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Abstract: Diet is a major driver of gut microbiota variation and plays a role in metabolic disorders,
including metabolic syndrome (MS). Mycorrhized foods from symbiotic agriculture (SA) exhibit
improved nutritional properties, but potential benefits have never been investigated in humans.
We conducted a pilot interventional study on 60 adults with � 1 risk factors for MS, of whom
33 consumed SA-derived fresh foods and 27 received probiotics over 30 days, with a 15-day follow-up.
Stool, urine and blood were collected over time to explore changes in gut microbiota, metabolome, and
biochemical, inflammatory and immunologic parameters; previous dietary habits were investigated
through a validated food-frequency questionnaire. The baseline microbiota showed alterations typical
of metabolic disorders, mainly an increase in Coriobacteriaceae and a decrease in health-associated taxa,
which were partly reversed after the SA-based diet. Improvements were observed in metabolome, MS
presence (two out of six subjects no longer had MS) or components. Changes were more pronounced
with less healthy baseline diets. Probiotics had a marginal, not entirely favorable, effect, although
one out of three subjects no longer suffered from MS. These findings suggest that improved dietary
patterns can modulate the host microbiota and metabolome, counteracting the risk of developing MS.
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1. Introduction
Metabolic syndrome (MS) is characterized by several metabolic abnormalities, includ-

ing abdominal obesity, elevated values of triglycerides, blood pressure, or fasting glucose,
or reduced high-density lipoprotein (HDL) cholesterol [1]. This pathological condition
has been increasing over recent years, mainly due to changes in lifestyle and unbalanced
diets, with a prevalence of 10–40% in the European population, depending on age and
gender [2,3]. Subjects with untreated MS can easily develop cardiovascular and cerebrovas-
cular disease, with an increased risk of mortality [4]. Moreover, several epidemiological
and clinical studies support the hypothesis that MS may also be an important etiologic
factor for the development and progression of certain types of cancer and for overall cancer
mortality [5–9].

An increasing number of studies have shown that the gut microbiota (i.e., the vast
and diverse set of microorganisms that populate our intestine) may play a role in the
pathogenesis and progression of MS [10–14]. In particular, the studies are consistent in
highlighting a dysbiotic (i.e., unbalanced) profile, comparable to that observed in other
metabolic disorders, characterized by: (i) reduced diversity (a well-recognized hallmark of
healthy gut and overall health); (ii) reduced proportions of beneficial commensals, mostly
short-chain fatty acid (SCFA) producers; and (iii) increased amounts of opportunistic
pathogens or pathobionts, including proteobacteria and other taxa whose pathogenic
potential has only recently been revealed, for example Coriobacteriaceae. This layout could
contribute in various ways to MS, e.g., by affecting satiety, favoring fat storage, altering
intestinal cholesterol absorption, reducing hepatic glycogenesis and increasing triglyceride
synthesis, exerting prothrombotic and hypertensive effects and, not least, disrupting the
integrity of the epithelial barrier, thus consolidating a chronic low-grade inflammatory
state [15–19]. It is, therefore, not surprising that the gut microbiota has been proposed as a
target in interventions aimed at mitigating the risk of MS. In particular, given its sensitivity
to variations in the amount of food and especially to the composition of the diet itself [20,21],
dietary interventions for microbiota modulation, including the supplementation of pre-
and probiotics, have been and still are the subject of numerous and recent studies [2,15,22].

Symbiotic agriculture (SA) is an agricultural production process aimed at restoring,
safeguarding and employing in agro-ecosystems the natural symbiosis present between soil
microorganisms (mainly fungi and bacteria) and the plant systems of cultivated species. The
objectives that animate this new vision of agriculture are to: (i) increase the sustainability of
agricultural practices by favoring the mechanisms to restore the biological fertility of soils
and bio-sequestration of carbon, increasing the efficiency of crop fertilization interventions
and reducing greenhouse gas emissions from the soil; (ii) increase the resistance of crops to
adversity; (iii) increase the yield of crops (over-yielding) and plantations with off-land and
under-earth luxuration by re-functionalizing N-organic; (iv) produce food and feed with
greater shelf-life and greater transferable antioxidant and secondary metabolites relevant
to human health; and (v) increase and improve the nutritional properties and the natural
content of vitamins and metabolites produced exclusively by associated microorganisms,
such as cobalamin (B12) and menaquinone (K2) [23–25]. In particular, SA systems make
extensive use of mycorrhizal fungi and bacteria as ecologically and economically relevant
fertilizers, which contribute to ecosystem functioning and crop productivity. The ultimate
impact of mycorrhized farming on the nutritional and nutraceutical value of derived foods,
such as fruits, vegetables, legumes and cereals, has recently been proven, especially in
terms of antioxidant capacity, phenolic content and secondary metabolites levels [24–26].
However, as far as we know, to date, no SA-derived foods have been tested in a dietary
intervention on humans.
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To investigate whether a diet based on SA-derived products could impact the gut mi-
crobiota of subjects at risk for MS, we designed a pilot interventional study where subjects
with at least one predisposing MS factor were provided with fresh food products from
local certified organic SA production for 30 days. In parallel, a second group of subjects
with similar characteristics followed their usual diet, except for probiotic supplementation.
After a baseline interview, including an assessment of usual dietary habits, subjects were
asked to collect fecal samples at baseline and during intervention until the end of follow-up
for microbiota profiling.

In addition, through a comprehensive characterization of the enrolled subjects, the
study aimed to provide preliminary evidence for other potential effects of a SA-based
intervention, such as those on anthropometric and biochemical factors, urine metabolome
profile, and the inflammatory and immunological status of the included subjects. All
these aspects were integrated and analyzed with respect to the baseline dietary profile of
study participants.

2. Materials and Methods
2.1. Study Setting and Participants

This pilot intervention study was promoted and conducted by the Istituto Romagnolo
per lo Studio dei Tumori “Dino Amadori” (IRST) between October 2018 and September 2019
in the catchment area of Romagna, Italy. Subjects aged 18–65 years and with at least one of
the following conditions were eligible for enrollment: abdominal obesity, hypertension,
dyslipidemia, impaired fasting glucose or insulin resistance (for the formal definition of
MS see Table 1 of Alberti et al., 2009 [27]). Subjects with severe or uncontrolled conditions
or under treatment with antibiotics or following a specific diet regimen, such as vegan or
celiac individuals, were excluded from the study.

To promote and facilitate study recruitment, an illustrative brochure was distributed in
the IRST area. Moreover, a press conference was organized, and the study was promoted in
local newspapers. In all cases, information on the study and reference staff was provided.

The protocol was approved by the CEROM Ethical Committee (Study ID: IRST B086
L4P1755, Ethical approval ID: 6759/2018). All participants provided written informed
consent or assent.

2.2. Study Intervention
The study was designed to enroll two groups of subjects: those receiving fresh foods

from organic symbiotic crops with mycorrhizae (SA-group) and those integrating their
habitual diet with receiving probiotics with sachet formulation (PROB-group). Subjects
from both groups were asked not to change their usual diet during the study period.
The dietary intervention lasted 30 days. For a preliminary evaluation of the durability
of potential changes in the gut microbiota after intervention, a follow-up of 15 days was
planned. Although comparison between the two groups was not an objective of the
present study, subjects were randomly allocated to one of the two groups using the nQuery
Advisor®, Version 7.0 (Statsols, Statistical Solutions Limited, Cork, Ireland) mixed block
non-stratified randomization procedure.

Subjects in the SA-group substituted their habitual foods with fresh, baked or steamed
products chosen from a ~130-item menu-like list based on seasonal availability, including:
fruit and vegetables in season (e.g., apples, pears, kiwis, beetroot, broccoli, cabbage, carrots,
cauliflower, celery chickpeas, beans, fennel, salad, lentils, potatoes, spinach, tomatoes, and
pumpkin); whole wheat or spelt-based products (bread, pasta, bakery products, including
focaccia, breadsticks, cakes, and biscuits, as well as flour to be directly used in recipes);
dairy products (e.g., milk, cheese, and yoghurt) from cattle, sheep, and goats; different cuts
of poultry and red meat; extra virgin olive oil; tomato sauce and pesto; jam and fruit juices.
All the products were derived from local certified organic SA production and prepared by
farmers; therefore, they were free from colorants, preservatives or other additives normally
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present in preserved foods; they were delivered twice a week directly to each volunteer’s
home. The diet also included the use of aromatic herbs.

Table 1. Distribution at baseline of anthropometric, biochemical, and immunological characteristics for all study participants
and separately for the dietary intervention groups. Italy, 2018–2019.

All (n = 60) SA-Group (n = 33) PROB-Group (n = 27) p
Median [Min–Max] Median [Min–Max] Median [Min–Max]

Gender, n (%) 0.176
Male 13 (21.7) 5 (15.2) 8 (29.6)

Female 47 (78.3) 28 (84.8) 19 (70.4)
Smoking habit, n (%) 1 0.860

Never smoker 26 (48.1) 14 (46.7) 12 (50.0)
Ex-smoker 22 (40.7) 12 (40.0) 10 (41.7)

Current smoker 6 (11.1) 4 (13.3) 2 (8.3)
Age at enrollment, years 46.9 [18.3–86.4] 52.7 [34.6–86.4] 45.3 [18.3–64.2] 0.015

Weight, kg 70.5 [44.0–103.0] 70.0 [44.0–103.0] 72.0 [47–94.5] 0.953
Height, m 1.65 [1.4–1.8] 1.7 [1.4–1.8] 1.7 [1.5–1.8] 0.183

BMI, kg/m2 25.7 [19.2–36.8] 26.1 [19.2–36.8] 25.3 [19.8–33.3] 0.427
Waist circumference, cm 85.0 [64.0–113.0] 85.0 [67.0–113.0] 84.0 [64.0–102.0] 0.639
Hip circumference, cm 105.0 [89.0–123.0] 105.0 [89.0–123] 104.0 [90.0–116.0] 0.312

WHR 0.8 [0.7–1.0] 0.8 [0.7–1.0] 0.8 [0.7–1.0] 0.783
Abdomen circumference, cm 98.5 [69.0–120] 98.0 [78.0–120.0] 99.0 [69.0–111.0] 0.582

Glucose, mg/dL 82.5 [66.0–212.0] 83.0 [66.0–212.0] 82.0 [72.0–103.0] 0.271
Cholesterol, mg/dL 1 193.0 [136.0–269.0] 190.0 [136.0–269.0] 195.0 [139.0–269.0] 0.345

HDL, mg/dL 1 59.0 [31.0–94.0] 65.0 [31.0–94.0] 55.0 [34.0–86.0] 0.061
LDL, mg/dL 1 113.0 [55.0–171.0] 106.0 [67.0–171.0] 119.0 [55.0–167.0] 0.064

Triglycerides, mg/dL 1 90.0 [43.0–365.0] 91.5 [43.0–365.0] 90.0 [44.0–243.0] 0.879
Cortisol, µg/L 1 125.0 [61.0–268.0] 124.5 [68.0–206.0] 129.0 [61.0–268.0] 0.744
Insulin, mU/L 1 9.2 [3.0–93.3] 8.9 [3.0–28.2] 10.1 [5.1–93.3] 0.169

Systolic BP, mmHg 1 120.0 [97.0–155.0] 120.0 [100.0–155.0] 115.0 [97.0–150.0] 0.072
Diastolic BP, mmHg 1 70.0 [55.0–90.0] 70.0 [60.0–90.0] 70.0 [55.0–90.0] 1.000

MS, n (%) 1 0.488
No 50 (84.7) 26 (81.2) 24 (88.9)
Yes 9 (15.3) 6 (18.8) 3 (11.1)

INF-� 1 0 [0.0–7.5] 0 [0–2.8] 0 [0–7.5] 0.646
IL-6 1 1.3 [0.0–254.4] 1.3 [0–55.5] 1.6 [0–254.4] 0.613

IL-10 1 0.3 [0.0–15.0] 0 [0–15.0] 0.6 [0–4.5] 0.087
IL-17A 1 0 [0.0–18.8] 0 [0–2.6] 0.8 [0–18.8] 0.004
TNF↵ 1 0.2 [0.0–67.9] 0 [0–67.9] 0.3 [0–11.9] 0.419

IMI categories, n (%) 1 0.265
0–3 24 (40.7) 16 (50.0) 8 (29.6)
4–5 23 (39.0) 10 (31.3) 13 (48.2)
6–8 12 (20.3) 6 (18.7) 6 (22.2)

BMI: body mass index; WHR: waist-to-hip ratio; HDL: high-density lipoprotein; LDL: low-density lipoprotein; BP: blood pressure; MS:
metabolic syndrome; IMI: Italian Mediterranean Index. 1 With the exception of smoking habit, missing values were present only for
one patient.

The probiotics provided to the subjects in the PROB-group were manufactured by
Probiotical S.p.A., Novara (Italy). Each sachet included LF08 (Lactobacillus fermentum),
LP09 (Lactobacillus plantarum), and LS01 (Lactobacillus salivarius) at 3.33 billion CFUs each.
Maltodextrin was used as the excipient. This mixture was chosen based on previous studies
that showed a beneficial effect of these Lactobacillus species on markers of MS [28–30]. Each
individual in PROB-group was asked to take one 2.5-g sachet every day.

2.3. Collection of Participants’ Information and Samples
At baseline, a nutritional visit by trained personnel allowed to collect demographic

and anamnestic information and to measure anthropometry. Dietary habits over the
past year were also assessed through the self-administration of the European Prospective
Investigation into Cancer and Nutrition (EPIC) food-frequency questionnaire (FFQ) [31,32].
No nutritional counselling was provided during the visit. In addition, a blood sample for
the determination of biochemical parameters and cytokine levels, and one sample of stool
and urine for the characterization of the microbiota and metabolome, respectively, were
obtained from all subjects.
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The biochemical parameters were immediately assessed, whereas serum was sepa-
rated by centrifuging the blood samples and stored at �80 �C until use. The serum levels of
the human inflammatory cytokines IFN-�, IL-6, IL-10, IL-17A and TNF-↵ were measured
by a multiplexed bead-based immunoassay (Flex set Cytometric Bead Array (CBA), BD
Bioscience, San Jose, CA, USA). Samples were acquired with the FACSCanto flow cytome-
ter (BD Bioscience) and the data were analyzed by Diva software and CBA software (BD
Bioscience). Fecal samples were collected in sterile containers and stored at �80 �C at IRST
Bioscience Laboratory before being shipped on dry ice to the Microbiology Laboratory at
the Department of Pharmacy and Biotechnology, University of Bologna (Bologna, Italy)
for gut microbiota analysis. Urine samples were collected in sterile containers on the same
day of blood collection and stored at �80 �C at IRST Bioscience Laboratory before being
shipped on dry ice to the General and Inorganic Chemistry Laboratory at the Department
of Biological and Environmental Sciences and Technologies, University of Salento (Lecce,
Italy). Anthropometric information and biological samples were collected at multiple
time points before and during intervention as well as in the follow-up (see Figure 1 for
more details).

Figure 1. Study timeline. Italy, 2018–2019. The time points are grouped as follows: (i) T-15 and T-7: 15 and 7 days before the
intervention (Before intervention); (ii) T0: start of the intervention; T7, T15 and T30: 7, 15 and 30 days from the beginning
of the intervention (Intervention); and (iii) TF7 and TF15: 7 and 15 days after the end of the intervention (Follow-up).
The validated semi-quantitative European Prospective Investigation into Cancer and Nutrition (EPIC) Food Frequency
Questionnaire (FFQ) was administered to collect information on consumption frequency of food items.

The study lasted 30 days, with a 15-day follow-up (TF). Fecal samples were collected
weekly in the two-week run-in period for a more reliable depiction of the basal microbiota
configuration. Biological sample collection and anthropometric, biochemical and immuno-
logical measurements were performed at multiple time points as shown. Dietary habits
were assessed at baseline using a validated food frequency questionnaire (see Figure 1 for
more details).
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2.4. Dietary Habits at Baseline
The current study collected information on consumption frequency of food items as

derived at baseline from the 188-item validated semi-quantitative EPIC FFQ [33], designed
to capture local dietary habits for the Varese, Turin, and Florence centers [32]. Estimates
of daily intakes of energy, minerals, macro- and micro-nutrients (altogether indicated
as “nutrients”, hereafter) were derived by linking the food items with the Italian Food
Composition Tables [34] through a dedicated software package [31].

2.5. Gut Microbiota Analysis through Illumina Sequencing
Microbial DNA was extracted from fecal samples using the repeated bead-beating

plus column method [35] with a few modifications [36]. For the baseline, the feces of three
replicates (collected weekly, i.e., at T-15, T-7, and T0, see Figure 1) were pooled together. A
parallel sensitivity analysis explored the baseline variation at the separate T-15, T-7, and T0
time-points, with an additional focus on genera that changed significantly during SA-based
diet. Feces processing was performed as described below. Briefly, approximately 250 mg
of each sample was suspended in 1 mL of lysis buffer with four 3-mm glass beads and
0.5 g of 0.1-mm zirconia beads (BioSpec Products, Bartlesville, OK, USA), and bead-beaten
in a FastPrep homogenizer (MP Biomedicals, Irvine, CA, USA) at 5.5 movements/s for
1 min three times. The samples were then incubated for 15 min at 95 �C and centrifuged
at 13,000 rpm for 5 min. The supernatants were added with 260 µL of 10 M ammonium
acetate, and incubated for 30 min with isopropanol (one volume). After washing with 70%
ethanol, the nucleic acid pellet was suspended in 100 µL of TE buffer. RNA was removed by
15-min incubation with 2 µL of DNase-free RNase (10 mg/mL) at 37 �C. For the subsequent
DNA purification steps, the DNeasy Blood and Tissue Kit (QIAGEN, Hilden, Germany)
was used. DNA was assessed for concentration and quality using the NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

The V3–V4 hypervariable region of the 16S rRNA gene was amplified using primers
341F and 785R [37], including overhang adapter sequences for Illumina sequencing. For
amplification, KAPA HiFi HotStart ReadyMix (Roche, Basel, Switzerland) was used with
the following thermal cycle: 95 �C for 3 min, 25 cycles of 95 �C for 30 s, 55 �C for 30 s,
and 72 �C for 30 s, and 72 �C for 5 min. Amplicons were purified using magnetic beads
(Agencourt AMPure XP, Beckman Coulter, Brea, CA, USA). A limited-cycle PCR was used
to add Illumina sequencing adapters and barcodes. After another purification step, samples
were pooled at equimolar concentration of 4 nM, denatured and diluted to 5 pM. The final
library was sequenced on an Illumina MiSeq platform following a 2 ⇥ 250 bp paired-end
protocol per manufacturer’s instructions (Illumina, San Diego, CA, USA). Raw sequencing
reads were deposited in the National Center for Biotechnology Information Sequence Read
Archive (Bioproject ID PRJNA726866).

For sequence processing, PANDASeq [38] and QIIME 2 [39] were used. Reads were
filtered for length and quality, and subsequently binned into amplicon sequence variants
(ASVs) using DADA2 [40]. The VSEARCH algorithm [41] and the Greengenes database
(May 2013 release) were used for taxonomic assignment. Chimeras were discarded during
the analysis. Different alpha diversity metrics, such as the inverse Simpson index, Faith’s
Phylogenetic Diversity (PD whole tree) and the number of observed ASVs, were used. For
beta diversity, weighted and unweighted UniFrac distances and Bray-Curtis dissimilarity
were used to construct Principal Coordinates Analysis (PCoA) graphs. Publicly available
sequences of the gut microbiota from age- and sex-matched healthy Italians were down-
loaded and processed as above. Specifically, we recovered sequences from De Filippis et al.
(45 Italian adults; NCBI SRA SRP042234) [42], Schnorr et al. (2 Italian adults; MG-RAST
mgp12183) [43] and Biagi et al. (13 Italian adults; MG-RAST mgp17761) [44].

2.6. Urine Metabolomics by Nuclear Magnetic Resonance Spectroscopy
For the Nuclear Magnetic Resonance (NMR) Spectroscopy analysis, 540 µL of urine,

thawed at room temperature and mixed, was added to 60 µL of saline buffer solution
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(KH2PO4, in 100% D2O containing 0.03% w/w TSP as chemical shift reference and 2 mM
sodium azide, pH 7.4), and transferred into a 5mm NMR tube. 1H-NMR spectra were
acquired using a Bruker Avance III 600 Ascend NMR spectrometer (Bruker, Milan, Italy),
operating at 600.13 MHz for 1H observation, equipped with a TCI cryoprobe (Triple
Resonance inverse Cryoprobe) incorporating a z-axis gradient coil and automatic tuning-
matching (ATM). Samples were loaded on a Bruker Automatic Sample Changer, interfaced
with the IconNMR software (Bruker, Milan, Italy), and analyzed in automatic mode, setting
a time delay of 5 min between sample injection and pre-acquisition calibrations for complete
temperature equilibration (300 K). Measurements were repeated once in random order after
the completion of the first entire set. For each sample, a standard 1D 1H-NMR (ZGCPPR
Bruker standard pulse sequence) spectrum, with pre-saturation and composite pulse for
selection, was recorded, with 64 transients, 16 dummy scans, 5s relaxation delay, size of FID
(free induction decay) of 64 K data points, spectral width of 12,019.230 Hz (20.0276 ppm),
acquisition time of 2.73 s and saturation of the solvent signal during the relaxation delay.
The resulting FIDs were multiplied by an exponential weighting function equivalent
to a line broadening of 0.3 Hz prior to Fourier transformation, automated phasing and
baseline correction. Molecular constituent identification was performed by analysis of
several spectroscopic NMR data. The compounds were identified by correspondence with
literature data [45], according to their chemical shifts, multiplicity and homonuclear and
heteronuclear coupling, exhibited in the 1D and 2D NMR spectra. In particular, 1H-1H
J-resolved, 1H-1H COSY Correlation Spectroscopy, 1H-13C HSQC Heteronuclear Single
Quantum Correlation, 1H-13C HMBC, Heteronuclear Multiple Bond Correlation NMR
experiments and a freely available electronic database containing detailed information
about metabolites were used (see https://hmdb.ca/, last accessed on 17 May 2021, and
reference [46]). NMR data were processed using TopSpin 3.6.1 and Analysis of Mixture,
Amix 3.9.13 (Bruker, Biospin, Milan, Italy), for both simultaneous visual inspection and the
successive bucketing process.

2.7. Statistical Analyses
Participant characteristics were summarized by means of descriptive statistics such

as median, minimum and maximum values or interquartile range (IQR) for continuous
variables, and frequencies and percentages for categorical ones. Student’s t-test or the
Mann Whitney U test and the Chi-square or the Fisher’s exact test, as appropriate, were
used to compare baseline characteristics (i.e., demographic, anthropometric, biochemical
parameters, cytokines, and actual adherence to a Mediterranean-style diet) between SA-
group and PROB-group. As cytokines presented with highly skewed distributions, some
preliminary data transformations were attempted within the Box-Cox family. However,
none of them significantly improved the original skewness, given the presence of several
zeros, and therefore the analyses were performed on the untransformed data. To compare
the above-mentioned data over time (at baseline, T0, and after intervention, T30), the paired
t-test, the Wilcoxon signed rank test, or the McNemar test was used, as appropriate.

Adherence to a Mediterranean-style diet was assessed by the calculation of the Italian
Mediterranean Index (IMI), which was designed to specifically target dietary habits of the
Italian population [47], measured by the EPIC FFQ as in our study population. Briefly,
this score considered intakes of 11 items, including 6 typical Mediterranean foods (pasta;
typical Mediterranean vegetables such as raw tomatoes, leafy vegetables, onion, and garlic,
salad, and fruiting vegetables; fruit; legumes; olive oil; and fish), 4 non-Mediterranean
foods (soft drinks, butter, red meat, and potatoes) and alcohol. Subjects received 1 point if
consumption of typical Mediterranean foods was in the 3rd tertile of the distribution, and
0 points otherwise; when consumption of non-Mediterranean foods was in the first tertile
of the distribution, the study participant received 1 point and 0 points otherwise. Ethanol
intakes up to 12 g d�1 received 1 point, while abstainers and persons who consumed
<12 g d�1 scored 0. Possible scores ranged from 0 to 11. Details on component definition
and standard portions for optimal scoring were provided in [47]. The final index was
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then divided based on the final categories provided in [47] to improve comparability.
Comparisons across the three IMI categories were conducted by referring to the Kruskal
Wallis test and the Chi-square or the Fisher’s exact test, as appropriate.

An exploratory factor analysis (EFA) was carried out on a selected list of 27 nutrients to
summarize overall dietary behavior at baseline in terms of a smaller number of underlying
unobservable and randomly varying factors, which can be interpreted as dietary patterns
(DPs) derived from EFA (EFA-based DPs). After factorability checks on the nutrient-based
correlation matrix (visual inspection, Bartlett’s test of sphericity, overall and individual
measures of sampling adequacy), the main analysis was based on: (i) principal component
method; (ii) eigenvalue >1 and scree-plot criteria, to choose how many factors to retain;
(iii) varimax rotation, to make factor naming easier; and (iv) 0.63 cut-off criterion for
factor labeling. To quantify the adherence of each subject’s diet to each EFA-based DP,
we estimated the factor scores for each subject and DP, following the weighted least
squares method. We further calculated the Pearson correlation coefficients between the
EFA-based DP scores and the daily amount of 37 selected food groups and condiments,
derived from the original food items on the same subjects (see for example [48,49] for
a more detailed description of the methodology). A cluster analysis (CLU) was carried
out on the EFA-based DP scores to further classify subjects according to one (and only
one) indicator of similarity in dietary habits among subjects at baseline (CLU-based DP or
dietary cluster) [50]. We adopted the Partitioning Around Medoids (PAM) CLU algorithm:
as compared to k-means, the PAM algorithm is less sensitive to outliers, and it is integrated
with the average silhouette method to choose the optimal number of clusters [50]. Either
Euclidean or Manhattan distances were considered, with similar results; the Euclidean
distance was selected for the final analysis. The results of the average silhouette method
were integrated with model parsimony and cluster interpretation, for the final decision on
the optimal number of clusters to retain. Cluster labeling was qualitative and relied on the
position of each cluster center within the ranges of the factor scores used as input data. A
sensitivity analysis was also conducted considering other clustering methods, including
hierarchical clustering and Gaussian mixture models.

For microbiota analysis, the significance of separation in PCoA of beta diversity
between study subjects and age- and sex-matched healthy Italians, as well as within
each intervention group over time, was tested by a permutation test with pseudo-F ratio
(function “adonis” in the R vegan package). To assess differences in alpha diversity and
microbiota composition among groups, Kruskal–Wallis or Friedman tests followed by post
hoc Wilcoxon tests (paired or unpaired as needed) were performed. Kendall rank correla-
tion test was used to assess the associations between genus-level relative abundances and
anthropometric, biochemical, immunological and metabolomic variables. Only statistically
significant correlations with absolute Kendall’s tau �0.2 were considered. As for the inte-
gration with dietary information, differences in beta diversity and composition at various
phylogenetic levels were evaluated across the different clusters defined at baseline. In
addition, the food groups and condiments most contributing to the ordination space were
identified using the function “envfit” of the R vegan package. When appropriate, p-values
were corrected for multiple comparisons using the Benjamini–Hochberg or false discov-
ery rate (FDR) method. An FDR-adjusted p-value  0.05 was considered as statistically
significant. A p-value between 0.05 and 0.1 was considered a tendency.

To investigate, within a unified framework, whether changes over time at genus
level were associated with any temporal improvement in the components of MS, the
nonparametric rank-based longitudinal methodology proposed by Noguchi et al., 2012 [51]
was applied. This method is robust to outliers, heavily skewed data, and has competitive
performance for small sample sizes compared to its parametric counterpart. The factorial
design chosen considered one whole-plot factor, stratifying subjects in independent groups,
and one sub-plot factor, a time variable for the six repeated measures (T0, T7, T15, T30,
TF7, and TF15). All analyses were performed for each genus separately and for each
intervention group. Two alternative versions of the whole-plot factor were proposed.
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The former solution considered a variable given by the difference between T0 and T30
in the number of (altered) dichotomous MS components and then categorized in: �1 if
the subject had a worsening (at T30) in at least one factor, 0 if nothing changed at T30,
and 1 if the subject experienced an improvement (at T30) in at least one factor. The latter
solution considered the relative variation in each of the 5 MS factors (e.g., (triglycerides(T0)-
triglycerides(T30))/triglycerides(T0), continuous variable). Such new variables were then
categorized as follows: �1 if the subject experienced a worsening �5%, 1 if there was an
improvement �5%, and 0 if there was no change or it was <5% in both directions. The
5% threshold was considered as the minimally relevant expected change given the study
intervention. Given the small number of subjects generally having a worsening over time,
in all the analyses, these were considered with those not experiencing any change or a
very small (<5%) one. All the fitted models included the main effects for time and for the
MS component change variable, as well as an interaction term between them. In this way,
we could assess whether a different temporal trajectory in genus relative abundances was
present between the subjects with and without any improvement in metabolic disorders.
The ANOVA-type statistics (ATS) were considered for the interpretation of the results.

The 1H NMR spectra of urine (ZGCPPR Bucker standard pulse sequence) were data-
reduced to equal length integral segments of 0.02 ppm bucket width considering the NMR
spectral range 9.5–0.5 ppm for the bucketing process and multivariate analyses. Resonances
of residual water (4.95–4.60 ppm) and urea (6.00–5.60 ppm) were discarded because of
the variability (though limited) of urea signal and variations in the suppression of the
water signal. Moreover, NMR signals of creatinine (4.08–4.03 and 3.07–3.03 ppm) and
citrate (2.70–2.65 and 2.57–2.51 ppm) were combined to account for shifting signals [52]
and the remaining buckets were then normalized to the total area to minimize differences
in urine concentration between samples and subsequently mean-centered. For statistical
analyses, all the imported data were mean-centered and divided by the square root of
the standard deviation of each variable using the Pareto scaling algorithm. Unsupervised
(blinded) investigation of the data was performed by Principal Component Analysis (PCA)
and subsequently analyzed using Orthogonal Projections to Latent Structure Discriminant
Analysis (OPLS-DA). In particular, using the NMR buckets as input variables, the PCA
was preliminarily used to explore the potential differences in the metabolome profile at
baseline and/or presence of outliers (95% confidence ellipse using Hotelling’s T2 statistics).
OPLS-DA analysis was also performed on NMR bucket-reduced data, in which results were
clearly discriminated in the first predictive t [1] component. The parameters calculated to
assess the validity of the established models were the total amount of variation between and
within the groups (R2Y and R2X) and the predictive ability of the models as determined by
permutation test and seven-fold cross-validation (Q2). NMR discriminant variables were
evaluated by the S-line Plots, identified with the loading scaled as a correlation coefficient
value (p(corr)) of the OPLS-DA models.

Most of the calculations were performed using the open-source statistical computing
environment R [53]. The dietary data were analyzed with libraries psych [54], cluster [55],
cclust [56], and mclust [57]; the microbiome data were analyzed with libraries vegan (http:
//www.cran.r-project.org/package=vegan/, last accessed on 17 May 2021), Made4 [58]
and nparLD [51]. Metabolome data were analyzed using SIMCA-14 software (Sartorius
Stedim Biotech, Umeå, Sweden).

3. Results
3.1. Description of the Study Participants at Baseline
3.1.1. Anthropometric, Biochemical and Immunological Characteristics

Participants were recruited between October 2018 and September 2019. Of the
67 subjects assessed for eligibility, 7 were excluded because did not meet the inclusion
criteria. The analyses were therefore performed on 60 subjects, if not otherwise indicated.

Table 1 shows the baseline characteristics of the recruited subjects, altogether and
separately for the two study groups. Most of the study subjects were females (78.3%)
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and the median age was 47 years [IQR: 12]. Nine subjects suffered from MS at baseline,
(with 6 of them belonging to the SA-group and 3 of them belonging to the PROB-group).
Percentages of participants in each adherence category (from the lowest to the highest one)
to the IMI were equal to 40.7%, 39.0% and 20.3%, respectively. This is in line with previous
literature on dietary patterns of Italian subjects from the EPICOR study, a prospective
collaborative investigation of the causes of cardiovascular diseases in Italian volunteers
recruited in 1993–1998 within the Italian section of EPIC (47,021 Italian men and women
in total) [47]. No substantial differences were observed across SA- and PROB-groups in
any examined variable, with the exception of age (higher in SA-group) and IL-17A (lower
in SA-group), as compared to PROB-group (p = 0.015 and p = 0.004, respectively, Mann
Whitney U test). However, the distribution of IL-17A was quite extreme: only 36% of
the data were different from zero, with one subject showing a value higher than the 90th
percentile of the overall distribution.

3.1.2. Dietary Habits
The analysis of dietary data at baseline was based on 59 subjects, as 1 subject did not

fill in most of the FFQ items, thus resulting in a total energy intake <500 kcal.
The distribution of study participants and of their baseline characteristics according

to categories of adherence to Mediterranean diet, as measured by the IMI, are shown
in Table 2. The distribution of baseline characteristics was similar across categories of
adherence to the IMI (all p-values were nonsignificant).

Table 2. Distribution at baseline of anthropometric, biochemical, and immunological characteristics by Italian Mediterranean
Index tertiles (n = 59). Italy, 2018–2019.

Low Adherence
(Index Range: 0–3)

(n = 24, 40.7%)

Medium Adherence
(Index Range: 4–5)

(n = 23, 39.0%)

High Adherence
(Index Range 6–8) 2

(n = 12, 20.3%)
p

Median [Min–Max] Median [Min–Max] Median [Min–Max]

Gender, n (%) 0.848
Male 5 (20.8) 6 (26.1) 2 (16.7)

Female 19 (79.0) 17 (73.9) 10 (83.3)
Smoking habit, n (%) 1 0.797

Never smoker 11 (50.0) 10 (47.6) 5 (45.5)
Ex-smoker 8 (36.4) 10 (47.6) 4 (36.4)

Current smoker 3 (13.6) 1 (4.8) 2 (18.2)
Age at enrollment, years 46.2 [18.3–86.4] 53.7 [35.4–84.8] 46.1 [40.5–55.0] 0.389

Weight, kg 73.5 [47.0–103.0] 67.0 [44.0–94.5] 66.5 [56.0–84.5] 0.431
Height, m 1.7 [1.43–1.8] 1.7 [1.4–1.8] 1.7 [1.58–1.8] 0.949

BMI, kg/m2 26.5 [19.2–36.8] 25.4 [20.0–31.9] 24.7 [20.3–31.8] 0.380
Waist circumference, cm 85.5 [64.0–113.0] 83.0 [70.0–105.0] 84.0 [68.0–101.0] 0.543
Hip circumference, cm 107.0 [90.0–123.0] 104.0 [89.0–115.0] 101.5 [90.0–122.0] 0.391

WHR 0.8 [0.7–1.0] 0.8 [0.7–1.0] 0.8 [0.7–1.0] 0.952
Abdomen circumference, cm 99.5 [69.0–120.0] 98.0 [81.0–110.0] 97.0 [75–115.0] 0.501

Glucose, mg/dL 86.5 [72.0–212.0] 82.0 [72.0–123.0] 79.0 [66.0–88.0] 0.051
Cholesterol, mg/dL 1 193.5 [136.0–269] 193.5 [139.0–228.0] 185.0 [145–269.0] 0.486

HDL, mg/dL 1 55.5 [31.0–94.0] 58.0 [34.0–79.0] 63.0 [41.0–82.0] 0.176
LDL, mg/dL 1 117.0 [67.0–171.0] 111.0 [67.0–157.0] 110.5 [55.0–167.0] 0.535

Triglycerides, mg/dL 1 96.0 [44.0–365.0] 90.0 [50.0–267.0] 90.5 [43.0–164.0] 0.740
Cortisol, µg/L 1 119.5 [61.0–268.0] 141.5 [85.0–226.0] 121.0 [68.0–254.0] 0.471
Insulin, mU/L 1 8.9 [3.0–93.3] 10.0 [5.4–35.0] 8.1 [3.2–27.7] 0.334

Systolic BP, mmHg 1 120.0 [100.0–140.0] 118.0 [97.0–155.0] 120.0 [107.0–130.0] 0.984
Diastolic BP, mmHg 1 72.5 [60.0–90] 70.0 [55.0–90.0] 70.0 [60.0–90.0] 0.514

MS, n (%) 1 0.719
No 19 (79.2) 19 (86.4) 11 (91.7)
Yes 5 (20.8) 3 (13.6) 1 (8.3)

INF-� 1 0 [0–2.3] 0 [0–2.8] 0.2 [0–7.5] 0.151
IL-6 1 1.0 [0–55.5] 1.6 [0–5.7] 1.3 [0–254.4] 0.489
IL-10 1 0.1 [0–15.0] 0.4 [0–1.9] 0.7 [0–4.5] 0.520

IL-17A 1 0 [0–3.6] 0 [0–3.3] 0.5 [0–18.8] 0.411
TNF↵ 1 0 [0–11.0] 0.345 [0–5.3] 0.6 [0–11.9]

BMI: body mass index; WHR: waist-to-hip ratio; HDL: high-density lipoprotein; LDL: low-density lipoprotein; BP: blood pressure; MS:
metabolic syndrome. 1 With the exception of smoking habit and MS, missing values were present only for one patient. 2 No subjects in our
study sample reached the maximum IMI score of 11.

Visual inspection, Bartlett’s test of sphericity (making it possible to reject the null
hypothesis that the correlation matrix is the identity matrix with a p < 0.001), overall
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(0.84) and individual measures of sampling adequacy (20 nutrients with measures �0.90)
suggested that the nutrient-based correlation matrix was adequate for EFA (Supplementary
Table S1). Table 3 gives the factor-loading matrix for the three retained DPs.

Table 3. Factor loading matrix 1 and explained variances for the three major dietary patterns identified
by principal component factor analysis on baseline nutrient information. Italy, 2018–2019.

Nutrient
Dietary Pattern

Animal Products Vitamins and Fiber Regional

Animal protein 0.96 - -
Vegetable protein 0.34 0.48 0.73

Cholesterol 0.88 0.15 0.13
Saturated fatty acids 0.80 0.43 0.13

Monounsaturated fatty acids 0.48 0.66 0.42
Linoleic acid 0.64 0.40 0.44

Linolenic acid 0.49 0.61 0.40
Other polyunsaturated fatty acids - - 0.70

Soluble carbohydrates 0.43 0.66 0.29
Starch 0.46 0.19 0.70

Sodium 0.78 0.30 0.27
Calcium 0.66 0.54 -

Potassium 0.61 0.72 0.25
Phosphorus 0.80 0.44 0.31

Iron 0.54 0.57 0.57
Zinc 0.82 0.29 0.42

Thiamin (vitamin B1) 0.69 0.44 0.41
Riboflavin (vitamin B2) 0.70 0.43 -

Vitamin B6 0.73 0.46 0.32
Total folate 0.33 0.77 0.44

Niacin 0.83 0.29 0.27
Vitamin C 0.21 0.88 -

Retinol 0.72 - 0.17
Beta-carotene - 0.87 0.24

Vitamin D 0.79 0.10 -
Vitamin E 0.28 0.76 0.47
Total fiber 0.22 0.80 0.47

Proportion of explained variance (%) 37.99 27.28 15.09
Cumulative explained variance (%) 37.99 65.27 80.36

1 Estimates from a principal component factor analysis on 27 nutrients. For each factor, loadings greater or
equal to 0.63 indicated important or “dominant nutrients” in the current paper and were shown in bold typeface;
loadings smaller than 0.1 were suppressed.

The selected DPs explained ~80% of the total variance. Any nutrient had one or
more factor loadings �0.30, thus suggesting that all the selected nutrients were relevant
in this analysis. The greater the loading of a given nutrient to a factor was, the higher the
contribution of that nutrient to the factor. The first DP was named “Animal products”, as it
was characterized by high loadings on animal protein, cholesterol, niacin, zinc, saturated
fatty acids, phosphorus, vitamin D, sodium, vitamin B6, retinol, riboflavin, thiamin, cal-
cium, and linoleic acid. The second DP, named “Vitamins and fiber”, was characterized by
high loadings on vitamin C, beta-carotene, total fiber, total folate, vitamin E, potassium,
monounsaturated fatty acids, and soluble carbohydrates. The third DP, named “Regional”,
had high loadings on vegetable protein, other polyunsaturated fatty acids, and starch. The
communalities—measuring the proportion of each nutrient’s variance explained by the
retained DPs altogether—were generally satisfactory, being greater or equal to 0.70, except
for five nutrients (other polyunsaturated fatty acids, retinol, vitamin D, riboflavin and
soluble carbohydrates). In addition, when considering Pearson correlation coefficients
>0.45 with the amount of selected food groups on the same subjects, the “Animal products”
DP score was positively correlated with (in order from the highest to the lowest coefficients)
consumption of red meat (especially, beef and pork), offal, processed meat, fish, eggs,
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coffee, cheese, and olive oil; the “Vitamins and fiber” DP score had positive correlation
coefficients with root vegetables, other (than citrus) fruit, olive oil, leafy vegetables (raw
and cooked), cabbages, soups and bouillon, whereas the “Regional” DP was positively
correlated with the consumption of grains (wholemeal), tea (including herbal tea), and
leafy vegetables (raw and cooked).

Table 4 provides a description of the CLU-based DPs or clusters identified at baseline
using the PAM CLU method on the EFA-based DP scores.

Table 4. Description of the dietary patterns identified at baseline from cluster analysis 1: cluster size
(i.e., number of subjects included in each cluster) and cluster centers. Italy, 2018–2019.

Cluster Name 2 Cluster Size Cluster Center (Medoid)

Animal
Products

Vitamins
and Fiber Regional

C1-High consumers 11 0.11 0.24 0.88 3

C2-Low consumers 19 �0.72 �0.59 �0.41
C3-Omnivorous with

meat prevalence 18 0.81 3 �0.30 �0.30

C4-Omnivorous with
plant-based foods prevalence 11 �0.69 0.70 3 �0.70

1 Estimates from the Partitioning Around Medoids clustering algorithm carried out on the factor scores derived
from a previous Principal Component Factor Analysis on nutrient information at baseline. The optimal number
of clusters was equal to four, as derived from a combination of criteria, including results of the average silhouette
method, parsimony and cluster interpretation. 2 Cluster names were based on the position of center coordinate
within the range of the factor scores used as input data. Specifically, coordinates exceeding the third quartile (in
absolute value) indicated extreme dietary behavior. Quartiles (Q) of the factor scores at baseline were as follows:
“Animal products” pattern: Q1: �0.69; Q2: �0.24; Q3: 0.48; “Vitamins and fiber” pattern: Q1: �0.53; Q2: �0.19;
Q3: 0.37; “Regional”pattern: Q1: �0.60; Q2: �0.30; Q3: 0.32. 3 For each cluster, center coordinates greater than or
equal to the third quartile score are shown in bold typeface.

The optimal number of clusters was equal to four. Each cluster showed an extreme
behavior (exceeding the third score quartile) in one of its center coordinates, except for
cluster number 2 (C2) (19 subjects). Specifically, the C1 center was extreme on the “Regional”
factor (11 subjects), and the C3 center was extreme on the “Animal products” factor
(18 subjects), whereas the C4 center was extreme on the “Vitamins and fiber” pattern
(11 subjects). The C2 coordinates were all lower than the corresponding factor medians,
being close to the first quartile for the “Animal products” and “Vitamins and fiber” factors
and being between the first quartile and the median of the “Regional” factor score: we
therefore named C2 as “Low consumers”. Similarly, higher-than-median score coordinates
described C1 for the remaining “Animal products” and “Vitamins and fiber” patterns; we
indicated it as the “High consumers” cluster, especially extreme on the “Regional” DP.
The extreme coordinate of the C3 center on the “Animal products” factor was balanced
with approximately median score coordinates on the “Vitamins and fiber” and “Regional”
factors, thus pointing to an “Omnivorous with meat prevalence” cluster. Finally, we named
C4 as the “Omnivorous with plant-based foods prevalence” cluster: apart from the extreme
coordinate on the “Vitamins and fiber” pattern, the remaining coordinates were both close
to—or even lower than—the corresponding first quartile of the factor score.

The identified clusters were similar with respect to demographic, anthropometric,
biochemical, and immunological characteristics (data not shown).

3.1.3. Gut Microbiota Profiling
The gut microbiota of the enrolled subjects was profiled at baseline and during the

intervention at five time points (see Figure 1), for a total of 343 fecal samples subjected to
16S rRNA gene sequencing. Seventeen samples were missing or of low quality. A total of
6,682,079 high-quality reads (mean ± SD, 19,481 ± 9578) were obtained and analyzed.

The baseline profile was compared with that of 60 healthy Italians from previous
studies, matched by age and gender [42–44], which are well-known microbiota-associated
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confounding factors [59]. According to the inverse Simpson index, alpha diversity was
significantly lower in the enrolled subjects than in the healthy controls (p = 0.01, Wilcoxon
test) (Figure 2A).

Figure 2. The gut microbiota of study subjects at risk for metabolic syndrome segregated from those of healthy Italian
controls, matched by microbiota-associated confounding factors (i.e., age and gender). (A) Boxplots showing the distribution
of alpha diversity, according to the inverse Simpson index, in study subjects (dark red) compared to healthy Italian controls
(grey). A significantly reduced diversity was observed in the former group (p = 0.01, Wilcoxon test). (B) PCoA plot of
beta diversity, based on Bray–Curtis dissimilarity between the genus-level microbial profiles. A significant separation
between study subjects and healthy Italian controls was found (p = 0.001, permutation test with pseudo-F ratio). Samples
are identified with colored dots as in (A). Ellipses include 95% confidence area based on the standard error of the weighted
average of sample coordinates (dark red, subjects at risk for metabolic syndrome; grey, healthy controls). (C) Boxplots
showing the relative abundance distribution of differentially represented genera between study subjects and healthy Italian
controls (p  0.05, Wilcoxon test).

Similarly, the PCoA of beta diversity, based on Bray–Curtis dissimilarity between
the genus-level profiles, showed significant separation between the study samples and
the healthy controls (p = 0.001, permutation test with pseudo-F ratio) (Figure 2B). In line
with the available literature on gut microbiota in metabolic disorders [15,60–62], the study
subjects showed a higher relative abundance of Coriobacteriaceae (p < 0.001, Wilcoxon test)
and Streptococcus (p = 0.01), as well as reduced proportions of Bacteroidaceae members,
including Parabacteroides (p < 0.001) (Figure 2C and Supplementary Figure S1). Interestingly,
Parabacteroides has recently been suggested as a novel probiotic taxon for reducing obesity,
inflammation levels and insulin resistance [63]. As expected [64], several health-associated
SCFA-producing commensals belonging to the Lachnospiraceae and Ruminococcaceae families,
including Roseburia, Coprococcus, Lachnospira, Oscillospira and Faecalibacterium, were also
underrepresented in the gut microbiota of the study participants (p < 0.001).

Correlations between the relative abundances of bacterial taxa and anthropomet-
ric, biochemical and immunological parameters in the study subjects were next sought
(Supplementary Figure S2). Despite the low correlation coefficients, it is worth noting that
a Coriobacteriaceae member (i.e., Adlercreutzia) correlated positively with total cholesterol
(tau = 0.239, p = 0.03, Kendall rank correlation test) and LDL cholesterol (tau = 0.237,
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p = 0.03), while a negative correlation was found between Akkermansia, a mucus degrader
associated with improved metabolic health [65] and insulin (tau = �0.226, p = 0.03). Fur-
thermore, we found inverse correlations for Bifidobacterium (tau = �0.221, p = 0.04) and
Bacteroides (tau = �0.216, p = 0.03) against IL-17A, as well as for Bacteroides (tau = �0.25,
p = 0.02) and Ruminococcus (tau = �0.219, p = 0.02) against IFN-�. Ruminococcus was also
inversely correlated with IL-6 (tau = �0.215, p = 0.02).

As for associations with dietary habits (Supplementary Figure S3), the Bray–Curtis-
based PCoA showed a significant separation between the microbiota structure of the
“Omnivorous with plant-based foods prevalence” cluster and the others (p = 0.05, per-
mutation test with pseudo-F ratio). When looking for a potential relationship with food
groups, we found that consumption of milk (p  0.05, “envfit” function) and white meat
(p  0.1) was associated, or tended to be, with the microbiota of individuals from the “High
consumers”, “Low consumers”, and “Omnivorous with meat prevalence” clusters, where
most animal products were represented to a greater or lesser extent. On the other hand,
the microbiota of the “Omnivorous with plant-based foods prevalence” cluster subjects
tended to be associated with the consumption of garlic and onion, and butter (p  0.1).
At the taxonomic level, the “High consumers”-related gut microbiota was characterized
by greater proportions of Enterobacteriaceae members (p = 0.02, Kruskal-Wallis test) and
a tendency to higher amounts of Bifidobacterium (p = 0.1), a well-known probiotic taxon
associated with dairy consumption. The “Omnivorous with plant-based foods prevalence”-
related microbiota tended to be discriminated by greater relative abundances of Blautia and
Butyricimonas (p = 0.1). It is worth mentioning that both genera are SCFA producers, even if
the former is acetogenic and the latter butyrogenic. However, conflicting data exist on the
association between Blautia and metabolic health, with particular reference to abdominal
fat [66,67], and its abundance was found to be positively associated with saturated and
monounsaturated fatty acids [13], probably suggesting the existence of different oligotypes
with various metabolic capacities.

3.1.4. Urine Nuclear Magnetic Resonance-Based Metabolomics
The urine metabolome was profiled at baseline and after intervention (see Figure 1),

for a total of 120 urine samples. Six NMR spectra were excluded due to the presence of
detectable ethanol as contaminant and high levels of glucose, thus obtaining a total of
114 urine samples suitable for successive multivariate analyses. Although very complex,
the 1H NMR spectra of urine contained thousands of sharp lines from predominantly
low-molecular weight metabolites. Resonances were directly assigned on their chemical
shifts, signal multiplicities (resolved by 2D NMR experiments, randomly performed on
urine samples) and literature data [45]. Based on all subjects together, the main metabolites
identified were creatinine, trimethylamine-N-oxide (TMAO), glycine, citrate, alanine, ac-
etate, erythritol, trigonelline and hippurate. No substantial differences in the metabolomic
profile between the two study groups and among the dietary clusters were observed. More-
over, samples were also homogeneous with respect to the information reported in Table 1
(Supplementary Figure S4).

As for associations with the gut microbiota (Supplementary Figure S2), again the corre-
lation coefficients were very small, but it is interesting to mention that we found a negative
correlation between the relative abundance of Lactobacillus and several metabolites, i.e.,
creatinine (tau = �0.234, p = 0.04), TMAO (tau = �0.226, p = 0.05) and phenylacetylglycine
(tau = �0.239, p = 0.03). A positive correlation was found between Blautia and trigonelline
(tau = 0.219, p = 0.03), an alkaloid with potential anti-diabetic activity [68].

3.2. Effects of the Dietary Intervention
3.2.1. Impact on Anthropometric, Biochemical and Immunological Parameters

Supplementary Table S2 shows the comparison of anthropometric, biochemical and
immunological characteristics, as well as presence of MS, for all enrolled subjects and by
SA- and PROB-groups, at the two time points T0 and T30. Compared to the baseline, some
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parameters changed after the dietary intervention. In particular, a statistically significant
reduction in insulin values was observed (p = 0.013, Wilcoxon signed rank test). Other
measures, such as cortisol, blood pressure (BP), and body mass index (BMI), showed an
improvement, that is, a decrease, after the intervention, even if not statistically significant
at a 5% level. Similarly, MS was detected in six of the nine subjects with the disease at
baseline, thus representing a statistically significant improvement from the baseline to
the end of the intervention (p < 0.001, McNemar test). When inspecting group-specific
differences, statistically significant reductions were observed for systolic BP in the SA-
group (p = 0.032, paired t-test), and for cortisol and insulin in PROB-group (p = 0.020 and
p = 0.006, Wilcoxon signed rank test, respectively) (Supplementary Figure S5). With respect
to insulin, one subject reported a very high value at baseline. However, after removal of
this individual, the difference remained statistically significant (p = 0.010). In the SA-group,
a slightly lower BMI was registered after the intervention (medians equal to 26.1 [IQR: 5.1]
and 25.4 [IQR: 5.9] kg/m2 for T0 and T30, respectively; p = 0.057, paired t-test), as well as
reduced glucose levels (medians equal to 83.0 [IQR: 14.0] and 83.0 [IQR: 8.0] mg/dL for T0
and T30, respectively; p = 0.067, Wilcoxon signed rank test). In addition, in both groups, the
number of subjects with MS decreased from the baseline to the end of the intervention, in a
statistically significant way (SA-group: from six to four, p < 0.001, McNemar test; PROB-
group: from three to two, p = 0.002, McNemar test). No other significant modifications
were observed (data not shown).

3.2.2. Impact on the Gut Microbiota Composition
No differences in alpha and beta diversity were observed over time in the SA-group

(Supplementary Figure S6). Similar results (i.e., no separation between fecal samples at
different time points in the PCoA of beta diversity) were obtained in the PROB-group, for
which, however, a temporal reduction in alpha diversity was found, with the lowest values
after 30 days of intervention (Faith’s Phylogenetic Diversity and number of observed ASVs:
p  0.04, Friedman test) (Supplementary Figure S6).

Interestingly, at the compositional level, some of the dysbiotic features identified at
baseline were reversed after intervention with SA-derived foods, and others tended to be
reversed (Figure 3A).

In particular, the relative abundance of Coriobacteriaceae, especially Collinsella, a po-
tential pathobiont proposed as a target in future microbiome-based interventions for
metabolic disorders [69], was significantly reduced in SA-group after 30 days of diet
(p  0.007, Wilcoxon test), with proportions of Collinsella tending to decrease already after
15 days (p = 0.1). Furthermore, we observed a rapid increase in the relative abundance
of Oscillospira (T0 vs. T15, p = 0.02), a likely heritable taxon positively associated with
leanness and health [70]. It is worth noting that such an increase persisted in the follow-up
(T0 vs. TF15, p = 0.04), while other changes appeared only later on, namely the increase
in Clostridiaceae (T0 vs. TF7, p = 0.02) and the tendency towards increased amounts of
Lachnospiraceae (T0 vs. TF15, p = 0.07). For these taxa, the baseline variation in the 2 weeks
prior to dietary intervention was not significant (p > 0.05, Friedman test) (Supplementary
Figure S7), which supports that the aforementioned compositional changes were related to
the change in diet and not to the typical oscillations of the gut microbiota in the absence of
perturbation (see [71] for a recent discussion on the topic). When looking at the compo-
sitional variations within the four dietary clusters (Supplementary Figure S8), we found
that “High consumers” cluster individuals showed a significant decrease in Desulfovibrio
after 7 days of diet (p = 0.04, Wilcoxon test), which persisted over time, and a tendency
towards increased proportions of Roseburia at the end of the intervention, until follow-up
(p = 0.1, Friedman test). On the other hand, for the “Low consumers” and the “Omnivorous
with meat prevalence” clusters, we found increasing trends in other SCFA producers, i.e.,
Coprococcus (p = 0.06) and Oscillospira (p = 0.09), respectively. Interestingly, Coprococcus cor-
related negatively with cortisol, whose levels decreased after intervention as reported above
(Supplementary Figure S9). A negative correlation in the whole dataset was also found
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between Phascolarctobacterium, another SCFA (mainly propionate) producer, and blood
pressure, in line with previous studies associating it with improved metabolic health [72].
Furthermore, the relative abundance of some taxa and precisely Adlercreutzia, Prevotella,
Butyricimonas and Blautia, showed overall expected correlations with total cholesterol, LDL
cholesterol and waist-to-hip ratio in all sample (Supplementary Figure S9).

Figure 3. Impact on the gut microbiota of a diet with fresh foods from organic symbiotic agriculture versus probiotic
supplementation. Boxplots showing the relative abundance distribution of differentially represented taxa over time, in
subjects at risk for metabolic syndrome consuming fresh foods from organic symbiotic agriculture (SA-group) (A), or
receiving probiotic supplementation (PROB-group) (B). The gut microbiota was profiled at baseline (T0), after 7 (T7), 15 (T15)
and 30 (T30) days of intervention, and at follow-up, 7 (TF7) and 15 (TF15) days after the end of the intervention. *, p  0.05;
#, 0.05 < p  0.1; Wilcoxon test.

As for the PROB-group, apart from the reduction in the proportions of Desulfovibri-
onaceae (T0 vs. T15 and T0 vs. TF7, p = 0.04, Wilcoxon test), we observed some unfavorable
changes, including the increase in pro-inflammatory taxa, such as Peptostreptococcaceae
(T0 vs. T15, p = 0.02) and unclassified Erysipelotrichaceae members (T0 vs. TF7, p = 0.02),
and the decrease in the metabolic health-associated genus, Akkermansia (T0 vs. TF15,
p = 0.04) (Figure 3B). Again, these taxa showed no significant changes in the 2 weeks prior
to intervention (p > 0.05, Friedman test) (data not shown).

When we inspected the relationship between changes in genus relative abundances
and improvements in MS components over time within the SA-group, we identified
two genera that showed peculiar trends: Oscillospira and Akkermansia (Supplementary
Figure S10). The former showed an increasing trend over time (p = 0.01, ATS test for time
effect), although similar in subjects who had an improvement in at least one MS factor
and in those who didn’t have it (p = 0.14, ATS test for group effect). The latter showed a
difference between the two mentioned groups at T0, with lower values for those showing
an improvement in the MS factors. However, this difference tended to disappear later on
due to a subsequent increase of Akkermansia relative abundance over time for this group
(p = 0.08, ATS test for the interaction effect). In line with the available literature [65], this
further stresses the close association of Akkermansia with metabolic health.

The same approach was then applied to the single components of MS. Within the SA-
group, Oscillospira showed a consistent increasing temporal trend for each MS component
(all p  0.01, ATS test for the time effect). An increase over time was also observed for
Roseburia in relation to systolic BP (p = 0.07, ATS test for the time effect); however, this
was similar for those who showed or not an improvement of at least 5% in this parameter
(p = 0.65, ATS test for the interaction effect). Finally, Lachnospira showed a differential
trend over time in relation to triglycerides and glycaemia, with an increase in those who
improved only at the last time-point, TF15 (p = 0.04, ATS test for the interaction effect).
When we analyzed PROB-group, other interesting trends were found. Among them,
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Akkermansia behaved differently between subjects who then showed or not an improvement
in triglyceride levels, with an increase in the former up to T30 (p = 0.001, ATS test for the
interaction effect). Differential trends were also observed for Oscillospira in relation to both
triglycerides and glycaemia, with an increase in follow-up for those who showed reduced
triglyceride levels (p = 0.01, ATS test for the interaction effect) and at T15 for those with
decreased blood glucose (p = 0.03, ATS test for the interaction effect) (data not shown).

3.2.3. Impact on the Urine Metabolome
Within the SA-group, after the dietary intervention, a good separation of the data

points was observed as well as time-dependent discriminant metabolites. In particular, the
corresponding S-line plot from OPLS-DA analysis showed increased levels of erythritol
(3.78–3.68 ppm), glycine (3.57 ppm), citrate (2.68–2.54 ppm), acetate (1.93 ppm), and alanine
(1.48 ppm), in samples after 30 days of treatment, with a concomitant reduction in the level
of creatinine (4.06 ppm) and TMAO (3.27 ppm) (Supplementary Figure S11). Moreover,
by comparing the predictive performances of the OPLS-DA models built for each dietary
cluster, we observed that the “Omnivorous with meat prevalence” cluster showed a greater
sample classification capacity (Q2 of 0.18) as compared to the others. This indicates that the
intervention with SA-foods had a greater overall impact on subjects with “Omnivorous
with meat prevalence” behavior. Interestingly, a relatively higher level of hippurate and
a particularly pronounced decrease in TMAO level were observed in these subjects after
intervention. The decrease of TMAO is extremely favorable, as this molecule, which is
formed in the liver from trimethylamine, a metabolite synthesized by the gut microbiota
from dietary choline, is recognized as a cardiovascular risk factor and associated with
various negative health outcomes [73]. Regarding glycine, its circulating levels have been
reported to decrease in metabolic disorders associated with obesity [74]. Moreover, plasma
glycine concentration is altered according to food choice, being higher in vegetarian and
vegan groups than in meat eaters [75].

Interestingly, some of the metabolites whose levels varied following the interven-
tion showed consistent correlations with the proportions of some of the aforementioned
microorganisms (Supplementary Figure S9). In particular, in the SA-group, erythritol
correlated negatively with Collinsella (tau = �0.204, p = 0.04, Kendall rank correlation test)
while positively with Coprococcus (tau = 0.25, p = 0.01). Positive correlations were also
observed for Coprococcus (tau = 0.249, p = 0.01) and Faecalibacterium (tau = 0.246, p = 0.01)
against alanine, as well as between Faecalibacterium and glycine (tau = 0.263, p = 0.009).
Finally, as expected based on its metabolic propensity, Blautia positively correlated with
acetate (tau = 0.187, p = 0.05).

Within the PROB-group, a good sample discrimination after treatment was observed. In
particular, the corresponding S-line plot of the OPLS-DA analysis (Supplementary Figure S11)
allowed us to identify a decreased level of trigonelline (8.81–8.06 ppm, detectable only in the
“High consumers” cluster). The analyses within dietary clusters did not reveal significant
deviations, with the exception of relatively higher levels of hippurate in the “High consumers”
and “Omnivorous with meat prevalence” clusters (data not shown).

4. Discussion
In this first pilot intervention study offering SA-derived products to subjects at risk

for MS, we showed that mycorrhized farming products modulate certain components of
the gut microbiota; this effect was accompanied by changes in some metabolic parameters
and urinary metabolites and it was partly modulated by DPs at baseline. In addition,
two out of six study participants suffering from MS at baseline no longer had MS after
the intervention.

In line with the existing literature on gut microbiota in metabolic disorders [15,61,62],
the study subjects, as compared to healthy age/sex-matched Italian adults, showed some
dysbiotic features at baseline, namely: (i) reduced biodiversity; (ii) lower proportions of
health-associated taxa, mainly SCFA producers from the Lachnospiraceae and Ruminococ-
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caceae families, i.e., Lachnospira, Coprococcus, Roseburia, Oscillospira and Faecalibacterium, as
well as Parabacteroides; and (iii) greater relative abundance of generally subdominant taxa
with pathogenic potential, such as Coriobacteriaceae and Streptococcus. While the decrease in
SCFA producers is frequently found in disparate diseases and pre-disease conditions, as
a probably universal dysbiotic signature [64], the overrepresentation of Coriobacteriaceae
could be regarded as a potentially specific alarm bell for metabolic disorders. Indeed,
increased levels of Coriobacteriaceae members have been found in conditions of overweight
and obesity, as well as in the context of type 2 diabetes and symptomatic atherosclerosis,
and directly associated with metabolic risk factors, including those predisposing to MS,
such as insulin, triglycerides and LDL cholesterol [15,17,60,76], as also observed in our
sample. It has been hypothesized that a gut microbiota profile enriched in such microbes
may influence intestinal absorption of cholesterol, hepatic glycogenesis and triglyceride
synthesis, as well as interfere with the expression of tight junction proteins, resulting in loss
of barrier integrity, metabolic endotoxemia and chronic low-grade inflammation [17,77].
On the other hand, Parabacteroides, which was found to be underrepresented in study
participants, has recently been proposed as a probiotic candidate for its metabolic benefits,
as observed in mouse models, probably through the production of succinate and secondary
bile acids [63,78].

Dietary habits at baseline were well characterized by the use of DPs, which are combi-
nations of dietary components meant to summarize total diet—or key aspects of the overall
diet—in free-living individuals, as measured at one or more time points. As compared to
analyzing single dietary components one at a time, the DP approach allows to capture well-
known interactive effects among nutrients or foods, while solving statistical issues related
to collinearity between food components and adjustment for multiple comparisons [79,80].
In the current application, we referred to both a priori (or index-based) and a posteriori
(empirically derived) DPs [80]. Among available a priori DPs, we referred to the IMI to
assess if study participants did follow a Mediterranean diet and to what extent it happened.
We showed that our study sample adhered to the Mediterranean diet—as measured by the
IMI—to the same extent as the more representative Italian sample of subjects belonging
to the EPICOR study [47]. In addition, we applied a combination of EFA and CLU for
identifying a posteriori DPs at baseline and relating them to microbiome or metabolome.
The small number of subjects—as compared to nutrients—and the by-product of having
the correlation structure of nutrients described in terms of EFA-based DPs suggested to per-
form an EFA before CLU. Cluster-based DPs provided an additional advantage within this
project. As individual dietary habits were summarized with one belonging indicator—and
not by multiple factors simultaneously—the assessment of the potential links between diet
and microbiome or diet and metabolome was easier with CLU-based DPs rather than with
the more common EFA based ones. In addition, the current paper explores the use of a
more robust CLU partitioning algorithm, PAM, which is more suitable than the well-known
k-means. The DPs derived from the application of EFA and CLU are very similar to those
derived in an Italian network of case-control studies exploring the association between
diet and cancer at several sites (e.g., [48,49,81]); the statistical approach was similar and the
same Italian Food Composition Tables [34] were used to convert food items into nutrients,
thus improving the possibility of finding similar patterns, as far as they are indeed present.
In detail, our EFA-based “Animal products” DP—loading high on animal protein, fats,
zinc, B-group vitamins, calcium, phosphorus, sodium, vitamin D, and retinol—was mostly
overlapping with the corresponding “Animal products” identified in the previous network
(e.g., [48,49,81]); minor differences between the two DPs likely included the major role
of meat, including offal—represented by the additional presence of retinol—in our DP,
as compared to the major role of dairy products—represented by the highest loadings
on calcium and phosphorus—identified on similar DPs in the case-control studies. Simi-
larly, our EFA-based “Vitamins and fiber” DP—loading high on vitamin C, beta-carotene,
total fiber, total folate, vitamin E, potassium, monounsaturated fatty acids, and soluble
carbohydrates—was similar to the corresponding “Vitamins and fiber” DP identified in
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the network, with both DPs pointing to consumption of fruit and vegetables; a minor
difference between the 2 DPs dealt with the less dominant role of the “citrus fruits” food
group in the current study, as compared to the case-control study network. Moreover, in
our “Vitamins and fiber” DP, we have oils and vegetable consumption together (with high
loadings on vitamin E and monounsaturated fatty acids), in the absence of an additional
DP targeting vegetable fats. The “Regional” DP identified in the current study—loading
high on vegetable protein, other polyunsaturated fatty acids, and starch—is in between
the “Starch-rich” and the “Animal unsaturated fatty acids” DPs, as it combines vegetable
protein and starch (but not sodium) from the formed DP with the other polyunsaturated
fatty acids (but not vitamin D and niacin) from the latter DP. A paper of the same network
applied CLU on the factor scores from a previous EFA [82]; like in the current applica-
tion, each of the five selected clusters showed an extreme behavior in one of the center
coordinates, except for one that is similar to our “Low consumers” DP. Specifically, two
cluster centers were extreme on a “Vitamins and fiber” and on an “Animal products”
DP that were comparable to our “Omnivorous with plant-based foods prevalence” and
“Omnivorous with meat prevalence”, respectively; the remaining two cluster centers were
extremes on an “Unsaturated fats” and on a “Starch-rich” DP, which combine elements
of our “High consumers” DP, although the fat profile is likely more oriented towards the
vegetable source in the previous paper [82]. Within the Italian arm of the EPIC Elderly
project, four EFA-based DPs (21% of explained variance) were identified on a comparable
population interviewed with the same FFQ used in the current study [83,84]. Among them,
the “prudent” (cooked vegetables, pulses, cabbage, seed oil and fish) and the “olive oil &
salad” (raw vegetables, olive oil, soup and chicken) share similarities with our “Vitamins
and fiber” DP, although we did not observe the simultaneous presence of vegetables and
meat; their “pasta & meat” (pasta, tomato sauce, red meat, processed meat, bread and
wine) is in between our “Animal products” and “Regional” DPs, but we were not able to
identify any sort of “sweet & dairy” (sugar, cakes, ice cream, coffee and dairy) DP in our
study sample. In conclusion, our study provided the possibility to confirm that, to some
extent, Italian DPs derived with multivariate statistics show a good reproducibility across
studies [85].

When looking for associations between CLU-based DPs and the gut microbiota, we
found that the basal microbiota structure of the “Omnivorous with plant-based foods
prevalence” cluster separated from all others, being discriminated by higher proportions
of Blautia and Butyricimonas. Both genera are producers of SCFAs (mainly acetate and
butyrate, respectively), which could play a multifactorial role in maintaining metabolic
and immunological homeostasis [86]. With specific regard to Blautia, although the data
have not been replicated in the elderly population [67], this taxon has recently been found
to be inversely associated with visceral fat in a large population-based adult cohort [66],
and hypothesized to have the potential to counteract MS risk factors. Unlike that study,
in which no dietary factor correlated with Blautia amount, here we found that the Blautia
and Butyricimonas-enriched “Omnivorous with plant-based foods prevalence” cluster was
particularly associated with garlic, onion and butter consumption, suggesting a possible
link between these foods and those microorganisms. However, as far as we know, no
information is currently available on their impact on the microbiota, except for a correla-
tion between Blautia and saturated and monounsaturated fatty acids [13], which are the
major lipids of butter. As for the other clusters, it is worth mentioning that the “High
consumers”-related microbiota was discriminated by higher proportions of enterobacte-
ria and bifidobacteria, and associated with the intake of animal products, such as meat
and milk. This was expected, as the link between Bifidobacterium and the intake of dairy
products is well established, from early childhood [87,88]. After one month of dietary
intervention, study participants experienced modest improvements in BMI, insulin and
cortisol levels (especially in PROB-group), and BP (particularly in SA-group).

As for gut microbiota, some dysbiotic signatures were reversed and others tended to
be reversed after intervention. In particular, the SA-based diet counteracted the increase in
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pathobionts, namely Coriobacteriaceae, as well as the decrease in SCFA producers, i.e., Lach-
nospiraceae and Oscillospira, a potentially heritable taxon capable of promoting leanness [70].
Interestingly, the increase in Oscillospira was already noticeable after only 15 days of diet,
as well as a tendency towards reduced proportions of Collinsella, the dominant taxon of
the Coriobactaeriaceae family, thus suggesting a modulatory effect even in the short term.
Since these taxa did not show significant changes over the run-in period, we can reasonably
argue that their variation is the result of introducing SA-derived food products into the diet.
As expected, the extent of microbiota modulation was greater in participants not belonging
to the “Omnivorous with plant-based foods prevalence” cluster, for whom the increase in
Lachnospiraceae and Ruminococcaceae members, along with the decrease in Desulfovibrio (a
sulphate-reducing pathobiont found to be increased in type 2 diabetic patients and those
suffering from inflammatory bowel disease [89,90]) were more evident. Furthermore, it
should be noted that an increase in Akkermansia specifically discriminated the participants
who showed improvement in at least 1 risk factor for MS, further stressing the close as-
sociation between this taxon and metabolic health [17,65]. Akkermansia is in fact a mucus
degrader with promising metabolic benefits, as validated in a recent proof-of-concept
exploratory study [65]. On the other hand, in the PROB-group, i.e., in subjects receiving
probiotic supplementation, we observed a reduction of sulphate-reducing bacteria, but
also several unfavorable microbiota changes, including reduced diversity and relative
abundance of Akkermansia. In this group, we also found increased proportions of Pep-
tostreptococcaceae and Erysipelotrichaceae, less characterized microorganisms, but generally
associated with increased inflammatory tone [91,92].

Urine metabolomics confirmed a general beneficial effect of SA-derived products on
the metabolic health of the participants, as exemplified by the decrease in TMAO levels and
the increase in citrate levels in SA-group. As a result of the microbiota–host co-metabolism
of dietary choline, TMAO has indeed been repeatedly associated with cardiovascular
disease risk and atherosclerosis [73]. As for citrate, its urinary excretion rate mainly
depends on the acid–base status of the body, and urinary citrate has long been recognized
as an inhibitor of calcium salt crystallization [93]. Even small acid loads, such as meat-based
or protein-rich meals in general, reduce urinary citrate excretion. It is, therefore, tempting to
speculate that the intervention in SA-group may have a more protective role against kidney
disease. Furthermore, subjects from the “Omnivorous with meat prevalence” cluster in
both SA-group and PROB-group, and those from the “High consumers” cluster in PROB-
group showed a relatively higher level of hippurate following the intervention. Hippurate
has been strongly associated with increased gut microbiome diversity, consumption of
polyphenol-rich foods, and reduced odds of MS [94]. On the other hand, subjects from the
“High consumers” cluster of PROB-group experienced a lower amount of urine trigonelline,
which could be unfavorable. Despite a possible dietary-related origin, trigonelline is mostly
biosynthesized by the gut microbiota during the conversion of S-adenosylmethionine to S-
adenosylhomocysteine (methionine cycle). Interestingly, this metabolite has been inversely
correlated with obese and diabetic phenotypes [95].

This study has several strengths, including: (i) the collection of data over time, al-
lowing for a strict control of potential changes over the study period; (ii) the collection of
anthropometric, biochemical, and immunological information, as well as baseline dietary
data, which allowed for a parallel exploration and interpretation of temporal effects in
microbiome and metabolome; and (iii) the use of a validated instrument for the assessment
of subjects’ DPs. However, the present study has also some limitations: (i) its small sample
size, even if legitimate for a hypothesis-generating study characterized by considerable
organizational commitment; (ii) the lack of a control group who eat the same products of
the SA-group but produced with conventional techniques, to disentangle the actual contri-
bution of SA-based products; and (iii) the lack of an assessment of individual adherence
to the dietary intervention to monitoring also the evolution of diet quality and potential
shifting towards more balanced or controlled diets, including a higher adherence to the
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Mediterranean diet, which is already known to provide some beneficial effects in obesity,
type 2 diabetes, cardiometabolic disease risk and aging [15,96–98].

5. Conclusions
To our knowledge, this is the first study exploring the potential beneficial effects of

SA-derived products on the gut microbiota and urinary metabolome in humans. Our
preliminary evidence points to some improvements in the amounts of certain microorgan-
isms and metabolites relevant to health, as well as in some risk factors for MS, in subjects
receiving fresh food products. These benefits were greater in those who followed less
healthy dietary habits. Participants receiving probiotics also showed some changes in
microbial, metabolic and health parameters but the effects were marginal and not entirely
favorable, in accordance with recent literature [99]. Diets based on foods from organic
symbiotic crops may therefore be effective in modulating unbalanced microbiomes towards
eubiotic configurations, and improving metabolomics profiles and metabolic health, with
likely lower risk of developing MS and related disorders. Future studies in larger cohorts
or randomized controlled trials, possibly including patients with MS or other metabolic
diseases, and employing other omics techniques, such as shotgun metagenomics, are
needed to validate these findings and provide further functional insights into the SA-based
diet–microbiota–host axis.
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Table S1. Parents general information at delivery. Northern Adriatic Cohort II (NAC-II), 2014-2016 (N=381). 

 N % 
Maternal nationality   

Italian 353 92.6 
Foreign 24 6.3 
Not reported 4 1.1 

Maternal marital status   
Married/living with partner 342 89.7 
Separated/divorced 12 3.1 
Single/not living with partner 25 6.6 
Not reported 2 0.5 

Maternal education   
Completed primary school 4 1.0 
Completed secondary school 57 15.0 
Completed high school or equivalent 172 45.1 
Bachelor degree or higher 147 38.6 
Not reported 1 0.3 

Paternal education   
Completed primary school 4 1.0 
Completed secondary school 106 27.8 
Completed high school or equivalent 179 47.0 
Bachelor degree or higher 84 22.0 
Not reported 8 2.1 
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Table S2. Percentage contribution of food groups to total intake of fatty acids and cholesterol. NAC-II, 2014-2016 (N=381).  

 % 

 SFAs MUFAs PUFAs OA LA ALA ARA EPA DHA Chol 
Cereals and cereal-based products 5.4 7.5 12.9 7.7 15.1 9.3 0.5 5.3 0.0 6.0 

Potatoes 0.2 0.0 2.7 0.0 2.7 6.0 0.0 0.0 0.0 0.0 

Pulses 0.1 0.1 0.5 0.1 0.4 1.8 0.0 0.0 0.0 0.0 

Vegetables 0.2 0.1 1.6 0.1 1.2 6.4 0.0 0.0 0.0 0.0 

Fresh and squeezed fruit 0.2 0.2 1.4 0.2 1.3 4.3 0.0 0.0 0.0 0.0 

Dry fruit and seeds 0.2 0.8 3.6 0.8 4.0 3.8 0.0 0.0 0.0 0.0 

Milk, dairy products and substitutes 41.2 22.6 8.5 21.1 6.5 32.8 0.0 0.0 0.0 24.3 

Meat and meat products 6.0 7.4 13.1 7.0 11.7 6.1 48.6 20.5 12.8 21.5 

Cured meat 5.4 8.0 9.7 7.7 10.1 5.9 29.5 7.5 1.0 6.7 

Fish and fish products 0.9 1.3 5.1 1.0 2.1 1.1 9.7 66.8 86.1 5.9 

Eggs 1.6 1.5 2.5 1.5 2.7 0.7 9.9 0.0 0.0 21.3 

Fats and oils 6.6 33.0 18.8 35.2 22.8 9.4 0.1 0.0 0.0 0.0 

Sweets and salty snacks 31.3 17.0 17.2 16.9 16.6 11.2 1.6 0.0 0.0 14.3 

Sugar-sweetened beverages and juices 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 

Sauces and soups 0.4 0.4 1.8 0.4 2.3 0.1 0.0 0.0 0.0 0.1 

Vegetable and meat broths 0.1 0.2 0.2 0.2 0.3 0.2 0.0 0.0 0.0 0.0 

Herbs, spices and added salt 0.0 0.0 0.1 0.0 0.1 0.8 0.0 0.0 0.0 0.0 

Non-sweetened beverages 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

The major food group contributors for each micronutrient were indicated in bold typeface. 

Abbreviations: SFAs, saturated fatty acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; OA, oleic acid; LA, linoleic acid; ALA, alpha-linolenic acid; ARA, arachidonic acid; 
EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; Chol, cholesterol. 
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Table S3. Percentage contribution of food groups to total intake of micronutrients. NAC-II, 2014-2016 (N=381).  

 %  

 Na K Ca Fe Zn Mg P Se VitB1 VitB2 VitB3 VitB6 VitB9 VitB12 VitC VitD VitE  
Cereals and cereal-based products 34.4 14.5 5.9 22.4 25.7 2.6 17.9 0.8 28.7 16.9 20.1 19.4 30.6 0.0 2.5 3.9 9.8  

Potatoes 0.2 8.0 0.5 2.5 1.1 0.0 1.7 0.0 3.5 1.0 6.3 8.8 5.3 0.0 5.1 0.0 0.3  

Pulses 0.2 2.8 1.1 4.3 1.5 0.0 1.9 0.0 5.0 1.6 1.4 1.3 5.2 0.0 2.5 0.0 0.7  

Vegetables 2.1 12.3 5.0 12.0 5.0 4.4 4.1 0.9 6.7 7.7 7.4 10.2 21.1 0.0 29.0 0.6 18.5  

Fresh and squeezed fruit 0.2 15.7 3.5 9.0 2.7 18.5 3.0 2.4 7.2 4.7 5.0 11.3 7.6 0.0 34.7 0.0 7.5  

Dry fruit and seeds 0.0 0.4 0.1 0.5 0.6 1.7 0.4 0.2 0.6 0.2 0.3 0.4 0.4 0.0 0.0 0.0 1.2  

Milk, dairy products and substitutes 13.2 17.9 69.1 4.7 22.3 34.9 36.1 21.7 11.0 39.5 2.5 11.4 10.8 33.9 2.5 10.7 5.8  

Meat and meat products 6.6 11.1 1.1 13.6 20.7 16.6 13.4 29.4 13.9 11.2 36.6 20.0 3.8 23.8 0.0 22.1 2.3  

Cured meat 10.8 2.9 0.4 2.8 7.2 4.0 5.3 4.2 10.7 3.0 6.1 7.0 1.4 6.1 0.0 10.1 0.2  

Fish and fish products 2.5 3.0 1.3 4.5 4.3 5.1 4.3 35.9 1.7 2.0 7.5 3.7 1.0 27.6 0.2 22.3 4.0  

Eggs 0.8 0.8 0.9 2.6 2.0 1.6 2.7 2.7 1.3 2.9 0.1 1.0 3.1 8.6 0.0 14.6 2.2  

Fats and oils 0.1 0.2 0.1 0.5 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 32.9  

Sweets and salty snacks 8.9 6.5 8.2 15.3 6.0 3.3 8.0 0.1 6.3 7.1 4.2 3.8 4.5 0.1 1.3 15.5 9.9  

Sugar-sweetened beverages and juices 0.4 2.7 1.4 2.9 0.7 4.5 0.8 0.5 1.1 0.9 1.1 1.3 1.8 0.0 21.2 0.0 3.4  

Sauces and soups 0.9 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0  

Vegetable and meat broths 4.5 0.3 0.6 0.5 0.1 0.9 0.2 1.1 1.9 0.5 0.8 0.2 2.5 0.0 0.0 0.0 0.0  

Herbs, spices and added salt 14.1 0.4 0.6 1.6 0.2 0.7 0.1 0.0 0.1 0.2 0.2 0.2 0.4 0.0 0.9 0.0 0.2  

Non-sweetened beverages 0.0 0.4 0.0 0.2 0.0 1.1 0.1 0.0 0.1 0.5 0.2 0.0 0.5 0.0 0.0 0.0 0.0  

The major food group contributors for each micronutrient were indicated in bold typeface. 

Abbreviation: Vit, vitamin. 


