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Universal quantum computing with continuous variables requires non-Gaussian resources, in addition
to a Gaussian set of operations. A known resource enabling universal quantum computation is the cubic
phase state, a non-Gaussian state whose experimental implementation has so far remained elusive. In this
paper, we introduce two Gaussian conversion protocols that allow for the conversion of a non-Gaussian
state that has been achieved experimentally, namely the trisqueezed state [Chang et al., Phys. Rev. X 10,
011011 (2020)], to a cubic phase state. The first protocol is deterministic and it involves active (inline)
squeezing, achieving large fidelities that saturate the bound for deterministic Gaussian protocols. The
second protocol is probabilistic and it involves an auxiliary squeezed state, thus removing the necessity
of inline squeezing but still maintaining significant success probabilities and fidelities even larger than for
the deterministic case. The success of these protocols provides strong evidence for using trisqueezed states
as resources for universal quantum computation.
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I. INTRODUCTION

Continuous-variable (CV) systems [1] are promising
candidates to implement quantum computation in a vari-
ety of physical settings where quantum systems cannot
be described within a finite-dimensional Hilbert space,
including optical [2] and microwave radiation [3–5],
trapped ions [6,7], optomechanical systems [8–10], atomic
ensembles [11–14], and hybrid systems [15]. A major fea-
ture of CV systems is their potential in terms of scalability
and noise resilience. In the optical domain, dual-rail clus-
ter states composed of up to one million modes have been
implemented [16], as well as large bidimensional cluster
states [17,18], with the potential of on-chip integrability
[19]. In the microwave regime, the use of bosonic codes
in superconducting cavities has allowed for extending the
lifetime of quantum information with respect to the con-
stituents of the system [20], and recent architectures allow
for a lifetime of photons in three-dimensional cavities of
up to 2 s [21]. Furthermore, bosonic codes that render
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CV quantum computation fault-tolerant against arbitrary
errors, namely Gottesman-Kitaev-Preskill (GKP) codes
[22,23], have also been recently experimentally achieved
[24].

In CV quantum computation, Gaussian operations play
a central role [25–27], given that in general they are rela-
tively easy to implement regardless the chosen experimen-
tal platform. However, Gaussian operations alone cannot
achieve computational universality [22,28], and genuine
quantum non-Gaussianity is required as a resource [29,30].
In particular, two main routes have been identified in order
to promote Gaussian operations to universality by means
of resourceful states. The first route relies upon the states
that embody the specific codewords of the already men-
tioned GKP code [22,31,32]. The second route is instead
based on the so-called cubic phase state [22] that, by
enabling the implementation of a nonlinear gate [33],
can in principle unlock universality regardless of the use
of a specific encoding [28]—including, for example, the
generation of GKP states via the probabilistic protocol
introduced in Ref. [34].

Whereas GKP codeword states have recently been pro-
duced experimentally [24,35], the generation of a cubic
phase state has proven elusive thus far, despite the con-
siderable theoretical [22,36–40] as well as experimental
[41] effort. In this work, we provide viable solutions for
the generation of a cubic phase state, exploiting a family
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of non-Gaussian Wigner-negative states that have recently
been generated experimentally.

A number of experiments have demonstrated the
generation of non-Gaussian states, both in the optical
domain—typically using photon subtraction and addition
operations [42–44]—and in the microwave domain—using
controlled qubit-mediated operations [24,45,46] or other
forms of nonlinearities [47–52]. However, it is not known
currently which non-Gaussian states can be converted into
resource states for quantum computation, such as the cubic
phase state, by means of resourceless (Gaussian) proto-
cols. In Ref. [29], a bound on the number of copies needed
for the conversion, based on the ratio of the negativi-
ties of the Wigner function of the input and target states,
has been derived. However, this bound is nonconstruc-
tive, in the sense that, even if the bound is satisfied, it is
not guaranteed that a conversion protocol saturating the
bound exists. In general, conversion protocols that yield as
an output state a resource state starting from experimen-
tally accessible states have not been studied thoroughly
yet.

In this work we focus on the cubic phase state as a
resource state, and we provide explicit protocols to con-
vert a non-Gaussian state that has recently been generated
within microwave circuits—namely the trisqueezed state
[51]—into a cubic phase state, with simple Gaussian oper-
ations that are readily available in the laboratory, in both
the optical and the microwave regimes.

More specifically, we introduce two conversion proto-
cols. The first protocol is based on squeezing and dis-
placement transformations, and it belongs to the family
of deterministic Gaussian maps. We first provide a bound
on the fidelity to the target cubic phase state that can
be achieved with the most general deterministic Gaussian
map, and we subsequently show that our protocol sat-
urates this bound. We then introduce a second protocol
that includes conditional measurements on ancillary states.
Belonging to the larger set of nondeterministic Gaussian
maps, we are able to show that this second probabilis-
tic protocol achieves higher fidelities with respect to the
deterministic bound—yet retaining success probabilities
that are high compared to existing protocols [39]. For both
protocols, we rely on numerical optimization in order to
determine the best parameters to be used.

With our work, we therefore establish that it is possi-
ble to convert a trisqueezed state onto a cubic phase state
by means of Gaussian operations alone. As noted above,
since the availability of cubic phase states and Gaussian
operations enables universal quantum computation over
CV systems, this corroborates the use of trisqueezed states
as a resource for CV quantum computation. In fact, once
our protocols have established the Gaussian equivalence
of the trisqueezed state and the cubic phase state, one can
make direct use of the former to implement universal non-
Gaussian gates. Specifically, in Appendix A we derive the

teleportation gadget needed to implement a cubic phase
gate directly from a trisqueezed state.

The paper is structured as follows. In Sec. II we define
the input and target states for our conversion protocols,
and we motivate their study. In Sec. III A we calculate the
upper bound on the fidelity of the state conversion—i.e.,
the fidelity to the desired target state—obtainable with
deterministic Gaussian maps. In Sec. III B we define our
deterministic Gaussian conversion protocol, and we show
that it corresponds to a simple squeezing and displace-
ment operation on the input mode, achieving high fidelity
of conversion—for example, a fidelity of 0.971 for a tar-
get cubic nonlinearity of approximately 0.156. In Sec. IV,
we introduce our probabilistic Gaussian conversion pro-
tocol, thoroughly analyze its properties, and show that it
yields higher fidelities compared to the deterministic pro-
tocol (for example, up to 0.997 for the same target) for
success probabilities as high as 5%. In Sec. V A we discuss
the experimental implementability of our protocols in both
microwave and optical systems, before presenting conclu-
sive remarks in Sec. VI. In Appendix B we provide an
extensive discussion of the numerical methods used for our
optimizations, while other technical details are provided in
the remaining appendixes.

II. PURPOSE OF OUR CONVERSION
PROTOCOLS

Before starting, it is useful to recall some standard def-
initions and notation for CV systems that we are going
to use extensively in this paper, as well as the defini-
tions of the input and target states. We indicate the vec-
tor of quadrature operators for N bosonic modes as �̂r =
(q̂1, p̂1, . . . , q̂N , p̂N )

T, and for each mode, we use the fol-
lowing convention for the relation between the quadrature
operators and the creation and annihilation operators: q̂ =
(â + â†)/2 and p̂ = (â − â†)/(2i), corresponding to set-
ting � = 1

2 . The squeezing Ŝ(ξ), displacement D̂(β), and
phase rotation Ûp(γ ) operators are respectively defined as

Ŝ(ξ) = eξ
∗â2/2−ξ â†2/2, (1)

D̂(β) = eβâ†−β∗â, (2)

Ûp(γ ) = e−iγ n̂, (3)

with n̂ = â†â the number operator, γ ∈ R, β ∈ C, ξ ∈ C,
and ξ = |ξ |eiφ with φ ∈ [0, 2π ]. The successive applica-
tion of a squeezing and displacement operator onto the
vacuum state yields a displaced squeezed state

|�ξ ,β〉 = D̂(β)Ŝ(ξ)|0〉. (4)

In the following, we address conversion protocols from an
experimental available state to a state that, as mentioned,
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(a) (b)

FIG. 1. Wigner functions of the input state (trisqueezed state)
and of the target state (cubic phase state) of our protocols.
The parameter defining the strength of the triple-photon interac-
tion, i.e., the triplicity, is set to t = 0.1, while the corresponding
parameter characterizing the cubic phase state, the cubicity, is set
to r = 0.1558, with 5 dB squeezing. (a) Trisqueezed state |�in〉.
(b) Cubic phase state |�target〉.

is known to be pivotal for quantum computation. The input
state discussed in this paper is the trisqueezed state defined
as [53,54]

|�in〉 = ei(t∗â3+tâ†3) |0〉 . (5)

In what follows, we refer to the complex parameter t that
characterizes the strength of the triphoton interaction in
Eq. (5) as the triplicity. In Fig. 1(a) we show the Wigner
function of the trisqueezed state with triplicity t = 0.1 as
an example. As can be seen, this state is symmetric with
respect to the momentum axis q = 0, and it also possess
a 2π/3-rotational symmetry. The rotational symmetry is a
direct consequence of the Hamiltonian generating the state
in Eq. (5), and is equivalently also reflected in the Fock
expansion of the trisqueezed state, where only Fock states
with photon numbers that are multiple of 3 are present [55].

Our target state, the cubic phase state, is defined as [33]

|�target〉 = eirq̂3
Ŝ(ξtarget) |0〉 , (6)

where the subscript “target” is used in order to distinguish
this squeezing parameter from those of other squeezed
states that will be introduced later. In what follows, we
refer to the parameter that characterizes the strength r of
the cubic interaction in Eq. (6) as the cubicity. In Fig. 1(b)
we show the Wigner function of the cubic phase state with
cubicity r = 0.0551 [56]. This state is also symmetric with
respect to the momentum axis q = 0. For convenience, we
fix the squeezing strength of the target state Eq. (6) as 5 dB,
which implies that ξtarget = −log105 dB/20 [57]. The proper-
ties of the Wigner function for trisqueezed states and cubic
phase states have been considered before in Refs. [54,58]
and [36,38,59], respectively.

In order to fix, for a given input state triplicity, the
target state cubicity, we use considerations from quan-
tum resource theory. As mentioned, it has been proved
that operations or initial states characterized by negative

Wigner functions are necessary for quantum speedup [60].
Wigner negativity is thereby regarded as a resource for
computational advantage. A convenient measure of the
negativity content of the Wigner function is the Wigner
logarithmic negativity or mana M (ρ) = log[

∫
d�r|Wρ(�r)|],

where Wρ(�r) is the Wigner function of the state ρ and
where the integral runs over the whole phase space. The
concept of mana was originally introduced for discrete-
variable Wigner functions [61], and later extended to con-
tinuous variables [29,30]. The main features of the CV
mana is that it is invariant under Gaussian unitary oper-
ations (namely, unitary operations that are generated by
Hamiltonians at most quadratic in the canonical bosonic
operators), and more generally under deterministic Gaus-
sian protocols. In addition, it does not increase on average
under probabilistic Gaussian protocols [29]; namely, one
has

M (ρin) ≥ pM (ρtarget), (7)

where M (ρin) and M (ρtarget) are the mana of the input and
target states, respectively, and p is the probability of suc-
cess of the conversion protocol. Therefore, given that we
want to assess both deterministic and probabilistic Gaus-
sian conversion protocols for a given pair of input and
target states, it is reasonable to choose the latter states in
such a way that they possess the same amount of mana.
Given a certain input triplicity, a corresponding cubicity
can be estimated numerically by the requirement to keep
the mana invariant. Limited only by numerical accuracy,
we choose to start from trisqueezed states with triplicities
0.1, 0.125, and 0.15, while targeting corresponding cubic
phase states with the same mana. As a side remark, note
that the trisqueezed state, Eq. (5), has higher mana than
the cubic phase state, Eq. (6), for the same average photon
number.

Note that the choice of target cubicity is not crucial
in terms of computational universality, and it is taken
here only to ease the quantitative comparison of different
protocols. In fact, a cubic phase state of any given cubic-
ity r can be used to generate a unitary operation of the
form exp[irq̂3], via Gaussian deterministic gate teleporta-
tion [33]. The latter is usually denoted a cubic phase gate
and, equipped with arbitrary Gaussian unitaries, unlocks
universality for any value of r [26]. In fact, it is easy to
show that Ŝ(s)† exp[irq̂3]Ŝ(s) = exp[ire3sq̂3], where s is
the strength of a squeezing gate. In other words, under the
assumption of having at our disposal arbitrary squeezing,
the nonlinearity can be enhanced or reduced by changing
the strength of a supplementary squeezing gate.

In order to characterize conversion protocols that map
the trisqueezed state onto the cubic phase state or aim at
approximating the latter as well as possible, we need to
define a measure of the distance between the target state
and the transformed input state. For this, we choose the
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fidelity [62]

F(ρ1, ρ2) =
(

Tr
{√√

ρ1ρ2
√
ρ1

})2
. (8)

As our target state is a pure state, this expression can be
simplified to

F(ρ,�target) = 〈�target|ρ|�target〉. (9)

In what follows, we detail two Gaussian protocols enabling
the approximate conversion of a trisqueezed state onto a
cubic phase state, and we characterize their performances.

III. DETERMINISTIC GAUSSIAN CONVERSION
PROTOCOL

In this section we introduce our deterministic Gaussian
conversion protocol. Before doing so, we numerically pro-
vide an upper bound to the fidelity of conversion that can
be achieved by the class of trace-preserving Gaussian com-
pletely positive maps, and we show that our deterministic
protocol saturates this bound. In other words, the optimal
maps are symplectic maps with displacement, and we show
that the dominant contribution consists of squeezing.

A. Fidelity bound with general Gaussian maps

Completely positive trace-preserving (CPTP) maps are
called Gaussian if they map Gaussian states into Gaus-
sian states. Note that the target Gaussian state does not
have to be necessarily a pure state. These maps are char-
acterized by their action onto the symmetrically ordered
characteristic function [25], i.e.,

χρ(�r) = Tr{D̂(−�r)ρ} (10)

with the arbitrary displacement operator being

D̂(−�r) = e−i(�rT
�̂r) (11)

with �r ∈ R2N and


 =
N⊕

j =1

(
0 1

−1 0

)

being the symplectic form for N modes. Beyond unitary
deterministic processes, these Gaussian maps may also
include nonunitary maps representing noise or processes
where ancillary modes are measured. In the latter case,
however, feed forward is then assumed to take place, to
restore determinism.

The action of any Gaussian CPTP map� on the charac-
teristic function can then be written as [63]

χρ(�r) → χ�(ρ)(�r) = e−�rT
TY
�r/4+i�lT
�rχρ(
TX T
�r) (12)

with X ,Y being 2N × 2N real matrices, �l being a 2N real
vector, Y being symmetric, and fulfilling the following
positive semidefinite matrix constraint:

Y ± i(
− X
X T) ≥ 0. (13)

Note that Eq. (13) in turn implies that Y has to be a
positive semidefinite matrix. The requirement for positive
semidefiniteness needs to hold for both signs, since trans-
position does not affect the positive (semi)definiteness of
a matrix. It has to be noted that Eq. (12) characterizes
general trace-preserving open Gaussian dynamics, where
�l is the displacement on the state and Y denotes additive
Gaussian noise.

Since the conversion protocol we are investigating has
one mode only at both the input and the output, we set
N = 1 in the following paragraphs. In order to numerically
determine the matrices X , Y and the vector �l that map the
trisqueezed state onto the cubic phase state (for a given
pair of cubicity and triplicity parameters), or approximate
it as good as possible, we reexpress the fidelity defined in
Eq. (9) in terms of the characteristic functions of the input
and target states:

F(ρ, ρtarget) = 〈�target| ρ̂ |�target〉

= 1
4π

∫
d�rχρ(�r)χρtarget(−�r). (14)

Here ρtarget = |�target〉 〈�target|. We numerically calculate
the characteristic functions for both the input and target
states given by Eqs. (5) and (6), respectively, and then
transform the input characteristic function given the Gaus-
sian CPTP map in Eq. (12). We then maximize the fidelity
between the transformed state and the target state by opti-
mizing X , Y, and �l, while still fulfilling Eq. (13). Since this
optimization involves a number of potential evaluations
of the characteristic functions, using the analytical expres-
sions for the matrix elements of the displacement operator
[see Eqs. (C2) and (C3)] significantly speeds up the com-
putation, compared to direct matrix exponentiation. More
details regarding the numerical calculations are provided
in Appendix B.

The results of this fidelity optimization are shown in
Table I for various values of the triplicity of the input
trisqueezed state. For triplicity t = 0.1, we obtain a conver-
sion fidelity of 0.9708. The fidelity of conversion decreases
at increasing triplicity. The parameters in terms of the
matrices X , Y, and �l that optimize the conversion are given
in Table V in Appendix C.
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TABLE I. Maximized fidelities for Gaussian CPTP maps (third
column) and purely symplectic maps (fourth column) for differ-
ent input-target pairs (first and second columns). The squeezing
of the target cubic phase state is fixed to be 5 dB. The optimized
parameters are given in Appendix C.

Triplicity Cubicity (5 dB)
Gaussian

CPTP map Symplectic

0.1 0.1558 0.9708 0.9335
0.125 0.2757 0.9273 0.8810
0.15 0.4946 0.8557 0.8113

By looking at the optimized parameters, a few consid-
erations can be made. The matrix Y is essentially a null
matrix, implying that the conversion can be done unitarily.
Furthermore, X is nearly diagonal with reciprocal entries,
i.e., it corresponds to squeezing. The vector �l =

(
lq
lp

)
has

a nontrivial contribution for the displacement lp , the dis-
placement along the momentum axis q = 0, so we expect
that a purely symplectic conversion will not saturate the
bound given by the trace-preserving Gaussian completely
positive maps. This result can be understood at an intuitive
level: Y should be close to 0, so we do not add any noise
to the conversion; the displacement along the position axis
p = 0 should be 0 to conserve the symmetry between both
Wigner functions, and positive along the momentum axis
q = 0, to match the maxima of their respective Wigner
functions. Finally, as we show in the next subsection, an
exact conversion can be done asymptotically with only
squeezing.

B. Unitary protocols

We now specialize to the case of symplectic transfor-
mations, which allows us to design a specific deterministic
conversion protocol. Symplectic transformations are spe-
cial cases of the protocols introduced in Sec. III A and
correspond to a class of unitary operations for which the
noise matrix Y and the displacement vector�l are set to zero,
whereas X ∈ Sp2,R is a symplectic matrix [1].

We denote the unitary operation associated to X as ÛX ,
acting as follows on the trisqueezed state:

ÛX eit(â3+â†3) |0〉 = ÛX eit(â3+â†3)Û†
X ÛX |0〉 . (15)

For exact state conversion, the following relation needs to
hold:

ÛX eit(â3+â†3)Û†
X → eirq̂3

. (16)

This can be achieved asymptotically in the infinite squeez-
ing limit. Squeezing implements a Bogoliubov transforma-
tion

â → Ŝ(ξ)âŜ†(ξ) = uâ + vâ†, (17)

â† → Ŝ(ξ)â†Ŝ†(ξ) = u∗â†+v∗â, (18)

with u = cosh (|ξ |) and v = sinh (|ξ |)e−iφ [see Eq. (1)].
In the case in which u = v and u∗ = v∗, this transforma-
tion gives us the required form, because q̂ ∝ â + â†. This
means that a conversion with asymptotically unit fidelity
is possible for |ξ | → ∞ and φ = 0. In other words, in
the high squeezing limit negligible contributions of dis-
placements are expected, since first, exact conversion is
asymptotically possible and, second, displacements on the
input state add lower orders of p̂/q̂ to the exponent in
Eq. (5) while the target is only cubic in q̂ in the exponent.

Since the squeezing parameter ξtarget associated with the
target cubic phase state, Eq. (6), is finite, one expects that
the optimal squeezing operation will be a trade-off between
matching the target state squeezing and transforming the
trisqueezed state. Moreover, in the regime of finite squeez-
ing we expect that the contributions to the Gaussian map
coming from the displacements cannot be neglected. Note
that in view of the above discussion, we expect the fidelity
of our protocol to increase at increasing squeezing in the
target state.

Similarly to Sec. III A, we determine the maximum
fidelity between the input and target states that is achiev-
able with symplectic transformations by transforming the
input characteristic function. The advantage with respect
to the general Gaussian maps of Sec. III A is that here,
since we know that X ∈ Sp2,R, we can parameterize the
transformation as [64]

X =
(

g ge
cg g−1 + cge

)

(19)

for g, e, c ∈ R and nonzero g. In other words, we are using
three real parameters to parameterize a real symplectic
transformation, which is precisely the dimension of the real
symplectic group Sp2,R.

In Fig. 2(b) we show the Wigner function of the output
state corresponding to the optimization of the symplectic
transformation in Eq. (19). It can be seen that the Wigner
function of the output state and that of the target state
in Fig. 1(b) are qualitatively similar, which is expected
as the fidelity is equivalent to the Wigner overlap [65].
The results of the optimizations are shown in Table I.
Squeezing is the dominant contribution of the symplec-
tic transformation, with the off-diagonal elements in the
symplectic matrix being negligibly small, as can be seen
in Appendix C.

Interestingly, from Table I we see that the obtained val-
ues for the fidelity of conversion are, for all values of
triplicitly, below those from the Gaussian maps. This is to
be expected, since the optimal Gaussian maps had a non-
vanishing contribution of displacement. The effectiveness
of squeezing on the input state towards reaching a cubic
phase state can also be intuitively understood from Fig. 2.
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(a) (b)

FIG. 2. (b) Wigner function of the output state obtained via our
deterministic symplectic Gaussian conversion protocol |�out〉,
i.e., excluding the final displacement. In order to ease the com-
parison, we reproduce in panel (a) the Wigner function of the
input trisqueezed state |�in〉 with triplicity t = 0.1, already plot-
ted in Fig. 1(a). The full list of parameters characterizing the
optimization protocol is given in Table II.

As we have seen, given only symplectic single-mode
transformations, squeezing is the relevant contribution. An
intuitive extension to the investigated purely symplectic
transformations, motivated by the results obtained from
the trace-preserving Gaussian completely positive maps,
are displacements. The characteristic function transforms
under displacements as

χρ(�r) → χD̂(�l)ρD̂(�l)†(�r) = ei�lT
�rχ(�r). (20)

Since the off-diagonal terms in the symplectic case are triv-
ial, we focus on squeezing and displacement only. The
resulting conversion scheme is depicted in Fig. 3.

The optimized fidelities for this approach are shown in
Table II as well as the parameters for the optimized pro-
tocol. The maximum achieved fidelity is improved further
with displacements along the momentum axis q = 0, satu-
rating the bounds given by the Gaussian CPTP maps and
achieving, for example, the value of 0.971 for triplicity
t = 0.1.

Note that in the present case, the achieved output state
has by construction the same mana as the input state,
because unitary Gaussian operations conserve the Wigner
negativity [29].

|Ψin〉 Ŝ(ξ) D̂(�l) |Ψout〉

FIG. 3. Sketch of our deterministic Gaussian conversion pro-
tocol. We apply a squeezing operator and a displacement on a
trisqueezed state. Here |�out〉 is the output state after optimizing
the parameters in the circuit.

IV. PROBABILISTIC GAUSSIAN CONVERSION
PROTOCOL

The deterministic conversion protocol introduced in
Sec. III belongs to the class of trace-preserving Gaussian
maps [63]. In this section, we relax the requirement for a
deterministic protocol, and we introduce instead a proba-
bilistic conversion protocol that belongs to the larger class
of CP Gaussian maps [29]. While becoming associated
with a success probability, the conversion fidelity that can
be reached with probabilistic protocols can in principle be
higher. As we show, the mana of the output state can be
larger than that of the input state, since the protocol is
solely constrained by Eq. (7).

Let us mention in advance that the probabilistic protocol
will achieve squeezing by means of an ancillary squeezed
state, rather than of a squeezing operator acting directly on
the input state. The former is usually referred to as offline
squeezing, in contrast to the latter that is known as inline
squeezing. The possibility to substitute inline with offline
squeezing is a well-known result [66], which has proven
to be of practical relevance especially in quantum optical
setups [67]. However, as we show below, our probabilistic
protocol is not merely an offline-squeezing version of the
deterministic protocol. Rather, as mentioned, it belongs to
a larger class of protocols and can therefore achieve better
conversion performances.

The conversion protocol that we consider is sketched in
Fig. 4. It takes as inputs a trisqueezed state, Eq. (5), in the
upper rail and a displaced squeezed state, Eq. (4), in the
lower rail. These are fed into a beam splitter corresponding
to the symplectic transformation UR

BS(2θ), where

UR
BS(2θ) =

(
cos θ sin θ

− sin θ cos θ

)

. (21)

TABLE II. Maximized fidelities and optimized parameters for the deterministic Gaussian conversion protocol including squeezing
and displacement, as depicted in Fig. 3, for different input-targets pairs. The squeezing of the target cubic phase state is fixed to be 5
dB. Note that the squeezing values that are given in absolute numbers correspond to the first diagonal element of the symplectic matrix
X , while the values in parentheses correspond to the squeezing parameter of Eq. (1). The two values are related by |ξ | = − log(X00).
The last column is the mana of the transformed state.

Triplicity Cubicity Fidelity Squeezing Displacement lp Displacement lq Manaout

0.1 0.1558 0.9708 0.6741 (3.4 dB) 0.1547 2 × 10−9 0.1658
0.125 0.2757 0.9273 0.7816 (2.1 dB) 0.2268 −10−8 0.3338
0.15 0.4946 0.8557 0.9463 (0.5 dB) 0.3029 −5 × 10−8 0.5450

010327-6



GAUSSIAN CONVERSION PROTOCOLS. . . PRX QUANTUM 2, 010327 (2021)

|Ψin〉
UR

BS(2θ)
q̂

|Ψξ,β〉 Up(γ) D(d) |Ψq
out〉

FIG. 4. Sketch of our probabilistic Gaussian conversion proto-
col. We apply a beam splitter UR

BS(2θ) on a trisqueezed state and
an ancillary displaced squeezed state. After a rotation Up(γ ), we
postselect the homodyne measurement on the first mode to value
q = 0 and displace the second mode with D(d). The output state
is denoted as |�q

out〉.

Note that the 2 × 2 matrix in Eq. (21) refers to two modes,
i.e., is meant to act on the annihilation operators â1, â2,
in contrast to the 2 × 2 matrices of the previous sections
and in particular of Eq. (19), acting on the annihilation
and creation operators of a single bosonic mode. Next, a
phase rotation, Eq. (3), is performed on the lower rail and
a homodyne measurement is performed on the upper rail.
Upon postselection on the measurement result q = 0 on the
upper rail, a displacement is performed on the state on the
lower rail.

Note that the deterministic protocol analyzed in
Sec. III B, which makes use of active inline squeezing,
could be converted to a (deterministic) protocol that uses
only offline squeezing. Ideally, this could be accomplished
via a gate-teleportation gadget [26,68–70] composed of a
control-phase gate whose two input modes are fed by the
trisqueezed input state and an auxiliary infinitely squeezed
state; an additional phase-space rotation and a final dis-
placement of the latter mode using feed forward (i.e.,
depending on the outcome of the homodyne measure-
ment on the first mode) would implement the required
transformation. Such measurement-based squeezers have
been proposed theoretically in Ref. [66] and implemented
experimentally in Ref. [71]. Here we generalize this strat-
egy by using a displaced squeezed input state, a beam-
splitter operation with variable amplitude, a noncondi-
tional displacement, and we postselect on the measurement
outcome. As already mentioned, this has the advantage that
the map implemented does not belong to the set of CPTP
Gaussian maps analyzed in Sec. III, and hence it allows
in principle for achieving higher fidelities, at the price of
introducing a success probability. We also note that, in
comparison to the protocol of Ref. [66] where the output
state is a mixed state due to the finite squeezing in the
ancillary squeezed state, in our probabilistic protocol the
purity of the output state is preserved [72], the only source
of impurity stemming—as we will see—from the finitely
resolved homodyne detector.

As an additional remark, it is interesting to compare our
conversion protocol to the probabilistic synthesis protocols
in Ref. [39], aiming at generating a cubic phase state start-
ing by means of tunable optical circuits with optimized
parameters, and the deterministic protocol in Ref. [40]. In
these protocols, the non-Gaussian element is respectively

(a) (b)

FIG. 5. Wigner functions of the rotated input state [corre-
sponding to a trisqueezed state with triplicity t = 0.1 exp(iπ/2)]
and of the output state |�q

out〉 of the probabilistic Gaussian con-
version protocol. The corresponding parameters of the circuit are
shown in the first row of Table III. (a) Rotated trisqueezed state.
(b) Output state.

provided by the measurement (photon-number resolving
detector) and by the nonlinear medium (self-Kerr effect). In
our scheme, instead, both evolution and measurement are
described by Gaussian processes and are hence resource-
less, but the input state is non-Gaussian.

As will become clear later, in this section we consider
an input trisqueezed state with triplicity arg(t) = π/2 [see
Fig. 5(a)]. This is done in order to exploit the symme-
tries of input and target states and ease the numerical
optimization of the circuit parameters.

We now explicitly calculate the output state of the cir-
cuit sketched in Fig. 4. To simplify the calculation, we
consider the output state before the displacement on the
lower mode. For the purpose of calculating the fidelity
or the overlap between output and target states, this is
equivalent to displacing the target in the opposite direc-
tion. In other words, the fidelity is the same whether we
displace the output state, or the target state by the opposite
displacement.

Note that the quadrature operator q̂, associated with
ideal homodyne detection, has eigenvalues q on the real
axis. Then, the probability to measure a particular eigen-
value is infinitely small. In order to overcome this lim-
itation, and properly model a finite-resolution homodyne
detector, the real axis can be discretized into bins of width
2δ around the real values qn, where n ∈ Z is the inte-
ger labeling the nth bin. The probability associated with
qn corresponds to the probability that a measurement out-
come belongs to the nth bin. In particular, the probability
of obtaining qn = 0 defines the success probability of our
protocol.

As shown in Appendix D, the output state that corre-
sponds to a general measurement outcome q associated to
an infinitely resolved homodyne detector can be written as

|�q
out(ξ ,β, θ , γ )〉

= 1
π

∫
dq2dα�in(q cos θ + q2 sin θ)

×�ξ ,β(−q sin θ + q2 cos θ)〈α|q2〉|αe−iγ 〉,
(22)
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where the displaced squeezed state parameters ξ and β ≡
qβ + ipβ are complex numbers, while the angle θ parame-
terizing the beam splitter and the phase rotation γ are real
numbers. A consequence of binning is that the conditional
output state of our protocol is a mixed state,

ρ̂n,cond = 1
Prob[qn]

∫ qn+δ

qn−δ
dq|�q

out〉〈�q
out|, (23)

where |�q
out〉 is given in Eq. (22) and Prob[qn] is the proba-

bility of obtaining the outcome qn, explicitly calculated in
Appendix D [see, in particular, Eq. (D14)].

The fidelity defined in Eq. (8) between the target state
and the output conditional density matrix in Eq. (23) is then
expressed as

Fqn = 〈�target|ρ̂n,cond|�target〉

= 1
Prob[qn]

∫ qn+δ

qn−δ
dq|〈�target|�q

out〉|2. (24)

As already stated, we focus in particular on qn = 0.
There are seven parameters that can be optimized for

maximizing the fidelity in Eq. (24), including the displace-
ment parameter d after the measurement. The numerical
optimization of the fidelity is hence a challenging task. It
involves three computationally expensive numerical inte-
grations, and the total necessary time grows exponentially
with the dimension of the space to be explored. How-
ever, we empirically find that, as a consequence of the
symmetries of the input and target states, some of the
parameters can be fixed. As shown in Fig. 5(a), we con-
sider a trisqueezed state with Wigner function symmetric
with respect to the position axis p = 0, while the target
state is symmetric with respect to the momentum axis
q = 0 [Fig. 1(b)]. We fix the phase of the ancillary dis-
placed squeezed state so as to yield a position-squeezed
state, i.e., ξ real and positive, and we consider a real dis-
placement for the ancillary squeezed state; hence, pβ = 0.
With these choices, the full two-mode input state is sym-
metric with respect to the position axis p = 0. Then, we
set the phase rotation to γ = −π/2 so that our output state
upon postselection over qn = 0 has the same symmetry as
the target state, i.e., it is symmetric with respect to the
momentum axis q = 0. Hence, we are left with tuning the
magnitudes of the squeezing and displacement parameters
of the ancillary state, the real beam-splitter parameter, and
the final momentum displacement, in order to achieve the
maximal fidelity to our target state. In Appendix E we pro-
vide an analysis of how the various tunable parameters in
our protocol affect the properties of the output states.

We carry out the numerical optimizations by running
three independent codes, namely a PYTHON code running
on a personal computer, a C++ code running in serial on
central processing units (CPUs) in a cluster environment,

Fidelity
Probability

FIG. 6. Fidelity and success probability as a function of the
width of the acceptance region δ. The parameters in the circuit,
including input and target mana, correspond to the first row of
Table III.

and finally a CUDA [73] code running in parallel on graph-
ics processing units (GPUs) [74] in a cluster environment.
We provide the relevant details on these approaches in
Appendix B.

Finally, in Fig. 6, we analyze the effect of the width δ
of the acceptance region on the success probability, as well
as on the fidelity of our protocol. As expected, for larger
values of δ, the fidelity decreases due to the lower purity
of the output state, Eq. (23), while the success probability
increases. In Appendix H we study the case of ineffi-
cient homodyne detection. For realistic efficiency values,
our probabilistic conversion protocol still achieves high
fidelities.

A. Conversion protocol performance at fixed input
mana

In order to compare our results with those obtained in
Sec. III, we first consider the case where the target state
has the same mana as the input trisqueezed state, which
is always the case for the deterministic maps. The mana in
the target state is determined by the parameters r and ξtarget.
However, we only come as close as possible to this state
with our probabilistic protocol. Therefore, we expect that
the output mana will not be the same as that of the input
state. We anticipate that the deviations may be significant
because the mana is an extremely sensitive quantity that
can vary significatively even if the overlap (quantified by
the fidelity) of two states is very high.

As can be seen in Fig. 5(b), the Wigner function of the
output state is qualitatively similar to that of the target
state [Fig. 1(b)]. This can be observed more precisely in
Fig. 7 where we plot the cross sections of the Wigner func-
tions of the target cubic phase state and the output states
generated by the probabilistic and the deterministic proto-
cols corresponding to q = 0, p = 0, p = 1, and p = 1.5.
In general, the probabilistic protocol gives a very good
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FIG. 7. Slices of Wigner functions to compare the output states
of the deterministic and probabilistic protocols with the target
cubic phase states for cubicity r = 0.1558. The value of the target
squeezing is fixed at 5 dB.

approximation to the target state. This in contrast to the
deterministic protocol that fails to reproduce some of the
features of the target state Wigner function. In Table III we
present the results for the achieved fidelity of conversion
after optimizing the tunable parameters in our probabilis-
tic protocol. We can see that a fidelity as high as 0.997
can be obtained with a success probability of 5% when the
triplicity of the input state is moderate. As can be observed
from Table III, and as expected, the mana obtained for the
output state of our protocol can be sensibly different to that
of the target state, regardless of the high fidelity.

B. Conversion protocol performance at varying input
mana

We now relax the requirement that the target state must
possess the same mana as the input state. Equation (7)
implies that the mana will still be conserved on average,
even when we target a state with higher mana than at the
input state, which will succeed with a certain probability.
So, what is the performance of our protocol when we start
from an input state with lower, or higher, mana with respect

Fidelity

Mana = 0.12

Probability

FIG. 8. Fidelity and success probability of the probabilistic
conversion protocol as a function of the mana of the input state,
considered to be a perfect trisqueezed state. The mana of the
target state here is fixed at 0.12, corresponding to a cubicity of
r = 0.133. We set δ = 0.1.

to the target state? In Fig. 8 we show the fidelity and suc-
cess probability of our protocol, as a function of the mana
of the input state for fixed target state mana. The dashed
line in Fig. 8 corresponds to the (fixed) mana of the tar-
get state. On the left of this line, i.e., when the mana of
the input state is smaller than that of the target state, the
obtained high fidelity hence corresponds to a probabilistic
concentration protocol. We observe that this is possible to
achieve with success probabilities up to roughly 5%. On
the right of the dashed line we observe that the fidelity
does not increase with higher input state mana. However,
there is a positive correlation between the success proba-
bility and the input mana. A possible explanation of this
fact is provided by Eq. (7). The latter sets an upper bound
on the success probability given as the ratio of the input
and target states mana. For a fixed target state mana, by
increasing that of the input state we also increase the upper
bound on the success probability. Moreover, the fidelity is
robust against a decrease in the input mana up to a value
of roughly 0.01 where it drops very quickly. At each point
of the figure, the bound of Eq. (7) is satisfied, as can be
verified by multiplying the mana of the output state with
the success probability.

TABLE III. Fidelity, success probability, and optimal circuit parameters when targeting an output state with the same mana as that
of the corresponding input state within the probabilistic Gaussian conversion protocol. The squeezing of the target cubic phase state
is fixed to be 5 dB. Here θ is the beam-splitter parameter, ξ is the squeezing strength, qβ is the position displacement of the ancillary
displaced squeezed state, and d is the displacement of the output state along the p direction.

Triplicity Manain Fidelity Probability θ qβ ξ d Manaout

0.1 0.1576 0.9971 0.0513 1.0133 0.8304 0.3257 (2.83 dB) −0.9525 0.1103
0.125 0.3350 0.9866 0.0434 0.7992 1.2153 0.001 (0.01 dB) −1.1104 0.1945
0.15 0.5737 0.9284 0.0508 0.6378 0.001 1.4184 (12.3 dB) −1.3639 0.2197

010327-9



YU ZHENG et al. PRX QUANTUM 2, 010327 (2021)

V. EXPERIMENTAL IMPLEMENTABILITY OF
THE PROTOCOLS

In this section, we discuss the feasibility of our protocols
in state-of the art experiments, based either on microwave
circuits or on optical systems.

A. Microwave circuits

In superconducting microwave circuits, the field com-
monly referred to as circuit QED, nonlinear interactions
between microwave photons are mediated by Josephson
junctions or Josephson junction-based devices such as the
superconducting quantum interference device (SQUID)
[75,76]. Arranging Josephson junctions in loops allows
for magnetic flux biasing. This, in turn, gives the possi-
bility to drive different parametric processes when these
devices interact with superconducting resonators or propa-
gating microwaves. For our purposes, here we are going to
restrict to the case of interacting resonant modes.

It is well established that in the linear regime of
the SQUID, parametrically mediated interactions between
microwave modes permit the engineering of Gaussian
operations such as the squeezing and beam splitting
required for this proposal [77–79]. The full set of linear
operations follows trivially with the addition of monochro-
matic microwave tones that implement linear displace-
ments. Finally, homodyne detection can be implemented
via phase-sensitive parametric amplification [80]. The
highest quantum efficiency reported today for microwave
homodyne detection is about 0.7 [81]. For the particu-
lar case of our deterministic protocol, the resonator field
would need to be released into a waveguide (in a controlled
fashion) in order to subject it to the homodyne detection.
This can be done, for instance, following Ref. [82].

In a similar way, higher-order processes can be exploited
from the SQUID nonlinearity. Recently, the three-photon
drive Hamiltonian giving rise to the trisqueezed state stud-
ied in this work, Eq. (5), has been realized experimen-
tally [48,51]. The experiments by Chang et al. [51] have
established the possibility to engineer strong degenerate
as well as nondegenerate three-photon interactions in the
microwave regime. Whereas their results correspond to the
stationary state emerging in the continuous driving regime,
their Hamiltonian engineering is by no means restricted
to the latter. Therefore, it is possible to operate these
devices in a gate-based regime, in which the degenerate
three-photon interactions will give rise to the trisqueezed
state as defined by Banaszek and Knight [54]. Evolving
an initial vacuum state for a time τ with the Hamiltonian
g3(â3 + â†3) results in a trisqueezed state with triplicity
t = g3τ . Considering typical parameters corresponding to
planar microwave architectures, we have estimated a three-
photon strength g3 of a few megahertz. The corresponding
resonator lifetimes imply operation times τ of a few hun-
dred nanoseconds in order to avoid dissipation effects.

Following this analysis, a figure of merit for the triplic-
ity corresponds to t ∼ 0.1, which we use throughout this
paper.

Finally, a residual Kerr interaction that might be detri-
mental for the protocols presented here is unavoidable in
these implementations. In what follows, we analyze the
effect of the residual Kerr term on our probabilistic conver-
sion protocol, namely, how the fidelity between the output
and target states decreases with an increasing residual Kerr
nonlinearity strength. Later, we interpret these fidelities in
operational terms. For this, the output state is used in a
gate teleportation gadget in order to exert a non-Gaussian
gate on an input state. We assess whether the presence of
nonidealities has a detrimental effect on the gate fidelity.

1. Fidelity in the presence of residual Kerr interactions

In order to assess the robustness of our probabilistic
conversion protocol (outlined in Sec. IV) against imperfec-
tions in the input state due to the residual Kerr interaction
Kâ†2â2, we repeat the fidelity optimization over the cir-
cuit parameters when we introduce a Kerr deformation
in the input state for different Kerr strengths K . We per-
form this analysis for the probabilistic protocol because
it is the one yielding the highest conversion fidelity. The
results are shown in Fig. 9. We plot the output fidelities
as a function of the input fidelity when the input state is a
trisqueezed state generated in the presence of residual Kerr
nonlinearities. The input fidelity refers to the fidelity of a
perfect trisqueezed state with respect to a Kerr-deformed-
trisqueezed state. In order to compare with the result in

0.990 0.995 1.000

0.968

0.984

1.000

 = – /2
Optimal

FIG. 9. Output fidelity as a function of the input fidelity when
the input state is a trisqueezed state generated in the presence
of residual Kerr interaction. After relaxing the condition of fixed
γ , higher output fidelities can be achieved. This implies that the
main effect of the Kerr effect is an undesired rotation. The plot
also shows that, for a relevant ratio of the triplicity and Kerr
strengths that is accessible experimentally, namely t/K = 2, the
fidelity of conversion is still very high, up to 0.993. Success
probabilities vary between 5% and 13%.
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the first row of Table III, we fix the triplicity t to 0.1 here.
Since the Kerr term introduces not only a deformation, but
also a rotation of the trisqueezed state, for this analysis, we
also optimize on the parameter γ entering the probabilistic
protocol, which we had previously fixed due to symmetry
considerations.

From Fig. 9 we see that high fidelities can still be
obtained for t/K > 1, i.e., when the Kerr interaction is
weak compared to the triplicity, and, in particular, when
the ratio t/K � 2, which is a relevant value for the experi-
ments in Ref. [51]. We conclude that our results still hold in
the case where an unwanted Kerr nonlinearity introduced
by the SQUID affects the generation of the trisqueezed
state [51].

2. Operational interpretation of the achieved fidelities

One natural question stemming at this point is: how does
the nonunity fidelity of the generated cubic phase state
affect a quantum computation? In this section, we analyze
how the output fidelity translates into a gate error when
the cubic phase state generated with our protocol is used
to implement a cubic phase gate onto an arbitrary state via
gate teleportation.

Consider the gate-teleportation gadget in Fig. 10. We
define the gate error ε as the infidelity 1 − F between
(i) the output state of the gate-teleportation gadget when
we use as ancillary state the target (perfect) cubic phase
state of our protocol, or (ii) the output state of the
gate-teleportation gadget when we use as ancillary state
the actual output state of our conversion protocol (see
Appendix G for a formal definition and calculation). In this
way, the infidelity between our target and output states is
interpreted in an operational way. Since a similar analy-
sis has shown to yield deceivingly small gate errors when
the state onto which the gate is applied is a coherent state
or a displaced squeezed state, following Ref. [40] we use
instead a hard instance of an arbitrary state, namely a GKP
state in the encoded |+〉 state, which is expressed in the

|+L〉 • p̂

|ψc〉 •
∣
∣
∣Ψ̃

〉

FIG. 10. Sketch of the simplified gate-teleportation gadget to
implement a cubic gate on an input GKP state |+L〉 using an
ancillary state |ψc〉. The ancillary state |ψc〉 can be either the
cubic phase state that is the target of our conversion protocols,
|ψc〉 = eirq̂3

Ŝ(ξtarget) |0〉, or the actual output mixed state of our
Gaussian conversion protocol ρcond, given in Eq. (23), for n = 0.
In the former case the corresponding output state is denoted by
|�̃〉, while in the latter case the output state is a mixed state ρ̃.
We consider postselection onto p = 0.

momentum representation as

|+L〉 = 1
N

∫
dp

∞∑

s=−∞
e−�2(2s)2π/2e−(p−2s

√
π)2/2�2 |p〉

(25)

with � the variance of the individual peaks in the GKP
code [22] and N a normalization constant.

A numerical plot of the gate error as a function of the
infidelity of the ancillary cubic phase state is provided in
Fig. 11. The latter infidelity is accounted for by the residual
Kerr interactions studied in Sec. V A 1. From the plot, we
observe that the gate error does not increase significatively
with decreasing ratio t/K , i.e., with an increasing infidelity
due to the Kerr effect in the initial trisqueezed state.

We also observe that the gate error decreases when the
squeezing of the GKP state on which we applied the gate
upon increases or, equivalently, the variance � decreases.

Note that a recent preprint shows that implementing a T
gate on encoded GKP qubits via the use of a cubic phase
state is unsuitable for reasonably squeezed GKP states
[83]. However, the purpose of our analysis here is to show
that using the state that is generated from our protocol for
gate teleportation does not introduce a significant discrep-
ancy with respect to the use of a cubic phase state. Cubic
phase gates through gate teleportation are still relevant
in the context of nonencoded quantum computing with
continuous variables, e.g., within a CV noisy intermediate-
scale quantum approach [5], to implement quantum gates
beyond the regime of simulatable quantum computation.

0.0 2.5 5.0

0.02

0.04
 = 0.30
 = 0.25
 = 0.20
 = 0.15

FIG. 11. Gate error as a function of t/K . As the Kerr effect
is stronger, namely the ratio of the triplicity and Kerr strength
t/K decreases, the error associated with using the cubic phase
state at the output of our probabilistic conversion protocol in a
teleportation gadget such as that of Fig. 10, instead of a perfect
cubic phase state, increases.
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B. Optical systems

In quantum optics, availability of ancillary squeezed
states characterized by squeezing parameters ranging from
a few to 15 dB [84,85], beam splitters, and homodyne
detection, i.e., the elements composing our probabilistic
conversion protocol introduced in Sec. IV, is well estab-
lished. Hence, our probabilistic conversion protocol can
be implemented with technology that is readily available
in quantum optics labs. Inline squeezing, i.e., the appli-
cation of a squeezing operation on a state different from
the vacuum, as it is required by our first protocol, has
been demonstrated [67], but is generally regarded as more
challenging. In this sense, the probabilistic protocol pre-
sented in this paper appears to be easier to implement
than the deterministic protocol when it comes to optical
setups. Also, note that implementability of the present pro-
tocols in optical devices holds in contrast to the proposal of
Hillmann et al. [5], who discussed the deterministic (gate-
based) generation of a cubic phase state in the context of a
specific microwave architecture.

Entanglement properties of triple-photon states—a
three-mode version of our trisqueezed states, correspond-
ing to the Hamiltonian a†

1a†
2a†

3 + H.c.—have been studied
theoretically in Ref. [86,87], while preliminary experi-
mental results on the optical trisqueezed state have been
reported in Ref. [58]. Third- and higher-order processes in
spontaneous parametric down-conversion and other non-
linear parametric interactions have also been analyzed
theoretically in Refs. [88,89].

VI. CONCLUSIONS AND PERSPECTIVE VIEWS

In this paper, we have studied two Gaussian conversion
protocols that allow for the conversion of an experimen-
tally available non-Gaussian state, namely the trisqueezed
state, into a known resource state for universal quantum
computation over continuous variables, the cubic phase
state.

Depending on the experimental setup and on the needs,
one or the other conversion method might be prefer-
able. Our first protocol presents the advantage of being
deterministic, while requiring inline squeezing—possible
in microwave setups, while challenging in quantum opti-
cal setups. On the other hand, our second protocol is
probabilistic, but achieves higher fidelities and could be
implemented using offline squeezing—therefore, feasible
in various platforms, in particular, within both optical and
microwave setups. The squeezing required in the two pro-
tocols, relative to the conversion with highest fidelity,
are of the orders of 3.4 and 2.8 dB, respectively, both
achievable in either microwave or optical devices.

In Sec. V A 2 we have seen that it is possible to inter-
pret operationally the infidelity of the generated state in
terms of a gate error induced when using the generated
state as an ancillary state to implement a non-Gaussian

gate. However, in order to conclude unequivocally that
the trisqueezed state is a universal resource, one needs to
address the question as to whether in turn the resulting
non-Gaussian gate, combined with Gaussian operations,
allows one to implement fault-tolerant, universal quantum
computation [22]. This can be assessed using the frame-
work of Ref. [34], where the cubic phase gate is used in
combination to Gaussian resources in order to implement
approximate GKP states in a self-consistent way. In this
way, the use of qubit error-correction codes concatenated
to the GKP code allows one to determine a target fidelity
for the generated GKP states. This target fidelity, in turn, is
translated into a requirement for the fidelity of the required
cubic phase gates. We leave this analysis for future work.

Finally, note that the approach that we have developed
for the study of our probabilistic protocol, namely the cal-
culation of the output fidelity provided in Appendix D,
Eq. (D21), combined with the numerical optimization tools
detailed in Appendix B, are valid for arbitrary input state,
ancillary state and target state. Therefore, our approach
can be readily employed, upon replacement of the input
and target wave functions, for the study of further arbi-
trary conversion protocols. The study of these extensions
is an interesting perspective stemming from our work.
Ultimately, Gaussian conversion protocols can shed light
on the resourcefulness of generic non-Gaussian states for
universal quantum computation.
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APPENDIX A: GATE TELEPORTATION

In this appendix we derive how the Gaussian feed-
forward operations, necessary in order to implement a
deterministic cubic phase gate via gate teleportation, are
effected by the use of an ancillary trisqueezed state, instead
of a cubic phase state. In order to derive these corrections,
we use our deterministic conversion protocol developed in
Sec. III B.

The gadget used for gate teleportation can be seen in
Fig. 12. When one wants to use the trisqueezed state as a
resource for implementing a cubic phase gate, according to
our symplectic conversion protocol, a gadget such as that
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|ψi〉 • p̂

|ψc〉 • C eiγq̂3

FIG. 12. Sketch of the standard gate-teleportation gadget to
implement the cubic phase gate on an input state |ψi〉 with the
cubic phase state |ψc〉 = eirq̂3

Ŝ(ξtarget) |0〉.

shown in Fig. 13 can be used. However, it is also possi-
ble to commute the squeezing and displacement operators
appearing in the top circuit through the ĈZ gate. Since these
operators do not commute, this yields modified Gaussian
corrections that can be obtained by computing the commu-
tators between ĈZ and Ŝ, and ĈZ and D̂. The operations are
defined as

ĈZ = eiq̂⊗q̂,

Ŝ = 1 ⊗ e−is(q̂p̂+p̂ q̂)/2,

D̂ = 1 ⊗ e−i(qp̂−pq̂).

By representing the operators as a series, it is easy to see
that we only need to calculate the action of

e−iq̂⊗q̂(1 ⊗ p̂)eiq̂⊗q̂ = 1 ⊗ p̂ + [−iq̂ ⊗ q̂,1 ⊗ p̂]

= 1 ⊗ p̂ + 1 ⊗ 1.

|ψi〉 • p̂

|ψ3〉 S D • C

↓
|ψi〉 • p̂

|ψ3〉 • S̃ D̃ C

≡
|ψi〉 • p̂

|ψ3〉 • C̃

FIG. 13. Sketch of the modified teleportation gadget to imple-
ment the cubic phase gate using the trisqueezed state |ψ3〉 =
ei(t∗ â3+tâ†3) |0〉. The top circuit shows the gates needed to approx-
imate the cubic phase state with a triple squeezed state. The last
two depict the changes needed in the feed forward, with respect
to the teleportation gadget of Fig. 12, if one wants to use the
trisqueezed state directly.

Then we obtain

D̃ = Ĉ†
ZD̂ĈZ

= 1 ⊗ e−i[q(p̂+1)−pq̂]

= 1 ⊗ e−i(qp̂−pq̂)e−iq

and

S̃ = Ĉ†
ZŜĈZ

= 1 ⊗ e−is[q̂(p̂+1)+(p̂+1)q̂]/2

= 1 ⊗ e−is(q̂p̂+p̂ q̂+2q̂)/2

= (1 ⊗ e−is(q̂p̂+p̂ q̂)/2)(1 ⊗ e−isq̂)(1 ⊗ e−(1/2)[·,·])

= (1 ⊗ e−is(q̂p̂+p̂ q̂)/2)(1 ⊗ e−i(s−s2/2)q̂).

These operations can be merged into the Gaussian
feed-forward operations needed in the standard gate-
teleportation gadget, resulting in a modified Gaussian
feed-forward operation.

APPENDIX B: DETAILS ON THE NUMERICAL
OPTIMIZATION

In both the probabilistic and deterministic protocols,
the fidelity is a relatively expensive function to evalu-
ate numerically, making the numeric optimization chal-
lenging. To tackle this challenge, we turn to high-
performance computing, and try different numerical opti-
mization strategies. Furthermore, for each protocol, we
develop three independent implementations that are bench-
marked against each other, and against analytic calcula-
tions, to ensure numeric consistency. The first two codes
are implemented in PYTHON and C++ to run in serial
on CPUs, and the third code in CUDA [73,90] for high-
performance computing and massive parallelization on
NVIDIA Tesla V100 GPUs. The PYTHON code is run on
personal computers (both laptop and desktop machines),
while the C++ and CUDA codes are run both on personal
computers and on a computer cluster.

For the probabilistic protocol, the PYTHON code used the
library GPyOpt [91] and Bayesian optimization [92,93],
while the C++ and CUDA codes used the library Thrust
[94–96] and particle swarm optimization [97,98]. For the
deterministic protocol, the PYTHON code used the library
QuTiP [99,100] with Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimization [101–104], while the C++ and CUDA
codes used the libraries Thrust, Armadillo [105,106], and
OptimLib [107] with both particle-swarm optimization and
differential evolution optimization [108]. Both particle-
swarm optimization and differential evolution optimiza-
tion are inspired by natural evolution, and are chosen
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TABLE IV. The bounds for optimizing parameters.

θ qβ ξ d

[0,π/2] [0, 1.5] [0, 1.5] [−3, 0]

because they are versatile methods with good performance
in higher dimensions, and are easy to parallelize efficiently.
In contrast to many quasi-Newton methods, they do not
rely on the gradient of the objective function (the function
to be minimized, i.e., one minus the fidelity), and can get
out of local minima. Similarly, Bayesian optimization does
not rely on the gradient, and is chosen as it is a powerful
and popular method for global optimization. BFGS, which
is a quasi-Newton method, is chosen for comparison. Some
of these methods are described in greater detail below.

In the end, all implementations give the same results
for the same choice of input parameters, and all the opti-
mization methods eventually find the same maxima in the
fidelity. The CUDA implementation manages to properly
harness the performance of the GPUs [74], and is there-
fore more than an order of magnitude faster than the C++
implementation (measured in the number of fidelities eval-
uated per second), which in turn is more than an order of
magnitude faster than the PYTHON implementation.

Since the integrands in Eqs. (14) and (24) behave
smoothly as a function of the integration parameters, the
triple integrals in the deterministic and probabilistic Gaus-
sian conversion protocols can be calculated using standard
numeric integration. In both optimization algorithms, we
limit the range of the optimization parameters according
to Table IV. The bounds for the displacement are limited
by the probability, which decreases exponentially with the
displacement of the input state.

In both optimization algorithms, we limit the range of
the optimization parameters according to the following
arguments. We adjust θ between [0,π/2] as the sign of
cos θ and sin θ does not play a role in the fidelity and prob-
ability. Considering that the position range of our target
states is around [−2, 2], we choose [0, 1.5] as the dis-
placement range of the ancillary displaced squeezed state
qβ and [−3, 0] as the range for the displacement operator
d. Since the value of the current record for squeezing is
15 dB in quantum optics, we set 1.5 as the bound of the
squeezing strength in the ancillary squeezed state ξ , which
corresponds to 13 dB.

We now explain the Bayesian and particle-swarm opti-
mization strategies in greater detail.

1. Bayesian optimization

Bayesian optimization [92,93] (BO) is a global opti-
mization algorithm that is applied for the search of
optimal parameters in computationally expensive func-
tions. The general BO algorithm iterates between function
evaluations and predictions about optimal parameters, and

terminates when a certain number of iterations has been
executed. Writing the optimization parameters at iteration
step i in a vector xi, BO tries to minimize the number of
function evaluations by carefully selecting the next point
xi+1 where to compute the objective function. In each iter-
ation step, BO considers the complete history of so-far
collected points xi and function evaluations.

The two main components of BO are (i) a prior prob-
abilistic belief of an objective function and (ii) an acqui-
sition function [109]. The prior probabilistic belief of the
objective function is in general sampled from a Gaussian
process. The obtained value of the objective function is
then used in the acquisition function, which determines
the optimization parameters for the next position xi+1.
In our approach, we apply the square exponential kernel
as a model of similarity in a Gaussian process, and the
expected improvement criterion as an acquisition function.
The maximal number of iterations is obtained empirically
by running the algorithm several times and benchmark-
ing with the optimal values predicted by particle swarm
optimization. Our implementation uses the library GPyOpt
[91] for BO.

2. Particle swarm optimization

Particle-swarm optimization (PSO) attempts to find the
global maximum to an objective function by adjusting the
trajectories of NPSO individual particles. Each particle is
described by a position vector xi whose components cor-
respond to each of the optimization parameters θ , qβ , ξ ,
and d. The particles are either distributed randomly or ini-
tialized on a grid in the landscape of optimization param-
eters. Additionally to the position vector, each particle is
attributed with a velocity vector vi that iteratively updates
the particle’s position.

In standard PSO, the movement of particles depends on
a stochastic and a deterministic component reflecting the
trade-off between exploration and exploitation. To move
from a current position at iteration step t to a next posi-
tion at iteration step t + 1, each particle is attracted to the
global best particle g∗ and its own best location x∗

i in its
past trajectory, while the full update also contains ran-
dom numbers ε1 ∈ (0, 1) and ε2 ∈ (0, 1). Introducing the
learning parameters α and β, the velocity and position at
iteration step t + 1 follow from the equations [98]

vt+1
i = 
tvt

i + αε1(g∗ − xt
i)+ βε2(x∗

i − xt
i), (B1)

xt+1
i = xt

i + vt
i, (B2)

where
t ∈ (0, 1) is called the inertia function. In each iter-
ation step, we update the global best particle g∗ and the best
location in the history of each particle x∗

i . Additionally, we
ensure that the particles’ positions stay within the bound-
aries of the optimization parameter. The PSO algorithm
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terminates when a predefined number of iterations Niter has
been executed. The number Niter is empirically determined
by running the simulation a few times for the same values,
and observing that the maximum of the objective function
converged to the same value with the same parameters.
After every run, we check that most of the particles ended
in the same position. We set the default value of Niter to 103.

GPUs allow for a massively parallel implementation of
the PSO algorithm. In our implementation, we address
each particle xi to a single thread on the GPU, such that
a maximal number of NPSO = 108 particles can search in
parallel for the optimal optimization parameters. The opti-
mal fidelities and parameters in Fig. 8 and Table III are
computed with Niter = 102, α = 0.05, and β = 1.05, and
we set the inertia function to 
t = 0.5.

APPENDIX C: OPTIMAL PARAMETERS FOR THE
DETERMINISTIC CONVERSION PROTOCOL

In this appendix we provide the results of the opti-
mizations for the Gaussian maps corresponding to our
deterministic conversion protocol introduced in Sec. III, in
terms of the optimal parameters, that maximize the fidelity
to the target state.

We start by noting that in order to speed up the numeri-
cal calculation of the characteristic function, it is useful to
rewrite Eq. (10) using the Fock state basis as

χρ(�r) = Tr{D̂(−�r)ρ} =
∞∑

n,n′=0

ρnn′ 〈n′| D̂(−�r) |n〉 . (C1)

The matrix elements of the displacement operator appear-
ing at the rhs of Eq. (C1) can now be written for m ≥ n as
[110]

〈m| D̂(α) |n〉 =
√

n!
m!

e−|α|2/2αm−nLm−n
n (|α|2) (C2)

and for m ≤ n as

〈m| D̂(α) |n〉 =
√

m!
n!

e−|α|2/2(−α∗)m−nLn−m
m (|α|2), (C3)

where the Ln−m
m (|α|2) are the associated Laguerre polyno-

mials.
The results for the parameters yielding optimization of

general Gaussian CP maps are given in Table V.

1. Symplectic transformation

Here we show the symplectic transformations X that
arise from of our optimization and yield the maxi-
mal values of the fidelity in Table I of the main text.
The subindices correspond to the triplicity of the input
trisqueezed state:

X0.1 =
(

1.2324 2 × 10−7

−4 × 10−6 0.8114

)

,

X0.125 =
(

1.0002 4 × 10−8

4 × 10−7 0.9998

)

,

X0.15 =
(

0.7976 −1 × 10−6

−5 × 10−6 1.2538

)

.

APPENDIX D: ANALYTICAL DERIVATIONS OF
THE OUTPUT STATE IN THE PROBABILISTIC

PROTOCOL

In this appendix, we present the analytical derivation of
the output state corresponding to the probabilistic protocol
sketched in Fig. 4.

The input state of this protocol is

|�in〉|�ξ ,β〉 =
∫

dq1 dq2�in(q1)�ξ ,β(q2)|q1, q2〉. (D1)

The wave function of a general ancillary displaced
squeezed state Eq. (4) is given by [111]

�ξ ,β(q) = 〈q |�ξ ,β〉
= 〈q|eβâ†−β∗âe(ξ

∗/2)â2−(ξ/2)â†2 |0〉

=
(

2
π

)1/4
(1 − |ξ(ξ)|2)1/4√

1 − ζ(ξ)

× e−[1+ζ(ξ)](q−qβ)2/[1−ζ(ξ)]+2ipβ (q−qβ/2), (D2)

where |q〉 is an eigenstate of the quadrature operator q̂ with
real eigenvalue q, ζ(ξ) = ξ tanh |ξ |/|ξ |, and we have intro-
duced the notation β = qβ + ipβ . Note that in the case of a
real squeezing parameter, the wave function of a displaced

TABLE V. Optimized parameters for different triplicity, cubicity pairs for the Gaussian CP map.

Triplicity
Cubicity
(5 dB) X11 X12 X21 X22 Y11 Y12 Y22 lq lp

0.1 0.1558 1.4837 0.0004 −0.0004 0.67400 2 × 10−7 −3 × 10−10 8 × 10−8 −9 × 10−5 0.15865
0.125 0.2757 1.2786 0.0003 −0.0001 0.7821 8 × 10−7 1 × 10−7 3 × 10−7 0.0001 0.2275
0.15 0.4946 1.0570 −0.0005 −0.0004 0.9461 3 × 10−7 −7 × 10−8 4 × 10−8 −0.0002 0.3031
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squeezed state reduces to [112]

�|ξ |,β(q) =
(

2
π

)1/4

e|ξ |/2

× exp{[−e2|ξ |(q − qβ)2 + i2pβq − ipβqβ]}.
(D3)

After the real-valued beam-splitter transformation UR
BS

(2θ), we have

�12(ξ ,β, θ)〉 = UR
BS(2θ)|�in〉 |�ξ ,β〉

=
∫

dq1dq2�in(q1)�ξ ,β(q2)|q′
1〉|q′

2〉, (D4)

where

|q′
1〉 = |q1 cos θ − q2 sin θ〉, (D5)

|q′
2〉 = |q1 sin θ + q2 cos θ〉. (D6)

Indicating with J (q′
1, q′

2) the Jacobian of the transforma-
tion, we have

∫
dq1dq2F(q1, q2) =

∫
dq′

1dq′
2|J (q′

1, q′
2)|F(q′

1, q′
2),

(D7)

where, with a slight abuse of notation, F(q′
1, q′

2) =
F[q1(q′

1, q′
2), q2(q′

1, q′
2)]. Here we have

|J (q′
1, q′

2)|=
∣
∣
∣
∣
∂q1/∂q′

1 ∂q1/∂q′
2

∂q2/∂q′
1 ∂q2/∂q′

2

∣
∣
∣
∣ =

∣
∣
∣
∣

cos θ sin θ
− sin θ cos θ

∣
∣
∣
∣ =1.

Hence, we can rewrite the state in Eq. (D4) as

|�12(ξ ,β, θ)〉 =
∫

dq1dq2�in(q1 cos θ + q2 sin θ)

×�ξ ,β(−q1 sin θ + q2 cos θ)|q1〉|q2〉,
(D8)

where we have renamed q′
1 → q1, q′

2 → q2.
After the phase rotation Up(γ ) on state |�12(ξ ,β, θ)〉,

using the closure relation (1/π)
∫ |α〉〈α|dα2 = I we

obtain the state

Up(γ )|�12(ξ ,β, θ)〉

= 1
π

∫
dq1dq2dα�in(q1 cos θ + q2 sin θ)

×�ξ ,β(−q1 sin θ + q2 cos θ)〈α|q2〉|q1〉|αe−iγ 〉

≡ |�12(ξ ,β, θ , γ )〉, (D9)

where

〈α|q2〉 =
(

2
π

)1/4

eiabe−2ibq2e−(q2−a)2 (D10)

and α = a + ib.
When we measure q̂ on the first mode with the outcome

q, on the second mode, we obtain

|�q
out〉 = 〈q|�12(ξ ,β, θ , γ )〉

= 1
π

∫
dq2dα�in(q cos θ + q2 sin θ)

×�ξ ,β(−q sin θ + q2 cos θ)〈α|q2〉|αe−iγ 〉.
(D11)

We now introduce the finitely resolved homodyne operator
[113,114]

Q̂n =
∫ qn+δ

qn−δ
dq|q〉〈q|. (D12)

The density matrix operator ρ̂n,cond on mode 2 con-
ditioned on the measurement outcome qn on mode
1 can be expressed in terms of Eq. (D11) and is
given by

ρ̂n,cond = Tr1[Q̂n ⊗ I2|�12(ξ ,β, θ , γ )〉〈�12(ξ ,β, θ , γ )|Q̂n ⊗ I2]
Prob[qn]

=
∫ qn+δ

qn−δ dq1〈q|�12(ξ ,β, θ , γ )〉〈�12(ξ ,β, θ , γ )|q〉1

Prob[qn]

= 1
Prob[qn]

∫ qn+δ

qn−δ
dq|�q

out〉〈�q
out|, (D13)
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where Tr1 is the partial trace over mode 1, and the proba-
bility of obtaining an outcome qn is expressed as

Prob[qn]

= 〈�12(ξ ,β, θ , γ )| Q̂n ⊗ I2|�12(ξ ,β, θ , γ )〉

=
∫ qn+δ

qn−δ
dq〈�12(ξ ,β, θ , γ )|q〉〈q|�12(ξ ,β, θ , γ )〉

= 1
π2

∫ qn+δ

qn−δ
dq

∫
dq2dq′

2dαdα′

×�∗
in(q cos θ + q′

2 sin θ)�in(q cos θ + q2 sin θ)

×�ξ ,β(q2 cos θ − q sin θ)

×�∗
ξ ,β(q

′
2 cos θ − q sin θ)〈q′

2|α′〉〈α|q2〉〈α′|α〉

=
∫ qn+δ

qn−δ
dq

∫
dq2 |�in(q cos θ + q2 sin θ)|2

× |�ξ ,β(q2 cos θ − q sin θ)|2, (D14)

where we have used

∫
dαdα′〈q′

2|α′〉〈α|q2〉〈α′|α〉

=
∫

dαdα′
(

2
π

)1/2

eiabe−2ibq2e−(q2−a)2e−ia′b′

× e2ib′q′
2e−(q′

2−a′)2 exp
(

− |α′|2
2

− |α|2
2

+ α′∗α
)

= π2e−(q2−q′
2)

2/2δ(q2 − q′
2). (D15)

Our fidelity can be written as

Fqn = 〈�target|ρ̂n,cond|�target〉

= 1
Prob[qn]

∫ qn+δ

qn−δ
dq|〈�target|�q

out〉|2, (D16)

where the output state is given in Eq. (D11). We can write
the overlap as

〈�target|�q
out〉

= 1
π

∫
dq0dq2dα�∗

target(q0)�in(q cos θ + q2 sin θ)

×�ξ ,β(−q sin θ + q2 cos θ)〈q2|α〉∗〈q0|αe−iγ 〉,
(D17)

where
∫

dα〈q2|α〉∗〈q0|αe−iγ 〉

=
√

2
π
π

1√
1 − e−2iγ

× exp{i csc γ [−2q0q2 + (q2
0 + q2

2) cos γ ]}
(D18)

for γ �= 0, and where the wave function of the target cubic
phase state Eq. (6) is easily computed as

�target(q) = 〈q |�target〉

=
(

2
π

)1/4

eξtarget/2e−e2ξtarget q2
eirq3

. (D19)

The wave function of the displaced target cubic phase state
is then expressed as

�target(q, d) =
(

2
π

)1/4

eξtarget/2e−e2ξtarget q2
eirq3

e−iqd.

(D20)

Finally, we obtain the expression for the fidelity by com-
bining Eqs. (D13), (D17), and (D18):

Fqn(qn, δ, γ , θ , ξ ,β) =
∫ qn+δ

qn−δ dq|〈�target|�q
out〉|2

Prob[qn]
. (D21)

Here we have explicated the dependence on the squeezed
state parameters, and

∫ qn+δ

qn−δ
dq|〈�target|�q

out〉|2

=
∫ qn+δ

qn−δ
dq

∣
∣
∣
∣

∫
dq0dq2�

∗
target(q0)�in(q cos θ + q2 sin θ)

×�ξ ,β(−q sin θ + q2 cos θ)

×
√

2
π

ei csc γ [−2q0q2+(q2
0+q2

2) cos γ ]
/√

1 − e−2iγ

∣
∣
∣
∣

2

.

(D22)

APPENDIX E: WHICH PARAMETERS CONTROL
WHICH PROPERTY OF THE OUTPUT STATE?

The symmetry of the Wigner function plays an impor-
tant role in this optimization problem, and has a lot of
applications, for instance, in the design of rotationally
symmetric bosonic codes [115]. We now discuss, relative
to the second protocol that we have introduced, the rela-
tionship between the tunable parameters of our protocol
and the Wigner function of the output state.
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(a) (b)

(c) (d)

FIG. 14. Wigner function of the output state while changing θ
from 0◦ to 90◦. The other parameters are shown in the first row of
Table III. Note that Fig. 14(c) corresponds to the optimal result.
Here (a) θ = 0, (b) θ = π/4, (c) θ = 0.8987, (d) θ = π/2.

In Fig. 14 we show that the amount of negativity in
the output state increases with increasing θ . This happens
because cos θ and sin θ are the transmission and reflec-
tion coefficients of the beam splitter, respectively. If the
trisqueezed state is mostly reflected then it is expected that
the negativity in the output will be negligible. The cubic-
ity in the output state on the lower rail will therefore be
proportional to sin θ .

Another important property is revealed by Fig. 15. The
Wigner negativity varies with the displacement parameter

(a) (b)

(c) (d)

FIG. 15. The Wigner function of the output states for different
values of the parameter qβ , corresponding to the displacement in
position of the input ancillary displaced squeezed state. The other
parameters correspond to those in the first row of Table III. Also,
note that Fig. 15(d) corresponds to the optimal result. Here (a)
qβ = 0, (b) qβ = 0.3, (c) qβ = 0.6, (d) qβ = 0.95.

(a) (b)

(c) (d)

FIG. 16. Wigner function of the output states for different val-
ues of the parameter ξ , corresponding to the squeezing strength
of the input ancillary displaced squeezed state. The other param-
eters correspond to those in the first row of Table III. Also,
note that Fig. 16(c) corresponds to the optimal result. Here (a)
ξ = 0.1 dB, (b) ξ = 0.14 dB, (c) ξ = 2.83 dB, (d) ξ = 5.66 dB.

of the ancillary displaced squeezed state: it becomes larger
when the squeezed state is displaced further from the orig-
inal point in the position direction. Similarly, the direction
of the squeezing in the ancillary displaced squeezed state,
Arg(ξ), affects the curvature of the main negative fringes.
The width of the Wigner function is instead influenced by
the strength of the parameter ξ .

Finally, Fig. 16 shows how the squeezing parameter in
the ancillary displaced squeezed state impacts the output
state. By increasing the squeezing parameter ξ , the output
state becomes more squeezed.

APPENDIX F: INTERPRETATION OF THE
PROBABILISTIC PROTOCOL

In this appendix, we aim at showing that the effect of
the probabilistic protocol is to implement a deformed (fil-
tered) squeezing on the input state, extending the findings
of Sec. III B. For simplicity, we ignore the final phase
rotation, and the output state in Eq. (D11) can thus be
written as

|�q
out〉 = 〈q|�12(ξ ,β, θ , γ )〉

=
∫

dq2�ξ ,β(−q sin θ + q2 cos θ)

×�in(q cos θ + q2 sin θ)|q2〉

=
∫

dq2�ξ ,β(−q sin θ + q2 cos θ)

×�in(q cos θ + q2 sin θ)|q2〉

010327-18



GAUSSIAN CONVERSION PROTOCOLS. . . PRX QUANTUM 2, 010327 (2021)

= �ξ ,β(cos θ q̂2 − q sin θ)

×
∫

dq2�in

[

sin θ
(

q2 + q cos θ
sin θ

)]

|q2〉

= �ξ ,β(cos θ q̂2 − q sin θ)D̂(dc)Ŝ(sc)

×
∫

dq2�in(q2) |q2〉

= �ξ ,β(cos θ q̂2 − q sin θ)D̂(dc)Ŝ(sc) |�in〉 , (F1)

where dc ∝ cos θ/sin θ , |sc| ∝ |(sin θ − 1)|, and �ξ ,β
(cos θ q̂2 − q sin θ) is a Gaussian filter [33,39,116]. Note
that, for q = 0, we obtain a zero displacement. This sit-
uation is reminiscent of gate teleportation, but with an
additional filtering factor.

APPENDIX G: DERIVATION OF THE GATE
ERROR FROM THE INFIDELITY OF THE

ANCILLARY CUBIC PHASE STATE

We want to calculate the wavefunction of a GKP state
|+L〉 after the teleportation gadget shown in Fig. 10. Con-
sider first the case where the ancillary state is the cubic
phase state given in Eq. (6), i.e., the target of our Gaussian
conversion protocol. The wave function after the ĈZ gate
is the given as

|�〉 = ĈZ |+L〉 |�target〉

=
∫

dq1dq2 〈q1| |+L〉 〈q2| |�target〉 eiq1q2 |q1〉 |q2〉

=
∫

dq1dq2dp 〈q1| |+L〉 〈q2| |�target〉

× eiq1q2
eipq1

√
2π

|p〉 |q2〉 .

Afterwards we have to measure p̂ on the first rail. For sim-
plicity, we postselect on p = 0, so that there is no need for
Gaussian corrections Ĉ. Thus, we obtain

|�̃〉 = 〈p = 0| |�〉

= 1√
2π

∫
dq1dq2 〈q1| |+L〉 〈q2| |�target〉 eiq1q2 |q2〉

(G1)

with the wave function in the position representation given
by

�̃(q) = 〈q|�̃〉 = 1√
2π

〈q| |�target〉
∫

dq′ 〈q′| |+L〉 eiq′q.

By replacing the explicit expression of the GKP state given
in Eq. (25), we arrive at

�̃(q) = 1
N

〈q| |�target〉
∫

dq′ 〈q′| |+L〉 eiq′q

= 1

Ñ
〈q| |�target〉

∫
dq′

∫
dp

×
∞∑

s=−∞
e−�2(2s)2π/2e−(p−2s

√
π)2/2�2

eiq′(q−p)

= 1

Ñ
〈q| |�target〉

∫
dp

×
∞∑

s=−∞
e−�2(2s)2π/2e−(p−2s

√
π)2/2�2

δ(q − p)

= 1

Ñ
〈q| |�target〉

∞∑

s=−∞
e−�2(2s)2π/2e−(q−2s

√
π)2/2�2

,

(G2)

where Ñ is another normalization constant.
When instead we use as ancillary state the output state of

our probabilistic conversion protocol ρ̂cond [corresponding
to Eq. (23) with n = 0], we have to generalize to den-
sity matrix operators. The state after the ĈZ gate is then
obtained as

ρ̂ = ĈZ(|+L〉 〈+L| ⊗ ρ̂cond)Ĉ
†
Z

=
∫

dq1dq2dq3dq4ĈZ(|q1〉 〈q1| |+L〉 〈+L| |q2〉 〈q2|

⊗ 〈q3| ρ̂cond |q4〉 |q3〉 〈q4|)Ĉ†
Z

=
∫

dq1dq2dq3dq4ei(q1q3−q2q4)

× (|q1〉 〈q1| |+L〉 〈+L| |q2〉 〈q2|
⊗ 〈q3| ρ̂cond |q4〉 |q3〉 〈q4|),

and after the measurement including postselection on
p = 0,

ˆ̃ρ = 〈p = 0| ρ̂ |p = 0〉

=
∫

dq1dq2dq3dq4ei(q1q3−q2q4)

× (〈q1| |+L〉 〈+L| |q2〉 〈q3| ρ̂cond |q4〉 |q3〉 〈q4|).

So, for the density matrix in position space, we obtain

〈q| ˆ̃ρ |q′〉

= 〈q| ρ̂cond |q′〉
∫

dq1dq2ei(q1q−q2q′) 〈q1| |+L〉 〈+L| |q2〉
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= 〈q| ρ̂cond |q′〉
( ∫

dq1eiq1q 〈q1| |+L〉
)

×
( ∫

dq2eiq2q′ 〈q2| |+L〉
)∗

= 〈q| ρ̂cond |q′〉
( ∞∑

s=−∞
e−�2(2s)2π/2e−(q−2s

√
π)2/2�2

)

×
( ∞∑

m=−∞
e−�2(2m)2π/2e−(q′−2m

√
π)2/2�2

)

.

The fidelity between the two GKP states after the tele-
portation gadget when using the perfect cubic phase state
as input for the first and our state after the probabilistic
protocol as input for the second is then given as

F = 〈�̃|ρ̃|�̃〉

=
∫

dqdq′〈�̃|q〉 〈q| ρ̃ |q′〉 〈q′|�̃〉, (G3)

where, using Eq. (23), we have

〈q| ρ̂cond |q′〉 = 1
Prob[0]

∫ δ

−δ
dq′′〈q|�q′′

out〉〈�q′′
out|q′〉, (G4)

with |�q
out〉 given by Eq. (22). The gate error can then be

finally defined as ε = 1 − F , with F given in Eq. (G3).

APPENDIX H: INEFFICIENT HOMODYNE
DETECTION AND PERFORMANCE OF THE

PROBABILISTIC PROTOCOL

We now study the effects of inefficient homodyne detec-
tion in the probabilistic protocol.

1. Partial measurements and inefficient homodyne
detection

We first model the effect of the inefficient homodyne
measurement on one of the two modes of a generic two-
mode state. Given an initial state ρ and the positive oper-
ator valued measure (POVM) {�̂j = Ê†

j Êj }, we denote
by

ρ̃ = Êj ρÊ†
j

Tr(�̂j ρ)
(H1)

the normalized state after the measurement outcome j is
obtained. Note that the denominator corresponds to the
probability of obtaining the measurement outcome j ,

Tr(Êj ρÊ†
j ) = Tr(Ê†

j Êj ρ) = Tr(�̂j ρ). (H2)

In our case, we are dealing with a partial measurement,
i.e., we consider a bipartite system ρ12 and the measure-
ment is only applied to mode 1. In this case the state after

the measurement (with outcome j ) is given by

ρ̃2 = Tr1[(Êj ⊗ I)ρ12(Ê
†
j ⊗I)]

Tr[(�̂j ⊗ I)ρ12]
. (H3)

Now, the numerator can be rewritten as

Tr1[(Êj ⊗ I)ρ12(Ê
†
j ⊗I)] = Tr1[(Ê†

j ⊗I)(Êj ⊗ I)ρ12]

= Tr1[(�̂j ⊗ I)ρ12]. (H4)

It is easy to verify that the cyclic property holds for the
partial trace in this case (see Appendix I).

Following Ref. [117], the POVM corresponding to
homodyne detection with efficiency η is given by

�̂η(q) = 1
√

2π�2
η

∫ +∞

−∞
dq′e−(q′−q)2/2�2

η |q′〉〈q′| (H5)

with

�2
η = 1 − η

4η
. (H6)

Note that, for η → 1, �2
η → 0 and the Gaussian function

in the integrand approaches a Dirac delta. In this case, we
recover the projector �̂(q) = |q〉〈q|.

As the probability of obtaining a single continuous-
variable outcome qn is negligible, we consider all possible
results in a bin of half-width δ around qn. The correspond-
ing POVM is

Q̂n(δ, η) =
∫ qn+δ

qn−δ
dq′ �̂η(q′)

= 1
√

2π�2
η

∫ qn+δ

qn−δ
dq′

×
∫ +∞

−∞
dq′′e−(q′′−q′)2/2�2

η |q′′〉〈q′′|.

2. Inefficient homodyne detection for the probabilistic
cubic phase state protocol

Following the above sections, the conditioned state
ρcond,2 upon an inefficient homodyne measurement with
measurement outcome in [qn − δ, qn + δ] is given by

ρcond,2 = Tr1[{Q̂(η, δ)⊗ I}ρ12]

Tr[{Q̂(η, δ)⊗ I}ρ12]

= Tr1[{Q̂(η, δ)⊗ I}ρ12]
Prob[qn]

with ρ12 = |�12(ξ ,β, θ , γ )〉〈�12(ξ ,β, θ , γ )|.
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The numerator corresponds to

Tr1[{Q̂(η, δ)⊗ I}ρ12]

= 1

π2
√

2πδ2
η

∫ qn+δ

qn−δ
dq′

∫ +∞

−∞
dqdq2dq4dα dε

×�in(q cos θ + q2 sin θ)�ξ ,β(−q sin θ + q2 cos θ)

×�∗
in(q cos θ + q4 sin θ)�∗

ξ ,β(−q sin θ + q4 cos θ)

× 〈α|q2〉〈ε|q4〉∗e−(q−q′)2/2�2
η |αe−iγ 〉〈εe−iγ |.

For the denominator, we instead have

Prob[qn] = 1
√

2π�2
η

∫ qn+δ

qn−δ
dq

∫
dq1dq2

× |�in(q1 cos θ + q2 sin θ)|2

× |�ξ ,β(−q1 sin θ + q2 cos θ)|2

× e−(q1−q)2/2�2
η .

Finally, from these results we can calculate the fidelity

F = 〈�target|ρcond,2|�target〉.

This can be reduced to

F = 1
Prob[qn]

1

π2
√

2π�2
η

×
∫ qn+δ

qn−δ
dq′

∫ +∞

−∞
dqe−(q−q′)2/2�2

η I1 × I∗
1 ,

where

I1 =
∫ +∞

−∞
dq′′ dq2 dα �in(q cos θ + q2 sin θ)

×�ξ ,β(−q sin θ + q2 cos θ)〈α|q2〉
× 〈q′′|αe−iγ 〉�∗

target(q
′′).

Note that this corresponds to the overlap integral,
Eq. (D17).

In Fig. 17, we show the effect of the efficiency η of
the homodyne detection on the fidelity as well as on the
success probability of our protocol for a fixed value of δ.
For η → 1, we recover our previous results (see Fig. 6).
As expected, the fidelity decreases with decreasing effi-
ciency while, on the other hand, the success probability
increases with it. The latter is expected as, from Eq. (H6),
by decreasing η we project on a larger domain of quadra-
ture eigenstates with equal weights. This effectively trans-
lates into an increased acceptance region. The added noise

Fidelity
Probability

FIG. 17. Fidelity and success probability as a function of the
efficiency of the homodyne detection η. The parameters in the
circuit, including the value of the mana, correspond to the first
row of Table III. Here, we set the half-width of the measurement
bin δ = 0.1.

of the inefficient homodyne detector could be removed
by the phase sensitive amplification of the signal [117].
Homodyne detection efficiencies as high as 0.98 have been
reported for which our probabilistic protocol still achieves
a very high fidelity.

APPENDIX I: PARTIAL TRACE AND CYCLIC
PROPERTY

We begin by writing ρ12 in the Fock basis

ρ12 =
∑

mnpq

ρmnpq(|m〉〈n|)1 ⊗ (|p〉〈q|)2.

Now, consider

(Â ⊗ I)ρ12 =
∑

mnpq

ρmnpq(Â|m〉〈n|)1 ⊗ (|p〉〈q|)2,

ρ12(Â ⊗ I) =
∑

mnpq

ρmnpq(|m〉〈n|Â)1 ⊗ (|p〉〈q|)2,

where A is an arbitrary operator acting on mode 1. From
here, it is straightforward to see that the partial trace on
mode 1 yields the matrix element 〈n|Â|m〉 in both cases.
Therefore,

Tr1[(Â ⊗ I)ρ12] = Tr1[ρ12(Â ⊗ I)].
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