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1 Introduction

After more than ten years of operation of the Large Hadron Collider (LHC), we have
tremendously improved our knowledge of the fundamental interactions of elementary particles.
Above all, the long-sought Higgs boson has been observed [1, 2] and especially its properties
have been studied in detail: they have been found to be compatible with those predicted by
the Standard Model (SM) [3]. In general, no clear and unambiguous sign of beyond-the-SM
(BSM) physics has been found at colliders. In parallel, at the LHC the SM itself has been
stress-tested in all its sectors: e.g., electroweak (EW) interactions, QCD dynamics and
flavour physics. However, the BSM search programme at colliders is only at its initial phase.
At the LHC, 20 times more data will be collected in the next years, large part of it during
the High-Luminosity (HL) runs [4–9]. Moreover, several options are possible for future
colliders (see e.g. ref. [10] for a recent review), involving collisions at higher energies between
a pair of protons or leptons (both electrons/positrons and muons).

The success of this ambitious research programme is interconnected with the availability
of precise and reliable SM predictions. A plethora of new calculations and techniques have
already appeared in the literature for improving both SM and BSM predictions. QCD
radiative corrections at fixed order, going from Next-to-Leading-Order (NLO) to Next-to-
NLO (NNLO) or even Next-to-NNLO (N3LO), have become available and techniques for
the resummation of large logarithms appearing at fixed order have also been improved. On
the other hand, an enormous effort has been done for the calculations of NLO QCD and
also NLO EW corrections for processes with high-multiplicity final states. In particular,
such corrections have been implemented in Monte Carlo generators and they have been even
automated [11–17], at different levels in the different frameworks, using various one-loop
matrix-element providers [18–24].

A particular feature of EW corrections are the so-called “Sudakov enhancements” or
“Sudakov logarithms” [25], which enhance O(αn) fixed-order corrections, the so-called NnLO

EW corrections, with terms of order ∼ −αn logk(s/M2
W ) with k in the range 1 ≤ k ≤ 2n.

In high-energy collisions, these logarithms involve two separate ranges of energy scales: the
W -boson mass MW and the centre-of-mass energy

√
s. Most importantly, at variance with

QCD, EW Sudakov logarithms do not cancel in IR-safe physical observables [26–29], which
typically are not inclusive on the additional emission of neither W nor Z bosons. Therefore,
they induce large and negative corrections, especially in the tails of the distributions. With
the future runs of the LHC, and especially with future colliders, higher energies will be
probed at higher precision and therefore a reliable evaluation of such corrections and its
automation in modern Monte Carlo generators is necessary.

From a theoretical point of view, a lot of work has already been done in the past for what
concerns EW Sudakov logarithms from virtual corrections [26–28, 30–51]. Especially, general
algorithms for the calculation at one and two-loop accuracy were derived in refs. [39, 43]
and [44–46, 50], respectively. Moreover, their resummation has also been studied [27, 28,
31, 36, 39, 43, 44, 47, 49, 52–62] and in refs. [47, 49, 63] a general method to resum such
logarithms for an arbitrary process was developed, based on the framework of soft-collinear
effective theory (SCET) [64–67].
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On the other hand, the similar case of real weak-boson emission has been addressed
in refs. [28, 37, 41, 42, 68–76] and for specific processes on a more phenomenological level
in refs. [12, 73, 77–82]. The resummation of double-logarithmic corrections from the real
radiation has also been studied in ref. [76] and the simulation of multiple real weak boson
radiation in a parton-shower approach has already been formulated and performed in
refs. [80, 83–85]. The SM LO collinear splitting functions [86] and evolution of parton
fragmentation functions [87] are also known and phenomenological results at high energy
have been studied. Finally, studies on parton-distribution-functions (PDFs) in the EW SM
exist in the literature [88, 89].

It is an established fact (see e.g. section 17 of ref. [90]) that EW Sudakov logarithms
from both virtual corrections and real emissions are sizeable at high energies (a few TeV’s)
for several processes and, especially for the former class, resummation is necessary in order
to achieve precise predictions or even just sensible results. Indeed, fixed-order corrections,
precisely due to the EW Sudakov logarithms, can approach the size of −100% of the LO. In
other words, in order to reach the percent accuracy, not only the exact O(α) (NLO EW)
corrections have to be calculated, but the Sudakov-enhanced component must be identified
and resummed. Although the computation of exact NLO EW corrections is technically
more involved than the case of its virtual Sudakov-logarithm subclass, only the former has
been (fully) automated and implemented in Monte-Carlo’s by different collaborations [11–
17]. Recently, the pioneering algorithm of Denner and Pozzorini [39, 43], which allows to
calculate both single and double one-loop virtual EW Sudakov logarithms at O(α), has been
automated for the first time [91] in the Sherpa framework [92]. Previously, only specific
(classes of) processes had been considered, as done e.g. in ref. [79] within AlpGen [93].

In this work we automate the algorithm of Denner and Pozzorini [39, 43] in the Mad-

Graph5_aMC@NLO framework [16, 94], which already allows for the fully-automated
calculation of NLO QCD and EW corrections and more in general Complete-NLO predic-
tions [16, 17]. Thus, with MadGraph5_aMC@NLO, it is now possible not only to calculate
in a completely automated approach NLO EW corrections, but also their subcomponent
that is typically dominant: the double and single virtual Sudakov logarithms. On the one
hand, this work opens up the possibility of further building an automated framework for
resumming Sudakov EW logarithms and match the result to NLO EW calculations in the
MadGraph5_aMC@NLO framework. On the other hand, since virtual Sudakov logarithms
are the dominant component of EW corrections and their evaluation is much faster and
stable of the exact O(α) result, this implementation leads also to a very good and fast
approximation of NLO EW corrections at high energy.

Before implementing the algorithm of Denner and Pozzorini [39, 43], however, we have
revisited it. This work therefore does not only describe the technical steps underlying the
implementation in MadGraph5_aMC@NLO, but it also provides an algorithm that is based
on the one of Denner and Pozzorini and introduces relevant novelties w.r.t. it. First, we
have reframed the algorithm by setting the mass of the photon and light-fermion masses
exactly to zero, regularising IR divergences by mean of Dimensional Regularisation (DR),
as in modern NLO EW calculations and in general Monte Carlo implementations. Second,
we have identified an imaginary term that was omitted in ref. [39], which however cannot
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be in general neglected for 2 → n processes with n > 2. Third, we have modified part
of the expressions in order to take into account additional angular dependences, without
assuming that all the invariants are of the same size of s. Fourth, since (virtual) NLO
EW corrections originate from both “genuine” EW corrections on top of the dominant LO
contributions and QCD corrections on top of the subdominant ones, we provide additional
terms for taking into account the logarithmic dependence not only of the former, as done in
the original work of Denner and Pozzorini, but also of the latter. All these modifications
concern the approximation of the matrix elements or, more precisely, the interference of
tree-level and renormalised one-loop amplitudes leading to the ultra-violet (UV) finite virtual
corrections. The fourth point mentioned before was not considered in the pioneering work
of ref. [39] precisely because therein the focus was on the one-loop amplitudes and not their
interferences with tree-level amplitudes, which is what yields the virtual contribution to NLO
EW corrections. The effects of all these modifications and their validation are then showcased
presenting numerical results obtained via the implementation in MadGraph5_aMC@NLO.
In a fully automated way, for several different processes, we compare exact results for virtual
contributions obtained via MadLoop [18], one of the modules of MadGraph5_aMC@NLO,
and via the new implementation of the modified algorithm of Denner and Pozzorini for
calculating one-loop virtual Sudakov logarithms.

Besides purely virtual contributions, which are unphysical and IR divergent, we also
show comparisons between the Sudakov approximation and the exact NLO EW corrections
for production processes in proton-proton collisions, taking into account also the necessary
additional terms to achieve IR finiteness: real emission of massless particles (photons, quarks
and gluons) and PDF counter-terms. We show how, for a large class of processes and
IR-finite observables, at variance with the case of virtual amplitudes, the exclusion of the
contribution of photons from the Denner and Pozzorini algorithm [39, 43] leads to a better
approximation of NLO EW corrections. We describe in detail how the algorithm has to be
altered in order to exclude the QED component (photons) and keep the purely weak one
(W and Z bosons).

The article is organised as follows. In section 2 we revisit the work of Denner and
Pozzorini [39, 43] at the pure amplitude level. We set the notation, using as much as possible
the same one of ref. [39], and we introduce three of the main novelties mentioned before: the
formulation with strictly massless light-fermions and photons, the missing imaginary term,
and additional terms that better take into account angular dependences and differences
among the invariants. In section 3 we move to the virtual NLO EW level, considering the
interference of tree-level and one-loop amplitudes. Therein, we provide the additional term
for taking into account logarithms of QCD origin. In section 4 we present a modification of
the algorithm such that the contribution of photons and gluons is excluded. We discuss how
this can be a superior approach for approximating physical (IR-safe) cross sections at NLO
EW accuracy. In section 5 we describe the technical steps for the implementation of the
algorithm in the MadGraph5_aMC@NLO framework. We explain in detail the procedure
for the generation of all the additional amplitudes that are necessary for the evaluation
of the Sudakov logarithms and especially for the evaluation of the amplitudes themselves.
This procedure requires new features of the code, such as the possibility to evaluate the

– 3 –



J
H
E
P
0
2
(
2
0
2
2
)
1
6
1

interference between amplitudes with different external legs or numerical derivatives of the
matrix elements. In section 6 we provide numerical results comparing NLO EW virtual
contributions obtained via MadLoop and via the new implementation of the Sudakov
approximation. We show the relevance of the novelties introduced w.r.t. ref. [39] and at the
same time we validate the new implementation. In section 7 we repeat a similar comparison
for physical observables from selected hadronic production processes in high-energy collisions.
We discuss the numerical results and show how the exclusion of the contribution of photons
leads to better approximations of the NLO EW results. Both in section 6 and section 7
results are obtained in a completely automated way via the new implementation in the
MadGraph5_aMC@NLO framework. We give our conclusions and outlook in section 8.

2 The Denner and Pozzorini algorithm revisited

We start by revisiting the pioneering work of Denner and Pozzorini [39, 43], which provides
an algorithm for calculating one-loop EW double-logarithmic (DL) and single-logarithmic
(SL) corrections of the form

α

4π
log2 s

M2
W

and
α

4π
log

s

M2
W

, (2.1)

for any individual helicity configuration of a generic SM partonic processes. We introduce
three novel features w.r.t. the algorithm of ref. [39], which we will denoted in the following
as DP algorithm:

1. In all formulas light-fermions, photons and gluons are strictly massless, as in modern
higher-order calculations. In other words, IR divergences are regularised via DR,
introducing a IR-regularisation scale Q.

2. We correct the expressions for the Subleading Soft-Collinear terms (see sections 2.2
and 2.4), taking into account imaginary contributions that are relevant for 2 → n

processes with n > 2.

3. We keep track of terms that are proportional to the (squared) logarithm of the ratio
between two invariants that can be built via two different pairs of momenta among
those of the external particles. Namely, using the notation that will be introduced
later in this section, the terms proportional to log rkl

rk′l′
and log2 rkl

rk′l′
.

In this section, we will try to use as much as possible the notation of ref. [39], where the
DP algorithm has been formulated. In this way the reader can easily detect the differences
introduced in our work. Moreover, we will try to avoid unnecessary repetitions of the
content of ref. [39], but we will also define all the quantities that are entering the actual
implementation in MadGraph5_aMC@NLO, which is then discussed in section 5.

2.1 Range of validity and conventions

The DP algorithm strictly relies on the assumption that processes with on-shell external
legs are considered and, especially, that all invariants are much larger than the gauge-boson
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masses. In other words, if k and l are two generic external particles with momenta pk and
pl respectively, then

rkl ≡ (pk + pl)
2 ' 2pkpl �M2

W 'M2
H ,m

2
t ,M

2
W ,M

2
Z . (2.2)

It is interesting to notice that the condition (2.2) still allows for kinematic configurations
with rkl � rk′l′ � M2

W , where the quantities rkl and rk′l′ represent a generic pair of the
many possible invariants that one can build with two external momenta. However, since the
required formal accuracy consists of the DL and SL in (2.1), although logarithms of the form

α

4π
log2 rkl

rk′l′
and

α

4π
log

rkl
rk′l′

, (2.3)

are present at O(α) and can be non-negligible for configurations with rkl � rk′l′ � M2
W ,

they are not taken into account. In other words, the algorithm assumes the regime (2.2),
but large logarithms may be anyway not captured unless the condition

rkl/rk′l′ ' 1 (2.4)

is satisfied for any possible pair of rkl and rk′l′ invariants.
In fact, condition (2.4) is quite unrealistic for actual calculations in collider physics,

since cross sections are dominated precisely by regions where one or more rkl invariants
tend to be much smaller than s ≡ r12 �M2

W . Indeed, the rkl invariants are related to those
entering the propagators. Even if cuts are devised in order to maximise any possible value of
rkl for a given s, the fulfilment of condition (2.4) is strictly impossible. For instance, if (2.2)
is valid, one has that min(rkl/s) < 0.5 for a 2→ 2 process. This bound is even tighter and
tighter for a generic 2→ n process with n growing.1

It is worth to remind the reader an important limitation of the DP algorithm. For a
given process, at least one helicity configuration of the matrix element must not be mass
suppressed, i.e., it must not vanish in the limit M2

W /s→ 0.2 Indeed, such an assumption is
one of the hypotheses under which the algorithm has been derived. On the other hand, most
of the processes do satisfy this hypothesis, having at least one helicity configuration that is
not mass suppressed.3 Moreover, thanks to the condition (2.2), helicity configurations that
are not mass suppressed are by definition also dominant in the kinematic regime considered.
The condition (2.2) also implies that processes including unstable particles and their decays
cannot be treated in this approximation if physical observables are dominated by resonant
configurations. Rather, the process without decays should be first considered and the decays
should be then taken into account only after applying the DP algorithm.

1The determination of the configuration where the smallest invariant is maximal in a 2→ n process is
related to the determination of the largest possible value for the minimum angle between any two of the n
final-state momenta. This is the typical example of a mathematical problem that it is easy to define and
with a solution that is far from trivial. See for example http://neilsloane.com/packings/index.html#I.

2An equivalent formulation of this condition is that the scaling of the matrix element M with the centre-
of-mass energy

√
s must coincide with what one expects from dimensional analysis: a non mass-suppressed

helicity configuration of a matrix elements with n external legs should scale as
√
s

4−n. See footnote 3 for
a counterexample.

3Exceptions are possible, an important one is Higgs production via vector-boson fusion. Dimensional
analysis for a 2→ 3 matrix element requires [M] = GeV−1, and for this specific process the matrix element
scales with the energy asM∝ MW

s
.
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Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we
describe the DP algorithm and some modifications we have introduced in order to achieve
the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only
enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any
SM amplitudes, in DR and therefore with possibly massless particles. The problems related
to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are
logarithmic, they can be expressed via the quantities

L(|rkl|,M2) ≡ α

4π
log2 |rkl|

M2
and l(|rkl|,M2) ≡ α

4π
log
|rkl|
M2

, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and
MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless
particles, the regularisation of the divergences will lead to logarithms of the form (2.5)
where M → Q and Q is the IR-regularisation scale. The most important point, in order to
understand the novelties introduced in this section, is that the DP algorithm splits twice
the logarithms of the form in (2.5); both splittings are connected to the modifications of the
DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely
energy-dependent class, which is associated to the scales MW and

√
s and parametrised by

the quantities
L(s) ≡ L(s,M2

W ) and l(s) ≡ l(s,M2
W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This
splitting involves the imaginary component that we are going to introduce in the formulas
and that is not present in ref. [39]. It also involves the modifications that take care of the
violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an
unified approach, without separating purely QED from purely weak effects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR
scale. In other words, for the contribution from QED loops MW works as a technical
separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via the
electroweak Casimir operator Cew, which involves the entire SU(2) × U(1) group, while
below MW we have only quantities that involve the charges Qk of the external particles.
The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,
and in ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � λ, where λ
is the mass of the photon. In this separation the logarithms l(M2

W ,M
2
Z), l(m2

t ,M
2
W ), and

l(M2
H ,M

2
W ), similarly to the quantities log (|rkl|/s) and log2 (|rkl|/s), are neglected when

they do not multiply the term l(s).
4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n→ 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 → n − 2 processes via crossing
symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative
energy and that some of the rjk are negative. For instance, crossing a 4→ 0 process into a 2→ 2 process
r13 = (p1 + (−p3))2 = t.
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In ref. [39] all the quantities denoted as electromagnetic (“em”) depend on mf 6=t and λ,
which here are considered exactly equal to zero,

mf 6=t = λ = 0 . (2.7)

The consequence of (2.7) is that DR becomes necessary. In D = 4 − 2ε dimensions,
electromagnetic logarithms transform into 1/ε poles plus finite terms and logarithms involving
the IR-regularisation scale Q. In this context we are not interested in the structure of the
IR poles, which for NLO EW corrections is discussed, e.g., in refs. [16, 17, 24, 95]; we are
interested only in the logarithmic dependence of the finite part. This can be simply derived
via the substitutions

log(λ2)→ log(Q2) , log(m2
f 6=t)→ log(Q2) , (2.8)

in the expressions of ref. [39].
We want to comment on the dependence on Q, the IR-regularisation scale, which

is introduced here and it is not present in the original DP algorithm. The derivation
of the formulas in ref. [39] depends on the assumption that µ2 = s, but therein µ is
the UV-regularisation scale since all the IR divergences are regularised via mf 6=t and λ.
However, similarly to this work, therein formulas have been derived assuming an on-shell
renormalisation scheme, such as the α(MZ) or Gµ ones. With such a renormalisation scheme,
no renormalisation-scale dependence is present for one-loop renormalised amplitudes, both if
exactly calculated or using the LA. Therefore, the DP algorithm, although derived assuming
a specific value for µ (µ2 = s), returns results that do not depend on µ. The substitution
in (2.8), that we perform due to the condition (2.7), does not depend on the condition (2.2).
Moreover, it affects only the regularisation of IR divergences and does not concern the UV
ones. Therefore, this substitution introduces the correct dependence on Q even if a common
regulator for UV and IR divergences (Q = µ) is used. Exceptions are discussed in section 3.

Before providing the expressions necessary for automating one-loop EW Sudakov
logarithms, we introduce further conventions and notations according to ref. [39]. Amplitudes
are assumed with n arbitrary external particles and all momenta pk incoming. Needless
to say, any 2 → n − 2 amplitude can be rewritten into a n → 0 amplitude via crossing
symmetry. Processes are denoted as

ϕi1(p1) . . . ϕin(pn)→ 0 , (2.9)

where the (anti)particles ϕik are the components of the various multiplets ϕ of the SM:

• fκσ and f̄κσ : chiral fermions and antifermions, with chiralities κ = R,L and the isospin
indices σ = ±,

• Va = A,Z,W±: gauge bosons transversely (T) or longitudinally (L) polarised. Neutral
gauge bosons are also denoted as N = A,Z,

• Φi: the scalar doublet containing the Higgs particle H and the neutral and charged
Goldstone bosons χ, φ±.

– 7 –
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An important technical point of the DP algorithm is that, since the high-energy limit is
assumed, the Goldstone-boson equivalence theorem can be used. In fact, with this algorithm,
contributions from longitudinal gauge-bosons are always evaluated via the Goldstone-boson
equivalence theorem. We will return to this point in section 5.1.

Following the same notation of ref. [39], the couplings of each external field ϕik to the
gauge bosons Va is denoted by ieIVa(ϕ), namely, ieIVaϕiϕi′ (ϕ) is the coupling corresponding
to the Vaϕ̄iϕi′ vertex, with all fields that are incoming. For simplicity, in the formulas
the components ϕik are replaced by their indices ik, namely, Iaiki′k(k). All the values and
formulas for the quantities Iaiki′k(k), as many other terms appearing in the next sections are
reported in detail in the appendices of ref. [39]. We do not repeat them here, but we want
to warn the reader that the same exact conventions for Feynman rules have to be used in
order obtain consistent results.

For any process denoted as in (2.9), the Born matrix element reads

Mi1...in
0 (p1, . . . , pn). (2.10)

The O(α) corrections toM0 in LA, δM, has the form

δMi1...in(p1, . . . , pn) =Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin . (2.11)

Equation (2.11) means that the result can be written in a factorised form, but that involves
Born amplitudes for different processes. The contributions to δM have different origins:

δ = δLSC + δSSC + δC + δPR. (2.12)

The quantities δLSC and δSSC are respectively the leading and subleading soft-collinear
logarithms. They both emerge from the DL, which in turn originate from the eikonal
approximation of one-loop diagrams where gauge bosons are exchanged between external
legs and are soft-collinear. The former represents the symmetric and solely energy-dependent
class of logarithms, while the latter involves mass ratios and ratios of invariants. The
quantity δC consists of the collinear logarithms, originating from virtual collinear gauge
bosons from external lines and field renormalisation constants. The logarithms resulting
from parameter renormalisation, which can be determined by the running of the couplings,
correspond to the term δPR. In the case of longitudinally polarised bosons the equivalences

M...W±L ...
0 =M...φ±...

0 ,

M...ZL...
0 = iM...χ...

0 , (2.13)

are used and can be applied also for what concerns the different terms entering the definition
of δ.

In the following subsections we provide the formulas entering the implementation in
MadGraph5_aMC@NLO, which is described in section 5. We will discuss in detail only
the aspects concerning the differences w.r.t. ref. [39].

– 8 –
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge
bosons Va = A,Z,W± connecting two external legs. In particular, they originate from
regions where the gauge boson is soft and collinear to one of the external legs. Their
expressions can be derived by evaluating them in the eikonal approximation.

In ref. [39], DL have been in general identified as

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s)

= L(s) + 2l(s) log
M2
W

M2
+ 2l(s) log

|rkl|
s

+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation (2.14)
precisely represents the first of the logarithm splittings that has been mentioned before. In
the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which is symmetric
and energy dependent, and other two terms, of which the second can be neglected in the
approximation (2.4). Moving to the second line, the remaining terms are further rearranged
such that if M 6= MW , the mass-ratio logarithm log

M2
W

M2 is kept only when multiplying
l(s). The dots at the end stand for the terms that are dropped in the splitting of the
logarithms. In ref. [39], the first two terms in the second line of eq. (2.14) are identified
as the leading soft-collinear (LSC) contribution, which as already mentioned is angular-
independent and involves only the s/M2

W ratio in the logarithms. The remaining term leads
to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W± connecting two external
legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived
by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The
expression can be found in ref. [96]. If the gauge boson V with mass M is exchanged
between the external particles φk and φl, the relevant quantity is, following the conventions
of ref. [96],

C0(pk, pl,M,Mk,Ml) ∝
1

rkl

(
log2 |rkl|

M2
− 2iπΘ(rkl) log

|rkl|
M2

)
, (2.15)

where Θ is the Heaviside step function. It is then clear that rather than starting from
L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M2)− 2iπΘ(rkl)l(|rkl|,M2) . (2.16)

The difference is an imaginary component that involves a term proportional to l(s). For
2 → 2 processes, this is completely irrelevant and therefore all the results presented for
specific processes in ref. [39] are not affected by this additional term. Indeed, since 2→ 2

tree-level amplitudes are always real (as a consequence of the optical theorem), the imaginary
part of the one-loop (or Sudakov-approximated) amplitude drops out when the real part of
the loop-tree interference is considered. However, this is no longer the case starting from
2 → 3 processes, and indeed we do find that this imaginary part is not irrelevant. We
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therefore repeat the procedure of eq. (2.14) in order to identify how the impact of the term
2iπΘ(rkl) translates into the DP algorithm. Moreover, we keep track of the terms that
would be otherwise discarded assuming condition (2.4).

Starting from (2.16) we obtain

L(|rkl|,M2)− 2iπΘ(rkl)l(|rkl|,M2) =

= L(s,M2) + 2l(s,M2)

(
log
|rkl|
s
− iπΘ(rkl)

)
+ L(|rkl|, s)− 2iπΘ(rkl)l(|rkl|, s) =

= L(s) + 2l(s) log
M2
W

M2︸ ︷︷ ︸
LSC

+ 2l(s)

(
log
|rkl|
s
− iπΘ(rkl)

)
︸ ︷︷ ︸

SSC

+ (2.17)

2l(M2
W ,M

2) log
|rkl|
s

+ L(|rkl|, s)− 2iπΘ(rkl)l(|rkl|, s)︸ ︷︷ ︸
SSCs→rkl

+ · · ·

where we have dropped in the splitting of the logarithms only terms involving neither s nor
rkl.5 In the third line of eq. (2.17) there are terms that are relevant for the formal expansion
in LA, i.e., the correct expression to be used instead of (2.14). The first two terms in the
sum give the LSC logarithms, while the third one contributes to the SSC ones. On the
contrary in the fourth line there are further terms that become relevant when s� rkl �M ,
i.e., departing from condition (2.4). Formally, they do not enter the LA so they cannot be
identified neither as LSC nor as SSC. On the other hand, since they depend on rkl, we will
take into account their contribution in the expression of the SSC logarithms (section 2.4).
For this reason we have denoted them in eq. (2.17) as SSCs→rkl .

As we will discuss in more detail in section 6.2, even taking into account the SSCs→rkl

contribution, the full control of logarithms involving the ratios of |rkl| invariants and s

cannot be achieved via the DP algorithm. We will discuss the case of a specific process for
which this limitation is manifest. On the other hand, several numerical results in section 6.2
and section 7 clearly show how the inclusion of the SSCs→rkl terms substantially improves
the approximation of such class of logarithms and in turn of EW virtual one-loop corrections
at high energy.

2.3 LSC: leading soft-collinear contributions

The LSC logarithms can be rearranged as a single sum over the external legs,

δLSCMi1...in =
n∑
k=1

δLSC
i′kik

(k)Mi1...i′k...in
0 , (2.18)

5These terms are L(M2
W ,M

2) and −iπΘ(rkl)l(M
2
W ,M

2), which are indeed neglected unless the vector
boson is the photon and M2 → Q2. In that case these contributions are retained. The former, together with
the term 2l(s) log

M2
W

M2 from the LSC, is entering the definition of Lem(s,Q2,m2
k) in eq. (2.20). The latter,

again only for the photons, enters directly eq. (2.23) together with the term 2l(M2
W ,M

2) log |rkl|
s

from the
SSCs→rkl .
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where δLSC
i′kik

(k) reads

δLSC
i′kik

(k) = −1

2

[
Cew
i′kik

(k)L(s)− 2(IZ(k))2
i′kik

log
M2
Z

M2
W

l(s) + δi′kikQ
2
kL

em(s,Q2,m2
k)

]
. (2.19)

In this case, besides the term Lem(s,Q2,m2
k), the expression is the same as ref. [39]. The

expressions for the electroweak Casimir operator Cew
i′kik

(k), the squared Z-boson coupling
(IZ(k))2

i′kik
, and the charge Q2

k for a generic particle k and a specific polarisation can
be found in ref. [39]. It is important to note that the first two quantities have indexes
and can be non-diagonal. We will return to this point discussing the implementation in
MadGraph5_aMC@NLO. Using DR the electromagnetic DL reads

Lem(s,Q2,m2
k) ≡ 2l(s) log

(
M2
W

Q2

)
+ L(M2

W , Q
2)− Lreg(m2

k, Q
2) , (2.20)

with

Lreg(m2
k, Q

2) ≡

{
0 if m2

k = 0 ,

L(m2
k, Q

2) otherwise .
(2.21)

2.4 SSC: subleading soft-collinear contributions

Unlike the LSC terms, the SSC ones remain a sum over pairs of external legs of the form

δSSCMi1...in =

n∑
k=1

∑
l<k

∑
Va=A,Z,W±

δVa,SSC
i′kiki

′
lil

(k, l)Mi1...i′k...i
′
l...in

0 . (2.22)

This part is the one with the largest differences w.r.t. ref. [39]. The exchange of soft neutral
gauge bosons contributes with

δA,SSC
i′kiki

′
lil

(k, l) =

[
2
(
l(s)+l(M2

W ,Q
2)
)(

log
|rkl|
s
−iπΘ(rkl)

)
+∆s→rkl(rkl,M

2
W )

]
IAi′kik

(k)IAi′lil
(l),

δZ,SSC
i′kiki

′
lil

(k, l) =

[
2l(s)

(
log
|rkl|
s
−iπΘ(rkl)

)
+∆s→rkl(rkl,M

2
Z)

]
IZi′kik

(k)IZi′lil
(l), (2.23)

and charged gauge bosons yields

δW
±,SSC

i′kiki
′
lil

(k, l) =

[
2l(s)

(
log
|rkl|
s
− iπΘ(rkl)

)
+ ∆s→rkl(rkl,M

2
W )

]
I±
i′kik

(k)I∓
i′lil

(l). (2.24)

The quantity ∆s→rkl(rkl,M
2) is set equal to zero when the condition (2.4) is assumed and

the LA is applied in a strict sense, as done in ref. [39]. Taking instead into account the fact
that s� rkl �M2, this quantity reads

∆s→rkl(rkl,M
2) ≡ L(|rkl|, s) + 2l(M2

W ,M
2) log

|rkl|
s
− 2iπΘ(rkl)l(|rkl|, s) , (2.25)

and precisely corresponds to the SSCs→rkl logarithms of eq. (2.17).
The quantities IA, IZ and I± are the couplings with respectively the photon, the Z

boson and the W± boson, where we have omitted the indices i′jij . While IA is always
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diagonal in these indices, IZ can be non-diagonal and I±(k) is always off diagonal. The
impact of the new imaginary terms proportional to iπΘ(rkl) on results obtained with the
DP algorithm is directly connected to the aforementioned off-diagonal structures. Indeed
the virtual contribution to NLO EW corrections involves terms of the form 2<(M0δM∗),
where

2<
(
Mi1...in

0 (δMi1...in)∗
)
⊃ 2<

(
Mi1...in

0

(
δVa,SSC
i′kiki

′
lil

(k, l)Mi1...i′k...i
′
l...in

0

)∗)
. (2.26)

If the IVa entering eq. (2.26) via δVa,SSC is diagonal or bothMi1...in
0 andMi1...i′k...i

′
l...in

0 are
real, like in 2→ 2 processes, the contributions of imaginary terms proportional to iπΘ(rkl)

vanish, otherwise they formally contribute. It is also interesting to note that with DR
and massless photons, setting Q2 = s the entire δA,SSC contribution vanishes if we also set
∆s→rkl(rkl,M

2
W ) = 0. This can be seen from the definition of δA,SSC in eq. (2.23). This

argument will also be recalled in section 3.1, where the QCD contribution to NLO EW
corrections to squared matrix-element is discussed.

2.5 C: collinear and soft single logarithms

In this section we provide the results obtained in ref. [39], adapting them for the case with
massless light-fermions and photons. The formula for the collinear and soft single logarithms
can be written as a sum over the external particles and polarisations,

δCMi1...in =

n∑
k=1

δC
i′kik

(k)Mi1...i′k...in
0 , (2.27)

with δC
i′kik

(k) that depends on the external particle and polarisation ϕik . We provide the
results in the following. The expressions for all the new terms introduced in the formulas
can be found in ref. [39].

Chiral fermions. Considering fermions fκσ with chirality κ = R,L and isospin indices
σ = ±, the result is

δC
fσfσ′

(fκ) = δσσ′

{[
3

2
Cew
fκ −

1

8s2
w

(
(1 + δκR)

m2
fσ

M2
W

+ δκL

m2
f−σ

M2
W

)]
l(s) +Q2

fσ l
em(m2

fσ)

}
,

(2.28)
where the purely electromagnetic logarithms read

lem(m2
f ) ≡ 1

2
lreg(M2

W ,m
2
f ) + l(M2

W , Q
2) , (2.29)

with

lreg(M2
W ,m

2
f ) ≡

{
l(M2

W , Q
2) if m2

f = 0 ,

l(M2
W ,m

2
f ) otherwise .

(2.30)

Transverse charged gauge bosons W. The result is

δC
WσWσ′ (VT) = δσσ′

[
1

2
bew
W l(s) +Q2

W l
em(M2

W )

]
, (2.31)

where bew
W is a coefficient of the β-function.
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Transverse neutral gauge bosons A,Z. The results for symmetric and antisymmetric
parts are expressed in terms of the coefficients bew

NN ′ of the β-function. The result is

δC
N ′N (VT) =

1

2
[EN ′Nb

ew
AZ + bew

N ′N ]l(s) +
1

2
δNAδN ′AδZ

em
AA, (2.32)

where the off-diagonal β-function bew
N ′N coefficient is entering the expression. Since EAZ =

−EZA = 1 the off-diagonal components read

δC
AZ(VT) = bew

AZ l(s), δC
ZA(VT) = 0. (2.33)

The quantity Zem
AA in DR reads

δZem
AA = −4

3

∑
f,i,σ 6=t

Nf
CQ

2
fσ l(M

2
W , Q

2) . (2.34)

Longitudinally polarised gauge bosons. By means of amplitudes involving Goldstone
bosons, the complete collinear corrections (2.27) for longitudinal gauge bosons is

δCM...W±L ... = δC
φ±φ±(Φ)M...φ±...

0 = δC
φ±φ±(Φ)M...W±L ...

0 ,

δCM...ZL... = iδC
χχ(Φ)M...χ...

0 = δC
χχ(Φ)M...ZL...

0 , (2.35)

with

δC
φ±φ±(Φ) =

[
2Cew

Φ −
N t

C

4s2
w

m2
t

M2
W

]
l(s) +Q2

W l
em(M2

W ),

δC
χχ(Φ) =

[
2Cew

Φ −
N t

C

4s2
w

m2
t

M2
W

]
l(s) . (2.36)

Higgs boson. The complete correction is

δC
HH(Φ) =

[
2Cew

Φ −
N t

C

4s2
w

m2
t

M2
W

]
l(s) . (2.37)

2.6 PR: logarithms connected to the parameter renormalisation

The last ingredient is the logarithms related to the UV renormalisation. In ref. [39] they
have been identified via the formula

δPRM =

(
δM0

δe
δe+

δM0

δcw
δcw +

δM0

δht
δht +

δM0

δhH
δheff

H

)∣∣∣
µ2=s

, (2.38)

where the quantities

ht =
mt

MW
, hH =

M2
H

M2
W

, (2.39)

are related to the top-quark Yukawa coupling and to the scalar self coupling, respectively.
All the δ’s are the logarithmic part of the renormalisation counter-terms of the corresponding
dimensionless quantities. In the δ’s, regardless of the value of Q chosen for the regularising
the IR divergences in the other contributions (LSC, SSC, C), the UV regularisation-scale

– 13 –



J
H
E
P
0
2
(
2
0
2
2
)
1
6
1

µ must be set as µ2 = s. Indeed, although renormalised amplitudes in an on-shell scheme
do not depend on the value of the unphysical UV-regularisation scale µ, the DP algorithm
has been derived assuming µ2 = s. Therefore, in order to preserve the cancellation of the µ
dependence related to the UV poles, in the logarithmic part of the UV counter-terms it is
necessary that µ2 = s.

Here, we rearrange the formula in eq. (2.38) for practical purposes related to the
implementation in MadGraph5_aMC@NLO, discussed in section 5, but the results are
fully equivalent with those of ref. [39]. In practice we rearrange it into

δPRM =

(
δM0

δα
δα+

δM0

δM2
W

δM2
W +

δM0

δM2
Z

δM2
Z +

δM0

δmt
δmt +

δM0

δntad
δntad

)∣∣∣
µ2=s

. (2.40)

It is worth to recall that the renormalisation of masses in propagators or in couplings with
mass dimension is not relevant, because those contribute only to mass-suppressed amplitudes.
The parameter ntad is a technical parameter that has the only purpose of keeping track of
the appearances of the tadpole counter-term. In practice what we do is to modify Feynman
rules for three-scalar and four-scalar vertices by rescaling their value by the parameter ntad,
which is then set equal to one in the numerical evaluation.

We use the following formulas:

δM2
W

M2
W

= −[bew
W − 4Cew

Φ ]l(µ2)−
N t

C

2s2
w

m2
t

M2
W

l(µ2),

δM2
Z

M2
Z

= −[bew
ZZ − 4Cew

Φ ]l(µ2)−
N t

C

2s2
w

m2
t

M2
W

l(µ2), (2.41)

and
δα =

2δZe
4π

=
1

4π

(
−bew

AAl(µ
2) + 2δZem

e

)
, (2.42)

where the purely electromagnetic part reads

δZem
e ≡

{
−1

2δZ
em
AA = 2

3

∑
f,i,σ 6=tN

f
CQ

2
fσ
l(M2

W , Q
2) in the α(0) scheme ,

0 in the Gµ or α(MZ) scheme.
(2.43)

In this work, all the results are presented by adopting the Gµ scheme, where in the
place of α the input parameter is Gµ, which is related to α via the tree-level relation
Gµ = πα/(

√
2M2

Zc
2
ws

2
w). This translates into the substitution

δM0

δα
δα→ δM0

δGµ
δGµ with δGµ =

δGµ
δα

δα+
δGµ
δM2

Z

δM2
Z +

δGµ
δM2

W

δM2
W , (2.44)

in eq. (2.40).
The remaining terms are

δmt

mt
=

[
1

4s2
w

+
1

8s2
wc

2
w

+
3

2c2
w

Qt −
3

c2
w

Q2
t +

3

8s2
w

m2
t

M2
W

]
l(µ2) , (2.45)

where on-shell renormalisation for the mass is assumed, and finally

δntad =
e

2sw

δt

MWM2
H

, (2.46)
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with the contribution from the tadpole renormalisation reading

δt = −T =
1

eswMW

[
−3

2
M2
W

(
M2
Z

c2
w

+ 2M2
W

)
−
M2
H

4
(2M2

W +M2
Z + 3M2

H) + 2N t
Cm

4
t

]
l(µ2) . (2.47)

3 Sudakov logarithms and NLO EW corrections

In the previous section we have revisited the DP algorithm, which allows the calculation
of electroweak DL and SL in LA for virtual scattering amplitudes. On the other hand,
for collider results and in general for the calculation of physical observables, the relevant
quantities are amplitudes that are either squared or interfered among them. In particular in
this work our final goal is the NLO EW corrections to LO cross sections.

For any differential or inclusive cross section Σ, adopting the notation already used in
refs. [12, 16, 17, 82, 97–104], the different contributions from the expansion in powers of αS
and α can be denoted as:

ΣLO(αS, α) = ΣLO1
+ · · ·+ ΣLOk

, (3.1)

ΣNLO(αS, α) = ΣNLO1
+ · · ·+ ΣNLOk+1

, (3.2)

with k being process dependent and k ≥ 1.
Each ΣLOi

denotes a specific αnSαm perturbative order that can be present at LO, i.e.,
arising from tree-level diagrams only. On the contrary, each ΣNLOi

denotes a specific NLO
perturbative order to which the interferences between different classes of tree-level and
one-loop diagrams can contribute. For a given process, the values of n and m vary for each
ΣLOi

, but the sum n+m is constant. Moreover, if ΣLOi
∝ αnSαm then ΣLOi+1

∝ αn−1
S αm+1,

ΣNLOi
∝ αn+1

S αm and ΣNLOi+1
∝ αnSαm+1.

It is easy to understand that if the perturbative order of each ΣNLOi
is denoted as

O(ΣNLOi
) then

O(ΣNLOi) = O(ΣLOi)× αS = O(ΣLOi−1
)× α . (3.3)

Equation (3.3) implies something that is very well known and, e.g., has been discussed
in detail in ref. [82]. If ΣNLOi

involves EW corrections (i > 1) and it is not the term with
the possibly highest α power at NLO (i < k + 1), then both QCD and EW loops on top of
tree-level amplitudes can enter into the game. Even worse, this separation into “QCD loops”
and “EW loops” is artificial and especially cannot be rigorously defined. Since one of the
main features of our implementation of the DP algorithm is the possibility of comparing the
DL and SL terms in LA against the exact result for NLO EW corrections, the contribution
of such “QCD loops” cannot be ignored.

In LA, the contribution from one-loop corrections to the quantity ΣNLOi
, denoted as

Σvirt
NLOi

can be written in the form

(Σvirt
NLOi)

∣∣∣
LA

= ΣLOi−1
δEW

LA + ΣLOiδ
QCD
LA . (3.4)
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In the following section we provide the necessary ingredients for taking into account
single and double-logarithmic enhanced contribution of QCD origin in the computation of
ΣNLO2

, what is typically dubbed in the literature as “NLO EW corrections”. The case of
the Complete-NLO, i.e. the complete set of ΣNLOi

contributions, is left for future work. In
practice, what is discussed in this work is sufficient for both the case of ΣNLO2

and ΣNLOk+1
,

since the latter never receives contributions from “QCD loops”, as can be seen from eq. (3.3).
The quantity δEW

LA is what is calculated via the DP algorithm revisited in section 2 and
summarised in eqs. (2.10)–(2.12). For the case of ΣNLO2

, or equivalently the case ΣNLOk+1
,

ifM0 is the amplitude that once squared leads to ΣLO1
, or equivalently ΣLOk

, then

δEW
LA ≡

2<(M0δM∗)
|M0|2

. (3.5)

As we said, we leave the case of the Complete-NLO for future work. In that case also
eq. (3.5) would receive modifications since a generic ΣLOi−1

term with 1 < i < k can itself
arise from the interference of amplitudes factorising different powers of αS and α.

3.1 Contributions from QCD loops

If ΣLOi ∝ αnSα
m, since ΣLOi+1 ∝ αn−1

S αm+1 then ΣLOi+1 originates from either a squared
amplitude |M̃0|2 with

M̃0 ∝ α(n−1)/2
S α(m+1)/2 , (3.6)

or an interference M̃0,1M̃∗0,2 of two amplitudes M̃0,1 and M̃0,2 with

M̃0,1 ∝ α(n−1+j)/2
S α(m+1−j)/2 , (3.7)

M̃0,2 ∝ α(n−1−j)/2
S α(m+1+j)/2 , (3.8)

with j being an integer in the range 0 < j ≤ min(n − 1,m + 1). Similarly to eqs. (2.10)–
(2.12), where starting from the amplitudeM0 the logarithmic-enhanced EW corrections are
denoted as δM, we can denote the logarithmic-enhanced QCD corrections to M̃0 as δM̃.
This implies that

ΣLOi+1
∝ |M̃0|2 or ΣLOi+1

∝ 2<(M̃0,1M̃∗0,2) , (3.9)

and respectively

ΣLOi+1
δQCD

LA ∝ 2<(M̃0δM̃∗) or ΣLOi+1
δQCD

LA ∝ 2<(M̃0,1δM̃∗2 + M̃0,2δM̃∗1) . (3.10)

In principle, following the same steps of section 2, one could derive a general algorithm
for obtaining δM̃ starting form a generic M̃0. Indeed, besides the case of non-abelian gluon
vertices, the DL and SL logarithms can be identified by looking at the purely QED part
of the expressions of section 2. In practice, this would lead to non-trivial terms involving
colour-linked amplitudes, which are not per se problematic, but still avoidable via two simple
assumptions on the value of Q2 and ∆s→rkl(rkl,M

2).
As already mentioned at the end of section 2.4, if one sets Q2 = s and ∆s→rkl(rkl,M

2) = 0,
as in the formal derivation of ref. [39], then the SSC contribution from purely QED origin
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vanishes. Similarly, simplifications in the rest of the expressions of section 2 happen. Setting
Q2 = s and ∆s→rkl(rkl,M

2) = 0, these simplifications are present also for the case of QCD.
Especially, the SSC contribution vanishes also in the case of QCD corrections. As we will
see later in section 4.1, these two assumptions are innocuous for what concerns δQCD

LA in LA
when physical observables are considered.

With these two assumptions, if M̃0 ∝ α
nαS
S αnα we can write

δM̃ ≡ M̃0

[(
nt L

t(s) + nαS l
αS (µ2

R)− ng lαS (s)
)

+
δM̃0

δmt
(δmt)

QCD

]
, (3.11)

where nt and ng are the number of top quarks and gluons in the external legs, respectively.
The quantities Lt(s), lαS (µ2) and (δmt)

QCD are defined as

Lt(s) ≡ CF
2

αS
4π

(
log2 s

m2
t

+ log
s

m2
t

)
, (3.12)

lαS (µ2) ≡ 1

3

αS
4π

log
µ2

m2
t

, (3.13)

(δmt)
QCD ≡ −3CF

αS
4π

log
s

m2
t

, (3.14)

with CF = 4/3, and they have a very different origin, as explained in the following.
The terms proportional to Lt(s) can be obtained by performing the substitution

Q2
t

α

4π
→ CF

αS
4π

, (3.15)

in the purely electromagnetic component of the LSC and C contributions for top quarks
(eqs. (2.19) and (2.28)). The reason why the top quark is special is that we are understanding
the use of the five-flavour scheme. If other fermions f are treated as massive (mf 6= 0), the
corresponding logarithms with t→ f should be also taken into account. This is true also for
the remaining contributions discussed in this section. Conversely, for all the other massless
quarks, if one sets Q2 = s and ∆s→rkl(rkl,M

2) = 0, not only the SSC but also the LSC and
C contributions to δQCD

LA vanish.
The term proportional to lαS (s) can be derived from the diagonal C contribution for the

photon by applying the substitution (3.15). These logarithms are the virtual counterpart of
the quasi-collinear logarithms emerging from the g → tt̄ splittings. The term proportional
to lαS (µ2

R) has instead a different origin; it is connected to the MS renormalisation of
αS. While the renormalisation of the EW sector can be performed without introducing a
renormalisation-scale dependence, this is unavoidable in QCD. With five active flavours,
the logarithmic-enhanced part of the αS counter-term reads

δαS
αS

=
αS
4π

[
β0 log

µ2
R

Q2
+

2

3
log

µ2
R

m2
t

]
, (3.16)

where µR is the renormalisation scale and the quantity β0 = 11− 2
3nf is the leading term of

the QCD β function in the SM (nf = 6). We are assuming Q2 = s and it is reasonable to
assume also µ2

R ∼ s, which let us to ignore the term proportional to log
µ2
R
Q2 in eq. (3.11).
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While the contribution from αS-renormalisation to the LA can be expressed via algebraic
formulas, this is not possible in the case of mt-renormalisation (or equivalently for any other
quark that would be considered as massive), where the derivative δM̃0/δmt is entering the
expression.6 The formula in eq. (3.14) has been obtained in the on-shell scheme, consistently
with the EW case.

Via eqs. (3.11) and (3.10) we can finally write a compact formula for δQCD
LA entering

eq. (3.4). If ΣLOi ∝ αnSαm and therefore ΣLOi+1
∝ αn−1

S αm+1, then

δQCD
LA ≡ 2

[
nt L

t(s) + (n− 1)lαS (µ2
R)− ng lαS (s)

]
+

1

δΣLOi

δΣLOi

δmt
(δmt)

QCD . (3.17)

4 Sudakov logarithms and physical cross sections

What has been discussed up to this point concerns the LA of one-loop “EW corrections”
(section 2) and one-loop “QCD corrections” (section 3.1) to amplitudes and their combination
for the LA of the virtual contribution to the perturbative orders ΣNLOi with i = 2 or i = k+1

(eq. (3.4)), in the perturbative expansion of the cross section Σ.
Both cases, amplitudes or virtual contributions, are unphysical and cannot be directly

used for theoretical predictions of physical quantities. Since electromagnetic contributions
are included (one-loop QED corrections), the DP algorithm leads to the LA of a quantity that
is IR divergent and must be combined at least with the LA of the IR-divergent real-emission
contributions. Alternatively, the DP algorithm can be slightly modified by excluding the
QED contribution, which is the only one leading to unphysical quantities. While virtual
QED SL and DL involve the unphysical quantity Q, the remaining contributions of purely
weak origin involve the physical masses. Clearly, also these logarithms can be partially
canceled by their real-emission counter part, the heavy-boson-radiation (HBR) of an extra
W , H or Z boson, but these cancellations strongly depend on the specific set-up and the
degree of inclusiveness of the observable considered, see e.g. ref. [73]. In other words, while
photon and gluon emissions and real radiation of light quarks are unavoidable contributions
for obtaining IR-finite predictions, the HBR is not necessary for the sake of IR finiteness.
The contribution of HBR may be also relevant for the LA of the entire ΣNLOi prediction,
but this critically depends on the process and the set-up considered.

In the literature, e.g. in the recent work of ref. [91] or in ref. [79], this problem has been
circumvented by dropping the contributions tagged as “em” in the DP algorithm, namely
those involving the ratios M2

W /λ
2 or M2

W /m
2
f , in the original formulation, or equivalently

the ratio M2
W /Q

2 in this work. We believe this approach is artificial and based on a wrong
interpretation of the role of MW in the DP algorithm. While the DL and SL induced by
W and Z boson loops (the L(|rkl|,M2) and l(|rkl|,M2) terms with M = MW ,MZ) are
physical, in the case of QED MW is only a technical separator used in order to split the

6By further expanding eqs. (3.1) and (3.2) in powers of ht (see eq. (2.39)) this would be possible, but it
is an unnecessary complication of notation in this context and especially it is not a feature that is easily
automatable. It is interesting to note that also the contribution from αS-renormalisation could be expressed
via the derivative δM̃0

δαS
instead of simply nαS ; this is precisely what is done in eq. (2.40) for α.
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logarithms according to the logic discussed in section 2.2. Bypassing the problem of IR
finiteness by simply removing the logarithms involving MW and the IR scale is therefore an
approach mostly driven by simplicity.

We propose a more rigorous approach for avoiding IR sensitivity in the implementation
of the DP algorithm for physical cross sections. We will denote this approach as SDKweak,
where SDK is an abbreviation for Sudakov. The SDKweak approach is based on the idea of
selecting only the DL and SL of purely weak origin, excluding the contributions of QED
corrections. Actually, for a large class of processes this approach leads to predictions that
are much closer to the exact NLO EW corrections than in the case of approaches based on
the removal of all “em” terms, what we will denote from now on also as SDK0 approach.
Indeed, in sufficiently inclusive observables, most of the logarithms of QED origin cancel
against their real-emission counterparts.

The DP algorithm has been formulated in ref. [39] for one-loop amplitudes and gener-
alised in section 3 for their interference with tree-level amplitudes. From now on, we will
also denote the latter case as simply the SDK approach. One should keep in mind that, at
variance with the SDK0 and SDKweak approaches, the SDK one leads to IR-divergent quan-
tities, which approximate correctly the virtual contribution to NLO EW cross sections, but
that cannot be used for physical observables. We describe in the following how expressions
of sections 2 and 3 should be modified in order to adapt the DP algorithm, which has been
formulated so far for the SDK approach, to the SDKweak approach.

4.1 SDKweak: purely weak LA for cross sections

In general, when W bosons are not involved in a process, virtual EW corrections can be
divided into a QED and a purely weak component in a gauge-invariant way. QED corrections
consist of all loops involving QED interactions between fermions and photons, excluding the
vacuum-polarisation diagrams.7 The purely weak part consists of all the rest of contributions,
including also the vacuum-polarisation diagrams and the renormalisation of the photon
wave-function and of the fine-structure constant α.

In order to isolate purely weak effect in DL and SL, we exclude all contributions induced
by fermions and photons interactions in all formulas of section 2, with the exception of those
from parameter renormalisation (PR). Moreover, we exclude also DL and SL related to
photons interacting with W bosons as external legs. While the classification of the W -γ
interaction as either a purely weak or QED effect is ambiguous, the identification of the
terms in the expressions of section 2 that originate from such interaction is unambiguous.

The purely weak version of the DP algorithm, SDKweak, can be obtained following
these steps:

1. Calculate the δPR in eq. (2.12) as in the standard SDK approach.

2. For each external particle ϕik in (2.9), set

Qk = IA(k) = 0 . (4.1)
7The relevant renormalisation conditions for fermion masses and wave-functions lead to counter-terms

that are derived only taking account the same class of loops.
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This step alone has the effect of eliminating all the terms tagged as “em”, with the
exception of δZem

AA. It also eliminates all the SSC terms and C terms that lead to SL
originating from photons, with the exception of those related to transverse W bosons.

3. For each external particle ϕik in (2.9), perform the replacement

Cew
i′kik

(k) −→ Cew
i′kik

(k)−Q2
k , (4.2)

with the value of Q2
k before enforcing eq. (4.1). This, in combination with eq. (4.1),

has the effect of eliminating the DL due to photons.

4. Perform the replacement
bew
W −→ bew

W − 11/3 . (4.3)

This has the effect of eliminating for the transverse W bosons the C terms that lead
to SL originating from photons.

5. Set
δZem

AA = 0 , (4.4)

and perform the replacement

bew
AA −→ bew

AA +
4

3

∑
f,i,σ 6=t

Nf
CQ

2
fσ = bew

AA + 80/9 . (4.5)

This has the effect of eliminating, for the photons, the C terms that lead to SL
originating from light fermions.

6. Calculate the remaining terms in eq. (2.12) with the new redefinitions of steps 2–5.

We want to stress that, thank to the step 1, the redefinitions of steps 2–5 do not apply
to all the PR contributions discussed in section 2.6; for them any QED-like contribution is
retained. We remind the reader that also in this context we assume the use of either the
α(MZ) or Gµ-scheme, which both have an IR structure that is MS-like, namely, IR poles
are not present in the α counter-term, δα.8 This difference of treatment for the PR terms,
besides the definition of purely weak and QED introduced before, can also be understood
in a different way. Logarithms from PR are related to UV renormalisation and do not
involve IR sensitivity, as can be seen from all the equations in section 2.6, which do not
depend on the infrared regulator Q. Therefore, in order to achieve physical predictions and
eliminate the Q dependence, there is no need to exclude their components that are related
to QED interactions. This is in contrast with the LSC, SSC and C contributions, where
the QED contributions are Q-dependent (see eq. (2.19) and eq. (2.23) for respectively LSC
and SSC contributions, and eq. (2.29), which defines the term lem entering most of the C
contributions) and therefore IR-sensitive. Moreover, while LSC, SSC and C contributions
have real-emission counterparts that, together with PDF counter-terms, lead to IR finiteness
and the (partial) cancellation of Q dependence, this is not the case for PR contributions.

8The algorithm therefore has to be slightly modified for the case of isolated photons in the final state
(see also the discussion in ref. [17]); we leave this to future work.
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As already mentioned, in sufficiently inclusive observables, most of the logarithms
of QED origin cancel against their real-emission counterparts. Thus, as we will show in
section 7, the purely weak version of the DP algorithm, the SDKweak approach, reproduces
very well the logarithmic dependence of NLO EW predictions for differential distributions in
several cases. For example, if we consider leptons or massive particles in the final state, it is
easy to understand how the purely weak version of the DP can be superior when predictions
for physical observables are considered.

If the real emission of photons is considered in the eikonal approximation and integrated
up to the energy Eγ =

√
s/2, where Eγ is the energy of the photon, large part of the QED

logarithms cancel. For example, all the QED contributions from LSC and SSC terms are
canceled exactly. There are two classes of collinear SL that are left uncanceled: those
associated to final-state radiation and those associated to initial-state radiation.9

The former class of SL can be eliminated by clustering photons with charged particles.
In the case of massless charged particles, the clustering is anyway unavoidable for IR safety
(e.g. the case of dressed leptons) and eliminates the Q dependence. In the case of massive
charged particles, namely top quarks and W bosons, clustering is also very reasonable
since in a realistic experimental set-up the separation of collinear real radiation from very
boosted objects is not feasible and, from a theoretical point of view, it leads to larger
uncertainties. The clustering eliminates the physical collinear SL of QED origin, which have
the form l(s,M), where M is the mass of the massive charged particle. The latter class
of SL (initial-state) are those related to the PDFs, which therefore in an exact NLO EW
calculation are subtracted by the corresponding PDF counter-terms.

Both for the case of initial- and final-state collinear SL, a special case is given by the
photon. Since the top quark and the W boson are massive, the corresponding collinear SL
associated to their contribution to δZem

AA are not canceled. Indeed, in the case of the initial
state, no corresponding PDF counter-terms are present, since massive particles do not enter
the PDF evolution. In the case of the final state, no γ → tt̄ or γ → W+W− radiation is
generated for a final state giving the same signature.10

In order to be on the same ground, we also remove from eq. (3.11) the term proportional
to Lt(s). Indeed this is canceled by the clustering of real emissions of gluons and top quarks
into recombined top-quarks. At this point it is also easy to understand why in section 3.1
we have said that setting Q2 = s and ∆s→rkl(rkl,M

2) = 0 is innocuous for what concerns
δQCD

LA in LA when physical observables are considered. If we lifted these two assumptions,
we would obtain many more contributions to eq. (3.11), but they would be all canceled
by the real-radiation counterparts, together with the PDF counter-terms. The presence
of the term ng l

αS (s) can also be seen now as the gluon QCD-counterpart of the photonic
uncanceled SL that have been mentioned in the previous paragraph: being massive, top
quarks do not enter in the PDF counter-terms and no g → tt̄ is generated. We leave to
future work the exploration of these effects from QCD corrections in numerical results for
physical cross sections.

9We analytically verified this statement for the process e+e− → W+W− combining the results of the
DP algorithm together with the eikonal approximation of the real emission of photons [105].

10We remind the reader that we are assuming in this work that the α(MZ) or Gµ scheme is used. The
use of α(0) and therefore the case of isolated photons in the final state is not considered in this context.
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All in all, the modifications to eq. (3.11) that have to be implemented in the SDKweak

approach in order approximate physical cross sections is simply:

• Set
Lt(s) = 0 , (4.6)

in eq. (3.11).

Finally, we want to stress that the real emission of photons from electrically charged
particles and of gluons from coloured particles cannot be neglected for IR-safe observables,
but at high energy even the HBR may be considered and taken into account in inclusive
calculations. In that case, the SDKweak approach should be further modified. For instance,
taking into account the Z radiation, also the contribution of the Z boson should be removed
from the DP algorithm. We leave the exploration of this approach for future work.

5 Implementation in MadGraph5_aMC@NLO

The theoretical framework described in the previous sections has been implemented in
MadGraph5_aMC@NLO [94], specifically in the part of the code that is deputed to
the calculation of NLO QCD and EW corrections and more in general Complete-NLO
predictions [16, 17]. This allows a direct comparison of results in LA and at exact fixed-
order, both at amplitude level and for physical observables.

We remind the reader that in MadGraph5_aMC@NLO the IR singularities are dealt
with via the FKS method [106, 107], automated for the first time in MadFKS [108, 109].
In MadGraph5_aMC@NLO one-loop amplitudes can be evaluated via different types of
integral-reduction techniques (the OPP method [110] or the Laurent-series expansion [111])
and techniques for tensor-integral reduction [112–114], all automated within the module
MadLoop [18]. Moreover, the codes CutTools [115], Ninja [116, 117] and Collier [118]
are employed within MadLoop, which has been optimised by taking inspiration from
OpenLoops [20] for the integrand evaluation.

As already possible in the code, NLO QCD and EW corrections can be invoked via the
syntax [QCD] [QED], see refs. [16, 17] for more details. However, now the code allows also
for the evaluation of virtual one-loop Sudakov logarithms by adding after the command
generate or add process the flag –ewsudakov. As we have said, the code works for the
moment for O(α) corrections to the ΣLOi contribution with i = 1 and i = k, according to
eqs. (3.1) and (3.2). In order to implement the DP algorithm in MadGraph5_aMC@NLO,
three main technical features had to be implemented:

1. The generation of all the amplitudes that are necessary for the computation of the DL
and SL.

2. The evaluation of the amplitudes, especially the interferences of amplitudes involving
different external legs.

3. The evaluation of the derivatives of the amplitudes, which enter the formulas concerning
the PR terms.

In the following subsections we address each of the previous points.
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5.1 Generation of the amplitudes

We start discussing the case of a generic partonic process

ϕi1(p1)ϕi2(p2)→ ϕi3(p3) . . . ϕin(pn) , (5.1)

and at the end we return to the case of proton-proton collisions.
The formulas of section 2, which are given for n→ 0 processes, can be easily reframed

in terms of more common 2→ n− 2 amplitudes via crossing symmetry,

Mi1...in(p1, . . . , pn) ≡M(ϕi1(p1) . . . ϕin(pn)→ 0)

=M(ϕi1(p1)ϕi2(p2)→ ϕ̄i3(−p3) . . . ϕ̄in(−pn)) . (5.2)

As a first step, the algorithm checks if longitudinally polarised Z or W bosons are present
in the external legs. In such a case all the possible amplitudes that can be obtained
with one or more substitutions according to eq. (2.13) are generated. In other words,
starting from Mi1...{nWW±}{nZZ}...in , where {nWW

±} and {nZZ} stand for nW and nZ
appearances of W and Z bosons respectively, the amplitudesMi1...{(nW−1)W±}φ±{nZZ}...in
andMi1...{nW±}{(nZ−1)Z}χ...in are recursively generated via the substitutions

Z −→ χ , (5.3)

W± −→ φ± , (5.4)

up to the point that all W and/or Z bosons are transformed into Goldstone bosons. Clearly,
any of the previous substitutions can lead to a process for which no tree-level Feynman
diagram can contribute to the amplitude. Such a case is automatically detected by the
code and the amplitude is not generated. From this point on, while the original amplitude
Mi1...{nWW±}{nZZ}...in is retained and used for the computation of the LO cross section, the
complete set of amplitudes

Mi1...{(nW−kW )W±}{kWφ±}{(nZ−kZ)Z}{kZχ}...in , (5.5)

with 0 ≤ kW ≤ nW and 0 ≤ kZ ≤ nZ is used for the following steps in the generation of the
amplitudes.

As discussed in section 2, the formulas for the different contributions leading to DL and
SL involve amplitudes with external particles that are different from the original ones inM0.
In particular, starting from the process in (2.9) it is necessary to generate the amplitudes
for all the processes

ϕi1(p1) . . . ϕi′k . . . ϕin(pn)→ 0 , (5.6)

with 1 ≤ k ≤ n that can be obtained applying the substitution ϕik → ϕi′k of the form:

Z ←→ A , (5.7)

H ←→ χ . (5.8)

With the symbol ←→ we understand that the substitution works in the two directions.
Substitution (5.7) is necessary for the off-diagonal components of Cew entering the LSC
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terms and of bew
N ′N entering the C terms. Substitution (5.8) is necessary for the off-diagonal

components of (IZ)2 entering the neutral SSC terms. Moreover it is necessary to generate
also the amplitudes for the processes

ϕi1(p1) . . . ϕi′k . . . ϕi
′
l
. . . ϕin(pn)→ 0 , (5.9)

that can be obtained either applying two substitutions ϕik → ϕi′k and ϕil → ϕi′l of the
form (5.8), again for the off-diagonal components of (IZ)2 in the neutral SSC terms, or
two different ϕik → ϕi′k and ϕil → ϕi′l substitutions that together do not violate charge
conservation, each one of them of the form:

fσ ←→ f−σ , (5.10)

H ←→ φ± , (5.11)

χ←→ φ± , (5.12)

A←→W± , (5.13)

Z ←→W± . (5.14)

The substitutions (5.10)–(5.14) originate from the purely non-diagonal structure of I±I∓

entering the charged SSC terms. We remind the reader that both the substitutions (5.7)–
(5.8) for the processes (5.6) and (5.10)–(5.14) for the processes (5.9) have to be performed
starting from each one of the possible processes in (5.5) that can be obtained from (2.9) via
the substitutions (5.3)–(5.4).

For hadronic calculations (protons in the initial state, jets, etc.) different partonic
subprocesses can contribute at the Born level. Therefore, the procedure described so far has
to be separately repeated for each of them.

5.2 Evaluation of the amplitudes

The evaluation of the amplitudes follows the standard procedure of the MadGraph5_aMC-

@NLO framework, which relies on the helicity routines supplied by Aloha [119]. Here, the
additional complication consists in the evaluation of interferences of amplitudes that can
have different particles in the respective initial and/or final state, as shown in eq. (2.26).
As discussed in the previous section, there can be one or even two different external
particles between the two interfering amplitudes. Consequently, without altering the external
momenta, external particles cannot be in general on-shell in both amplitudes. In order to
preserve the on-shell conditions of external legs, external momenta have to be modified
for one of the two amplitudes that are interfered. We follow this approach, modifying the
external momenta of the amplitude with different external states w.r.t. the Born one.

From a technical point of view, this approach is very similar to the momentum-reshuffling
techniques discussed in ref. [120], in the context of the so-called “Simplified Treatment of
Resonances” (STR) that are needed to perform, e.g., computations in supersymmetric
theories.11 In both cases, on-shell conditions are enforced by modifying part of the external

11STR techniques encompass the so-called diagram-removal and diagram-subtraction ones, see e.g.
refs. [121–124].

– 24 –



J
H
E
P
0
2
(
2
0
2
2
)
1
6
1

momenta and the remaining ones (possibly a subset) are reshuffled in order to preserve
momentum conservation. On the other hand, in this context, not only this procedure has
to be applied at the amplitude level and not at the squared-amplitude level, but it is also
intrinsically more articulated. While in the case of ref. [120] only one on-shell condition
is enforced and involves the invariant mass of two final-state particles, in the present
case one or more on-shell conditions have to be enforced and involve the kinematic mass,√
p2

0 − |~p|2, of one or two individual external momenta, from the initial and/or final state.
Our implementation is based on the one described in detail in section 5.2 of ref. [120], on which
we base the following discussion. We use the same notation for describing the technical details.

The case of only one on-shell condition for a particle in the final state can be directly
derived from section 5.2 of ref. [120]. Using the same notation, it can be summarised as:
given a set of momenta ki, generate a new set k̄i where a given (final-state) particle, denoted
as β, changes its mass from m to mβ = M . The two particles labeled as δ and γ in ref. [120]
are irrelevant for our case. Among the infinite number of solutions, two options, dubbed as A
and B in ref. [120], have been considered. In the former the energy-momentum conservation
is imposed by modifying all the other final-state particle momenta, while in the latter, which
is the default option in the code, by changing the momenta of the initial-state particles. The
case of two on-shell conditions for particles in the final state can be achieved by applying
the procedure iteratively.

The case of β being a particle in the initial state was not relevant for ref. [120] and we
will briefly present it here. In this case, we have chosen to change the momentum of only
the other initial-state particle, leaving the final-state ones untouched (k̄i = ki for i ≥ 3).
This implies that the centre-of-mass energy s is conserved and therefore the procedure is
very simple. We start with the original initial-state momenta ki, with i = 1, 2, where the
one with i = β is going to have a new mass. Since s must be conserved and we want the
new momenta k̄i collinear to the beam pipe, in the partonic centre-of-mass frame one has
to simply derive the new quantity |k̄β,z| = |k̄3−β,z| enforcing momentum conservation and
on-shell conditions.

We conclude by commenting on the fact that, when masses are modified for both an
initial-state and a final-state particle, the procedure can again be performed iteratively.
However, when the default option B is used for the final-state case, since it assumes massless
initial-state momenta, the case of a new mass in the final state should be considered first,
and only afterwards one should consider the initial-state one.

Before moving to the next section we want to clarify that all this procedure would
be unnecessary if an analytical calculation were performed and all the mass-suppressed
term were discarded. This is on the other hand not possible in an automated approach.
The procedure outlined here leads to a correct evaluation of all the terms that are not
mass suppressed. Indeed, all the modifications of the momenta and subsequent reshuffling
operations involve only scales connected to the mass of the SM particles. The differences in
the kinematics before and after the procedure outlined in this section are mass suppressed
themselves, leading to smaller and smaller effects when the energy inrceases. Ambiguities
related to the choice of a specific reshuffling technique and to the order in which the
reshuffling is performed are also mass suppressed.
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5.3 Derivative of the amplitudes

As can be seen in eqs. (2.40) and (3.11), in order to compute the logarithmic contributions
induced by the parameter renormalisation, the derivatives of the amplitudes w.r.t. part of
the input parameters have to be calculated. Although one may in principle use dedicated
Feynman rules, such as those used for generating UV counter-terms in an NLO computation,
we have opted to calculate the derivatives via numerical methods. In other words, for each
phase-space point, we evaluate the quantity

δM
δx

∣∣∣∣
x=x̄

≡
(M|x=x̄(1+δx̄) −M|x=x̄(1−δx̄))

2δx̄
, (5.15)

where x is any of the variables for which the derivative has to be performed (MW ,MZ , etc.),
x̄ is its numerical value when the amplitudes are evaluated and δx̄ is a small value, which
has been set to δx̄ = 10−5 for the results presented in this work. The same procedure is
done for M̃ in eq. (3.11).

We have checked that this procedure has a mild impact on the speed of the code and
the choice δx̄ = 10−5 is excellent in terms of both stability and precision. The use of the
numerical derivatives allows also to easily adapt the calculation of PR terms for possible
BSM scenarios, where additional particles and couplings would be present. Moreover, at
variance with what has been done in the recent automation [91] in the Sherpa framework,
the SL from PR terms are calculated exactly at O(α) as all the other type of DL and SL
logarithms, without including spurious terms from higher orders in the α expansion. This
fact is crucial for the systematic comparisons we are going to carry out in sections 6 and 7
between NLO EW exact results and their Sudakov approximations.

6 Numerical results: matrix-element level

In this section we present numerical results obtained via the revisitation and implementation
of the DP algorithm in MadGraph5_aMC@NLO, which has been described in the previous
sections. We focus here on the Sudakov approximation of one-loop amplitudes and in
particular on their interferences with the corresponding tree-level ones; results for cross
sections of processes that are relevant at colliders are discussed in section 7. We compare
exact results for the finite part of the virtual contribution to the NLO EW corrections
with their Sudakov approximation, what is denoted as the “SDK approach” following the
notation introduced in section 4. After having specified the input parameters in section 6.1,
we start in section 6.2 by discussing the effect of the SSCs→rkl terms in eq. (2.17), which
are relevant when the condition (2.4) is not satisfied. Next, in section 6.3 we show the
numerical relevance of the terms proportional to 2iπΘ(rkl), discussed in section 2.2. Then,
in section 6.4 we show the relevance of the QCD corrections to the subleading LO (see
section 3.1) in order to compare NLO EW corrections with their Sudakov approximation.

Throughout this section, we will consider only the finite part of the virtual contribution
to the NLO EW corrections. It is worth recalling that, in general, the virtual contribution
is IR divergent and non-physical by itself. Since we regularise IR divergences in DR, the
finite part depends on the IR-regularisation scale Q, which we set here always as Q2 = s.
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6.1 Input parameters

The results presented in this section are obtained using the following input parameters:

mZ = 91.188GeV , mW = 80.385GeV , mH = 125GeV ,

mt = 173.3GeV , Gµ = 1.16639 · 10−5 GeV−2 , αS(MZ) = 0.119 . (6.1)

All the other SM particles are treated as massless and all the decay widths are set equal
to zero. Consistently with the input parameters, EW interactions are renormalised in the
Gµ-scheme and masses and wave-functions in the on-shell scheme. QCD interactions are
renormalised in the MS-scheme, with the renormalisation-group running at two loops and
the renormalisation scale µR set to µ2

R = s.

6.2 Impact of SSCs→rkl terms

In this section we show numerical results for 2 → 2 partonic processes both varying the
value of s and the angle θ between the first and third particle, which in turn parametrises
the value of t. We select representative processes for which the relevant plots are displayed
in figures 1 and 2. In both figures, the plots of each column refer to the same partonic
process and the upper plots show the dependence of several quantities on the center-of-mass
energy

√
s, while the lower plots show their θ dependence. In the following, we describe the

layout of the plots and how they should be interpreted.
In the first panel we show the value of the LO squared matrix-element, separately for

each leading-helicity configuration and possibly their sum if there is more than one. In order
to improve the readability of the legends in the plots, therein we display not only the helicity
of any external particle, but also a conventional number associated to the ordering of the
helicity configurations within MadGraph5_aMC@NLO. Conventionally, leading-helicity
configurations have been identified as those with a value, for their squared amplitudes, that
is at least 10−3 times the one of the dominant helicity configuration. The main purpose
of this conventional choice is to probe and select via a numerical method all the helicity
configurations that are not mass suppressed.12 In the first inset we show the ratio between
the O(α) virtual corrections and the LO in different approximations. We display as separate
dots the exact results obtained via MadLoop (Virt) for selected values of s, while as lines13

the LA approximation of Sudakov logarithms that are obtained via the new implementation
of the modified DP algorithm described in this work. Dashed lines refer to the pure LA
(SSCs→rkl terms not included), denoted in the plots as “SDK, s→ rkl OFF”, while the solid

12If at least one helicity configuration is not mass suppressed and it is the dominant, the ratio of its
squared amplitude and the one of another helicity configuration that is not mass suppressed asymptotically
converges to a positive constant at high energies. Therefore, leading helicities can be present over the entire
s range if and only if they are not mass suppressed and this ratio is larger than 103. In other words, if
an helicity configuration is mass suppressed, it is for sure not tagged as leading, while if it is not mass
suppressed can be not tagged as leading, but it means its contribution is at less than per-mill level of the
dominant-helicity squared amplitude.

13Lines are obtained via the interpolation of the results of the LA approximation of Sudakov logarithms
obtained for the same s values for which the exact one-loop results from MadLoop, namely the dots,
are calculated.
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Figure 1. Comparison between exact results (dots) for O(α) NLO EW virtual corrections and their
LA (lines) in the case of squared matrix elements of representative 2 → 2 processes. Solid lines
include the SSCs→rkl contributions, while dashed lines do not. Upper plots show a scan in energy
for a fixed t/s value, while lower plots a scan in the angle θ between the momenta of the first and
third particle. More details are given in the text.

lines to the case in which SSCs→rkl terms are taken into account, denoted in the plots as
“SDK, s→ rkl ON”. As expected, the values of the ratio over LO for both dots and lines are
negative and grow in absolute value for large values of s. A correct implementation and
evaluation of the LA of Sudakov logarithms implies that the differences between each line
and the dots converge to a constant value for s→∞. Indeed, since all the mass-suppressed
terms of O(α) corrections go to zero for large s, the terms that survive are either logarithmic
enhanced, those that have to be exactly captured by the LA (lines), or constant for t/s
fixed. We therefore separately display the interpolation of the difference between the dots
and the solid line (second inset) and between the dots and the dashed line (third inset).
These quantities are denoted as (Virt-SDK)/LO in the plots. The layout of the lower plots
of figures 1 and 2 is very similar to the one of the upper plots, however, in this case the
x-axis refers to the angle θ between the first and third particle, which in turn parametrises
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Figure 2. Same as figure 2, but for a different set of processes.

the value of t, in the range 10−2 . θ . π/2. We have fixed the value of s to
√
s = 10 TeV

for all lower plots.
In order to produce the upper plots, the scan in

√
s with t/s fixed, we have performed

the following procedure. We start by generating the momenta for a phase-space point with√
s = 103 GeV and t/s = −1/20 for the specific process considered. Then, we iteratively

repeat the following steps for increasing the value of
√
s by keeping fixed the t/s ratio

within an error of the order of permille. First, we rescale the trimomenta of the outgoing
particles by a common factor. Second, we impose on-shell conditions for the outgoing
particles in order to obtain their energies. Finally, we impose momentum conservation for
determining the momenta of the initial state. In this way, we can generate several phase-
space points by scanning the

√
s range and keeping the ratio t/s very stable. Each one of the

phase-space points obtained is then used as input for evaluating the exact virtual NLO EW
corrections of O(α) as well the LA with and without the inclusion of the SSCs→rkl terms. The
SDK, s→ rkl ON and the SDK, s→ rkl OFF lines are the interpolation of these LA results.

As can be seen in both figures 1 and 2, all the second and third insets of upper plots
show perfectly horizontal lines for large values of s, for each individual helicity configuration.
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We have shown here only representative processes, but we did not see any exception in all
cases that we have checked. This is a clear sign of a correct implementation of the LA of
Sudakov logarithms.

In order to rigorously check the last statement, we have fitted the quantities (Virt-
SDK)/LO via a function of the form

A log10(
√
s/[1 GeV]) +B , (6.2)

with the method of least squares. While the coefficient B has been found in general of the
order of few percents for the plots shown here, the quantity A is in general of the order of
10−4 and compatible with 0 due to the associated statistical error,14 therefore supporting
our previous statement about the correct implementation of the LA of Sudakov logarithms.

If we consider figure 1, comparing the second and third inset of the upper plots we
can also appreciate how SSCs→rkl terms further reduce the gap between the LA and the
exact value of the virtual. Being |t|/s = 1/20, these terms are constant when varying s, but
still non-negligible. In other words, their inclusion preserves the LA and further improves
the approximation of the exact result at high energy. In the lower plots, the impact of
the SSCs→rkl terms can be better understood. By varying θ, the difference between the
strict LA and the exact result is not expected to be a constant times the LO, because the
condition (2.4) is assumed. This can be observed in the second and third insets. However,
although in both insets lines are not perfectly horizontal, one can notice how the SSCs→rkl

terms substantially reduce the slope. In other words, as can be also seen in the first inset,
they lead to a better approximation of the exact results also at small angles. Clearly, at very
small angles power-suppressed terms may not be negligible, since the M2

W /|t| ratio increases
and this in general leads to non-horizontal lines even with the inclusion of the SSCs→rkl

terms. These effects are enhanced for the left and central plots of figure 2 and even more for
the right one, the LO3 ∝ α2 of the dd→ dd process, which deserves some more comments.

By looking at the right-upper plot, it is clear that the LA works well and both the
second and third insets show perfectly horizontal lines, however, by looking the lower plots
it is manifest that both with or without the inclusion of SSCs→rkl terms the θ dependence
cannot be correctly captured, although better approximated in the former case. First, it is
important to note, as can also be seen in the main panel of the bottom-right plot, that the LO
cross section diverges for θ → 0, indeed it is proportional to 1/t2. Actually, if condition (2.2)
is not assumed, not only terms proportional to 1/t2 (the photon t-channel propagator) are
present, but also terms proportional to 1/(t2 −M2

Z) (the Z-boson t-channel propagator)
appear. Approaching the regime with |t| = (1− cos(θ))s/2 'M2

Z , which implies θ →∼ 0.02

for
√
s = 10TeV, condition (2.2) is not valid and therefore even including SSCs→rkl terms a

good approximation is not expected.15 Second, the SSCs→rkl correctly takes into account
14We remind the reader that statistical errors also include effects induced by the numerical method that

is used for performing the derivatives, which is discussed in section 5.3, as well as by possible instabilities of
the evaluation of exact virtual amplitudes.

15We have noticed an additional interesting behaviour in the θ dependence, which is not shown here in the
plot. When even smaller angles are considered, |t| �M2

Z , while the SDK, s→ rkl OFF predictions depart
even more from the exact result, the SDK, s→ rkl ON approximation considerably improves. This is due to
the fact that, for the LO3 ∝ α2 of the dd→ dd process, the QED contribution is dominant in this regime
and furthermore it does not involve neither MZ nor MW .
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the value of the different rkl invariants entering eq. (2.16), but this equation derives from
eq. (2.15), which by itself does not depend on ratios of different invariants. This means, for
instance for 2 → 2 processes, that additional corrections that involve the (s/t) ratio and
have a functional form different from the terms included in the DP algorithm cannot be
recovered, even with the inclusion of SSCs→rkl terms. In other words, while the correctness
of LA is guaranteed and SSCs→rkl terms further improve the approximation keeping track
of the correct dependence on the different rkl invariants in eq. (2.16), this does not mean
that the full dependence is retained. In order to do that, the information on the internal
structure of the Feynman diagrams would be necessary. Indeed, the starting point in the
derivation of the SSCs→rkl terms is the C0 function in (2.15), which is associated to simply
the masses and the invariant mass of two external particles involved in the process. However,
already with 2 → 2 processes, D0 functions can appear in virtual corrections, involving
also at high energies more than one invariant and leading to additional terms when the
condition (2.4) is not satisfied.

6.3 Impact of the imaginary component

As explained in section 2.2, in the original work of ref. [39] an imaginary component has
been omitted in the formulas. On the other hand, this component affects results only for
2→ n processes with n > 2. In this section we show numerical results about this aspect, for
2→ n partonic processes with n = 3, 4.16 Again, we select representative processes for which
the relevant plots are displayed in figure 3. Each plot shows the dependence on s of several
quantities, and the layout is very similar to the one of the upper plots of figures 1 and 2. Here,
the LA always includes the SSCs→rkl terms,17 but we distinguish the case in which the terms
proportional to iπΘ(rkl) in eqs. (2.23)–(2.25) are excluded, as in the original DP algorithm in
ref. [39], or retained. The former are displayed as dashed lines (iπΘ(rkl) OFF) and the latter
as solid lines (iπΘ(rkl) ON). For each leading helicity configuration, we also show in the
second and third inset the difference between the LA and the exact result both normalised
to the LO, respectively with and without taking into account the imaginary component.

In order to produce the plots, scanning in
√
s, we have performed a procedure similar

to the one explained in the previous section for the upper plots in figures 1 and 2. The only
difference here is the starting point. For 2 → n partonic processes with n > 2, besides s,
there is more than only one independent kinematic invariant that can be built with the
external momenta. In order to avoid pathological configurations with an |rkl| ' M2

W , we
randomly generate the first set of external momenta setting

√
s = 104 GeV and requiring

|rkl|
s

>
1

8
∀ rkl . (6.3)

We remind the reader, as already explained in footnote 1, that eq. (6.3) is a condition that
can be satisfied for 2→ 3 or 2→ 4 processes, but not in general for 2→ n, for which this
lower bound has to be lowered more and more increasing the value of n, further departing
from the condition of eq. (2.4).

16For all the 2→ 3 processes we considered as the Born the LOi with the highest possible value of i, since
it receives a contribution due to the term iπΘ(rkl) that is larger than in the case of the LO1.

17For brevity, in this section we will write in the plots only SDK and not SDK, s→ rkl ON as in section 6.2.
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Figure 3. Comparison between exact results (dots) for O(α) NLO EW virtual corrections and their
LA (lines) in the case of squared matrix elements of representative 2→ n processes with n = 3, 4.
Solid lines include the contributions proportional to iπΘ(rkl), while dashed lines do not. Plots show
a scan in energy for fixed rkl/s ratios. More details are given in the text.

Looking at figure 3, it is manifest how the case including terms proportional to iπΘ(rkl)

correctly catches the LA, while the other one does not; perfectly horizontal lines are present
in the second inset, while in the third inset a dependence on s is clearly visible. For some
of the processes considered, such as dd̄ → Zdd̄, this dependence seems to cancel out for
the sum over the different helicity configurations. In large part this is correct, but a small
dependence is still present and it is simply not visible from the plot. We in general see
this feature also for individual helicity configurations, namely the iπΘ(rkl) is often formally
relevant but sometimes the numerical effect is very small. For other processes, such as
e+e− → e+e−µ+µ− or ud→ Zud, even for the helicity-summed result the lack of the terms
proportional to iπΘ(rkl) leads to sizeable numerical effects.

In order to provide a more quantitative statement, we list in table 1 the results of the
fit of (Virt-SDK)/LO for each leading-helicity configuration (and their sum) of the process
dd̄ → Zdd̄. We have used again the method of least squares and the functional form of
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iπΘ(rkl) ON iπΘ(rkl) OFF

Helicity A B A B

summed (5±28)·10−6 (1.55±0.01)·10−2 (2.622±0.004)·10−2 (−4.00±0.02)·10−2

23 : +++++ (1.3±4.2)·10−6 (1.318±0.002)·10−2 (−1.07±0.02)·10−3 (1.56±0.01)·10−2

26 :−−−−− (2.2±6.7)·10−6 (1.380±0.003)·10−2 (−3.1±0.2)·10−4 (1.44±0.01)·10−2

34 :−−+−− (10±10)·10−5 (1.86±0.05)·10−2 (4.1±0.8)·10−4 (1.80±0.04)·10−2

37 :−+−−+ (2.7±6.6)·10−5 (6.4±0.3)·10−3 (7.408±0.008)·10−2 (−1.503±0.004)·10−1

40 :−+−+− (−8.0±8.0)·10−5 (2.24±0.04)·10−2 (−8.72±0.09)·10−3 (3.89±0.04)·10−2

45 :−++−+ (−5±50)·10−6 (3.42±0.02)·10−2 (−7.405±0.005)·10−2 (1.909±0.003)·10−1

48 :−+++− (−5.2±3.3)·10−6 (2.901±0.001)·10−2 (8.631±0.009)·10−3 (1.251±0.004)·10−2

Table 1. Result of the fit of the quantity (Virt-SDK)/LO using the method of least squares and
the function (6.2) for the representative process dd̄→Zdd̄ at O(α3). The case including(excluding)
the contribution of iπΘ(rkl) corresponds to the quantities shown in the second(third) inset of the
upper-left plot of figure 3.

eq. (6.2). As can be seen in the third column of table 1, all helicities exhibit a non-vanishing
slope when the terms proportional to iπΘ(rkl) are turned off. Notably, as anticipated before,
this happens also for the sum over the helicities, which for this particular process and
kinematic configuration (condition (6.3)) leads to a cumulative error of 2.6% in the LA for
every factor of 10 in increase of the energy. The error is process dependent and can also be
larger, as can be seen in the bottom-left plot of figure 3 for the e+e− → e+e−µ+µ− process.

Finally, given figure 3, we would like to stress how well the LA of Sudakov terms can
work in the high-energy regime. All these processes receive corrections of the order of −200%

and the difference between the LA and the exact result is always (well) below the 10%.

6.4 Impact of the corrections of QCD origin

As explained in section 3, NLO EW corrections can receive contribution of both EW and
QCD origin (see discussion therein for details). In this section we show numerical results on
this aspect, for 2→ n partonic processes with n = 2, 3, 4. We again select representative
processes for which the relevant plots are displayed in figures 4. Each plot shows the
dependence on s of several quantities, and the layout is very similar to the one of the plots of
figure 3 in the previous section. Phase-space points have also been generated following the
same procedure described in the previous section and according to the condition (6.3). As in
section 6.3 the LA always includes the SSCs→rkl terms in δEW

LA , however here we distinguish
the cases in which the term ΣLOi

δQCD
LA in eq. (3.4) is excluded or retained. The former

are displayed as dashed lines (SDK, δQCD
LA OFF) and the latter as solid lines (SDK, δQCD

LA

ON). For each leading helicity configuration, we also show in the second and third inset
the difference between the LA and the exact result both normalised to the LO, respectively
with and without taking into account the δQCD

LA component.
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Figure 4. Comparison between exact results (dots) for O(α) NLO EW virtual corrections and their
LA (lines) in the case of squared matrix elements of representative 2→ n processes with n = 2, 3, 4.
Solid lines include the δQCD

LA contribution, while dashed lines do not. Plots show a scan in energy for
fixed rkl/s ratios. More details are given in the text.

As can be seen in figure 4, perfectly horizontal lines are displayed only in the second
inset.18 For each plot, lines in the third inset have a slope, which largely depends on the
process considered. The slope is directly connected to the term ΣLOi

δQCD
LA , therefore its size

depends on both the size of δQCD
LA (see eq. (3.17)) and, since in the plots shown in figures 4

we have i = 2, on the LO2/LO1 ratio.
Considering simple 2→ 2 processes, one can see how different is the impact of ΣLO2

δQCD
LA

in the top-left and top-center plots; in the case of bb̄ → tt̄ both δQCD
LA and the LO2/LO1

ratio are larger. The top-right plot refers to the process uū → tt̄gh, the simplest process
for which all the terms of eq. (3.17) are non-vanishing. The lower plots refer to different
partonic processes entering the process pp→ tt̄tt̄. As already discussed in ref. [100] a large

18Some lines do not span the entire
√
s-range. These are related to helicity configurations that are actually

mass suppressed but still contribute more than 10−3 of the dominant helicity configuration for sufficiently
“low” energies. See also the definition of leading helicity configurations at the beginning of section 6.2 and in
footnote 12.
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δQCD
LA ON δQCD

LA OFF
Helicity A B A B

summed (9.9±8.4)·10−4 (−2.7±0.4)·10−2 (−8.9±1.2)·10−1 (3.1±0.6)·100

1 :−−−−++ (2.7±1.6)·10−4 (−2.56±0.08)·10−2 (−2.9±0.4)·10−1 (9.9±1.8)·10−1

6 :−−−++− (−5.5±5.4)·10−3 (6.6±2.7)·10−2 (5.3±0.7)·10−1 (−1.8±0.4)·100

7 :−−−+−+ (4.3±6.7)·10−4 (5.8±0.3)·10−2 (5.3±0.7)·10−1 (−1.8±0.3)·100

10 :−−+−+− (6.5±6.1)·10−4 (5.3±0.3)·10−2 (5.3±0.7)·10−1 (−1.8±0.3)·100

11 :−−+−−+ (−5.9±5.8)·10−3 (8.2±2.9)·10−2 (5.3±0.7)·10−1 (−1.8±0.4)·100

16 :−−++−− (5±14)·10−5 (3.53±0.07)·10−2 (−1.4±0.2)·10−1 (5.4±0.9)·10−1

17 :−+−−++ (4.3±6.3)·10−4 (−4.6±0.3)·10−2 (−2.2±0.3)·10−1 (7.3±1.4)·10−1

22 :−+−++− (−5.5±3.5)·10−4 (−6.4±0.2)·10−2 (−2.3±0.3)·100 (8.1±1.5)·100

23 :−+−+−+ (1.2±0.6)·10−3 (−6.3±0.3)·10−2 (−1.9±0.3)·100 (6.9±1.3)·100

26 :−++−+− (1.2±0.9)·10−3 (−5.9±0.4)·10−2 (−2.3±0.3)·100 (8.2±1.5)·100

27 :−++−−+ (−3.7±5.0)·10−4 (−8.1±0.3)·10−2 (−2.0±0.3)·100 (7.0±1.3)·100

32 :−+++−− (3.1±3.1)·10−4 (2.7±0.2)·10−2 (−1.1±0.1)·10−1 (4.1±0.6)·10−1

33 : +−−−++ (1.5±1.2)·10−3 (−4.5±0.6)·10−2 (−2.2±0.3)·10−1 (7.3±1.4)·10−1

38 : +−−++− (1.4±1.0)·10−3 (−7.1±0.5)·10−2 (−2.0±0.3)·100 (7.0±1.3)·100

39 : +−−+−+ (−1.9±3.7)·10−4 (−7.4±0.2)·10−2 (−2.3±0.3)·100 (8.2±1.5)·100

42 : +−+−+− (−2.7±2.5)·10−4 (−8.3±0.1)·10−2 (−2.0±0.3)·100 (6.8±1.3)·100

43 : +−+−−+ (1.5±0.7)·10−3 (−6.6±0.4)·10−2 (−2.3±0.3)·100 (8.1±1.5)·100

48 : +−++−− (4.0±2.3)·10−4 (2.1±0.1)·10−2 (−1.1±0.1)·10−1 (4.1±0.6)·10−1

49 : ++−−++ (4.0±2.5)·10−4 (−2.9±0.1)·10−2 (−2.9±0.4)·10−1 (9.9±1.8)·10−1

54 : ++−++− (7.4±7.8)·10−4 (4.9±0.4)·10−2 (5.3±0.7)·10−1 (−1.8±0.3)·100

55 : ++−+−+ (−5.4±5.2)·10−3 (7.4±2.6)·10−2 (5.3±0.7)·10−1 (−1.8±0.4)·100

58 : +++−+− (−6.0±6.0)·10−3 (7.7±3.0)·10−2 (5.3±0.7)·10−1 (−1.8±0.4)·100

59 : +++−−+ (3.7±4.6)·10−4 (6.1±0.2)·10−2 (5.3±0.7)·10−1 (−1.8±0.3)·100

64 : ++++−− (10±141)·10−6 (3.85±0.07)·10−2 (−1.4±0.2)·10−1 (5.4±0.9)·10−1

Table 2. Result of the fit of the quantity (Virt-SDK)/LO using the method of least squares and
the function (6.2) for the representative process gg→ tt̄tt̄. The case including(excluding) the δQCD

LA

contribution corresponds to the quantities shown in the second(third) inset of the lower-central plot
of figure 4.

part of the NLO EW corrections are of QCD origin, and this can be observed also in the
lower plots of figure 4.

Given the large number of leading helicity configurations for processes with tt̄tt̄ in the
final state, we did not list them in the legend of the corresponding plots of figure 4. On the
other hand, in table 2 we provide, as an example, the results of the fit of (Virt-SDK)/LO for
all leading-helicity configurations (and their sum) for the process gg → tt̄tt̄. We have used
again the method of least squares and the function (6.2) as done for table 1, but in this
case we have considered two different scenarios: the inclusion or the exclusion of the δQCD

LA

contribution. By comparing the numbers in the first and third column of table 2, one can
further see how the δQCD

LA contribution is essential in flattening the (Virt-SDK)/LO curve.
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7 Numerical results: differential cross sections

In this section we consider IR-safe collider observables and we compare exact NLO EW
predictions and their LA (the approximation given by Sudakov logarithms) obtained via
the DP algorithm as framed in section 4, i.e., the SDKweak approach. We show differential
distributions for proton-proton collisions at 100TeV, which is one of the possible experimental
set-ups that has been considered as an option for a high-energy future colliders [90, 125–127].
In this regime, LA is expected to be very efficient in capturing NLO EW effects. By explicit
examples, we show how both the inclusion of the SSCs→rkl terms in eq. (2.17), which are
relevant when the condition (2.4) is not satisfied, and the usage of the purely weak LA
described in section 4, the SDKweak approach, has to be in general preferred for predictions
of physical observables. Indeed, these features not only improve the LA, but they are also
instrumental in order to capture the correct logarithmic dependence.

As already said, we consider cross-section predictions for differential distributions of
IR-safe observables. Thus, bare leptons, which are treated as massless, have to be recombined
with photons into dressed leptons. A dressed lepton is here obtained by recombining a bare
lepton ` with any photon γ that satisfies the condition

∆R(`, γ) < 0.4 , (7.1)

where ∆R(`, γ) ≡
√

(∆η(`, γ))2 + (∆φ(`, γ))2, and ∆η(`, γ) and ∆φ(`, γ) are the differences
of the bare-lepton and photon pseudo-rapidities and azimuthal angles, respectively.19

In this context, however, we recombine with photons any electrically charged particle,
including top quarks and W bosons, which are massive. This choice is not due to IR
safety, but rather to the fact that very energetic massive particles are typically identified
as tagged jets, namely a jet which contains the considered particle. The recombination of
photons and heavy charged particles is inspired by precisely this procedure, and similarly the
condition (7.1) leading to a large cone. In one case we will also consider the aforementioned
tagged jets, where the clustering is performed not only with photons but with all the
particles and afterwards tagging the considered heavy particle among the jet constituents.
In that case, we will use the anti-kT algorithm [128] as implemented in FastJet [129],
with R = 0.4. We remind the reader that, as already explained in section 4.1, photon
recombination has an effect on the LA: it cancels the virtual QED contributions associated
to the collinear configuration in the final state, which is precisely what is taken into account
by the SDKweak approach.

7.1 Drell-Yan

We start discussing the case of Drell-Yan production with leptons in the final state, namely
the process pp→ `+`−.20 For all processes that will be considered in this section we have used
the same input parameters already listed in section 6.1. However, in the case of Drell-Yan, we

19In case the recombination condition is satisfied for more than one bare lepton, the photon is clustered
with the bare lepton for which ∆R(`, γ) is the smallest.

20For simplicity, we have computed results for the specific case ` = e.
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have employed the complex-mass scheme [16, 130, 131] for the exact NLO EW corrections.21

We use the PDF set NNPDF3.1 [132, 133], in particular the NNPDF31_nlo_as_0118_luxqed
distributions, which include NLO QED evolution and especially a photon density following
the LUXqed parameterisation [134, 135]. The renormalisation (µR) and factorisation (µF )
scales are both set equal to the partonic center-of-mass energy

√
s. This set-up is common

with all the other processes discussed in this section.
In the Drell-Yan simulation the following cuts are imposed on the dressed leptons:

pT (`±)> 200 GeV , |η(`±)|< 2.5 , m(`+, `−)> 400 GeV , ∆R(`+, `−)> 0.5 . (7.2)

On the one hand, these cuts are imposed in order to resemble realistic experimental cuts for
high-energy objects. On the other hand, they avoid additional logarithmic enhancements
from collinear splittings appearing in the real radiation processes or even at the Born level.
In figure 5 we show differential distributions for the transverse momentum of the electron,
pT (`−), for the transverse momentum of the leading (trailing) lepton, pT (`1) (pT (`2)), and
for the dilepton invariant mass m(`+, `−).

The layout of each plot in figure 5, and in general of each plot in this section,22 is
the following. In the main panel we show the differential distribution at LO (solid blue
line) and NLO EW (solid orange line) accuracy, where the exact O(α) corrections are
taken into account. If the NLO EW prediction turns negative, meaning that NLO EW
corrections are negative and larger than the LO in absolute value, the curve corresponds to
its absolute value and is drawn as dashed. In the first inset we show the relative impact
of EW corrections, δX ≡ X/LO− 1, in different approximations. The solid orange line
corresponds to the one in the main panel with the same style, i.e. the exact O(α) corrections
(NLO EW), and the dotted orange line corresponds to the same case where the photon PDF
has been set equal to zero (NLO EW, no γ). The other curves correspond to results in
LA, with different assumptions. First, the solid curves include the SSCs→rkl contribution
(SDKX , s→ rkl), while the dashed ones do not (SDKX). Second, the green lines are obtained
by simply omitting the QED and IR-sensitive terms, which are dubbed as “em” in the DP

algorithm. This is analogous to the approach of e.g. refs. [79, 91] and dubbed here as SDK0.
The red lines are instead obtained by completely removing the QED contribution, namely,
following the procedure described in section 4.1, the SDKweak approach. Both the SDK0

and SDKweak predictions, similarly to the NLO EW ones in this section, include also the
LO contribution. Needless to say, the closest a line is to the solid orange one, the better is
the approximation of the exact NLO EW corrections. Therefore, in order to better judge
this characteristic, in the second inset we zoom on the lines by simply plotting for each line

21We used the complex-mass scheme in order to set the Z- and W -boson decay widths to a value different
from zero, in particular ΓW = 2.49877 GeV and ΓZ = 2.092910 GeV. Given the accuracy of our simulations,
the non-zero Z-boson decay width is fundamental. As explained later in the text we require an invariant
mass larger than MZ for the dressed lepton pair, but this is not sufficient for using the on-shell scheme. The
dressed lepton pair can originate from a configuration where the bare leptons have m(`+bare, `

−
bare) 'MZ and

one of them is recombined with a hard photon, leading to m(`+, `−)�MZ and therefore passing the cuts.
This configuration is not associated to any enhancement and therefore very rare, but in the on-shell scheme
it leads to the evaluation of a resonant Z propagator with zero width and therefore it is inconsistent.

22An important difference is present for figures 7 and 8 and explained later in the text.
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Figure 5. Differential distributions for recombined leptons in Drell-Yan production at 100TeV.
Comparison between exact NLO EW predictions (solid orange) and their LA approximations in the
SDKweak (red) and SDK0 (green) approaches, including (solid) or excluding (dashed) the SSCs→rkl

terms. More details are given in the text.

in the first inset the difference with the solid orange one. Clearly, the reference prediction in
LA is the solid red line, which both includes the SSCs→rkl contribution and is obtained via
the SDKweak approach.

We remind the reader that neither the SDK0 nor the SDKweak approach are equal to
the approach dubbed as SDK in section 6, which concerns the LA of the interference of Born
amplitude and the IR-divergent virtual amplitude. The SDK prediction cannot be used for
IR-safe observables. Moreover, the SDK0 approach, even when the SSCs→rkl contributions
are not taken into account, is not exactly equal to the one used so far in the literature,
since we do include also in this case the terms proportional to iπΘ(rkl). This is particularly
relevant for sections 7.2 and 7.4, where 2→ 3 processes are considered.
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Starting from the top-left plot of figure 5, the pT (`−) distribution, we can see how sound
is the LA in the high-energy limit. The distribution is spanning two orders of magnitude of
pT (`−), from 200GeV to 20TeV, and NLO EW corrections reach ∼ −50% in the tail. As
can be seen in the second inset, the solid red line differs from the solid orange line by only
a very few percents of the LO. The situation is opposite for the green solid line. In that
case the difference with the solid orange line grows logarithmically with pT (`−) and reaches
∼ −20% of the LO in the tail. This is a clear example of how the SDKweak approach can be
superior to the SDK0 one in the approximating the exact NLO EW corrections for IR-safe
collider observables. For this observable the differences between dashed and solid lines of the
same colour are negligible. This is not surprising, since large pT (`−) implies large values of t
and therefore |t|/s ∼ O(1), leading to small contributions from the SSCs→rkl terms. Finally,
by looking at the difference between the solid and dotted orange line, we can also appreciate
how the photon-initiated processes are relevant for this process and especially unavoidable
also in the LA approximation in order to correctly approximate the exact NLO EW effects.

Moving to the top-right plot of figure 5, the m(`+, `−) distribution, we see a very
similar situation to the pT (`−) distribution. In this case there is a visible difference between
solid and dashed lines of the same colours, with the solid red line better approximating
the exact NLO EW result than the dashed red line. Indeed, large m(`+, `−) values do
not imply large values for |t|. However, due to the cuts in (7.2) the effect of the SDKweak

terms is very mild and also the dashed red line is leading to a very good approximation.
The lower plots, the pT (`1) (left) and pT (`2) (right) distributions, display some differences
w.r.t. the upper ones. For these two observable the LA is less efficient, indeed, as can be
seen in the plots, the difference with the exact results can reach up to 5% of the LO also
for solid red lines. However, this difference is converging to a constant value in the tail, for
both distributions. Moreover the difference is of opposite sign for the two complementary
observables, pT (`1) and pT (`2). This behaviour is due to the indirect cut that is affecting the
recoiling particle when a particular value of pT (`1) or pT (`2) is considered, namely the trivial
condition pT (`1) > pT (`2). This has nothing to do with EW Sudakov effects, but it is a
particular feature of this kind observables: a similar pattern was observed for top-quark pair
production in ref. [136]. Indeed, we also verified this explicitly for top-quark pair production,
which we do not show here since results are very similar to the case of Drell-Yan that we are
discussing. The bottom line is that the SDKweak approach including SSCs→rkl terms for LA
can always have O(α) finite discrepancies with the exact result, especially it cannot take
into account effects that are not related to a Born-like kinematic. On the other hand, also
for these two observables there are not logarithmically enhanced differences with the exact
NLO EW prediction, only constant terms are present. Instead, with the SDK0 approach,
the logarithmically enhanced differences are clearly visible.

7.2 ZZZ

In figure 6 we show plots, with the same layout of those in figure 5, for the process pp→ ZZZ.
This process has a neutral final state, so we do not expect large differences between the
SDK0 and SDKweak approaches. On the other hand, being a 2→ 3 process, the effect of the
SSCs→rkl terms is supposed to be more relevant. The upper plots of figure 6 correspond
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Figure 6. Same as figure 5, but for ZZZ hadroproduction at 100TeV.

to the transverse-momentum distributions of respectively the hardest Z-boson (pT (Z1)),
the second-hardest Z-boson (pT (Z2)) and the softest one (pT (Z3)). The lower plots instead
correspond to the invariant masses m(Zi, Zj) of the three different Z-boson pairs.

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |η(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , ∆R(Zi, Zj) > 0.5 . (7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,
but they also avoid additional logarithmic enhancements from collinear splittings appearing
in the real-radiation processes or even at the Born.

First of all, it is important to notice the size of the EW corrections. For most of the
spectrum of all distributions, they are negative and larger than the LO in absolute value,
reaching ∼ −200% of it in the tail. Since they are negative, this means that fixed-order
NLO EW corrections are also negative in this regime and therefore non-physical. These
distributions are a clear example of how large Sudakov logarithms, and in turn NLO EW
corrections, can be at high energy. Also they clearly point to the necessity of resumming
them in order to obtain sensible predictions. Here, on the other hand, we are not providing
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phenomenological predictions but rather showing the accuracy of the LA and testing its
implementation in MadGraph5_aMC@NLO.

As expected, for all distributions, the difference between green and red lines (SDK0 and
SDKweak) amounts to only few percents of the LO, with no clear logarithmic enhancement
in the high-energy limit. Also as expected, the impact of the SSCs→rkl terms (solid versus
dashed lines) is much larger for this process than for Drell-Yan production. In the upper
plots of figure 5, the pT (Zi) distributions, the dashed lines are differing from the solid ones
by 5–10% of the LO for the full spectra, with the latter in turn differing only by a very
few percents from the exact NLO EW prediction. The difference between dashed and solid
lines is even larger in the lower plots, the m(Zi, Zj) distributions, and especially a clear
logarithmic trend can be observed. It is worth to stress that for all these distributions, with
the exception of the far tail in the m(Zi, Zj) ones, the inclusion of the SSCs→rkl terms leads
to an accuracy of very few percents for corrections spanning from ∼-80% to ∼-200%. This
is not the case for the pure LA without the SSCs→rkl terms.

7.3 WZ

We now move to the case of a couple of processes where both the inclusion of the SSCs→rkl

terms and the use of SDKweak is relevant. We start by showing differential distributions for
the process pp→W+Z, where results have been obtained by using the following cuts

pT (Vi) > 1 TeV , |η(Vi)| < 2.5 , m(W+, Z) > 1 TeV , ∆R(W+, Z) > 0.5 . (7.4)

Again, these cuts resemble realistic experimental cuts for high-energy objects, but they also
avoid (part of the) additional logarithmic enhancements from collinear splittings appearing
in the real-radiation processes or even at the Born.

In figure 7 we show the transverse momentum of the hardest (pT (V1)) and softest (pT (V2))
recombined vector-bosons and their invariant mass (m(W+, Z)). Similarly to the case of
leptons (7.1), the recombination is performed by recombining any charged vector boson
Vi with photons that satisfy the condition ∆R(Vi, γ) < 0.4. We also show the transverse
momentum (pT (jV,2)) of the softest jet that is tagged as a V -jet, namely containing one of
the two vector bosons. They layout of the plots is very similar to the ones of figures 5 and 6,
but with an important difference: in the second inset we plot for each line in the first inset
the difference with the dotted orange one, i.e., the exact NLO EW prediction where the
photon PDF has been set equal to zero. The reason is the following. The WZ production is
affected by giant K-factors not only at NLO QCD [137, 138], but also at NLO EW [90, 139]
precisely due to the opening of the qγ → W+Zq′ channel. For large value of pT (V1) this
channel induces large positive corrections of order L(p2

T (V1),M2
V2

), due to configurations in
which V1 recoils against the emitted quark q′ and V2 is soft and collinear to it. This effect
has nothing to do with virtual NLO EW corrections and cannot be expected to be captured
by the DP algorithm, both in its SDK0 and SDKweak adaptations for physical observables.
Therefore, in order to test the LA, we use as reference the NLO EW prediction where the
photon PDF has been set equal to zero. We also plot in the main panel the NLO EW
prediction without photon PDF as dotted orange line and its absolute value as dashed-dotted
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Figure 7. Differential distributions for recombined V bosons in W+Z production at 100TeV.
Comparison between exact NLO EW predictions excluding photon-initiated processes (dotted
orange) and their LA approximations in the SDKweak (red) and SDK0 (green) approaches, including
(solid) or excluding (dashed) the SSCs→rkl terms. More details are given in the text.

when it becomes negative. We remind the reader that the photon PDF is entering the
process starting with NLO EW real emission of quarks, while it is not present at LO.

Before commenting each plot of figure 7, it is again important to note how LA in general
approximates very well the exact NLO EW predictions excluding photon-initiated processes,
reaching almost -200% of the LO in the tail of the distributions. This can be appreciated
in the first inset of each plot. There, as in the main panel, the size of the qγ → W+Zq′

channel can also be appreciated. Its impact is maximal in the pT (V1) distribution, due to
the aforementioned L(p2

T (V1),M2
V2

) enhancement, and minimal in the pT (V2) distribution
since large values of pT (V2) forbid the kinematic configurations that precisely lead to the
enhancement for the pT (V1) distribution.
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In the top-left plot (pT (V1)) we can see that none of the curves is really flat. This is not
surprising, since the LA works very well when the cross section is dominated by the Born-like
kinematic, which is not the case for large pT (V1), where V1 can in principle recoil against a
very hard photon. Still, the solid red line (SDKweak with SSCs→rkl terms included) leads
to the best approximation and differs from the reference value, the dotted orange line, by
less than 10% of the LO also in regions where the NLO EW corrections are ∼ −200%. The
superiority of the SDKweak approach (red) over the SDK0 one (green) and of the inclusion
of the SSCs→rkl terms (solid) over their exclusion (dashed) can be better appreciated in the
top-right plot (pT (V2)) and especially in the bottom-right one m(W+, Z). The difference
between the dotted orange and solid red curves is only very few percents of the LO over the
full range.

In the bottom-left plot, the pT (jV,2) distributions, all the curves are equal to those of
the top-right one pT (V2) but one: the solid orange line. In this context the only difference
between a recombined V -boson and a V -tagged jet is that in the latter the V boson can be
recombined also with quarks. When the qγ →W+Zq′ channel is included, soft+collinear
configurations for (V2) in the final-state splitting q(′) → q′V2 are avoided at large pT (V2), but
the purely collinear ones still survive. The recombination of V2 with quarks has therefore a
sizeable impact. The bottom line is that the SDKweak approach takes into account only those
emissions that are unavoidable from an IR-safety point of view, but additional real-emission
contributions can be present and sizeable (for instance the photon-induced quark radiation),
they can lead to enhancements factorising different Born matrix elements (for instance
the case discussed here where σ(qγ → W+Zq′) ∝ σ(qγ → W+q′) × L(p2

T (W+),M2
Z) or

σ(qγ →W+Zq′) ∝ σ(qγ → Zq)×L(p2
T (Z),M2

W )) and their impact can depend on how the
different particles are clustered among each other (for instance V -bosons versus V -tagged
jet). These contributions cannot be taken into account via the DP algorithm. The LA and
in particular the DP algorithm as implemented in MadGraph5_aMC@NLO allow for a fast
and, as shown in the previous examples, very reliable approximation of fixed-order exact
NLO EW corrections. On the other hand, it cannot substitute the exact calculation. LA
can be used as a starting point for improving the fixed-order NLO EW, by e.g. resumming
the large Sudakov logarithms or alternatively for performing fast simulations with Mad-

Graph5_aMC@NLO including the EW dominant effects at high-energy. The latter option,
however, should be always cross-checked with an exact calculation before being used for
phenomenological predictions.

7.4 WWW

As last example, we show in figure 8 distributions for the process pp→W+W+W−, where
for the calculations the following cuts have been employed

pT (Wi) > 1 TeV , |η(Wi)| < 2.5 , m(Wi,Wj) > 1 TeV , ∆R(Wi,Wj) > 0.5 , (7.5)

following the same rationale behind the cuts that have been used for the other processes
considered in this section. In figure 8 we consider the same observables already considered
in figure 6, with Z bosons replaced by W bosons. The layout of the plots is the same of
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Figure 8. Same as figure 7, but for W+W+W− hadroproduction at 100TeV.

those in figure 7 for W+Z production, where the reference line is the dotted orange one,
the NLO EW prediction without photon-initiated processes. Indeed, also in this case the
opening of the photon-induced channels in the NLO EW corrections (qγ →W+W+W−q′)
induces additional effects that cannot be captured by the DP algorithm.

Similarly to the case of W+Z production in figure 7, we see that both the choices
between SDK0 and SDKweak approaches and between the inclusion or exclusion of SSCs→rkl

terms are relevant. Also, the exclusion of the photon-initiated processes is unavoidable for
the comparison between LA and exact NLO EW results. As any other observable considered
in this section, once again we see very large effects from NLO EW corrections (reaching
almost −200% of the LO). Moreover, the solid red line, the LA in the SDKweak approach
including SSCs→rkl terms, is able to approximate within the 10% level the exact NLO EW
effects excluding photon-initiated processes (dotted orange line) over the full range of the
observables considered the plots of figure 8. The difference between the two aforementioned
accuracies, the solid red line in the second inset, is in general a constant over the range of
each observable considered. The only exception is m(W2,W3) where a logarithmic trend
is visible also for the red-solid line. A similar effect, although milder, could be observed
also for the m(Z2, Z3) distribution in ZZZ production in figure 6. To the best of our
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knowledge, given the cuts in (7.5), this effect is not due to any possible enhancement arising
from real emission contributions. However, as explained in section 6, possible additional
angular-dependent effects involving ratios of invariants can be present and not captured in
the DP algorithm, regardless of the inclusion of the SSCs→rkl term.

8 Conclusions and outlook

In this work we have revisited the algorithm of Denner and Pozzorini [39] for the calculation
of one-loop EW Sudakov logarithms, denoted in the previous sections as DP algorithm.
We have introduced several novelties that concern different aspects of the electroweak
Sudakov approximation. Moreover, we have implemented the DP algorithm, together with
the novelties introduced, in the MadGraph5_aMC@NLO framework. Thanks to this new
implementation we have provided in a completely automated approach several numerical
results for different production processes, both for the virtual contribution in specific phase-
space points and for physical (IR-safe) differential cross sections at a 100TeV proton-proton
collider. All the numerical results that we have obtained corroborate the relevance of the
novelties introduced in this work and also demonstrate the correctness of the implementation
of the algorithm in the code.

In particular we have introduced the following novelties:

• We have reframed the DP algorithm by setting the mass of the photon and light-fermion
masses exactly to zero, regularising IR divergences by mean of Dimensional Regulari-
sation (DR), as in modern NLO EW calculations and Monte Carlo implementations.
Reframing the algorithm with the language of modern calculations, it allows for further
developments and compatibility with the state-of-the-art tool implementations.

• We have modified part of the expressions in order to take into account additional
angular dependences, without assuming that all the invariants are of the same size
of s. These modifications correspond to the terms that have been dubbed in the
work as SSCs→rkl ; they have been obtained keeping track of the dependence on any
invariant rkl in the derivation of the subleading soft-collinear logarithms. As already
mentioned in various points in the text, even with this improvement, the full control of
logarithms involving the ratios of the different |rkl| and s cannot be achieved via the
DP algorithm. Information on the internal structure of the diagrams is unavoidable for
this purpose. On the other hand, the SSCs→rkl terms are sensitive to the presence of
a hierarchy among the various invariants that characterise a specific phase-space point
and substantially improve the approximation of the aforementioned class of logarithms.
In order to support this statement, we have showcased for several processes and
observables the superiority of the Sudakov approximation including the SSCs→rkl terms.

• We have identified an imaginary term that was omitted in ref. [39], which cannot be
in general neglected for 2→ n processes with n > 2. This term is also present in the
new SSCs→rkl terms that have been introduced. We have shown the relevance of this
imaginary term for correctly capturing effects of order α log(s/M2

W ).
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• In this work we did not focus only on one-loop EW corrections to amplitudes, as
done in the pioneering work ref. [39], but we have considered also the virtual NLO
EW corrections to the LO cross sections. The two cases are trivially related only
when the entire LO factorises a single combination of αS and α powers. However,
more in general, NLO EW corrections can also include effects due to loops of QCD
origin. We provide the additional terms, denoted in the paper as δQCD

LA , that are
necessary in order to take into account in Sudakov approximation also contributions
from the aforementioned QCD loops. We have proved the relevance of δQCD

LA for
correctly capturing effects of order α logn(s/M2

W ) with n = 1, 2, when also QCD loops
contribute to virtual NLO EW corrections to the LO cross sections.

• We describe how to modify the DP algorithm in order to exclude the contribution of pho-
tons and also the contribution of gluons from the QCD terms mentioned in the previous
bullet. We dub this approach as SDKweak. In the context of differential cross sections
and IR physical observables, we show how this approach is superior to the standard
approach used in the literature, dubbed in this work as SDK0, which corresponds to
simply removing the IR-divergent logarithms involving the scaleMW and the IR cut-off.

We discuss also the technical steps of the implementation of the DP algorithm, together
with the novelties introduced in this work, in the MadGraph5_aMC@NLO framework. The
choice of the MadGraph5_aMC@NLO framework, which already automates the calculation
of the exact NLO EW corrections, has been crucial for the validation of our work and for
demonstrating the correctness of our implementation of the Sudakov approximation, also
denoted in the paper as leading approximation (LA). Systematic comparisons between
exact O(α) corrections, the NLO EW, and their LA with different assumptions (SSCs→rkl ,
imaginary term, δQCD

LA , SDKweak, etc.) have been performed in order to check that all the
logarithmic terms are correctly captured.

Besides being essential for validation, the implementation in a framework as Mad-

Graph5_aMC@NLO opens up for several new possibilities. First of all, the necessary
ingredients for performing completely automated NLO EW corrections matched with re-
summed EW Sudakov logarithms are now available in a single tool. Then, a fast and stable
method for approximating dominant effects from EW corrections is now available. Especially,
the quality of the approximation can be checked via the NLO EW exact calculation, which
however we remind the reader cannot in general be substituted by its LA. Sudakov effects
can be also more easily integrated in Monte Carlo simulations and generations of events.
These are only a few of the possible outcomes of this work, which sets the basis for future
works both at the phenomenological and formal level.

Another important possible development of this work is, e.g., the possibility of compute
approximate EW corrections also in extensions of the SM. Indeed, only tree-level Feynman
rules are needed. However, for a given BSM model, the associated Universal Feynrules
Output (UFO) model [140], which is the format used in MadGraph5_aMC@NLO for
encoding the Feynman rules, should provide some extra informations that are not present
at the moment: how particles are arranged in SU(2) multiplets and the values of their
electroweak couplings (charge, isospin component and/or hypercharge). At the moment,
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this information had to be written by hand in the code. We thus envisage an extension of
the UFO format in this direction.

As a final remark, we want to stress once again that the Sudakov approximation
cannot substitute exact NLO EW calculations. As we said, this approximation can be
exploited for performing fast simulations including the EW dominant effects at high energy.
However, it should be always cross-checked with an exact calculation before being used for
phenomenological predictions and especially comparisons with data. Moreover, as explained
many times in the text, the approximation works when all the invariants rkl satisfy the
relation |rkl| �M2

W . This implies, for instance, that the Sudakov approximation can never
be directly exploited for a process involving resonances. In the SM this typically means
the production and decay of the heavy particles W,Z,H or t. On the other hand, given
such a type of process, the Sudakov approximation can be applied for the calculation of the
same process including only the production but not the decays of the aforementioned heavy
particles, and the decay can be subsequently taken into account.
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