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ABSTRACT: In this paper, we demonstrate the possibility to perform spectroscopy
simulations of solvated biological species taking into consideration quantum effects and
explicit solvation. We achieve this goal by interfacing our recently developed divide-and-
conquer approach for semiclassical initial value representation molecular dynamics with the
polarizable AMOEBABIO18 force field. The method is applied to the study of solvation of the
thymidine nucleoside in two different polar solvents, water and N,N-dimethylformamide. Such
systems are made of up to 2476 atoms. Experimental evidence concerning the different
behavior of thymidine in the two solvents is well reproduced by our study, even though
quantitative estimates are hampered by the limited accuracy of the classical force field
employed. Overall, this study shows that semiclassically approximate quantum dynamical
studies of explicitly solvated biological systems are both computationally affordable and
insightful.

In contemporary science, there is great effort to address and
fully understand the molecular properties of constituent

fragments of DNA and RNA. The importance of such building
blocks of life lies mainly in the fact that even a minor
modification in their molecular structure can largely affect their
biological functionality.1 Therefore, nucleobases and nucleo-
sides, with the latter differing from the former owing to the
presence of an additional five-membered furanose ring, have
been largely studied both experimentally and theoretically.
Specifically, the possibility to simulate such systems in their
natural environment, i.e., water, is crucial to understand their
behavior in vivo.
It is well-known that water solvation has a great influence in

the majority of biological processes ranging from cellular
function to biomolecular interactions, from biopolymer
stability to solvation of simple solutes.2−5 In such systems,
water is not a simple passive medium but has a leading role.6

When polar solutes are involved, for example, solvation takes
place engaging the dipole moment of water that reorients itself
in response to the solute charge distribution. Remarkably, it
has been estimated that electronic solvation could account for
up to half of the overall solvation free energy.6 Even in the
presence of hydrophobic solutes, water behavior is active and
plays an important role, for instance, in the hydrophobic effect.
Several works, based on different experimental techniques such
as nuclear magnetic resonance (NMR), high-performance
liquid chromatography (HPLC), and neutron scattering, show
that, in the presence of an apolar solute, water rearranges its
hydrogen bond network creating a cavity.7−10 Interactions
between the solute and the solvent, for nonpolar solvation,
derive mainly from weak dispersion forces originating from the

fluctuation of induced dipoles within solvent and solute
molecules rather than from the electrostatics of charge
distributions as in the polar solutes case.11−15 Furthermore,
water can also interact with solutes in a site-specific and
“nonbulk” manner. Nucleic acids offer a good example of how
water can interact in a sequence-specific manner, such as the
zigzag spine of hydration in the minor groove of B-DNA.3,16−20

For all these reasons, when these kinds of systems have to be
computationally simulated, an explicit treatment of the solvent
should be in principle preferred over an implicit one. However,
simulating biological molecules using explicit water molecules
requires high computational costs and resources. These
requirements entirely exclude the possibility of using accurate
ab initio molecular dynamics methods (AIMD), in which the
potential energy is evaluated adopting an ab initio quantum
method, such as MP2, Coupled Cluster, or the family of DFT
functionals. Therefore, the most common type of potential
employed in explicit solvation is obtained from classical
molecular mechanics (MM) carried out by using popular and
well-tested force fields, such as AMBER,21,22 CHARMM,23,24

or AMOEBABIO18.25,26 This approach permits even dynam-
ical studies of large dimensional systems, because the quantum
electronic structure is not calculated and polarization effects
are quite approximated. To recover a more accurate chemical
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description, the hybrid quantum mechanical/molecular
mechanics method (QM/MM) is a feasible option, often
used to treat the electronic problem in case of chemical
reactions or enzymatic processes in condensed phase.27−30 In
such an approach, the total system is partitioned into
subsystems treated with different theories according to the
level of detail needed. QM/MM represents a good
compromise between feasibility and chemical accuracy, but it
presents some difficulties such as domain partitioning and
dynamical continuity between the partitions.27

In this work, we employ the affordable molecular mechanics
description of the potential, through the polarizable
AMOEBABIO18 force field, with the aim to investigate the
vibrational power spectrum of thymidine in explicit solvents.
Specifically, the general importance of thymidine lies in the fact
that some of its analogues were intensively employed as anti-
HIV drugs. In the literature, several studies involving
experimental work about thymidine in water and the
theoretical analysis of thymidine interacting with one or
more water molecules are found.31−35 To recover a high level
of chemical description in detecting the vibrational spectrum,
we use the divide-and-conquer semiclassical initial value
representation (DC SCIVR) method, which relies on classical
trajectories but is able to provide quantum effects by means of
the semiclassical formalism.36−38 Indeed, one of the strengths
of semiclassical dynamics (and the DC-SCIVR approach) lies
in its capability to include all kinds of quantum effects like
anharmonic overtones and combination bands, in addition to
the anharmonic contributions of the potential energy sur-
face.39−48 By choosing this method and by accounting for the
water solvent explicitly, we aim at reproducing solvation in a
remarkably accurate and complete way.
In this context, after investigating the spectroscopy of

nucleobases,49 we recently presented a study that involves four
nucleosides.50 In that paper we showed and discussed their
vibrational power spectra in gas phase, obtained by means of
the semiclassical DC-SCIVR method performed with AMOE-
BABIO18 calculations. In that analysis, we compared the
AMOEBABIO18 performance against ab initio DFT calcu-
lations in reproducing experimental vibrational frequencies by
means of DC SCIVR. This allowed us to point out the
reasonable quality of the predictions obtained with that force
field with respect to the perhaps more popular AMBER
competitor. Furthermore, we presented the power spectrum of
thymidine in the range of 1500−1800 wavenumbers, where
some important nucleobase spectral signatures are located. In
particular, we could analyze the C4O and C5C6 stretchings
(see Figure 1 for the atom numbering employed) that are also
detected by the gas phase experiment.51

In the present work, the experimental frequencies we take as
a reference for thymidine in condensed phase are instead
offered by the research of Loppnow and co-workers.33 In their
paper they showed a comparison between Raman spectra of
thymine and thymidine recorded in the 750−1850 cm−1

frequency range employing different solvents, among which
are water and N,N-dimethylformamide (N,N-DMF). They
noticed that stretching signals associated with thymidine C4O
and C5C6 bonds were basically degenerate at around 1710
cm−1 in the case of water and almost all other solvents, with
the exception of N,N-DMF, in which case a double peak in the
same frequency region was detected. This scenario offers us the
possibility to demonstrate that the semiclassical DC-SCIVR
method, together with AMOEBA force fields, can be efficiently

employed for simulation of biological systems in condensed
phase, reproducing at least qualitatively the correct effect of
different solvents on the vibrational features of thymidine.
All the simulations have been performed using the

AMOEBA force fields, as implemented in the Tinker 8.6.1
software. In particular, we present our studies of thymidine in
water, as parametrized in the AMOEBABIO18 force field,
while we used AMOEBA09 parameters to model the N,N-
DMF solvent, since it is not present in AMOEBABIO18.35,52

For both solvents, we inserted the thymidine molecules in a
cubic box whose sides measured 30 Å, as represented in Figure
2. In all calculations, the periodic boundary conditions are fully
considered, using the particle mesh Ewald (PME) scheme for
the long-range interactions.53,54

The minimization and the subsequent Hessian matrix

calculation led us to estimate the harmonic vibrational

frequencies. After the optimization phase, NVE trajectories

have been propagated using periodic boundary conditions and

Beeman’s integration algorithm for a total time of 0.6 ps,

employing a time step equal to 0.2 fs. To produce the spectra,

we adopted the DC-SCIVR theoretical method. Such a

methodology has its foundation in the earlier time averaged

(TA-SCIVR) and multiple coherent (MC-SCIVR) semi-

classical initial value representation approaches, and it can be

fruitfully applied to large dimensional systems thanks to the

projection of all quantities involved onto subsystems of

reduced dimensionality.36,55−63 The DC-SCIVR working

formula we employed is

Figure 1. Relevant atomic numbering of isolated thymidine.

Figure 2. Thymidine in a box of water (left) and N,N-DMF (right)
molecules.
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Such an approach requires evaluation of the Hessian matrix
step by step along the trajectory and the potential projected in
the subspace, which contributes to the evaluation of
S p q( (0), (0))t i i

̃ ̃ ̃ . Following a well-consolidated protocol of
semiclassical spectroscopy,37,59 we employed a single trajectory
characterized by a harmonic estimate of the NVE trajectory
energy. Among all the existing procedures to partition the total
degrees of freedom in subspaces, we chose the average Hessian
matrix criterion,61 which led to monodimensional subspaces
for the C5C6 and C4O stretchings under examination for both
solvents. We adopted the Hessian update approximation by
evaluating only one Hessian matrix every 100 dynamics steps
and using the gradient to estimate it for the other steps.64,65

The rationale behind this choice is that the approximation has
been demonstrated in several applications to be accurate
enough65 and the amount of data that 3000 Hessian matrix
calculations produce would be too high to be stored, in spite of
the limited computational cost required for Hessian matrix
calculations with AMOEBABIO18. For the simulation using
water as the solvent, we chose the zero point energy (ZPE)
trajectory. This is a trajectory in which every normal mode has
a starting velocity derived from the estimated harmonic ZPE
energy. For the simulation of thymidine in N,N-DMF solvent,
one trajectory was run for each mode under investigation and,
to better account for the coupling between modes, the
trajectory was prepared in a different way as successfully tested
in previous applications of semiclassical dynamics.66−69

Specifically, atomic velocities were determined such that the
total energy included a quantum of excitation in the vibrational
mode of thymidine under investigation in addition to the ZPE
energy, while the starting geometry was slightly displaced from
the equilibrium one. Details can be found in the Supporting
Information.
All the calculated frequencies are reported in Table 1, while

Figure 3 shows the comparison between the experimental
findings and the AMOEBABIO18 DC-SCIVR spectra. The
harmonic frequencies are reported in the figure with vertical
sticks positioned above the semiclassical peaks. As already
discussed in our previous work,50 AMOEBABIO18 can be
successfully employed to obtain qualitative results. For this
reason, we started looking at gaps between spectral signals
rather than single frequency values. In fact, the isolated
thymidine C5C6 and C4O stretching frequencies reported in
our previous paper highlight the correct gap between these

stretchings, equal to 70 cm−1, to be compared with the gas-
phase experiment which reports a gap equal to 52 cm−1. We
obtained similarly reliable results upon moving to solvated
systems. Figure 3 shows that when thymidine is solvated by
water, the two semiclassical fundamental peaks for C5C6 and
C4O are very close to each other, being only 30 cm−1 apart.
When N,N-DMF is employed as a solvent, instead, we expect a
different picture because the experiment displays a clear double
peak. This feature is well reproduced in our DC-SCIVR
calculations, which indicate a 70 cm−1 gap in this case. It is
important to note that the simple harmonic calculation is not
able to regain the same difference, giving for both solvents a
gap approximately equal to 50 cm−1.33 Furthermore, in the
case of N,N-DMF, the investigated thymidine peaks appear
much less split than in water, since fewer interactions
influencing them are present. To further prove that, we notice
that the semiclassical spectra of thymidine in water present
more than one pronounced peak around the fundamental one,
in particular for the C4O signal. They are present because of all
the interactions that affect the C4O stretch, which come from
the solvent but also from other thymidine modes of vibrations
like the C5C6 stretch. We recall that we are calculating the
power spectrum, i.e., the vibrational density of states, and there
are several vibrational states coupled to the C4O stretch within
the investigated energy range. In fact, the DC-SCIVR
methodology is able to recover overtones and combination
bands, which certainly contribute to enrich the vibrational
spectrum.
Moving to the analysis of the frequencies of vibration, we

observe that the harmonic estimates obtained with AMOE-
BABIO18 are lower than the experimental frequencies for both
simulated solvents, as it was in our previous work.50 Our
anharmonic method returns even lower frequencies. Indeed,
the DC-SCIVR prediction of the two frequencies in water is
1567 and 1597 cm−1 for the C5C6 and C4O normal modes,
respectively, while the experiment highlights a single peak
positioned at around 1710 cm−1. Due to the intrinsic accuracy
of our method, this result for the closing gap is consistent with
the experimental finding and much smaller than the gap for
isolated thymidine (70 cm−1). Moving to the N,N-DMF
solvent, we obtained 1570 and 1640 cm−1, once again for
C5C6 and C4O, respectively. This should be compared to the
experiment having the two signals roughly located at 1620 and
1700 cm−1 respectively. Therefore, the gap is correctly

Table 1. Experimental, Harmonic, and Semiclassical
Vibrational Frequencies for All the Systems Investigateda

expt harm DC-SCIVR

isolated thymidine50

C4O 1714 1688 1670
C5C6 1662 1578 1600
Δ 52 110 70

thymidine in water
C4O ∼1710 1657 1597
C5C6 ∼1710 1611 1567
Δ 0 46 30

thymidine in N,N-DMF
C4O ∼1700 1650 1640
C5C6 ∼1620 1606 1570
Δ 80 44 70

aΔ is the difference between the C4O and C5C6 stretching
frequencies.
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described, definitely larger than the one found in water, but the
frequencies are somewhat shifted with respect to the
experiment. However, we are not interested in reproducing
exactly peak positions, a task which is not feasible due to the
limited accuracy of the employed force fields and would
require a higher level potential energy surface, but their
behavior under different conditions. In particular, we want to
demonstrate that our approach, combined with AMOEBA
force fields, is able to reliably reproduce the effect that different
solvents can have on a solvated molecule. Finally, there is one
aspect in which our calculations somewhat differ from the
experiment: while experimentally the closing gap in water is
due to the blue shift of the C5C6 frequency, in our simulations
it is the C4O frequency which strongly red shifts. The force
field is overestimating the interaction between the C4O lone
pair and water hydrogens generating the red shift. Indeed, this
issue disappears in the simulation for N,N-DMF, which is not
characterized by the same hydrogen bond network as water.
In this work, we applied our DC-SCIVR method for the first

time to study a condensed phase system of biological interest.
The limited computational cost required by AMOEBA force
fields allowed us to study the thymidine nucleoside in two
different solvents, water and N,N-DMF, in an explicit fashion,
and even adopting periodic boundary conditions to mimic a
complete molecular solvation. Our DC-SCIVR method, in
conjunction with AMOEBABIO18, confirms its capability to
reproduce qualitatively the experimental observations at the
quantum mechanical level. Even if a quantitative prediction is
not possible due to the limited accuracy of AMOEBABIO18,
qualitative studies may open the route to vibrational studies of
solvated biological molecules, bringing the community to a
deeper understanding of structures and properties of
biomolecules.

As a final remark, it should be noticed that in
AMOEBABIO18 quantum effects are included in a meanfield
way via the force field parametrization to directly reproduce a
list of experimental condensed phase properties. Therefore, the
force field is designed for classical simulations and performing
quantum (semiclassical) calculations could lead to a “double
counting” of quantum effects deteriorating the accuracy of the
results. While this issue may affect the simulation of vibrational
modes involving mainly hydrogen atoms (for instance, high
frequency C−H, N−H, and O−H stretches) this is not the
case for the simulations presented here.
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■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published on February 3, 2022, with equation 2
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February 3, 2022.
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