
A Python Library with Fast Algorithms for Popular Entropy Definitions

George Manis1 and Roberto Sassi2

1 Department of Computer Science and Engineering,
School of Engineering, University of Ioannina, Ioannina, Greece

2 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

Abstract

We present “fastEntropyLib”, a set of Python functions,
organized as a library, to facilitate the computation of pop-
ular definitions of entropy, used in biomedicine. Entropy
estimation is a powerful tool in non-linear analysis. How-
ever, the computation of the most common entropy met-
rics is time consuming, an inhibitor, especially when large
amount of data is to be processed.

The library includes the most common definitions of en-
tropy: Shannon, Rényi, Approximate, Sample Entropy, as
well as the more recently proposed Bubble Entropy, an en-
tropy almost free of parameters. What makes this library
different from other similar Python libraries is the employ-
ment of fast algorithms for the implementation of Approx-
imate, Sample Entropy and Bubble Entropy. For both Ap-
proximate and Sample Entropy, the Bucket Assisted and
Lightweight algorithms have been employed. These two
algorithms speed up the computation significantly by ex-
cluding similarity comparisons, which we know in advance
will fail. Even though bubble sort is a quadratic algorithm,
the computation of Bubble Entropy is done in linear time,
exploiting, in each step, already sorted vectors.

Since speed is the weak point of Python, we selected to
implement all algorithms in C and add a Python wrapper
on top of them. In this way, we exploit both the speed of C
and the convenience and popularity of Python.

1. Introduction

With the term entropy in thermodynamics we express
the disorder of a system. In information theory, entropy is
a measure of the amount of information in a message. In
time series analysis, entropy is a measure of complexity or
irregularity. Entropy expresses the mean uncertainty, or in
other words, how many bits we need to describe a system.
The most popular and widely used definition of Entropy
was proposed by Shannon. Rényi generalized this defini-
tion. Thousands of papers were based on Pincus definition
called Approximate Entropy proposed in 1991 [1, 2]. Ap-
proximate Entropy played a significant role in making en-

tropy so popular in biomedical time series analysis. Some
years later, Richman and Moorman proposed Sample En-
tropy [3,4], suggesting simple but important modifications
on Approximate Entropy. Sample Entropy became even
more popular than Approximate Entropy and seems to be
a golden standard today.

The main drawback of both Approximate and Sample
Entropy is the increased computational time necessary to
run the algorithms. In [5] and [6] fast algorithms have
been proposed, which speed up the computation of those
method significantly. Code for these implementations was
not been published until today. In the proposed library, al-
gorithms are implemented according to the description in
[5] for Approximate Entropy and in [6] for Sample En-
tropy.

Other definitions of entropy have also appeared trying to
give additional information on the disorder of the system.
Some of them tried to improve the existing ones, some oth-
ers tried to suggest more novel ideas. Included in this li-
brary is Bubble Entropy [7], an entropy free of parameters.

The importance of this paper can be summarized as fol-
lows: (a) it introduces and gives details on a set of func-
tions, organized as a library, computing popular definitions
of entropy; the programmer can use an integrated set of
tools and compute entropy based on all definitions in a
simple, uniform way, (b) both Approximate Entropy and
Sample Entropy are computed using fast algorithms writ-
ten in C; this is the first time these implementations [6]
become publicly available, (c) it is also the first time that
code becomes available for Bubble Entropy; A fast algo-
rithm is also used based on the description of the algorithm
in [7].

The library is publicly available and free to use. Please
use the appropriate references. The link where someone
can download the library is the following:

http://www.cs.uoi.gr/˜manis/pythonFastEntropy

The rest of the paper is structured as follows. Section
2 summarizes similar libraries, available today in Python,
focusing on estimation of entropy definitions. A detailed
description of the proposed library follows, in section 3.
Section 4 summarizes this work.

Computing in Cardiology 2021; Vol 48 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2021.222

http://www.cs.uoi.gr/~manis/pythonFastEntropy


2. Entropy Libraries in Python

Python is the most rapidly developed programming lan-
guage today. Python is a language easy for someone to
learn and use and also fast in code development. The large
number of libraries available can further speed up develop-
ment and alleviate the programmers’ task. The amount of
ready to use code increases day by day.

Libraries with functions for the estimation of entropy,
as well as other tools for non-linear analysis, can be easily
found on the internet. However, there is still much work
which should be done towards a complete library which
can be accepted as a standard. In the following, some of
the most important Python libraries providing functions for
entropy analysis are outlined.

Dit [8] is a Python package for information theory. It
provides functions for the computation of Shannon En-
tropy, Rényi Entropy, Tsallis Entropy, Necessary Condi-
tional Entropy, Residual Entropy. It also provides other
tools for the estimation of Independent Information, Vari-
ation of Information, Mutual Information and Divergences

Nolds [9] is a small numpy-based library that pro-
vides an implementation and a learning resource for non-
linear measures for dynamical systems based on one-
dimensional time series. Currently the following mea-
sures are implemented: Sample Entropy, Correlation Di-
mension, Lyapunov Exponent, Hurst Exponent, Detrended
Fluctuation Analysis.

PyEntropy [10] is a small set of functions on top of
NumPy for different definitions of entropy. Currently
available are: Shannon Entropy, Sample Entropy, Multi-
scale Entropy, Composite Multiscale Entropy, Permutation
Entropy, Multiscale Permutation Entropy.

The motivation to propose a new entropy library in
Python is strong. Even though there is a number of Python
libraries already available for the computation of several
entropy definitions, this new library focuses on smart im-
plementation of entropy algorithms, ensuring low execu-
tion times, alleviating the most important drawback of en-
tropy computation.

3. Description of fastEntropyLib

fastEntropyLib consists of a set of Python functions,
each corresponding to one of the above discussed defini-
tions. We will present, in the following, the interface for
each one of those functions, as well as some details on their
implementation, where this is interesting.

− shannon entropy (data, bin size=1)

Function for the computation of Shannon Entropy. Data
is the input on which the entropy will be computed, usu-
ally a time series. Bin size is the size of the bins for the
histogram.

− renyi entropy(data, order=2, bin size=1)

This function is for the computation of Rényi Entropy. The
parameters are the same with those of Shannon Entropy,
but there is also an additional parameter, the order, for the
order of Rényi Entropy. The default value is order=2,
since this is the most common value used.

− sample entropy (timeseries, m=2, r=0.2,

algorithm=’bucket’, bucket split=5)

Function for the computation of Sample Entropy. The first
parameter is again the parameter for the input of the ex-
amined data, a time series here. We gave it the name
timeseries this time, since Sample Entropy is more mean-
ingful for time series.

The computation of Sample Entropy request the estima-
tion of two parameters, the embedding dimension m and
the threshold r. The selection is a critical point in the ap-
plication of the method, since these parameters do not only
influence the computed value, but also affect the discrim-
inating power. Typical values have been suggested and
widely used to alleviate the problem and standardized the
application of the method. The function accepts the pa-
rameters m and r with default values m=2 and r=0.2
according to the common practice.

We provide three different implementations for the com-
putation of the method. All three return exactly the same
value, none of them is based on estimations. The program-
mer can use the parameter algorithm and define which
implementation to select. The three options are: straight-
forward, bucket and lightweight. The option straightfor-
ward calls an algorithm directly resulting from the defini-
tion of the method. The code has been written in Python.
It is the slowest one, but fast enough for small time se-
ries. It is a simple implementation, easy to be understood
and has been included in the library for completeness and
clarity. The default value for algorithm is algorithm=
“bucket”.

The main problems with Sample Entropy is the high
computational complexity which, according to the defini-
tion of the method, is O(n2m). This results in a demand
of computational power, especially when a large number
of time series is analyzed (which is usually the case). Two
algorithms has been proposed to speed up the computation
of the method, something that they achieve in a remark-
able degree [6]. The implementation of both algorithms
has been done in C (wrapped up with a Python interface)
something that makes their execution even faster. A short
description of the two algorithms follows, but for more de-
tails please see [6].

The main idea of the Bucket Assisted algorithm is to
detect early and exclude comparisons, which we know
that they will fail. Such comparisons are those that the
sums of the elements of the two vectors differ more than

Page 2



m∗r. Thus, we put the vectors in buckets according to the
sum of their elements and we compare only those buckets
which we know that they possibly contain similar vectors.
Two vectors cannot be similar if the distance between their
buckets is more than r∗m. Exploiting this property we can
avoid a large number of comparisons. In addition, vec-
tors inside the buckets are sorted according to their first
elements, allowing exclusion of massive comparisons be-
tween vectors their first elements of which differ more than
r. The gain in computation time is remarkable, exploiting
these two ideas.

The Lightweight algorithm is a similar algorithm which
exploits only the second idea. For specific values of m and
r and time series lengths, the overhead to manage buck-
ets is more than the gain we have. For those cases, the
users may prefer to use the Lightweight algorithm, for even
faster executions.

The Bucket Assisted algorithm allows the user to play
with the parameter bucket split. This parameter can offer
even better performance. Even thought the default value
bucket split=5 is not necessary to be modified and gives
a good acceleration, the users can also play with other in-
teger values of bucket split, if they wish.

Even though the gain of using these algorithms com-
pared to the straightforward implementation depends on
the compiler used, the bucket assisted and the lightweight
algorithms are always much faster. implementation in C
also speeds ups the execution significantly. For details on
algorithm performance issues please see [6].

− approximate entropy (timeseries, m=2, r=0.2,

algorithm=’bucket’, bucket split=5)

This is the function for the computation of Approximate
Entropy. One can notice that the interface is identical
with that of Sample Entropy. However, this is not a sur-
prise, since the two methods have the same parameters and
similar definitions. The Bucket Assisted algorithm have
been implemented as it was described in [5], whilst the
Lightweight algorithm is a modification of the algorithm
presented in [6]. Implementations are similar to the im-
plementations discussed earlier for Sample Entropy. For
performance issues please see [5, 6].

− bubble entropy (timeseries, m)

Function for the computation of Bubble Entropy. Again,
the parameter timeseries is for the input time series and
m is the size of the embedding space. There is no default
value for m, since no value has been suggested or practi-
cally used yet as typical. Suggested values for the user to
try are m≤20.

The implementation is based on the description in [7].
The computation of Bubble Entropy requests (bubble)
sorting of vectors of size m. With bubble sort, this costs
O(m2) steps, with quick sort O(mlogm). Sorting is a

generally expensive task. However, the N−m+1 vectors,
which are to be sorted, are not independent the one from
the other. They are ordered and produced by the same time
series. Each vector vi in the embedding space has m−1
common elements with its preceding vector vi−1. We ex-
ploit this property. When we want to sort the vector vi,
the preceding vector vi−1 is already sorted. In order to
produce the sorted vector vi, we take the already sorted
vector vi−1 as a starting point. We remove from vi−1 the
element which does not belong to vi. This was the first
element of vi−1, before sorting it. This is done in O(m)
time. After removing this element, our vector consists of
m−1 sorted elements. The missing element is the last ele-
ment of vi. We need to insert it in the correct position, so
that the vector will remain sorted. This can be done also in
O(m) time, using insertion sort. The above algorithm can
compute Bubble Entropy very fast, in linear time O(nm) .

4. Conclusions

In this paper, we presented a Python library which facili-
tates the user with functions for the computation of defi-
nitions of entropy. The library focuses on the most popu-
lar entropy measures used in biomedicine and specifically
in biomedical time series analysis. The library provides
functions for the computation of Shannon Entropy, Rényi
Entropy, Approximate Entropy, Sample Entropy and Bub-
ble Entropy. The code for the computationally intensive
Approximate Entropy and Sample Entropy has been de-
veloped according to algorithms which allow fast compu-
tation. To further speed up the execution, the code for Ap-
proximate and Sample Entropy has been developed in C
and is provided with a Python wrapper function. It is the
first time that code for those algorithms becomes publicly
available, not only for Python, but for any other language.
It is also the first time that code become publicly available
for Bubble Entropy. We believe that the proposed library
will become a useful tool in biomedical time series analy-
sis.

References

[1] Pincus SM. Approximate entropy as a measure of system
complexity. Proc Natl Acad Sci March 1991;88(6):2297–
2301.

[2] Pincus SM, Goldberger AL. Physiological time-series anal-
ysis: what does regularity quantify. Am J Physiol Heart
Circ Physiol 1994;266:1643–1656.

[3] Richman JS, Moorman JR. Physiological time series anal-
ysis using approximate entropy and sample entropy. Am J
Physiol Heart Circ Physiol 2000;278:2039–2049.

[4] Lake DE, Richman JS, Griffin MP, Moorman JR. Sam-
ple entropy analysis of neonatal heart rate variability. Am
J Physiol Regul Integr Comp Physiol September 2002;
283(3):R789–R797.

Page 3



[5] Manis G. Fast computation of approximate entropy. Com-
put Methods Programs Biomed 2008;91(1):48–54.

[6] Manis G, Md. Aktaruzzaman, Sassi R. Low computational
cost for sample entropy. Entropy 2018;20(1):61.

[7] Manis G, Md. Aktaruzzaman, Sassi R. Bubble En-
tropy: an entropy almost free of parameters. Transactions
on Biomedical Engineering November 2017;64(11):1558–
2531.

[8] James RG, Ellison CJ, Crutchfield JP. dit: a Python package
for discrete information theory. The Journal of Open Source
Software 2018;3(25):738.

[9] Nolds, 2017. https://pypi.org/project/nolds/, Last released:
Nov 30, 2017, Last accessed: Aug 5, 2021.

[10] pyEntropy. https://github.com/nikdon/pyEntropy, Last ac-

cessed: Aug 5, 2021.

Address for correspondence:

George Manis
Dept. of Computer Science and Engineering, School of Engi-
neering, University of Ioannina, Ioannina 45110, Greece
manis@cs.uoi.gr

Roberto Sassi
Dipartimento di Informatica, Università degli Studi di Milano,
Milan, Italy
roberto.sassi@unimi.it

Page 4


	Introduction
	Entropy Libraries in Python
	Description of fastEntropyLib
	Conclusions

