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Experimental function estimation from quantum phase measurements
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Characterizing and analyzing a system often requires learning an unknown function, such as the response of
a system or the profile of a field. The standard approach is to opportunely sample the function at fiducial points
and then interpolate. When the quantity of interest is embodied in physical objects accessible with quantum-
enhanced measurements, it becomes relevant to investigate how to transfer this advantage from the individual
sampled points to the estimation of the whole function. In this article we report the experimental quantum-
enhanced function estimation of the optical response of a liquid crystal. Our results illustrate that optimizing
the employment of the resources is not as straightforward as it may appear at a first glance: Quantum advantage
becomes substantial only past a sampling density that depends on the interpolation method, and on the function
at hand. Our results show how quantum resources should successfully be employed to access the rich information
contained in continuous signals.
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I. INTRODUCTION

In the quest for superior quantum technology, the develop-
ment of sensors showing a palpable advantage has reached the
state of solid demonstrations. The basic operations allowing
for enhancement in precise measurements have indisputably
been validated in photonics [1–4] and field sensing [5,6],
realizing the promises of quantum metrology [7–10]. Current
development is aiming, on one hand, at consolidating the tech-
nological readiness [11,12], on the other hand, at exploring
new paradigms, based on the results attained so far.

Quantum sensors have been conceived as tools to inspect
systems as their conditions are modified. When these changes
are imparted by the variation of an external field, the sensing
problem is intimately related to a key problem in physics, viz.
determining the response function of the system. The experi-
mental learning of the response function of a system is rooted
in the evaluation of punctual fiducial response and interpo-
lation to access prediction at arbitrary values. Obtaining an
advantage in estimating the response function, certainly relies
on the enhanced precision arising from measuring individual
fiducial points by means of quantum resources. However,
this improvement is unprofitable unless the sampling is suf-
ficiently dense for the interpolation to be meaningful. These
concepts have recently been addressed in Ref. [13] for what
concerns the theoretical aspects. This combination of basic
sensing to deliver a more complex result bears resemblance to
the work flow in computing: Once elementary operations are
mastered, these are then combined to deliver more elaborated
capabilities.

In quantum photonics, phase estimation can indeed serve
as such a primary element. Combining several phase estima-

*ilaria.gianani@uniroma3.it

tion routines has lead to addressing novel problems, notably
phase tracking [14–16]. This represents an instance of mul-
tiple phase estimation [17–21] with the difference that joint
measurability of the different parameters has a limited inter-
est. In this article, we implement quantum function estimation
in a photonic experiment. The phase response of a liquid
crystal to a voltage has been estimated by employing both
quantum and classical resources, providing evidence of the
superiority of the former strategy. We show that quantum
enhancement is attained only if resources are cleverly dis-
tributed. An unconditional advantage could be obtained within
the current technological effort [22], provided that sensors are
used accounting for both the uncertainty on measured points,
and the issue of interpolating between them.

The inclusion of function estimation in the toolkit of
quantum metrology opens up unexplored opportunities for
quantum enhancement in important problems, such as evalu-
ating time-dependent signals and mapping fields [23–33]. Our
paper emphasizes how quantum resources should successfully
be employed to access the rich information contained in con-
tinuous signals, thus, laying the ground for the inclusion of
quantum estimation in functional data analysis [34,35] in the
near future.

II. EXPERIMENTAL RESULTS

A. Function estimation from phase measurements

Function estimation is formally an infinite-dimensional
generalization of multiparameter estimation, which itself
presents unique challenges in the quantum regime when the
parameters are estimated simultaneously [2,36–40]. How-
ever, when the parameters can be considered statistically
independent as we will assume in this paper, the advanced
concepts and tools of multiparameter quantum metrology are
not needed in full.
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FIG. 1. Conceptual scheme of function estimation. (a) The opti-
cal response of a system to an applied voltage x is captured as the
phase ϕ(x) introduced between the polarization components aligned
along the two optical axes. This phase is estimated at different values
of x with suitably prepared light probes. (b) The experiment yields a
function ϕ̃(x) being an estimator of the actual response ϕ(x), based
on a set of fiducial points to which a statistical error is associated due
to the limited amount of resources per point adopted.

Most of the literature on quantum function estimation
is focused on the estimation of time-dependent signals
with quantum probes both for deterministic functions and
stochastic processes [23,26]. Here, we follow the analysis of
Ref. [13], which is not specific to functions in the time domain
and in which few and weak assumptions on the function are
made.

Consider a system whose response function to an applied
signal x is indeed a phase ϕ(x) [Fig. 1(a)]. Different quantum-
enhanced strategies can be envisaged to estimate the function
ϕ(x) [13]. In this paper, we perform independent experiments
for each point xi to obtain estimates of the fiducial values ϕ̃i =
ϕ̃(xi ), treating each estimation as a single parameter problem.
This simple strategy represents the most common instance in
practical applications. If enough experimental values ϕexp(x)
are collected as fiducial references, one can interpolate them
in order to obtain an estimate ϕ̃(x) of the entire function over
a given range [0, L] [Fig. 1(b)]. The accuracy on ϕ̃(x) will
depend on the interpolation method, on the number Ns and the
positions of the points xi at which the signal is sampled, and
on the uncertainty on the measured values. We remark that
this approach is nonparametric since no functional form (with
a finite number of unknown parameters) is assumed a priori
for the function.

When a fixed amount of resources (i.e., the total num-
ber of photons) are allocated, they need to be optimally

FIG. 2. Experimental setup. A CW diode laser at 405 nm pumps
a 3-mm β-barium borate (BBO) crystal cut for noncollinear type-I
phase matching, generating via SPDC two degenerate photons at
810 nm. The laser power is set to 50 mW for the reference mea-
surement and to 6 and 13 mW, respectively, for the measurements at
Nr = 800 an Nr = 3800. The two modes are then selected through
interference filters with FWHM = 7.3 nm and single-mode fibers.
For the NOON measurements, the polarization of one mode is rotated
by means of a half-wave plate (HWP), and the two photons are
then overlapped on the same spatial mode using a PBS, generating
NOON states in the diagonal polarization basis. The two photons are
then sent through the liquid-crystal device which alters the relative
phase between the two modes according to the applied voltage. A
projective measurement is performed by means of a a second HWP
and PBS. For the individual photon measurements, the |H〉 polarized
photon is still sent through the same setup, whereas the other is
directly coupled to the detector for heralding. The output modes of
the interferometer are coupled to single-mode fibers and sent to two
avalanche photodiodes (APDs) for detection. The acquisition time
is set to 3 s for the reference measurement and to 0.5 s for the two
measurements at lower Nr . Coincidences are recorded by means of a
field programmable gate array (FPGA).

deployed, taking into account these contrasting error sources.
These considerations are important already at the classical
level, but crucially they also impact the possibility of attain-
ing an overall quantum advantage. For any given value of
x, quantum-enhanced phase estimation guarantees improved
precision punctually on the system response. By leveraging
on this ameliorated performance, the estimation of the whole
function can also be improved.

The most straightforward implication is that, for fixed re-
sources at each reference point, the errors on the punctual
estimates will decrease when using quantum light. There is,
however, a subtler effect: For a given amount of total re-
sources, and given acceptable statistical uncertainty on the
fiducial points, quantum light allows to increase the sampling
density. We exploit the setup presented in (Fig. 3) to illustrate
these mechanisms.

A scenario for which this approach is relevant is de-
scribed in Fig. 2. We consider the response function of a
liquid crystal device to an applied voltage which can be con-
trolled and swept across the range [0, 3] V as the birefringent
phase associated with its optical axes. We set the crystal
so that the voltage-induced fast and slow axes are oriented
along the diagonal (D) and antidiagonal (A) polarizations.
This phase is estimated based on measurements on individ-
ual photons, providing the classical limit, and NOON states,
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exhibiting quantum advantage. These are generated with a
noncollinear type-I spontaneous parametric downconversion
(SPDC) source. Individual photons are heralded on one of the
modes of the SPDC and are prepared in the horizontal polar-
ization, i.e., the superposition of D and A: |ψ1〉 = (|1〉D|0〉A +
|0〉D|1〉A)/

√
2. In order to produce the NOON states, we make

use of both photons from SPDC which are superposed with
orthogonal polarizations on a polarizing beam splitter (PBS).
This operation prepares them in a NOON state in the di-
agonal basis: |ψ2〉 = (|2〉D|0〉A + |0〉D|2〉A)/

√
2. The relative

phase is accumulated twice as fast in state |ψ2〉 than in |ψ1〉,
resulting in superior sensitivity. A projective measurement
is performed by means of a HWP and PBS. We record the
coincidence counts corresponding to the postselected outcome
probabilities,

Pθ [ϕ(x), v(x)] = 1
4 {1 + v(x) cos m[4θ − 2ϕ(x)]}, (1)

where m = 1 for |ψ1〉 and m = 2 for |ψ2〉. In this for-
mula, v is the fringe visibility, and the HWP is set to θ =
{0, π/(8m), π/(4m), 3π/(8m)}. The impact of postselection
on the Fisher information is detailed in Ref. [41].

For each voltage setting xi, the corresponding value of the
phase ϕi is retrieved by means of either |ψ1〉 or |ψ2〉 through a
multiparameter Bayesian routine, which includes the estima-
tion of the fringe visibility [41]. Although the estimated value
of v(x) is not used in the subsequent interpolation, such a mul-
tiparameter approach guarantees that the estimation of ϕ(x)
is unbiased and robust against the instabilities of the system,
which might become significant due to the amount of time
necessary to accumulate the signal and sampling required.

The parameters are calculated starting from the Bayesian
probability defined as

PB[ϕ(x), v(x)] = N
∏
θ

Pθ [ϕ(x), v(x)]nθ PA[ϕ(x), v(x)], (2)

where N is a normalization constant and nθ are the measured
coincidences for the θ th projection. The a priori probability
distribution PA is chosen a step function centered around the
values directly estimated from the data for the sake of com-
putational efficiency. The first moments ϕB(x), vB(x), and the
second moments �2ϕB(x), �2vB(x) of the marginal distribu-
tions yield the desired quantities.

We obtained phase estimates at Nmax
s = 100 equally spaced

points in the interval [0, L]. The amount of resources Nr em-
ployed for each punctual estimation is given by the number
of photons in the state times the number of repetitions of the
measurement and has been fixed at Nr = 800 and Nr = 3800
both for NOON and single-photon states.

B. Benchmarking error in function estimation

This data collection does not complete the estimation
procedure: These phase values are then employed to obtain
estimates of the function ϕ̃(x) for arbitrary values, using two
different strategies, viz. linear and nearest-neighbor interpo-
lation. These are commonly employed choices depending on
how regular the function is assumed to be.

The associated global error can then be quantified by [42]

δ2
0 = 1

L
E

[∫
|ϕ(x) − ϕ̃(x)|2dx

]
, (3)

which is the average quadratic deviation over the whole
variable range. This can essentially be considered as a con-
tinuous analog of the trace of the mean-square error matrix,
commonly chosen as the figure of merit in multiparameter
estimation.

As a matter of fact, the true function ϕ(x) is unknown, mak-
ing the error (3) experimentally inaccessible. A measurable
proxy can be obtained by assessing values of ϕ(x) at much
denser sampling and much lower statistical uncertainty than
the points used in the experiment: These are identifiable for
all practical purposes with the true values of the function. We
measure the reference phase ϕref (x), using NOON states, ac-
quiring N ref

s = 500 sampling points adopting Nr � 60 × 103

resources for each fiducial point sampled. The corresponding
phase measurements are shown in Fig. 3. Consequently, the
error in (3) can be approximated by a sum over a discrete set of
values of x, dictated by the sampling of the reference ϕref (x),

δ2 = 1

L

L∑
x=0

E[|ϕ̃(x) − ϕref (x)|2]�xref , (4)

FIG. 3. Response function measurement. (a) Birefringent ref-
erence phase ϕref (x) imparted by the liquid-crystal device at
different voltage values measured with NOON states with Ns =
500 (�x = 0.006 V) and Nr � 60 × 103, estimated via a multipa-
rameter Bayesian approach as discussed in the text. In the graph the
errors are smaller than the datapoints. (b) Example of the interpolated
estimated response function ϕ̃(x) for Ns = 5 and Nr = 3800. The
shaded area corresponds to the difference �ϕ̃(x) = ϕref (x) − ϕ̃(x)
for classical resources (red) and NOON states (blue). The complete
overlap of the two curves, resulting in the brown colored area, shows
that there is no difference at this sampling density in the estimation
with quantum and classical resources.
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where �xref is the sampling resolution of the reference. This
is the figure of merit we explored in our experiment. Different
from the original proposal [13], we do not focus on showing
the difference between a quantum and a classical scaling of the
error with the number of photons: In fact, this is an asymptotic
property which we cannot capture with our probe states.

For our experiment it is more relevant to investigate what
happens as we increase the resolution Ns for a fixed level of
uncertainty on the individual sampling points. This allows us
to analyze independently the sources of error contributing to
δ2. For both strategies, function estimation is carried out as
follows: For each estimated phase we select datapoints so
to obtain subsets composed of a different value of sampling
points Ns, up to Nmax

s = 100. For each subset we interpolate
the points to match the sampling of the reference N ref

s using
the two methods introduced above. In performing this, we
investigate the effect of increasing the density of the sampling
for fixed resources Nr on the individual points. Therefore, a
different amount of total resources N = NrNs is employed for
distinct values of Ns.

An example of the reconstructed phase based on linear
interpolation is presented in Fig. 3(b) for Ns = 5 to emphasize
the effect of limited sampling. The shaded areas correspond
to the uncertainty regions, which are the wider the further the
region from a sampled point. We can assess how the inter-
polation error behaves when increasing the sample density in
Fig. 4 that shows a closeup of the same curve of Fig. 3(b).
Increasing Ns does lead to an improved reconstruction with
the different performance between quantum and classical re-
sources becoming evident only for denser sampling.

These considerations are captured by the error δ2 which we
show in Fig. 5 both for linear and nearest-neighbor interpola-
tions.

The related uncertainties are obtained performing a Monte
Carlo routine as follows: 500 sets of the estimated phase
values are generated by adding a random Gaussian distributed
error with variance �2ϕB(x) to the estimated values ϕB(x).
For each set of phases, the resampling and interpolation pro-
cedures are then performed as described in the main text, and
the error δ2 is calculated. The error on δ2 is, hence, obtained
from the standard deviation over the 500 repetitions of δ2.

As a consistency check we also determined the error δ2 that
would be obtained by an ideal phase estimation at the fiducial
points. To do so, we have employed the measured ϕref (x) both
as a reference and as a set of data from which we have selected
Ns sampling points. To simulate experimental data, we have
performed a Monte Carlo routine adding to the sampled points
a random Gaussian distributed error with variance dictated by
the Cramér-Rao bound: ε2

i = 1/NrFi, where Fi is the Fisher in-
formation for the classical and quantum measurements, which
reads [41]

Fc = 2v(x)2

4 − v(x)2[1 − cos 4ϕ(x)]

Fq = 8v(x)2

4 − v(x)2[1 − cos 8ϕ(x)]
.

We have then performed the interpolation procedure as
described for the actual experimental data. The obtained sim-
ulated mean values are shown as dotted lines in Fig. 5.

FIG. 4. Interpolation error. The three panels show a portion of
the interpolated estimated response function ϕ̃ obtained with classi-
cal (red triangles) and quantum (blue circles) resources with Nr =
3800 for three different sampling densities: (a) Ns = 5, (b) Ns = 10,
and (c) Ns = 100. The shaded area corresponds to the difference
�ϕ̃(x) = ϕref (x) − ϕ̃(x) for classical resources (red) and NOON
states (blue). The brown shade indicates where the two contributions
overlap.

For the nearest-neighbor [panels (a) and (b)], the primary
source of error up to Ns = 50 comes from the interpolation,
rather than from the statistical uncertainties. Therefore, if
more resources are available, they would be more conve-
niently used to increase the sampling density, rather than
improving the significance of the individual points. How-
ever, for denser sampling the advantage of quantum light
becomes relevant: Resources can be allocated to improve
the punctual uncertainties. This analysis mirrors the one in
the proposal [13], which considered this same interpolation
method.

For the linear interpolation [panels (c) and (d)], fewer
points are needed in order to achieve the same accuracy
on the estimation of the whole function. The improvement
linked to the use of quantum resources becomes relevant
earlier but eventually saturates due to the statistical error.
In these panels, the same Monte Carlo methods have been
employed to quantify the uncertainties on δ2 as well as the
expected values.
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FIG. 5. Function estimation. Simulated (dotted lines) and measured error δ2 as a function of the number of sampled points Ns with NOON
states (blue circles) and individual photons (red squares) probes for (a) Nr = 800 for nearest-neighbor interpolation, (b) Nr = 3800 for nearest-
neighbor interpolation, (c) Nr = 800 for linear interpolation, and (d) Nr = 3800 for linear interpolation. The errors are compatible with what
expected from the simulations performed at the Cramér-Rao bound. The insets show, on the same scales, the two contributions to δ2: The one
arising from the statistical error on the fiducial points, which increases with the number of sampling points, and the contribution due to the
interpolation on the remaining points, which instead decreases with the sampling density.

These results illustrate how there are two distinct contri-
butions to the overall function error δ2, which are captured
by the insets in each panel of Fig. 5 both for classical (red)
and quantum (blue) resources: The one given by the statistical
errors on the fiducial points and that given by the errors
on the interpolated points. As discussed earlier, employing
quantum resources always guarantees a punctual advantage
on the sampling points. This contribution to the error δ2

will, thus, increase with the sampling density, and ultimately
will determine the overall minimum error achievable. On the
other hand, increasing the sampling density will drastically
affect the interpolation error. Remarkably, having a quantum
enhancement on the sampling points will also benefit the
interpolation error as also shown in Fig. 4.

III. ADDITIONAL SIMULATIONS

The inspection of our error budgeting highlights how
careful consideration must be given when distributing the
available resources to either diminishing the punctual uncer-
tainties or increasing the resolution. These two contributions
are kept independent only at the cost of investing more
resources with the sampling density as we could in our ex-
periment. On the other hand, whenever an upper limit to the
level of illumination is set to N photons overall, there may
exist an interplay between the statistical and the interpolation
errors contributing to the overall uncertainty on the function.

We estimated how severe this trade-off is by performing
additional simulations with a fixed number of total resources
N: When Ns increases, the number of resources per punctual
estimation will diminish. We have used the same response
function employed in the experiment with the same details
discussed above but for fixed N = 103, 104, 2 × 104, and
5 × 104. The results are shown in Fig. 6 and prove that when
the resources are limited there is an optimal value of Ns,
confirming the necessity of apportioning the total resources
wisely. These conditions are eased when N exceeds 2 × 104

for our example, provided that the sampling exceeds Ns � 50.
A different consideration pertains the impact of the func-

tion itself, in particular, its gradient over the investigated
region on the sampling required for a quantum advantage. We
have selected three numerical examples with varying modu-
lation as reported in Fig. 7. For each response function we
evaluate the error δ2 as discussed earlier using the same inter-
polation methods as before (linear and nearest neighbor) with
fixed Nr = 1000 both for NOON and single-photon states. For
the exponential response function, the enhancement is visible
even at very small Ns for the low-frequency sine function the
range of Ns considered is sufficient to reach the stage in which
the error given by the interpolation is smaller than that due
to the statistics (either classical or quantum), similar to the
response function in our experiment. With the high-frequency
sine function, the interpolation error at the maximum Ns con-
sidered is comparable to the statistical error for the linear
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FIG. 6. Simulated error δ2 for the LC response function (a). The
error δ2 is evaluated with linear (left column) and nearest-neighbor
(right column) interpolations with NOON states (light blue, “-.”) and
individual photons (red, “- -”) probes for (b) and (c) N = 103, (d) and
(e) N = 104, (f) and (g) N = 2 × 104, and (h) and (i) N = 5 × 104.

interpolation, whereas still higher for the nearest-neighbor in-
terpolation: A denser sampling would be needed to appreciate
the quantum enhancement.

IV. CONCLUSIONS

To conclude, we have a presented a proof-of-principle
estimation of a simple function based upon photonic metrol-
ogy. In this experiment we highlight the crucial interplay
between statistical and interpolation errors, which becomes
evident already at relatively low sampling densities. Increas-
ing Ns can improve the estimation only up to a limit in
which the statistical uncertainty on the individual points
becomes the predominant source as determined by the com-
plexity of the function. Quantum strategies are only beneficial
once this level is attained.

Different strategies might be optimal for other estimation
tasks involving an unknown function. For example, one might
be interested to estimate only a few scalar functionals. This
kind of problem is better approached in the framework of
semiparametric estimation, recently generalized and applied
to the quantum domain [43–45].

In more applied scenarios, such as probing of the response
of biological systems [46], more complicated functions will
be sampled, and the advantage of punctual reduced statistical
uncertainty will likely become manifest at higher sampling
densities. Therefore, to minimize the overall error (3) it will
be fundamental to take into account the interpolation, as we
have shown, to make a judicious choice about the allocation
of the resources.

FIG. 7. (a) Slow exponential decay, (d) low-frequency sine re-
sponse function, and (g) high-frequency sine response function. (b),
(e), and (h) Simulated error δ2 as a function of the number of sampled
points Ns with NOON states (light blue, “-.”) and individual photons
(red, “- -”) probes for linear interpolation, and (c), (f), and (i) nearest-
neighbor interpolation.

As the interest of quantum metrology moves towards more
elaborated problems, functional data analysis may become a
subject for new studies. Here, the random variable of interest
is indeed a function [34,35]; in the standard approach its
sampling is taken sufficiently dense, but techniques reaching
out to the sparse case have also been discussed [47]. Quantum-
enhanced strategies may provide a way of mitigating the
limitations due to sparse sampling, whereas not compromising
precision for given resources. Overall, the interplay and the
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connections between functional data analysis and quantum
metrology remain largely unexplored at present.
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