected cosmic
variance for these hypothetical surveys. Notice how the presence of the window function
makes the flat-sky prediction, the blue lines at O(s/s1)0, very accurate.

The same set of plots is shown for the quadrupole in figure 6. As expected the series
expansion performs slightly worse than for the monopole, but it should be kept in mind that
the cosmic variance increases accordingly. The perturbative expansion in s/s1 breaks down
at scale larger than k ∼ 2π/reff , shown as the orange bar in the figure. Indeed this scale
corresponds to s/s1 ∼ 1 in configuration space.

For the dipole (figure 7) the perturbative expansion starts to converge at O (s/s1).
Because the dipole of the correlation function vanishes for a single tracer, P1 (k) in the plane-
parallel approximation receives contributions only from the coupling between the window
function and other multipoles.

5.2 Lensing magnification

At fixed pair separation s between two observed galaxies, terms like lensing magnification
or ISW measure the correlation between points along the lines of sight of the two galaxies.
The “non-locality” of such contributions makes harder to understand to which value of k
in the power spectrum they mostly contribute. In our formalism, however, computing the
average of the observed power spectrum requires only the evaluation of the three-dimensional
correlation function multipoles. We compute ξ(s1, s2, cos θ) or ξ(s, s1, µ) using FFTs, and
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Figure 6. We plot the ratio between the quadrupole of the power spectrum expanded up to different
orders in the wide-angle parameter s/s1 and the full-sky power spectrum. The four panels show survey
geometry with different deepness in redshift. The vertical orange line indicates k = 2π/r(zeff), while
the gray line refers to the largest scales within the survey geometry. In the top panels we consider
b1 = 1.5/D1 (z), while on the bottom panels b1 = 1.5.

then Monte-Carlo or quadrature methods for the integrals along the LOS and the projection
into multipoles.

In this section we focus on lensing magnification, which enters the power spectrum at
the same order in derivatives as the standard density and RSD terms. As mentioned before,
we set sb = 0 as its value changes only the normalization of the lensing contribution to the
power spectrum.

Figure 8 shows in red the contribution of lensing magnification to the monopole and
quadrupole of the power spectrum, which can be compared to the RSD term (including wide
angle effects) in blue. Both curves include the effect of the window function, but not the
integral constraint. For reference the flat-sky linear theory prediction in absence of a window
function is shown as the dashed black line. Figure 9 instead shows, again in red, the relative
difference between the RSD power spectrum and the RSD plus lensing power spectrum.
Because we are adding the different contributions we can now consistently subtract the
integral constraint. As expected lensing magnification is a tiny effect for low redshift surveys
with a small extension in redshift, as displayed in the leftmost panels. In this case, for both
the monopole and the quadrupole we find lensing magnification leads to sub-% changes on the
total power spectrum. Moving to higher redshift and wider redshift ranges the effect of lensing
increases, reaching tens of percent for the monopole and O(1) for the quadrupole in our most
unrealistic setup of a single redshift bin between z = 1 and z = 4 over one third of the sky.
We remark that the spikes in the lower panels of figure 9 appear because the RSD quadrupole
crosses zero, see figure 3. The larger effect on the quadrupole can be understood by noticing
that lensing magnification contains a transverse Laplacian, which depends strongly on µ
and it is therefore more sensitive to the non uniform weighting of higher multipoles. The
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Figure 7. We plot the ratio between the dipole of power spectrum expanded up to different orders
in the wide-angle parameter s/s1 and the full-sky power spectrum. The four panels show survey
geometry with different deepness in redshift. The vertical orange line indicates k = 2π/r(zeff), while
the gray line refers to the largest scales within the survey geometry. In the top panels we consider
b1 = 1.5/D1 (z), while on the bottom panels b1 = 1.5.

information carried by the lensing magnification effect is thus spread over several multipoles.
Note for instance in figure 8 that the lensing quadrupole, red line in the lower panels, is
usually larger than the lensing monopole, red lines in the upper panels. Interestingly this
could open the possibility to detect the lensing contribution by measuring the power spectrum
at large scales for higher multipoles where the Newtonian effects are strongly suppressed.

Investigations with more realistic angular masks and selection function are certainly
needed, but our analysis indicates that lensing magnification will likely not play a major role
in cosmological parameter inference in spectroscopic surveys.

5.3 The observed galaxy power spectrum

In this section we finally discuss all the relativistic effects and their effect on the observed
power spectrum. As we can see from figures 8–9, the relevance of the different effects changes
with the survey volume and redshift coverage. In figure 9, as discussed in the previous section,
each line shows the ratio between the RSD prediction and RSD plus all the GR terms above
in the figure legend. For example the green line is the relative difference between the RSD
term and RSD plus lensing and Doppler terms, and so on.

At low redshifts the main contribution is due to the Doppler effects. This behaviour
is well explained by the presence of the dependence on 1/(Hr) of such terms. In our low
redshift survey, the Doppler terms are approximately 5% and 10% of the RSD ones for the
monopole and the quadrupole respectively. They are therefore much larger than the lensing
magnification. Indeed, lensing is an integrated effect from the source to the observer and its
contribution growths by summing up several lensing deflections along the line of sight. Local
and integrated terms are subdominant at such low redshift. Notice that all GR terms are
proportional to P (k)kn for some n < 0, until the window function dominates.
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Figure 8. We plot the contributions of all the relativistic effects to the monopole (top panels)
and quadrupole (bottom panels) of the power spectrum. Each relativistic effect includes also the
correlation with the other effects listed above it in the legend. We remark that we are not con-
sidering the integral constraints in this figure, since we want to highlight the contribution of the
single relativistic effects. The vertical lines correspond to the largest scales probed by the survey,
i.e. 2π/ (2r(zmax) sin θmax).

At intermediate redshifts, between zmin = 0.5 and zmax = 1, lensing become comparable
to the Doppler terms, and the other local and integrated terms also grow. For this survey,
GR corrections are still sub-% for the monopole and approximately 10% for the quadrupole
on the largest scales. Interestingly, in our setup, the GR effects are minimized for a survey
at intermediate redshifts, as the Doppler effect starts to decrease and lensing magnification
has not yet taken over.

Moving to the high redshift Universe, in our survey between zmin = 1 and zmax = 2 or
zmin = 1 and zmax = 4 the lensing magnification dominates over all other terms, and the
conclusions we reached in the previous section apply.

Our results indicate that for current and upcoming LSS surveys, cosmological inference
from Baryon Acoustic Oscillations and the shape of the power spectrum on quasi-linear scales
is largely unaffected by GR effects, which are sub per mille corrections to the RSD term.

We conclude this section by investigating the accuracy of the effective redshift approx-
imation once we include all the relativistic effects. Our findings are shown in figure 10,
assuming the linear bias scales as b1(z)D(z) = 1.5. While we know that in principle the
redshift evolution of the integrated terms, including lensing, is scale-dependent, because the
latter are a relatively small correction on top of the standard RSD power spectrum the
effective redshift approximation works extremely well also in the presence of relativistic cor-
rections, with 5% differences in the monopole only for the very extended survey between
zmin = 1 and zmax = 4 shown in the rightmost column.10

6 Conclusions

In this work we presented the first computation, in General Relativity, for the ensemble
average of the Fourier space estimators traditionally used in the galaxy power spectrum

10We caution the reader that this approximation may fail if one is interested in the integrated terms only.
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In the Integral Constraint we include the same effects. The vertical lines correspond to the largest
scales probed by the survey, i.e. 2π/ (2r(zmax) sin θmax).
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Figure 10. We show the accuracy of the effective redshift approximation (according to eq. (2.12))
by including all the relativistic effects. Similarly to figure 9 we add each effect one by one. The top
panels refer to the monopole, while the bottom ones to the quadrupole. The vertical lines correspond
to the largest scales probed by the survey, i.e. 2π/ (2r(zmax) sin θmax).

analyses of spectroscopic surveys. We clarified the relation between what is measured and
what is predicted and how different estimators effectively perform different compressions of
the data. Since GR corrections are important on large scales, a meaningful calculation must
include observational effects like the presence of an angular mask, of a redshift selection
function, and of the Integral Constraint. We implemented the presence of an arbitrary
window function in the exact way, highlighting which assumptions could be employed to
simplify the computation in certain situations.
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A prerequisite for the GR calculation is the understanding of the IR divergences, and
more generally of the IR sensitivity, of the three dimensional correlation function of the
galaxy overdensity field. We showed for the first time that these effects are not present once
all the terms in the expression for the galaxy number counts are taken into account, and
the full calculation for any observable is finite and insensitive to the large scale cutoff of the
theory. We were able to trace back this cancellation to the presence of the Weinberg adiabatic
mode [6] and of the Consistency relations for LSS [63–65]. From these results, our calculations
therefore inherit the underlying conditions of validity such as adiabatic and Gaussian initial
conditions, and diffeomorphism invariance. Our expression for the observed power spectrum
differs from the one in ref. [28], with whom we therefore disagree on the interpretation of
the relevance of the IR contributions to the power spectrum. Since our definition coincides
with the power spectrum routinely measured in galaxy surveys we conclude that the power
spectrum proposed in ref. [28] does not necessarily correspond to an observable quantity.

We then computed the observed power spectrum in four different hypothetical surveys,
covering one third of the sky at different redshifts. We first confirmed earlier work in the
literature on wide angle RSD, which we found to be a few % of the total signal on very
large scales. We also validated the series expansion approach to wide angle RSD, which is
sub-% accurate once the first few terms in the series have been included. We then checked
the accuracy of using an effective redshift to model the clustering signal, and found that for
our choice of radial selection functions it has a negligible impact, unless in a very extended
survey between z = 1 and z = 4. The validity of the effective redshift approximation
depends on both the redshift evolution of the sample and the selection function, therefore
any conclusions on more realistic galaxy samples than what we considered here should rely
on the full machinery provided in this work.

We then showed for the first time the impact of lensing magnification on the multipoles
of the observed power spectrum, finding it is not a significant effect at low-z but it can
account for the 5−10% of the monopole and the quadrupole at large scales for sufficiently
realistic high redshift surveys.

A summary of our results, including all GR effects, can be found in figure 8–9. For
low-redshift surveys the Doppler term is the most important GR contribution, up to 5−10%
of the total power, while at intermediate and high redshift lensing magnification becomes
more significant. Other GR effects like ISW, time delays, and local terms are in general
negligible. Being the GR effects a small contribution to the observed multipoles, the effective
redshift approximation remains valid in most cases considered.

There are several directions along which this work can be extended. One of our main
motivation was to understand the importance of GR effects when constraining local PNG
with scale dependent bias. We presented the expression for the average of the Fourier Space
estimator, but we cannot yet quantitatively address any possible degeneracy of GR terms
with PNG because we miss an expression for the covariance of the measured power spectrum
including GR effects and the window function. The mask indeed makes the covariance of the
power spectrum non diagonal on very large scales, and so far only approximate analytical
calculations in the flat sky limit have been proposed [70]. Such an investigation is subject of
work in progress by the authors [71].

Our implementation of the Yamamoto estimator uses the endpoint LOS, but several
other choices are possible. In particular, for analyses aiming at the Doppler terms a symmetric
choice of LOS, like the bisector, is preferable because it sets to zero purely geometric dipoles.
Also in this case the power spectrum can be measured with FFTs [35, 72], and all our
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calculations go through unchanged with the replacement of s1 with the length of the new LOS.
It is also well known that Yamamoto-like estimators are not statistically optimal on large
scales [73]. It is therefore natural to ask how to incorporate GR effects in optimal quadratic
estimators of the power spectrum, which are traditionally implemented using a flat-sky RSD
model [74]. As a final remark we note that the full GR calculation is computationally much
slower than the Newtonian one. However given the smallness of many GR terms, one could
imagine resorting to the flat-sky approximation in some cases and obtain order of magnitudes
speed up of the numerical calculations [75]. We plan to return to these interesting problems
in forthcoming publications.
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A Azimuthally symmetric window function

In this appendix we provide explicit expressions for the convolution with an azimuthally
symmetric window function

φ (s1) = φ (s1)W (θ1) = φ (s1) Θ (θmax − θ1) . (A.1)

For this survey geometry eq. (2.10) reduces to

F`1 (s1, s) =
∑
`2`3

(
`1 `2 `3
0 0 0

)2

(2`3 + 1)φ`2 (s1, s)A`3
(
s

s1

)
(A.2)

where

A` (x) = 2π
∫ θmax

0
dθ1 sin θ1

∫ π

0
dθ sin θ

∫ 2π

0
dφΘ (cos θ2 − cos θmax)L` (ŝ1 · ŝ) (A.3)

and

φ` (s1, s) = 2`+ 1
2

∫ 1

−1
dµφ (s2)L` (µ) . (A.4)

For a top-hat redshift selection function we also have that

φ (s1) = Θ (s1 − smin) Θ (smax − s1) , (A.5)

and we can perform the integral analytically obtaining

φ (s2) = φ

(√
s2

1 + s2 + 2s1sµ

)
=
∑
`

φ` (s1, s)L` (µ) (A.6)
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where

φ` (s1, s) = 2`+ 1
2 Θ (smax − (s− s1)) (A.7)

×
[
Θ (smax − s2 (s1, s, 1)) Θ (s2 (s1, s,−1)− smin)

∫ 1

−1
dµ L` (µ)

+Θ (−smax + s2 (s1, s, 1)) Θ (s2 (s1, s,−1)− smin)
∫ (s2

max−s2−s2
1)/(2ss1)

−1
dµ L` (µ)

+Θ (smax − s2 (s1, s, 1)) Θ (−s2 (s1, s,−1) + smin)
∫ 1

(s2
min−s2−s2

1)/(2ss1)
dµ L` (µ)

+Θ (−smax + s2 (s1, s, 1)) Θ (−s2 (s1, s,−1) + smin)
∫ (s2

max−s2−s2
1)/(2ss1)

(s2
min−s2−s2

1)/(2ss1)
dµ L` (µ)

]
For this symmetric window function we can also pursuit a different path, without relying

on the calculation of the multipoles of the correlation function. In the case of relativistic
effects integrated from the source to the observer, such approach can lead to a simpler
numerical evaluation. In this case we start considering the expectation value of the power
spectrum estimator

〈P̂L (k)〉 = 2L+ 1
A

∫
dΩk

4π

∫
d3s1d3s2ξ (s1, s, ŝ1 · ŝ)φ (s1)φ (s2) e−ik·sLL

(
k̂ · ŝ1

)
= 2L+ 1

A
(−i)L

∫
d3s1d3sξ (s1, s, ŝ1 · ŝ)φ (s1)φ (s2) jL (ks)LL (ŝ · ŝ1) (A.8)

where in the second line we have changed the integration variables (d3s1d3s2 → d3s1d3s).
By explicitly using the symmetry of the survey geometry we obtain

〈P̂L (k)〉 = 2L+ 1
A

(−i)L 2π
∫

ds1s
2
1dss2dθ sin θdθ1 sin θ1dϕξ (s1, s, ŝ1 · ŝ)

×φ (s1)φ (s2) jL (ks)W (θ1)W (θ2)LL (ŝ · ŝ1)

= 2L+ 1
A

(−i)L 4π
∫

ds1s
2
1dss2dθ sin θdθ1 sin θ1

dy√
1− y2 ξ (s1, s, ŝ1 · ŝ)

×φ (s1)φ (s2) jL (ks)W (θ1)W (θ2)LL (ŝ · ŝ1)

= 2L+ 1
A

(−i)L 4π
∫

ds1s
2
1dss2dµξ (s1, s, µ)φ (s1) jL (ks)φ (s2)LL (µ)

×
∫

dθ1dθW (θ1)W (θ2) Θ (µ− cos (θ + θ1)) Θ (cos (θ − θ1)− µ)

× sin θ1 sin θ√
(sin θ sin θ1)2 − (cos θ cos θ1 − µ)2

= 2L+ 1
A

(−i)L
∫

ds1s
2
1dss2dµξ (s1, s, µ)

×φ (s1) jL (ks)φ (s2)LL (µ)F
(
s

s1
, µ

)
(A.9)

where we have introduced

F (x, µ) = 4π
∫ θmax

0
dθ1

∫ π

0
dθ Θ

(
x cos θ + cos θ1√
x2 + 1 + 2xµ

− cos θmax

)
Θ (µ− cos (θ + θ1))

×Θ (cos (θ − θ1)− µ) sin θ1 sin θ√
(sin θ sin θ1)2 − (cos θ cos θ1 − µ)2

. (A.10)
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We can see that this simplified approach fully agree with eqs. (2.9)–(2.10). We can easily
relate eq. (A.9) with eq. (2.9) through

φ (s2)LL (µ)F
(
s

s1
, µ

)
=
∑
`,`1

(
L ` `1
0 0 0

)2

(2`1 + 1) 2`+ 1
2 L` (µ)F`1 (s1, s) . (A.11)

In particular, for the monopole (L = 0) we have

F

(
s

s1
, µ

)
φ (s2) =

∑
`

2`+ 1
2 L` (µ)F` (s1, s) . (A.12)

B Relativistic correlation function

The full relativistic correlation function can be written as

ξOO
′ (s1, s2, cos θ = ŝ1 · ŝ2)
=
∑
i,n

JOO
′

ni (s1, s2, cos θ)D1 (s1)D1 (s2) Ini (s)

+
∑
i,n

JOO
′

ni (s1, s2, cos θ)D1 (s1) Ini (s1) +
∑
i,n

JOO
′

ni (s2, s1, cos θ)D1 (s2) Ini (s2)

+D1 (s2)
∫ s1

0
dχ1

∑
i,n

JOO
′

ni (s1, s2, cos θ, χ1) Ini (∆χ1)

+D1 (s1)
∫ s2

0
dχ2

∑
i,n

JOO
′

ni (s1, s2, cos θ, χ2) Ini (∆χ2)

+
∫ s1

0
dχ1

∑
i,n

JOO
′

ni (s1, cos θ, χ1) Ini (χ1) +
∫ s2

0
dχ2

∑
i,n

JOO
′

ni (s2, cos θ, χ2) Ini (χ2)

+
∫ s1

0
dχ1

∫ s2

0
dχ2

∑
i,n

JOO
′

ni (s1, s2, cos θ, χ1, χ2) Ini (χ)

+JOO′σ2 (s1, s2, cos θ)σ2 + JOO
′

σ4 (s1, s2, cos θ)σ4 , (B.1)

where

∆χ2 =
√
s2

1 + χ2
2 − 2s1χ2 cos θ (B.2)

∆χ1 =
√
χ2

1 + s2
2 − 2χ1s2 cos θ (B.3)

χ =
√
χ2

1 + χ2
2 − 2χ1χ2 cos θ (B.4)

and we have introduced
σi =

∫ dq
2π2 q

2−iP (q) . (B.5)

The functions Jni are defined in this appendix. In this section we summarize the relativistic
contribution to the full-sky correlation function. The standard Newtonian contribution has
been already derived in section 5.1. To be consistent with previous derivations [60], we
present them in terms of the system of coordinates (s1, s2, cos θ = ŝ1 · ŝ2).11

11With respect to ref. [60] we include also the terms evaluated at the observer positions. Beyond these
additional terms, the reader may need to apply spherical Bessel recursion relations to compare our results
with ref. [60].

– 29 –



J
C
A
P
0
1
(
2
0
2
2
)
0
6
1

B.1 Auto-correlation

B.1.1 Lensing

ξκκ (s1, s2, cos θ) =
∫ r1

0
dχ1

∫ r2

0
dχ2

[
Jκκ00 I

0
0 (∆χ) + Jκκ02 I

0
2 (∆χ) + Jκκ31 I

3
1 (∆χ) + Jκκ22 I

2
2 (∆χ)

]
(B.6)

where ∆χ =
√
χ2

1 + χ2
2 − 2χ1χ2 cos θ and (with y = cos θ)

Jκκ00 = − 3χ2
1χ

2
2

4s1s2∆χ4a(χ1)a(χ2)
(
y2 − 1

)
H4

0Ω2
M0D1(χ1)(χ1 − s1)D1(χ2)(χ2 − s2)

×(5sb(s1)− 2)(5sb(s2)− 2)
(
8y
(
χ2

1 + χ2
2

)
− 9χ1χ2y

2 − 7χ1χ2
)
, (B.7)

Jκκ02 = − 3χ2
1χ

2
2

2s1s2∆χ4a(χ1)a(χ2)
(
y2 − 1

)
H4

0Ω2
M0D1(χ1)(χ1 − s1)D1(χ2)(χ2 − s2)

×(5sb(s1)− 2)(5sb(s2)− 2)
(
4y
(
χ2

1 + χ2
2

)
− 3χ1χ2y

2 − 5χ1χ2
)
, (B.8)

Jκκ31 = 9y∆χ2H4
0Ω2

M0D1(χ1)(χ1 − s1)D1(χ2)(χ2 − s2)(5sb(s1)− 2)(5sb(s2)− 2)
s1s2a(χ1)a(χ2) , (B.9)

Jκκ22 = 9χ1χ2H4
0Ω2

M0D1(χ1)
4∆χ4a(χ1)a(χ2)s1s2

(χ1 − s1)D1(χ2)(χ2 − s2)(5sb(s1)− 2)(5sb(s2)− 2)

×
[
2χ4

1

(
7y2 − 3

)
− 16χ3

1χ2y
(
y2 + 1

)
+ χ2

1χ
2
2

(
11y4 + 14y2 + 23

)
−16χ1χ

3
2y
(
y2 + 1

)
+ 2χ4

2

(
7y2 − 3

)]
. (B.10)

B.1.2 Doppler
We consider now the contribution of the Doppler term (including the peculiar velocity of the
observer). By following the same approach we find

ξv||v|| (s1, s2, cos θ) = D1 (s1)D1 (s2)
[
J
v||v||
00 (s1, s2, cos θ) I0

0 (s) + J
v||v||
02 (s1, s2, cos θ) I0

2 (s)

+Jv||v||04 (s1, s2, cos θ) I0
4 (s) + J

v||v||
20 (s1, s2, cos θ) I2

0 (s)
]

+D1 (s1)
[
J
v||v||
31 (s1, s2, cos θ) I3

1 (s1) + J
v||v||
11 (s1, s2, cos θ) I1

1 (s1)

+ J
v||v||
13 (s1, s2, cos θ) I1

3 (s1)
]

+D1 (s2)
[
J
v||v||
31 (s2, s1, cos θ) I3

1 (s2) + J
v||v||
11 (s2, s1, cos θ) I1

1 (s2)

+ J
v||v||
13 (s2, s1, cos θ) I1

3 (s2)
]

+Jv||v||σ2 (s1, s2, cos θ)σ2 , (B.11)

where

J
v||v||
00 (s1, s2, y) = 1

45f1f2H1H2R1R2
(
y2s1s2 − 2y

(
s2

1 + s2
2

)
+ 3s1s2

)
, (B.12)

J
v||v||
02 (s1, s2, y) = 2

63f1f2H1H2R1R2
(
y2s1s2 − 2y

(
s2

1 + s2
2

)
+ 3s1s2

)
, (B.13)

J
v||v||
04 (s1, s2, y) = 1

105f1f2H1H2R1R2
(
y2s1s2 − 2y

(
s2

1 + s2
2

)
+ 3s1s2

)
, (B.14)

J
v||v||
20 (s1, s2, y) = 1

3ys
2f1f2H1H2R1R2 , (B.15)
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J
v||v||
31 (s1, s2, y) = −yf0H0s

2
1f1R1(R2 − 5sb(s2) + 2) , (B.16)

J
v||v||
11 (s1, s2, y) = 1

5yf0H0s
2
1f1H1R1(R2 − 5sb(s2) + 2) , (B.17)

J
v||v||
13 (s1, s2, y) = 1

5yf0H0s
2
1f1H1R1(R2 − 5sb(s2) + 2) , (B.18)

J
v||v||
σ2 (s1, s2, y) = 1

3yf
2
0H2

0(R1 − 5sb(s1) + 2)(R2 − 5sb(s2) + 2) . (B.19)

B.1.3 Local gravitational potential

The contribution of the local gravitational potential terms is determined by

ξφφ (s1, s2, cos θ) = D1 (s1)D1 (s2) Jφφ40 (s1, s2) I4
0 (s)

+D1 (s2) Jφ0φ
40 (s1, s2)I4

0 (s2) +D1 (s1) Jφ0φ
40 (s2, s1)I4

0 (s1)
+Jφφσ4 (s1, s2)σ4 , (B.20)

where

Jφφ04 (s1, s2) = s4

4a(s1)a(s2) (B.21)

×
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+ 3H2

0ΩM0(R2 + 5sb(s2)− 2)
)

×
(
f1
(
2a(s1)(fevo(s1)− 3)H2

1 + 3H2
0ΩM0

)
+ 3H2

0ΩM0(R1 + 5sb(s1)− 2)
)
,

Jφ0φ
04 (s1, s2) = H0s

4
2

4s1a(s2)(H0s1(2f0 − 3ΩM0)R1 + 2f0(5sb(s1)− 2)) (B.22)

×
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+ 3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
,

Jσ4 (s1, s2) = H2
0

4s1s2
(H0s1(2f0 − 3ΩM0)R1 + 2f0(5sb(s1)− 2)) (B.23)

×(H0s2(2f0 − 3ΩM0)R2 + 2f0(5sb(s2)− 2)) .

B.1.4 Integrated gravitational potential

For the integrated terms we obtain

ξ
∫
φ
∫
φ (s1, s2, cos θ) =

∫ s1

0
dχ1

∫ s2

0
dχ2J

∫
φ
∫
φ

40 (s1, s2, χ1, χ2) I4
0 (∆χ) , (B.24)

where

J

∫
φ
∫
φ

40 (s1, s2, χ1, χ2) = 9∆χ4H4
0Ω2

M0D1(χ1)D1(χ2)
a(χ1)a(χ2)s1s2

(s1(f(χ1)− 1)H(χ1)R1 − 5sb(s1) + 2)

×(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) . (B.25)

B.2 Cross-correlations

Here we present the different cross-correlations. In the final result we need to account for
the permutation on the two different source positions.
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B.2.1 Standard Newtonian x lensing

We consider the correlation between the standard Newtonian terms and the lensing magni-
fication.

ξδκ (s1, s2, cos θ) = D1 (s1)
∫ s2

0
dχ2

[
Jδκ00 I00 (∆χ2) + Jδκ02 I

0
2 (∆χ2) Jδκ00 I

0
4 (∆χ2)

]
, (B.26)

where

Jδκ00 (s1, s2, y, χ2) = H
2
0ΩM0D1(χ2)
5a(χ2)s2

(χ2 − s2)(5sb(s2)− 2)

×
(
f(s1)

(
χ2
(
3y2 − 1

)
− 3ys1

)
− 5ys1b1(s1)

)
, (B.27)

Jδκ02 (s1, s2, y, χ2) = H
2
0ΩM0D1(χ2)

14∆χ2
2a(χ2)s2

(χ2 − s2)(5sb(s2)− 2)

×
(
7s1b1(s1)

(
−2χ2

2y + χ2
(
y2 + 3

)
s1 − 2ys2

1

)
+f(s1)

(
4χ3

2

(
3y2 − 1

)
− 2χ2

2y
(
3y2 + 8

)
s1

+χ2
(
9y2 + 11

)
s2

1 − 6ys3
1

))
, (B.28)

Jδκ04 (s1, s2, y, χ2) = 3H2
0ΩM0D1(χ2)

70∆χ4
2a(χ2)s2

(χ2 − s2)f(s1)(5sb(s2)− 2)

×
(
χ5

2

(
6y2 − 2

)
+ 6χ4

2y
(
y2 − 3

)
s1 − χ3

2

(
y4 + 12y2 − 21

)
s2

1

+2χ2
2y
(
y2 + 3

)
s3

1 − 12χ2s
4
1 + 4ys5

1

)
. (B.29)

B.2.2 Standard Newtonian x Doppler

ξδv|| (s1, s2, cos θ) = D1 (s1)D1 (s2)
[
J
δv||
00 I0

0 (s) + J
δv||
02 I0

2 (s) + J
δv||
04 I0

4 (s)
]

+D1 (s1)
[
J
δv||
11 I1

1 (s1) + J
δv||
13 I1

3 (s1)
]
, (B.30)

where

J
δv||
00 (s1, s2, y) = 1

15f2H2R2
(
5b1(s1)(s2 − ys1) + f1

(
2y2s2 − 3ys1 + s2

))
, (B.31)

J
δv||
02 (s1, s2, y) = f2H2R2

21s2

(
7b1(s1)(ys1 − s2)

(
2ys1s2 − s2

1 − s2
2

)
+f1

((
10y2 − 1

)
s2

1s2 − y
(
5y2 + 4

)
s1s

2
2 +

(
y2 + 2

)
s3

2 − 3ys3
1

))
, (B.32)

J
δv||
04 (s1, s2, y) = f1f2H2R2

35s2

(
−2
(
y2 + 2

)
s2

1s2 + y
(
y2 + 5

)
s1s

2
2

+
(
1− 3y2

)
s3

2 + 2ys3
1

)
, (B.33)

J
δv||
11 (s1, s2, y) = 1

5yf0H0s1(5b1(s1) + 3f1)(R2 − 5sb(s2) + 2) , (B.34)

J
δv||
13 (s1, s2, y) = 1

5(−2)yf0H0s1f1(R2 − 5sb(s2) + 2) . (B.35)
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B.2.3 Standard Newtonian x local gravitational potential

ξδφ (s1, s2, cos θ) = D1 (s1)D1 (s2)
[
Jδφ00 I

0
0 (s) + Jδφ02 I

0
2 (s) + Jδφ04 I

0
4 (s) + Jδφ20 I

2
0 (s)

]
+D1 (s1)

[
Jδφ31 I

3
1 (s1) + Jδφ11 I

1
1 (s1) + Jδφ13 I

1
3 (s1)

]
, (B.36)

where

Jδφ00 (s1, s2, y) = f1
90a(s2)

((
3y2 − 1

)
s2

2 − 4ys1s2 + 2s2
1

)
(B.37)

×
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+ 3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
,

Jδφ02 (s1, s2, y) = f1
63a(s2)

((
3y2 − 1

)
s2

2 − 4ys1s2 + 2s2
1

)
(B.38)

×
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+ 3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
,

Jδφ04 (s1, s2, y) = f1
210a(s2)

((
3y2 − 1

)
s2

2 − 4ys1s2 + 2s2
1

)
(B.39)

×
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+ 3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
,

Jδφ20 (s1, s2, y) = −(3b1(s1) + f1)
6a(s2)

(
−2ys1s2 + s2

1 + s2
2

)
(B.40)

×
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+ 3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
,

Jδφ31 (s1, s2, y) = −H0s
2
1(3b1(s1) + f1)(H0s2(2f0 − 3ΩM0)R2 + 2f0(5sb(s2)− 2))

2s2
, (B.41)

Jδφ11 (s1, s2, y) = H0s
2
1(b1(s1) + f1)(H0s2(2f0 − 3ΩM0)R2 + 2f0(5sb(s2)− 2))

10s2
, (B.42)

Jδφ13 (s1, s2, y) = H0s
2
1(b1(s1) + f1)(H0s2(2f0 − 3ΩM0)R2 + 2f0(5sb(s2)− 2))

10s2
. (B.43)

B.2.4 Standard Newtonian x integrated gravitational potential

ξδ
∫
φ (s1, s2, cos θ) = D1 (s1)

∫ s2

0
dχ2

[
J
δ
∫
φ

00 I0
0 (∆χ2) + J

δ
∫
φ

02 I0
2 (∆χ2)

+Jδ
∫
φ

04 I0
4 (∆χ2) + J

δ
∫
φ

20 I2
0 (∆χ2)

]
, (B.44)

where

J
δ
∫
φ

00 (s1, s2, y, χ2) = H
2
0ΩM0D1(χ2)f1

15a(χ2)s2

(
χ2

2

(
3y2 − 1

)
− 4χ2ys1 + 2s2

1

)
×(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) , (B.45)

J
δ
∫
φ

02 (s1, s2, y, χ2) = 2H2
0ΩM0D1(χ2)f1
21a(χ2)s2

(
χ2

2

(
3y2 − 1

)
− 4χ2ys1 + 2s2

1

)
×(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) , (B.46)

J
δ
∫
φ

04 (s1, s2, y, χ2) = H
2
0ΩM0D1(χ2)f1

35a(χ2)s2

(
χ2

2

(
3y2 − 1

)
− 4χ2ys1 + 2s2

1

)
×(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) , (B.47)
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J
δ
∫
φ

20 (s1, s2, y, χ2) = −∆χ2
2H2

0ΩM0D1(χ2)
a(χ2)s2

(3b1(s1) + f1)

×(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) . (B.48)

B.2.5 Lensing x Doppler

ξκv|| (s1, s2, cos θ) = D1 (s2)
∫ s1

0
dχ1

[
J
κv||
00 I0

0 (∆χ1) + J
κv||
02 I0

2 (∆χ1) (B.49)

+Jκv||04 I0
4 (∆χ1) + J

κv||
20 I2

0 (∆χ1)
]

+
∫ s1

0
dχ1J

κv||
31 I3

1 (χ1) ,

where

J
κv||
00 (s1, s2, y, χ1) = H

2
0ΩM0D1(χ1)
15a(χ1)s1

(χ1−s1)f2H2R2(5sb(s1)− 2)

×
(
χ2

1y + χ1
(
4y2 − 3

)
s2 − 2ys2

2

)
, (B.50)

J
κv||
02 (s1, s2, y, χ1) = H

2
0ΩM0D1(χ1)

42∆χ2
1a(χ1)s1

(χ1−s1)f2H2R2(5sb(s1)− 2)

×
(
4χ4

1y + 4χ3
1

(
2y2 − 3

)
s2 + χ2

1y
(
11− 23y2

)
s2

2

+χ1
(
23y2 − 3

)
s3

2 − 8ys4
2

)
, (B.51)

J
κv||
04 (s1, s2, y, χ1) = H

2
0ΩM0D1(χ1)

70∆χ2
1a(χ1)s1

(χ1−s1)f2H2R2(5sb(s1)− 2)

×
(
2χ4

1y + 2χ3
1

(
2y2 − 3

)
s2 − χ2

1y
(
y2 + 5

)
s2

2

+χ1
(
y2 + 9

)
s3

2 − 4ys4
2

)
, (B.52)

J
κv||
20 (s1, s2, y, χ1) = y∆χ2

1H2
0ΩM0D1(χ1)
a(χ1)s1

(χ1−s1)f2H2R2(5sb(s1)− 2) , (B.53)

J
κv||
31 (s1, s2, y, χ1) = −3χ2

1yf0H3
0ΩM0D1(χ1)

a(χ1)s1
(χ1 − s1)(5sb(s1)− 2)

×(R2 − 5sb(s2) + 2) . (B.54)

B.2.6 Lensing x local gravitational potential

ξκφ (s1, s2, cos θ) = D1 (s2)
∫ s1

0
dχ1

[
Jκφ00 I

0
0 (∆χ1) + Jκφ02 I

0
2 (∆χ1) (B.55)

+Jκφ04 I
0
4 (∆χ1) + Jκφ20 I

2
0 (∆χ1)

]
,

where

Jκφ00 (s1, s2, y, χ1) = H
2
0ΩM0s2D1(χ1)

60a(χ1)a(s2)s1
(χ1−s1)(5sb(s1)− 2)

(
2χ2

1y − χ1
(
y2 + 3

)
s2 + 2ys2

2

)
×
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
, (B.56)
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Jκφ02 (s1, s2, y, χ1) = H
2
0ΩM0s2D1(χ1)

42a(χ1)a(s2)s1
(χ1−s1)(5sb(s1)− 2)

(
2χ2

1y − χ1
(
y2 + 3

)
s2 + 2ys2

2

)
×
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
, (B.57)

Jκφ04 (s1, s2, y, χ1) = H
2
0ΩM0s2D1(χ1)

140a(χ1)a(s2)s1
(χ1−s1)(5sb(s1)− 2)

(
2χ2

1y − χ1
(
y2 + 3

)
s2 + 2ys2

2

)
×
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
, (B.58)

Jκφ20 (s1, s2, y, χ1) = y∆χ2
1H2

0ΩM0s2D1(χ1)
2a(χ1)a(s2)s1

(χ1 − s1)(5sb(s1)− 2)

×
(
f(s2)

(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
. (B.59)

B.2.7 Lensing x integrated gravitational potential

ξκ
∫
φ (s1, s2, cos θ) =

∫ s1

0
dχ1

∫ s2

0
dχ2

[
J
κ
∫
φ

31 I3
1 (∆χ) + J

κ
∫
φ

22 I2
2 (∆χ)

]
, (B.60)

where

J
κ
∫
φ

31 (s1, s2, cos θ, χ1, χ2) = 9χ2y∆χ2H4
0Ω2

M0
a(χ1)a(χ2)s1s2

D1(χ1)(χ1 − s1)D1(χ2)(5sb(s1)− 2)

×(s1(f(χ2)− 1)H(χ2)R2 − 5sb(s1) + 2) , (B.61)

J
κ
∫
φ

22 (s1, s2, cos θ, χ1, χ2) = 9χ1χ
2
2
(
y2 − 1

)
H4

0Ω2
M0

2a(χ1)a(χ2)s1s2
D1(χ1)(χ1 − s1)D1(χ2)(5sb(s1)− 2)

×(s1(f(χ2)− 1)H(χ2)R2 − 5sb(s1) + 2) . (B.62)

B.2.8 Doppler x local gravitational potential

ξv||φ (s1, s2, cos θ) = D1 (s1)D1 (s2)
[
J
v||φ
00 I0

0 (s) + J
v||φ
02 I0

2 (s) + J
v||φ
04 I0

4 (s) + J
v||φ
20 I2

0 (s)
]

+D1 (s1) Jv||φ0
31 I3

1 (s1) +D1 (s2) Jv||0φ31 I3
1 (s2) , (B.63)

where

J
v||φ
00 (s1, s2, y) = −s

2f1H1R1
90a(s2) (s1 − ys2)

(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
, (B.64)

J
v||φ
02 (s1, s2, y) = −s

2f1H1R1
63a(s2) (s1 − ys2)

(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
, (B.65)

J
v||φ
04 (s1, s2, y) = −s

2f1H1R1
210a(s2) (s1 − ys2)

(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
, (B.66)
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J
v||φ
20 (s1, s2, y) = −s

2f1H1R1
6a(s2) (s1 − ys2)

(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
, (B.67)

J
v||φ0
31 (s1, s2, y) = H0s

3
1f1H1R1(H0s2(3ΩM0 − 2f0)R2 + 2f0(2− 5sb(s2)))

2s2
, (B.68)

J
v||0φ

31 (s1, s2, y) = −yf0H0s
3
2

2a(s2) (R1 − 5sb(s1) + 2)
(
f2
(
2a(s2)(fevo(s2)− 3)H2

2 + 3H2
0ΩM0

)
+3H2

0ΩM0(R2 + 5sb(s2)− 2)
)
. (B.69)

B.2.9 Doppler x integrated gravitational potential

ξv||
∫
φ (s1, s2, cos θ) = D1 (s1)

∫ s2

0
dχ2

[
J
v||
∫
φ

00 I0
0 (∆χ2) + J

v||
∫
φ

02 I0
2 (∆χ2) (B.70)

+Jv||
∫
φ

04 I0
4 (∆χ2) + J

v||
∫
φ

20 I2
0 (∆χ2)

]
+
∫ s2

0
dχ2J

v||
∫
φ

31 I3
1 (χ2) ,

where

J
v||
∫
φ

00 (s1, s2, y, χ2) = ∆χ2
2H2

0ΩM0D1(χ2)f1H1R1
15s2a(χ2) (χ2y − s1)

×(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) , (B.71)

J
v||
∫
φ

02 (s1, s2, y, χ2) = 2∆χ2
2H2

0ΩM0D1(χ2)f1H1R1
21s2a(χ2) (χ2y − s1)

×(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) , (B.72)

J
v||
∫
φ

04 (s1, s2, y, χ2) = ∆χ2
2H2

0ΩM0D1(χ2)f1H1R1
35s2a(χ2)

×(χ2y − s1)(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) , (B.73)

J
v||
∫
φ

20 (s1, s2, y, χ2) = ∆χ2
2H2

0ΩM0D1(χ2)f1H1R1
s2a(χ2) (χ2y − s1)

×(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) , (B.74)

J
v||
∫
φ

31 (s1, s2, y, χ2) = −3χ3
2yf0H3

0ΩM0D1(χ2)
s2a(χ2) (R1 − 5sb(s1) + 2)

×(s2(f(χ2)− 1)H(χ2)R2 − 5sb(s2) + 2) . (B.75)

B.2.10 Local gravitational potential x integrated gravitational potential

ξφ
∫
φ (s1, s2, cos θ) = D1 (s1)

∫ s2

0
dχ2J

φ
∫
φ

40 I4
0 (∆χ2) +

∫ s2

0
dχ2J

φ0
∫
φ

04 I4
0 (χ2) , (B.76)

where

J
φ
∫
φ

40 (s1,s2,χ2) = 3∆χ4
2H2

0ΩM0D1(χ2)
2s2a(χ2)a(s1) (s2(f(χ2)−1)H(χ2)R2−5sb(s2)+2) (B.77)

×
(
f1
(
2a(s1)fevo(s1)−3)H2

1 +3H2
0ΩM0

)
+3H2

0ΩM0(R1 +5sb(s1)−2)
)
,

J
φ0
∫
φ

40 (s1,s2,χ2) = 3χ4
2H3

0ΩM0D1(χ2)
2s1s2a(χ2) (s2(f(χ2)−1)H(χ2)R2−5sb(s2)+2) (B.78)

×(H0s1(2f0−3ΩM0)R1 +2f0(5sb(s1)−2)) .
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C The observer’s velocity

The numerical results in section 5 are computed in a frame determined by vobs = 0. We now
want to investigate the contribution of the observer velocity in more detail. In general the
correlation function will contain terms proportional to the variance of the velocity field

〈v||20〉 = cos θ
3 T 2

v (0)σ2 = cos θ
3 H2

0f
2
0σ2 (C.1)

where cos θ = ŝ1 · ŝ2, i.e. they are pure dipoles. From definition of the Fourier space estimator,
eq. (2.1), we get

〈P
v||

2
0

0 (k)〉 = 1
A

∫
dΩk
4π

∫
d3s1d3s2

cos θ
3 H2

0f
2
0σ2φ (s1)φ (s2) e−ik·s2eik·s1 (C.2)

= 1
A

∫
d3s1d3s2

cos θ
3 H2

0f
2
0σ2φ (s1)φ (s2)

∑
`

(2`+ 1) j` (ks1) j` (ks2)L` (cos θ)

Now considering a window function with an azimuthal symmetry, the above expression re-
duces to

〈P
v||

2
0

0 (k)〉 = H
2
0f

2
0σ2

3A
∑
`

(2`+ 1)φ2
` (k) g` (θmax) (C.3)

where
φ` (k) =

∫
dss2φ (s) j` (ks) (C.4)

and
g` (θmax) = 2π

∫ θmax

0
dθ1 sin θ1

∫ θmax

0
dθ2 sin θ2

∫
dφ1 cos θL` (cos θ) . (C.5)

For a full-sky survey the function, i.e. θmax = π, we simply have

g` (π) = δ`1
16π2

3 . (C.6)

and therefore

〈P
v||

2
0

0 (k)〉full−sky = H
2
0f

2
0σ2

3A
16π2

k6 ((ksmax sin(ksmax) + 2 cos(ksmax)

−ksmin sin(ksmin)− 2 cos(ksmin))2 . (C.7)

We can see that if smax � smin, the contribution to the power spectrum of the auto-correlation
of the peculiar velocity evaluated at the observer position peaks at k ∼ π/smax and

〈P
v||

2
0

0 (π/smax)〉full−sky ∼
H2

0f
2
0σ2

3A
256s6

max
π4 . (C.8)

Analogously, for the case considered in the manuscript with fsky = 1/3, we find

〈P
v||

2
0

0 (π/smax)〉 ∼ H
2
0f

2
0σ2

3A
s6

max
2 . (C.9)

Therefore the contribution at the largest scales is given by the square of the Hankel transform
of the window function together with some geometrical factor due the partial sky coverage.
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Figure 11. The contribution to the monopole of the power spectrum of the terms involving the
observer velocity computed within linear theory.

Interestingly, in full-sky this effect is purely sourced by the dipole of the correlation
function. This is a spurious dipole induced by the observer motion inside a sphere defined
by the full-sky window function in terms of real space coordinates. However, in a real survey
the window function is determined in redshift space and therefore we need to account for
its relation to the real space coordinates φ(z1) ' φ(s1) + dφ(s1)

ds1
ds1
dz δz1. This is the so-called

Kaiser rocket effect [68], and it has been also generalized in a relativistic framework in ref. [76].
Figure 11 shows the effect of the observers’ velocity on the large scale monopole of the power
spectrum computed from C.3. The shape of this contribution is completely determined by
the angular and radial selection functions, as one can realize by noticing both auto- and
cross- terms have the same shape.

So far we have implicitly assumed that the velocity field at the observer vobs is a ran-
dom variable drawn by the linear Gaussian distribution of cosmological perturbation statis-
tics. However, our motion with respect to the CMB frame can be measured from the CMB
dipole [77–80] and from the modulation and aberration of the CMB anisotropies [81, 82].
Our velocity with respect to the CMB is sourced by a combination of the linear gravitational
field, usually identified with the Local Group Velocity, and short-scale non-linear effects,
see e.g. [83]. In cross-correlating the observer velocity with the perturbations at the source
position we need to account only for its linear component.

If the observer velocity is known we can include its effect in our estimator. By assigning
the measured value to vobs, we are in practise drawing a single cosmological realization, and
therefore difference should be smaller than the cosmic variance, as discussed in refs. [61, 84].
In this case we have

〈P
v||

2
0

0 (k)〉 = v2
0
A

∫
dΩk
4π

∫
d3s1d3s2 (v̂ · ŝ1) (v̂ · ŝ2)φ (s1)φ (s2) e−ik·s2eik·s1

= 4π
A
v2

0
∑
`m

∫
ds1s

2
1ds2s

2
2φ (s1)φ (s2) j` (ks1) j` (ks2)

×
∥∥∥∥∫ dΩs1W (ŝ1) (v̂ · ŝ1)Y`m (ŝ1)

∥∥∥∥2
. (C.10)
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Now we compute

∫
dΩs1W (ŝ1) (v̂ · ŝ1)Y`m (ŝ1) = 4π

3

1∑
M=−1

∫
dΩs1W (ŝ1)Y ∗1M (v̂)Y1M (ŝ1)Y`m (ŝ1)

= 4π
3

1∑
M=−1

Y ∗1M (v̂)W`mM , (C.11)

where
W`mM =

∫
dΩs1W (ŝ1)Y1M (ŝ1)Y`m (ŝ1) =

∑
`′m′

W`′m′GMmm′
1``′ , (C.12)

from which it follows∥∥∥∥∫ dΩs1W (ŝ1) (v̂ · ŝ1)Y`m (ŝ1)
∥∥∥∥2

= 16π2

9

1∑
M=−1

1∑
M ′=−1

Y ∗1M (v̂)Y1M ′ (v̂)W`mMW
∗
`mM ′ .

(C.13)
The final result reads as
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∗
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