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GH deficiency (GHD) in adult patients is a complex condition, mainly due to organic lesion
of hypothalamic-pituitary region and often associated with multiple pituitary hormone
deficiencies (MPHD). The relationships between the GH/IGF-I system and other
hypothalamic-pituitary axes are complicated and not yet fully clarified. Many reports
have shown a bidirectional interplay both at a central and at a peripheral level. Signs and
symptoms of other pituitary deficiencies often overlap and confuse with those due to GH
deficiency. Furthermore, a condition of untreated GHD may mask concomitant pituitary
deficiencies, mainly central hypothyroidism and hypoadrenalism. In this setting, the
diagnosis could be delayed and possible only after recombinant human Growth
Hormone (rhGH) replacement. Since inappropriate replacement of other pituitary
hormones may exacerbate many manifestations of GHD, a correct diagnosis is crucial.
This paper will focus on the main studies aimed to clarify the effects of GHD and rhGH
replacement on other pituitary axes. Elucidating the possible contexts in which GHD may
develop and examining the proposed mechanisms at the basis of interactions between
the GH/IGF-I system and other axes, we will focus on the importance of a correct
diagnosis to avoid possible pitfalls.

Keywords: growth hormone deficiency, hypopituitarism, central hypoadrenalism, central hypothyroidism,
hypogonadotropic hypogonadism
INTRODUCTION

Growth hormone (GH) deficiency in adults (AGHD) is a complex condition characterized by a
well-defined clinical phenotype including modified body composition (increased fat mass and loss
of lean muscle mass), intermediate metabolism changes, reduced bone mass, compromised aerobic
exercise capacity, impaired quality of life and increased cardiovascular risk profile (1–3).

Response to recombinant human growth hormone (rhGH) replacement therapy has a high
inter-individual variability and, though several placebo-controlled and observational studies have
provided information on its efficacy and safety, the results are still inconclusive, especially regarding
quality of life (QoL) improvement and GH specific mortality reduction (2–5).
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In adults, growth hormone deficiency (GHD) is often
accompanied by other multiple pituitary hormone deficiencies
(MPHD), mainly secondary to organic causes (pituitary tumour
mass, surgery or radiation, traumatic brain injury, subarachnoid
haemorrhage, hypophysitis, Sheehan’s syndrome, vascular
damage, empty sella, hypothalamic infiltrative/inflammatory
diseases or pituitary metastasis). Nonetheless, sometimes adult-
onset GHD can be idiopathic, due to an impaired somatotroph
function in the absence of an underlying pituitary lesion or
defect. In this setting, the diagnosis can be extremely challenging
due to its subtle manifestations and only an extended use of
dynamic GH test may reveal such condition (6, 7).

Less frequently, adult GHD is of childhood origin,
reconfirmed at adult height and after the transitional age.
Childhood-onset GHD (CO GHD) is mostly occurring as an
idiopathic isolated hormone deficiency, being additional MPHD
rarely encountered (8, 9). However, there are cases of CO GHD
reconfirmed in adulthood and the association with other
MPHD represents an important predictive factor of persistent
GHD, especially in the presence of organic lesions (i.e.
craniopharyngiomas). Indeed, severe GHD tends to reconfirm
in more than 90% of organic CO GHD and around 50% of
idiopathic GHD (10). Moreover, among CO GHD associated
with MPHD, it is worth mentioning congenital aetiologies due to
mutations of the transcription factors involved in the
embryologic development of the pituitary, namely PROP1,
POU1F1 (PIT-1), HESX1, LHX3, LHX4 or SOX2 (11).

Clinical manifestations of MPHD are insidious and strictly
dependent on the degree and severity of hormone deficiencies,
the gender, the age of onset and the underlying comorbidities. In
case organic cause, signs and symptoms related to mass effect can
also be present.

The challenging management of MPHD is due to the complex
and multifaceted interplay between the GH-IGF-I and other
pituitary hormones axis, in which specific signs and symptoms of
GHD often coincide with those of other deficits. Moreover, a
condition of untreated GHD may mask other underlying
pituitary deficiencies, mainly central hypothyroidism (CHT)
and hypoadrenalism (CHA). In this setting, an appropriate
diagnosis can be possible only after rhGH replacement. On the
other hand, the concomitant reduction of other pituitary
hormones can alter GH secretion and response to pharmacological
stimuli, thus an appropriate replacement therapy is required in order
to avoid GHD diagnosis pitfalls (1).

The impact of these interactions is more than theoretical: for
instance, since rhGH start may increase cortisol metabolism in
patients with MPHD, it is possible that GH treatment initiation
could lead to acute adrenal insufficiency by “unmasking” a
condition of unsubstituted CHA or require an adjustment of
glucocorticoid replacement dosages.

Moreover, several androgens enhance GH effects in peripheral
tissues (12) explaining why men are more responsive than young
women to rhGH therapy and supporting a sexual dimorphism of
rhGH effects at different end-points of the treatment (13).

As aforementioned, the clinical manifestations of AGHDmay
also be related to other underlying pituitary deficiencies or
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suboptimal replacement therapies. Thus, a correct diagnosis of
hypopituitarism and the subsequent indication of appropriate
replacement therapy can be crucial in the detection of the
beneficial effects of GH therapy.

By elucidating the possible context in which GHD may
develop and by examining the proposed mechanisms and the
basis by which the GH/IGF-I system and other axes interact
(Figure 1), we will enlighten the importance of reaching a correct
diagnosis and establishing a correct management to avoid
possible pitfalls.
GH-IGF-I AXIS AND HYPOTHALAMIC-
PITUITARY-ADRENAL AXIS

Growth hormone and IGF-I, together with androgens, represent
the main anabolic hormones and cortisol the main catabolic one,
thus their actions are evidently linked. Several studies have
reported a complex relationship between the GH/IGF-I and
the hypothalamic-pituitary-adrenal (HPA) axis, both at a
central and a peripheral level (14, 15).

At the hypothalamic-pituitary level, altered cortisol and ACTH
secretion may affect GH release. Indeed, a substantial body of
literature has described that a condition of eucortisolism is
required to elicit a GH response to pharmacological testing (16).
The clinical importance of this phenomenon is particularly evident
in infants with severe ACTH deficiency, when, even in the presence
of mutations of transcription factors not involved in GH axis
regulation, a severe GHD can resolve with cortisol replacement (17).

At the peripheral level, some studies reported a possible direct
effect of GH therapy on cortisol-binding globulin (CBG) levels,
but data are contradictory (15, 18–20).

Moreover, the GH-IGF-I axis interplay can act at a tissue level
by modulating the activity of 11beta-hydroxysteroid dehydrogenase
(11ßHSD): the well-known cortisol-cortisone shuttle (21). The type
1 isoenzyme (11ßHSD1) can be found in the liver, lung, adipose
tissue, gonads, pituitary and central nervous system. It is a low
affinity NADP(H)-dependent bi-directional enzyme which
interconverts inactive cortisone to active cortisol (22). Conversely,
Type 2 isoenzyme (11ßHSD2) is a unidirectional, NAD-dependant
dehydrogenase, localized in the kidney, placenta, colon and in the
salivary glands and has a dehydrogenase activity which converts
active cortisol to cortisone (23). In this context, GH modulates
cortisol metabolism mainly by inhibiting 11ßHSD1, thus leading to
a reduced cortisone activation into cortisol (18, 24–28). The exact
mechanism of modulation is far from being clear: in vitro studies
indicate a dose-dependent inhibition of 11ßHSD1 activity induced
by IGF-I, but not by GH (26). Whatsoever, the result is that in the
lack of GH an increased amount of cortisol is locally generated.
Indeed, it has been hypothesized that some of the phenotypic
features of GHD can be explained by an alteration in 11ßHSD1
activity, especially in the liver and in the adipose tissue. In
particular, the increased local 11ßHSD1 activity in adipose tissues
(24, 29, 30), resulting in increased local cortisol exposure (29), could
promote insulin resistance and visceral adiposity which tend to
October 2021 | Volume 12 | Article 678778
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reduce after GH replacement (30, 31), possibly explaining its
beneficial effects (32). An intriguing observation has been recently
made by Agha and colleagues: the authors reported that 11ßHSD1
activity is regulated differently in patients with different aetiologies
of hypopituitarism. In particular, they found that patients with a
craniopharyngioma had higher 11ßHSD1 activity even during GH
therapy compared to a matched group of patients with NFPAs/
prolactinomas, with amplified cortisol production in adipose tissues
and liver. The clinical significance of this observation remains
unclear but the authors hypothesized that this condition may
increase the risk of adverse metabolic outcomes (33). Indeed,
regarding metabolic outcomes, patients with craniopharyngiomas
seem to have a lower response to GH therapy than those with
NFPA (34).

Our group investigated the effect of rhGH on the HPA axis in
both adults and children with GHD. The former study was
carried-out in 12 patients with adult-onset GHD due to
surgically treated pituitary tumours and preserved HPA
function, before and during rhGH therapy.

Urinary free cortisol, as well as basal and stimulated serum
cortisol levels, were lower on therapy than before and a condition
of CHA was unmasked in the majority of subjects. Since no change
in CBG was found, the results were mainly ascribed to restoration
of 11ßHSD1 activity inhibition induced by GH replacement (27).
Nonetheless, in the setting of hypopituitarism, CBG levels need to
be considered in women taking oral oestrogen replacement therapy
since oestrogens increase CBG and consequently total cortisol
levels, but not the unbound active fraction.
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The above reported data suggest that in patients with organic
hypopituitarism, GH deficiency may mask the presence of CHA.
To confirm this observation, the study conducted in 10 children
with idiopathic isolated GHD and normal pituitary MRI, showed
no changes in the HPA axis during rhGH (35).

The major studies so far available on this topic are reported
in Table 1.

All these observations, taken together, tend to support a
strong interplay between the GH/IGF-I and the HPA axis. The
clinical impact is particularly evident in patients with MPHD,
who may experience a life-threatening adrenal crisis after rhGH
initiation in the presence of an untreated CHA.

Thus, in patients with possible MPHD, the integrity of the
HPA axis must be evaluated both before GH pharmacological
stimulating tests (to avoid diagnostic pitfalls) and after rhGH
start. Indeed, an underlying unsubstituted CHA might be
unmasked by rhGH therapy, inducing a possible adrenal crisis.
Moreover, in patients already under replacement for ACTH
deficiency, steroid therapy should be adjusted, especially when
using cortisone acetate (1, 36, 37).
GH-IGF-I AXIS AND HYPOTHALAMIC-
PITUITARY-THYROID AXIS

It is well ascertained that untreated hypothyroidism is associated
with reduced IGF-I and IGF binding protein-3 (IGF-BP-3) and,
FIGURE 1 | Main interactions between the GH-IGF-I system and other hypothalamic-pituitary axes. D1/D2: Deiodinase type 1/ Deiodinase type 2. 11ßHSD: 11ß-
hydroxysteroid dehydrogenase.
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indeed, even in subclinical hypothyroidism, these reduced levels
of IGF-I increase with Levotiroxine (LT4) replacement therapy
(38). This phenomenon is easily noticeable in hypothyroid
children whose growth failure is reversible by the introduction
of LT4 replacement therapy. Moreover, hypothyroidism induces
a decrease in GH pulsatility and blunts GH responses to
secretory stimuli, changes that are reversible after LT4
introduction, suggesting a possible underlying driven role of
thyroid hormones (39).

Therefore, GH provocative tests as well as rhGH replacement
therapy should be performed or administered only after the
restoration of a condition of euthyroidism. Indeed, as LT4
accelerates cortisol clearance potentially triggering an
Addisonian crisis in the presence of an underlying CHA,
glucocorticoid replacement therapy should be started first.
Thus, in patients with MPHD, hormone replacement therapies
must be introduced following a well-defined order: first
hydrocortisone, then LT4 (usually after a week), rhGH and,
when indicated, sex hormones (36).

However, we have to consider that rhGH therapy can affect
the regulation of the HPT axis and thyroid hormone
concentrations by several different mechanisms.

Firstly, at a peripheral level, GH induces the extra-thyroidal
conversion of T4 to the active hormone triiodothyronine (T3),
reducing the concentrations of the inactive form reverse-T3
(rT3) and increasing the T3/T4 ratio (40–45). The effect of GH
on circulating T3 levels has been firstly described in animal
models (46–48) where GH stimulates T4 conversion to T3. In
untreated GHD patients, there is a decreased conversion of T4 to
T3, with increased concentrations of rT3 (49). Even if the exact
activation pathway under GH control is still unknown, an
upregulation of type 2 iodothyroinine deiodinase by GH has
been recently described in humans (50). In MPHD, the activity
of type 2 deiodinase is usually increased to counterbalance, with
a more efficient T3 production, the initial T4 reduction. This
compensatory mechanism would be lacking in hypothyroid
patients with GHD (50).

Secondly, an interaction at a central level has also been
postulated: increased somatostatinergic tone or T3 negative
feedback within the thyrotropes, driven by increased T3
production from T4 deiodination, may inhibit TSH release
(40–42, 44, 51, 52). In GH deficient adults on rhGH
replacement, a significant blunting of the TSH nocturnal surge
has indeed been reported (53, 54). However, other studies failed
to find TSH variation during rhGH therapy (49). Moreover,
Frontiers in Endocrinology | www.frontiersin.org 4
whether the interaction between the GH/IGF-I and the HPT axis
is directly mediated by GH or through IGF-I is still to be
established. Some studies failed to support the influence of
IGF-I administration on serum T3 (55). Furthermore, a much
higher T3 increase has been described after GH than after IGF-I
therapy in GHD patients suggesting that GH has a more direct
potent effect on thyroid hormone metabolism (56).

Consistently, in GHD patients under LT4 replacement
therapy, rhGH led to a dose-dependent increase in T4 to T3
conversion and a decrease in immunoreactive TSH levels,
probably secondary to the increased free T3 in the thyrotropes
or to the increased somatostatinergic tone (56, 57). These
findings support the crucial role of GH in the HPT
homeostasis. Moreover, in hypothyroid patients under LT4
replacement, another possible underlying mechanism is the
GH-driven reduction of T4 half-life and the increase of T3
half-life (58) by affecting thyroxine clearance rate or inhibiting
LT4 uptake from the gastrointestinal tract (59–61).

When considering GH deficient adults, the first reported
results on the interaction with the HPT were controversial, due
to the small sample sizes, different study protocols, biochemical
analytic methods and criteria for GHD diagnosis, and the use of
pituitary GH occasionally contaminated with TSH (45, 62).
Nonetheless, subsequent available studies confirmed that, in
GHD adults, as in children, rhGH therapy could unmask an
underlying CHT. Indeed, a multicenter study evaluated a quite
large cohort of patients with either adult or childhood onset
severe GHD (17 euthyroid patients and 49 with central
hypothyroidism) treated with different rhGH doses (3-12 mg/
kg/day) and observed a significant reduction in FT4 and rT3
levels without changes in TSH, FT3 and TBG levels.
Interestingly, the fall of FT4 levels was clinically relevant only
in patients with organic hypopituitarism (63). A later study
confirmed these assumptions in a group of 243 patients, in
which the underlying presence of MPHD was found to be the
major predictor for CHT development (40). Similar data have
been confirmed in long-term follow-up (5 years of rhGH) (64).
All in all, the GH-IGF-I and HPT axes interactions have possible
tissue-specific effects: indeed, rhGH efficacy on energy
expenditure, substrate use and metabolic plasticity can be
attenuated by the fluctuations in thyroid hormone levels (65).

Table 2 summarizes the main studies on this topic.
More uncertainties exist over the effects of GH therapy on

thyroid volume (TV) and morphology. Actually, TSH represents
the major regulator of both thyroid hormone biosynthesis and
TABLE 1 | Modifications of hypothalamic-pituitary- adrenal axis during GH therapy in AGHD.

Study N ACTH-def before rhGH therapy ACTH-def after rhGH therapy CBG MCP UFC CoM F/E

Weaver et al. (18) 19 16 16 ↓ NA ↓ ↓ ↓
Rodriguez-Arnao et al. (19) 14 14 14 ↓ ↓ NA NA NA
Gelding et al. (24) 10 7 7 NA NA ↔ NA ↓
Tschop et al. (20) 22 16 16 ↓ ↔ NA NA NA
Isidori et al. (15) 30 17 17 ↔ NA NA NA NA
Giavoli et al. (27) 12 0 9 ↔ ↓ ↓ NA NA
Toogood et al. (28) 9 9 9 NA NA NA ↔ ↓
Octobe
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AGHD, adult growth hormone deficiency; ACTH-def, ACTH deficiency; CBG, cortisol binding globulin; MCP, mean cortisol peak; UFC, urinary free cortisol; CoM, urinary cortisol
metabolites; F/E, ratio 11-hydroxy/11-oxo cortisol metabolites; ↔, unchanged; ↓, decreased; NA, not available.
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thyroid growth. However, IGF-I itself has a proliferative role
interacting with its own receptors, largely expressed in thyroid
cells (66). Indeed, most acromegalic patients have goiter and
IGF-I levels are positively correlated with TV, while
hypopituitary patients tend to have reduced TV (67–70).

The finding of unchanged TV during rhGH in TSH- and GH-
deficient children, adolescents and adults supports the idea that
IGF-I has only a permissive role on the mitogenic action of TSH
(71, 72). In fact, an increased TV in patients with congenital
isolated GHD was found after 6 months of rhGH therapy (73).
Finally, Curtò and collaborators, studying patients with
childhood and adult onset GHD before and after 5 years of
rhGH therapy, found smaller pretreatment TV in GHD patients
than in healthy controls, with increased TV only in patients
without concomitant CHT (74).

To summarize, organic GHD can frequently mask a state of
CHT, thus it is mandatory to assess and carefully monitor thyroid
function before and during rhGH administration, in order to start
or adjust LT4 replacement when indicated (1, 37, 75). Indeed,
while it is recommended to maintain FT4 in the mid-normal
range in patients with CHT, in the presence of a concomitant
untreated GH deficiency it would be sensible to aim for higher
FT4 levels, given the underlying impairment of T4 to T3
conversion (76, 77). Moreover, most of FT4 variations occur
within the first 6 months of therapy, thus the importance of an
early revaluation of thyroid function after rhGH initiation (64, 78).
GH-IGF-I AXIS AND HYPOTHALAMIC-
PITUITARY-GONADAL AXIS

In order to understand the complex interaction between the GH/
IGF-I and the hypothalamic-pituitary-gonadal (HPG) axis it is
crucial to take into consideration the sexual dimorphism of
endogenous GH secretion. Indeed, during the pre-pubertal
period, GH and IGF-I levels are similar between boys and girls
(79) but in adults spontaneous 24-h GH secretion is
approximately two-fold higher in women than in men, mostly
due to increased pulse amplitude without a difference in pulse
frequency (80). The first gender divergences, indeed, occur
during puberty, when pulse GH amplitude in girls tend to
precede the one in boys, according to the different timing of
the pubertal growth spurt in the two sexes (81). Moreover, GH
production declines more quickly with age in women than in
men and during menopause this is usually associated with a
significant gain in visceral fat mass (82).
Frontiers in Endocrinology | www.frontiersin.org 5
Despite this important sexual dimorphism of GH levels,
cross-sectional studies have found no difference in serum IGF-
I concentrations between women and men (83), though in
women a moderate raise of IGF-I levels related to increased
GH secretion has been reported in the early follicular and
periovulatory phase (82, 84).

The gender-independence of IGF-I levels in healthy adults,
despite significantly higher GH concentrations in females,
supports the presence of compensated GH resistance in
women. This phenomenon is due to a direct inhibitory effect
of oestrogen on hepatic but not peripheral IGF-I production.
Underlying mechanisms that contribute to this liver sexual
dimorphism are pituitary-independent and related to the
interaction of oestrogens with their receptors. Namely, the
induction of suppressor of cytokine signalling (SOCS)-2 and
the inhibition of GHR-Janus kinase (JAK)-2-signal transducer
and activator of transcription (STAT)-5 signalling pathway in
the liver (85, 86) reduce IGF-I secretion from hepatocytes (87).

Moreover, oral administration of oestrogens introduces an
open-loop feedback system during which the continuous and un-
physiological suppression of hepatic IGF-I production and
release, due to a first pass hepatic effect of oral oestrogen (82),
is only partially compensated by increased pituitary GH
secretion. In this context, oestrogen replacement discontinuation
or omission tends to solve the resistance to GH administration.
Serum IGF-I in the GH-deficient state is further lowered by oral
oestrogen, but results unaffected by transdermal therapy (88, 89).
This phenomenon can explain why IGF-I levels are lower in
hypopituitary women than men, despite a similar degree of
impaired GH secretion (90). Moreover, women with
hypopituitarism tend to be more susceptible to the hepatic
effects of oral oestrogens due to the lack of feedback in GH
response. Cook et al., indeed, observed that GH requirements in
men were not different from those in women not taking
oestrogens, but that women taking oral oestrogens required at
least a two-fold greater dosage of GH (91).

Interestingly, even in males, many reports have provided
robust evidence that oestradiol, rather than testosterone itself,
increases GH secretion via oestrogen receptor (92, 93) after
aromatization from testosterone. In fact, recently, Birzniece
and colleagues have shown that the stimulatory effect of
testosterone on GH is completely hampered by oestrogen
receptor antagonists and by aromatase inhibitors (94).

On the other hand, a study in males revealed that the
association of hypogonadotropic hypogonadism (HH) and
GHD has an additional lowering effect on testosterone, DHT
and oestradiol levels versus that seen in isolated HH. This
TABLE 2 | Hypothalamic-pituitary-thyroid axis changes during GH replacement therapy in AGHD.

Study N CH TT4/FT4 TSH TT3/FT3 rT3 % new CH

Jorgensen et al. (45) 21 9 ↓/↓ ↓NS ↑/↑ ↓ 0
Amato et al. (62) 9 9 ↔/↔ ↔ ↔/↔ ↔ 0
Porretti et al. (63) 66 49 NA/↓ ↔ NA/↑ transient ↓ 47
Agha et al. (39) 243 159 ↓NS/↓ ↔ ↑NS/NA NA 36
Losa et al. (64) 49 37 NA/↓ ↔ NA/↔ NA 17
October 2021
 | Volume 12 | Ar
AGHD, adult growth hormone deficiency; CH, central hypothyroidism, ↔, unchanged; ↓, decreased; ↑increased; NA, not available; NS, not significant.
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phenomenon supports a synergistic effect of GH/IGF1 on Leydig
cell (LC) function (95). In this context, one would have expected
an increase in testosterone levels with rhGH therapy. However,
the literature available on this topic reported contrasting data.
The only studies that showed an increase in testosterone levels
included azoospermic (96) or hypogonadal patients (97) with
GH and gonadotropin co-treatment. In contrast, in a double-
blind placebo controlled trial performed in young males with
childhood-onset GHD, Juul et al. (98) concluded that rhGH
administration does not influence the HPG axis. Conversely,
another study (99) carried out in males with idiopathic isolated
GHD, showed that rhGH treatment displays an effect on LC
function, increasing testosterone response to chorionic
gonadotropin (CG). However, these studies included patients
with either idiopathic or organic GHD or varied HPG axis status,
being either normogonadic or hypogonadic under treatment
with testosterone. Moreover, the high rhGH doses employed in
these studies make it difficult to distinguish physiological and
pharmacological rhGH effects. In another study on adult males
with organic GHD and normal HPG axis we reported a
significant decrease in serum testosterone levels strictly related
to Sex Hormone Binding Globulin (SHBG) reduction. This
suggests the importance of the evaluation of the HPG axis
during rhGH treatment, utilizing free calculated testosterone,
rather than total testosterone, in order to avoid unnecessary
replacement therapy (100).

Moreover, some literature is available on the impact of rhGH
treatment on infertility. Males with HH who failed to respond
adequately to conventional infertility treatment showed increased
testosterone secretion and improved fertility outcomes and sperm
production after rhGH adjuvant therapy with gonadotropins (101).
In addition, a prospective, open-label, non-randomized observational
study of 14 men (26 to 35 years) with normogonadotropic idiopathic
oligoasthenospermia found beneficial effects of six months of rhGH
treatment on semen volume, count, and motility (102). On the
contrary, in a small group of hypogonadotropic hypogonadal
azoospermic patients, rhGH replacement therapy for six months,
following a previous period of six months of gonadotropin treatment,
while increasing testicular volume and testosterone levels, failed to
induce the appearance of spermatozoa in the sperm (97).
Undoubtedly, the interaction between the GH-IGF-I and the HPG
axis plays a role in reproduction and fertility. However, data on the
impact of rhGH therapy in non-GHD males are scanty and data on
spermatogenesis and fertility in GHD adults, either treated or
untreated, are missing.

Similarly, in females, the presence of GH receptors on oocytes
suggests a direct action of GH at this level (103). Yet, IGF-I could
mediate the reproductive effects of GH, being present in follicular
fluid and involved in the cytoplasmic maturation, oocyte
capability and granulosa cell function (104). Clinical studies
evaluating female patients with suboptimal response to in vitro
fertilization (IVF), have shown that the co-administration of GH
with gonadotropin for controlled ovarian stimulation was
associated with a reduction in the gonadotropin requirement,
with a higher proportion of successful embryo transfer stage,
higher pregnancy and live births rate (105, 106). These outcomes
Frontiers in Endocrinology | www.frontiersin.org 6
bring to light a possible role for rhGH treatment in oocyte and
embryo quality improvement. However, in these patients,
endogenous GH secretion was not investigated. When
considering GHD, a study by De Boer and Coll reported
decreased fertility even in patients without associated
hypogonadism (107), suggesting the contribution of GHD to
infertility. Giampietro et al. (108) presented four cases of
infertility in women with isolated GHD and normal HPG
function, in which initiation of rhGH led to efficacious
conception and pregnancies. Similarly, in a recent case report
by Albu et al, GH therapy contributed to IVF success by
improving oocyte competence in a GHD patient. The author
concluded that the influence of GH in enhancing oocyte quality
should be taken into account in all infertile females with GHD, in
order to improve treatment outcome especially when facing
previous treatment failure (109). Nevertheless, the responsible
mechanisms of GH action on fertility are not fully understood.

Differently from gonadal steroids, in females, DHEA
influences the GH/IGF-I axes by increasing IGF-I response
thus reducing GH requirement. On the other hand, no rhGH
dose adjustment has been necessary in the male group taking
testosterone replacement therapy (108, 109). The exact
mechanism by which DHEA causes an increase in serum IGF-I
levels is still unclear. Some authors have suggested a possible
direct stimulatory effect of DHEA on IGF-I hepatic production
or an inhibition of IGF-I clearance. On the other hand, DHEA
could also enhance GH efficacy acting directly on GH receptors
or through testosterone metabolism (110, 111).

To conclude, when treating hypopituitary patients, the gender
differences in GH sensitivity and responsiveness are important
aspects to take into consideration in clinical practice. In fact,
GHD men are more responsive than young women to rhGH
therapy, supporting a sexual dimorphism of rhGH effects in
different end-points of the treatment. Female patients, indeed,
usually require higher rhGH doses to normalize IGF-I levels,
especially when receiving oral oestrogen. For this reason, in
women with GHD and hypogonadotropic hypogonadism, a
transdermal route of oestrogen replacement should be
preferred for a cost-effective rhGH treatment.

On the contrary, in males, despite the GH-induced increase in
circulating IGF-I by testosterone therapy may suggest the need of
lower doses of rhGH, no clinical data have supported a dose
reduction during testosterone treatment (112). Moreover, given
the above mentioned studies, it is possible to conclude that rhGH
treatment does not significantly change the hypothalamic-
pituitary-testicular axis metabolism. In this contest, no
adjustment of rhGH or testosterone therapy is needed.

Likewise, the reported preliminary data on the influence of
the GH/IGF-I axis on fertility does not achieve at present
sufficient consensus to be considered in clinical practice.
CONCLUSIONS

In conclusion, the experience developed during the last decades
strengthens the view that rhGH replacement therapy is effective
October 2021 | Volume 12 | Article 678778
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and safe in treating GHD in adulthood. Nonetheless, the adult with
GHD is a complex patient, in whom the deficit is almost always
part of a picture of MPHD. In this context, interactions between
replacement therapies have to be taken into account, not only to
tailor the best hormonal substitutions, but also to achieve a prompt
and accurate diagnosis of hypopituitarism, that is of paramount
importance in the management of these patients (Table 3). In
particular, the state of untreated GHD may mask in a consistent
manner a number of cases of central hypoadrenalism and/or
hypothyroidism, whose diagnosis becomes possible only after
rhGH replacement. Hence, the most recent Guidelines suggest
the re-assessment of thyroid and adrenal function during rhGH
therapy in patients with organic GHD. Similarly, in patients already
Frontiers in Endocrinology | www.frontiersin.org 7
under glucocorticoid and LT4 replacement, dosages should be
adjusted and usually appropriately increased after rhGH start. In
the same context, it is recommended using higher rhGH doses to
normalize IGF-I levels in women receiving oral oestrogen and
lower doses in women taking DHEA supplement. When possible, a
transdermal route of oestrogen replacement should be preferred for
a cost-effective rhGH treatment (1, 37).
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