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Frequency correlations are a versatile and powerful tool which can be exploited to perform spectral
analysis of objects whose direct measurement might be unfeasible. This is achieved through a so-called ghost
spectrometer, that can be implemented with quantum and classical resources alike. While there are some known
advantages associated to either choice, an analysis of their metrological capabilities has not yet been performed.
Here we report on the metrological comparison between a quantum and a classical ghost spectrometer. We
perform the estimation of the transmittivity of a bandpass filter using frequency-entangled photon pairs. Our
results show that a quantum advantage is achievable, depending on the values of the transmittivity and on the
number of frequency modes analyzed.
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I. INTRODUCTION

Accessing hardly reachable objects with light, while main-
taining the possibility of performing detailed analysis at the
output is a well-known conundrum, yet a task with substan-
tial relevance. Correlations in multimode light constitute
a widely explored way to circumvent technical limitations.
These schemes rely on two sets of correlated modes, which are
employed to illuminate the object on one side, and the analy-
sis apparatus on the other. Although the light that has actually
encountered the object is not directly analysed, the presence
of correlations allows to extract the information. When ap-
plied to spatial analysis, this technique is able to produce an
image even if the object is physically removed from the detec-
tion line, hence the name ghost imaging (GI) [1].

Although GI was initially considered as a quantum effect
produced in parametric down conversion [1], many results
and features can be replicated by multimode classical thermal
emission [2–4]. This has lead to an intense activity focused on
extending applications towards genuine remote imaging [5],
as well as extensions to the spectral [6, 7] and polarization
domains [8]. Thermal GI requires less demanding equipment
than its quantum counterpart, and it typically allows to achieve
superior brightness. There exist, however, aspects of the quan-
tum technique that can not be replicated with classical light,
in particular when inspecting the optical resolution [9], and
the signal-to-noise ratio of the image [10]. In this article, we
discuss quantitative differences of the quantum and classical
scheme in the light of a different paradigm in quantum metrol-
ogy, viz. quantum parameter estimation [11–14].

We discuss the capability of a GI system in estimating the
image of an object, considered as a collection of transmis-
sion parameters. The presence of quantum correlations is
well known to deliver sub-shot noise measurement of inten-
sity [15–21], and these can lead to quantum-enhanced applica-
tions [22–31]. In particular, the authors of Ref. [32] discussed
the use of quantum light for the measurement of a single trans-
mittance, while the authors of Ref. [33] demonstrated how this

task benefits from adopting quantum correlations. We build
on these results to discuss resource counting in quantum GI in
comparison with its classical counterpart at fixed energy.

II. EXPERIMENTAL QUANTUM GI IN THE SPECTRAL
DOMAIN

In our approach, the object to be imaged - be it a genuine
spatial image or a spectral profile, is modeled as a collection
of K values of transmittivity Tk, 1 ≤ k ≤ K, each associated
to a mode. Our aim is then to estimate these values.

The quantum technique to implement GI uses the correla-
tions between single photons produced in spontaneous para-
metric down-conversion (SPDC): a single incoming pump
photon creates a pair of photons strongly correlated in their
emission modes [34]. In the experiment, the spectral profile is
conveniently discretized, so that the effective number of cor-
related mode pairs is equal to K.

All the modes in arm 1 arrive on the object, and are then
measured by a mode-insensitive bucket detector. Due to the
correlations in the pair production process, the analysis of the
correlated photon in coincidence with the bucket detector pro-
vides information about what has occurred to its twin. This
is the experimental approach we followed in our investiga-
tion, but, differently from the most frequent case, we explored
the spectral domain. The photon reaching the frequency-
independent bucket detector passes through a spectral object,
an interference filter with full-width at half-maximum of 7.3
nm. The second photon was analyzed using a spectrometer, as
described in Fig.1.

We reconstruct the spectral profile of arm 1, including the
filter, optical elements, and detector, by scanning the output
of the spectrometer in the analysis arm 2. This profile will
be dictated mostly by that of the filter. We collect a series of
Ns = 100 points, with a resolution of 0.33 nm, estimated by
comparing the obtained profile with the one measured in Ref.
[35] by means of a conventional spectrophotometer. We can
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FIG. 1. Experimental setup. A 30 mW CW diode laser at 405 nm
pumps a 3-mm barium borate (BBO) crystal cut for non-collinear
Type I phase matching, producing degenerate photon pairs at 810 nm
through SPDC. One photon is then sent through an interference filter
with FWHM 7.3 nm, and detected with a bucket detector. Frequency
detection is performed on the second photon: this is achieved through
a 1200-lines/mm grating and a collection lens with focal length f =

30 cm. A multimode fiber on a translation stage allows for a complete
measurement of the spectral range under investigation. A collimator,
integral to the fiber mount, assists the photons collection.

then define the spectral modes as K = Ns/ j, with j = 1−−100,
so that each single mode k is obtained by regrouping j mea-
sured points. Different spectral resolutions were thus achieved
by summing the number of coincidences measured for these
groups of points, and similarly for the single counts. The
transmission Tk, considering the spectral object as well as the
intrinsic loss of the arm, is calculated as a Klyshko efficiency
[36]Tk = Ck/Nk, with Ck being the coincidence counts and
Nk the total counts of the spectrometer detector for the k-th
mode; this allows to obtain an estimation of each Tk, indepen-
dently of the other. In Figs.2 (a) to (c) we report the obtained
transmittivities Tk for K = 10, 50, 100.

The uncertainty on the transmittivity is calculated by con-
sidering that Nk events have been collected, a fraction Ck of
which lead to a coincidence. Thus, Nk is considered as fixed,
while Ck is a binomial variable, with variance Ck(1−Tk) [33];
error propagation leads to:

∆2Tk = Tk(1 − Tk)/Nk. (1)

The adoption of the Klyshko method makes the estimation of
Tk and its error independent on the efficiency η of the detec-
tion arm, within our single-photon approximation. However,
proper resource counting needs to include those events dis-
carded due to η < 1: for each value of Tk, these are estimated
as Ntot = 〈Nk〉/η, using the average number of events on all
modes. In our experiment we estimated η = 0.35 as the av-
erage efficiency of the frequency bins by a modified Klyshko
method that takes into account the multimode detection on
arm 1. This consists in evaluating η by taking the sum of the
coincidences across all frequency detection modes, and divid-

ing it by the total counts of the bucket detector.

III. BENCHMARKING THERMAL GI

We derive the equivalent strategy based on multiple ther-
mal states, as our classical benchmark. We assume we can
make use of a collection of independent modes, with the same
structure as our quantum source, each presenting thermal pop-
ulation. This multi-thermal emission is split on a 50:50 beam
splitter, with the measuring apparatus performing essentially
the same operation as above: one half of the beam reaches the
object and then the bucket detector, the other half the analysis
apparatus. Looking at the cross-correlation between the two
detection signals, one observes a value of second-order cor-
relation g(2)(0) > 1 if the two are correlated, and g(2)(0) = 1
otherwise. The value of the second-order correlation will de-
pend on the transmission profile, thus making it possible to
obtain information on the object. Since g(2)(0) ≥ 1 for classi-
cal light, the visibility of our signal is decreased with respect
to the quantum case [3, 4, 9, 10]. Notably, this mechanism
can not be replicated by means of coherent states, since no in-
tensity correlations emerge when these are divided on a beam
splitter.

A multimode thermal state can be written in the diagonal
form in the Fock basis as [37]

νnth =

K⊗
k=1

∞∑
m=0

pth(m|nth) |m〉k k〈m| , (2)

where the thermal profile is given by the photon-number prob-
ability

pth(m|nth) =
1

nth + 1

(
nth

nth + 1

)m

. (3)

Each thermal mode is taken to have mean photon number nth,
so that, on average, n̄ = nth/2 photons per mode reach the
object, and allow for M repetitions of the measurement such
that n̄M = Ntot, to compare strategies with the same number
of total resources. Near-optimal working conditions are for
n̄ ∼ 1, as verified numerically. We should remark that this
comparison is carried out against the post-selected scheme of
quantum metrology.

The thermal state is split in a balanced beam-splitter and,
as in the experiment described in Fig.1, one half of the beam
reaches the filter and then the bucket detector, while the other
half reaches the analysis apparatus. The key quantity needed
to evaluate the classical benchmark for ghost imaging, that
is the error that one would obtain in estimating the same set
of transmittivities {Tk} describing arm 1, is the joint condi-
tional probability Pk(n1, n2|{Ti}) of detecting n1 photons in the
bucket detector, and n2 photons in the mode k via the detector
placed after the frequency analyzer.

We start by considering the single-mode case, where our
object is thus described by a beam-splitter with transmittiv-
ity Tk that couples the photons in the arm 1 to a virtual mode
“0′′ prepared in a vacuum. By assuming to have control on
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FIG. 2. Transmittivities evaluated as the Klyshko efficiency for a) K=10, b) K=50, and c) K= 100 modes. Data are collected for the spectral
resolution of panel c) in a 5 s window with a rate of 1100 coincidences/s at the maximum. The values of transmittivity are estimated as the
coincidence-to-single count ratio Ck/Nk. The points in panel c) are obtained directly from the measured counts, while for the points in panels
a and b, the reduced resolution is mimicked by summing the collected signals over multiple modes. The observed profile follows closely the
fourth-order super-Gaussian, previously measured by a spectrophotometer [35], with some deviations which can be ascribed to other optical
components in the arm. The experimental estimation errors for the quantum strategy are obtained by means of Eq.(1), and are shown in green
in panel d) for K= 10, e) K=50, and f) K=100 modes. These correspond to the error bars in the panels (a) to (c). The classical uncertainties
(purple points) are evaluated via the error propagation in Eq.(8) and the described results of our calculation. We considered Ntot = 80000 per
mode at the highest resolution, a value that accounts for the lost events due to the limited efficiency η = 0.35.

FIG. 3. Comparison between the measured errors for the quantum strategy (green circles), and the estimated errors for the classical one
obtained by propagation (purple triangles) and by the CRB (pink squares), at fixed number of cumulative resources Ntot for a) K = 3, b) K =

5, c) K = 7, and d) K = 9 modes.

this virtual mode and thus to detect photons also in the corre-
sponding output port, the corresponding conditional probabil-
ity of detecting respectively {n1, n2, n0} in the three detectors

reads

pk(n1,n2, n0|Tk) =

(
n1 + n2 + n0

n1 + n0

)(
n1 + n0

n0

)
× pth(n1 + n2 + n0|nth)

(
1
2

)n1+n2+n0

T n1
k (1 − Tk)n0 . (4)

To obtain the correct conditional probability corresponding to
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the output of the two detectors in the actual experiment, where
one does not have control on the virtual mode, we have to trace
out this subsystem by averaging over all the possible values of
n0, obtaining the marginal probability

pk(n1, n2|Tk) =

∞∑
n0=0

pk(n1, n2, n0|Tk) . (5)

As expected, by averaging also over the detector output n2
one obtains the photon-number statistics of a thermal state
with Tknth/2 photons, i.e.

∞∑
n2=0

pk(n1, n2|Tk) = pth(n1|Tkn̄) . (6)

In the multimode scenario, we have to consider two contri-
butions to the detection. When the detector on arm 2 is set to
observe mode k, the bucket detector can receive photons orig-
inating from the correlated mode on arm 1, or from the other
uncorrelated modes. In the first case, the detection probabil-
ity has the expression for pk(n1, n2|Tk) calculated in Eq.(5) for
the single-mode scenario, while in the second case there will
be present multi-thermal noise, with each mode contributing
with its thermal statistics pth(n1|Tkn̄) in Eq. (6). Consequently
in the complete conditional probability Pk(n1, n2|Tk) for the
multimode case, we have to account for the possibility of gen-
erating the photons n1 in arm 1 from all these modes: of the
observed n1 photons, νk actually originate from mode k, and
n1 − νk from the others, parted among the remaining modes.
The overall probability corresponds to taking the discrete con-
volution of those for the individual modes:

Pk(n1, n2|{Ti}) =
∑
{νi}:∑
i νi=n1

pk(νk, n2|Tk)
∏
j,k

pth(ν j|T jn̄) , (7)

where the sum is indeed taken over all the possible set {νi} of
photons on the K modes hitting the bucket detector.

The conventional measurement estimates the correlation
C(k)

12 = 〈n1n2〉k, from which the transmittivities Tk can be in-
ferred (notice that each trasmittivity Tk will be estimated sep-
arately by selecting only the clicks of the second detector cor-
responding to the k-th frequency). The corresponding uncer-
tainties can thus be evaluated via error propagation as

∆2T (c)
k =

1(
dC(k)

12 /dTk

)2

∆2C(k)
12

M
, (8)

where ∆2Ck
12 = 〈n2

1n2
2〉k − 〈n1n2〉

2
k . However the evaluation of

C(k)
12 and ∆2C(k)

12 directly from Eq. (7) is computationally de-
manding. We thus adopted an approach based on the moment
generating functions [38], defined as

Gk(x, y|{Ti}) =

∞∑
n1,n2=0

Pk(n1, n2|{Ti})en1 x+n2y . (9)

In fact, by exploiting these objects, the moments of the distri-
butions are found as:

〈nα1 nβ2〉k = ∂αx∂
β
yGk(x, y|{Ti})|x=0,y=0. (10)

The key property we exploit to evaluate Gk(x, y|{Ti}) is that
for probabilities based on a convolution such as Eq. (7), the
total generating function is readily found as the product of the
individual functions

Gk(x, y|{Ti}) = gk(x, y|Tk)
∏
j,k

gth(x|T jn̄) , (11)

that can be readily evaluated via the formulas

gk(x, y|Tk) =

∞∑
n1,n2=0

pk(n1, n2|Tk)en1 x+n2y , (12)

= [1 + nth(1 + Tk − ey − Tkex)]−1 , (13)

gth(x|nth) =

∞∑
n1=0

pth(n1|nth)en1 x (14)

= (1 + nth − nthex)−1 . (15)

By exploiting the results of our calculation it is possible to ob-
tain computable forms for the uncertainties in Eq. (8), this is
also true for large values of the number of modes K. We re-
mark that the comparison between the estimation errors for the
quantum apparatus described in the previous section and the
the classical strategy based on thermal light is conducted by
allowing the classical strategy to employ also those resources
that were wasted due to the loss in the quantum apparatus, as
quantified by the parameter η.

This classical strategy is inspired by the standard measure-
ment carried out for ghost imaging; furthermore, since there
is no coherence among the different photon number states, the
choice of the observable is bound to be optimal. However, the
estimator C12 may be not: a more suitable choice f (n1, n2),
while based on the same observable, may lead to improved un-
certainties. On the other hand, finding an explicit expression,
due to the dissipative nature of the transmission process, is not
immediate, as we can not apply the standard machinery for
unitary parameters. Anyhow, the ultimate limit on the error
in the estimation of each trasmittivity Tk via the experimen-
tal setup described above is given by the Cramér-Rao bound
(CRB) [13]:

∆T 2
k ≥

1
MFk

, (16)

where M is the number of repetitions of the experiments,
while

Fk =

∞∑
n1,n2=0

Pk(n1, n2|{Ti})
(
∂

∂Tk
log Pk(n1, n2|{Ti})

)2

(17)

denotes the Fisher information corresponding to the estima-
tion of the parameter Tk. While this does not apply strictly
to a genuine multiparameter estimation of all {Tk} [14], it still
sets a lower bound to the attainable error in the general case
(accounting for statistical correlations among transmittivities
can only decrease the available information).

For large number of modes K the evaluation of the proba-
bilities in Eq. (17) is highly demanding. Hence, we employed
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the approach described in the previous paragraph to evaluate
the Fisher information, and thus the corresponding CRB, only
numerically and for a small number of modes K, by exploiting
the exact relationship between the Fisher information and the
Hellinger distance [39]

Fk = lim
ε→0

4
(
DH[Pk(n1, n2|{Ti}), P

(ε)
k (n1, n2|{Ti})]

)2

ε2 , (18)

where P(ε)
k is obtained from Pk by replacing the k-th trasmit-

tivity with Tk +ε, and where we defined the Hellinger distance
between two probability distributions as

DH[p1(x), p2(x)] =

√∑
x

( √
p1(x) −

√
p2(x)

)2
. (19)

IV. DISCUSSION

The errors evaluated for quantum and classical strategies, as
reported in Eqs. (1) and (8), respectively, are reported in Figs.
2(d) to 2(f) for K = 10, 50, 100. This shows that for the con-
ventional estimators, the quantum strategy, although lossy, al-
ways outperforms the classical one, and that the enhancement
increases with the number of modes, when the transmittivities
are estimated individually for each mode.

The comparison between the errors evaluated for the quan-
tum strategy [Eq. (1)], for the classical one through propaga-
tion [Eq. (8)] and through the CRB [Eq. (16)] is reported in
Fig. 3, for modes K = 3, 5, 7, 9. In more detail, to obtain the
results shown in Fig. 3, we evaluated numerically the prob-
ability distributions Pk and P(ε)

k via Eq. (7) with ε = 10−7,
numerically checking that the quantity

F̃k =
4

(
DH[Pk(n1, n2|{Ti}), P

(ε)
k (n1, n2|{Ti})]

)2

ε2 (20)

is stable by further decreasing the value of ε, such that one can
safely assume that Fk ≈ F̃k.

The results show that quantum light does not provide an ad-
vantage unconditionally. In fact, when only a few modes are
considered, an optimal classical estimator can outperform the
quantum strategy using the same number of resources, espe-
cially at higher transmittivities. When the number of modes
is increased, however, the quantum advantage is recovered,
hence the quantum estimation becomes the preferable choice
for every transmittivity value considered. It should be noted
that, to be optimal, the classical protocol requires nth ∼ 1, thus
prompting comparable experimental difficulties to those of the
quantum scenario. This is indeed quite a different regime than
the one for conventional thermal ghost imaging [4].

V. CONCLUSIONS

We investigated in which conditions a ghost imaging setup
may provide an enhanced parameter estimation of a collection
of transmittivity values representing the imaged object. We il-
lustrated this with an experiment of quantum ghost spectrom-
etry performing the measurement of a bandpass filter. We then
compared the measurement precision with that of an anal-
ogous classical scheme using thermal modes. Our analysis
shows that adopting the quantum strategy can be favorable in
specific conditions, dictated by the values of the transmittivi-
ties at hand, and by resolution of the modes. The higher the
resolution and the lower the transmittivities, the greater the en-
hancement that can be achieved through quantum estimation,
although, it should be emphasized that the details do depend
on the entire profile of the transmittivities.
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