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Abstract

Aims: Bubble Entropy (bEn) is a metric which links
the complexity of the series to the cost of sorting its sam-
ples, with limited dependence on parameters. Fractional
Brownian motion (fBm) is a long-memory process, which
has largely been used in modeling heart rate variability
(HRV). fBm displays ephemeral regularities and period-
icity at multiple time scales, which then vanish to reform
differently. In here we tested if the continuously growing or
decaying trends in fBm, which hint a broad range of swaps
necessary for sorting, lead to maximal values of bEn.

Methods: We synthetically generated realizations of
fBm (106 samples), along with its increments, the frac-
tional Gaussian noise (fGn), a time-discrete process. The
Hurst exponent H , on which fBm and fGn are parame-
terized, was varied in the entire range (0, 1). bEn was
computed with m ranging up to 200 (typically beyond the
scope of other entropy metrics).

Results: For fGn, a stationary process, bEn showed a
very small, if minimal, dependence on m. Empirically, it
scaled as H/2 + 3/4. At low values of m, the dependence
was more significant for fBm, a non-stationary process.
When m grew, bEn approached a constant value.

Conclusions: bEn behaves like a scaling estimator for
stationary Gaussian long-memory processes, but less so
when non-stationarity becomes relevant (as it is for HRV).

1. Introduction

Bubble Entropy [1] is a metrics introduced to quantify
the complexity of a time series by measuring the increase
in the entropy of the series of sorting steps (swaps), neces-
sary to order its portions of lengthm, when adding an extra
element. It does not quantify directly the (differential) en-
tropy rate of the series, like Approximate Entropy (ApEn)
[2] and Sample Entropy (SampEn) [3] do. A clear ad-
vantage is its limited dependence on parameters, which are
often critical to set. First, the time series x1, . . . , xN is em-
bedded into an m dimensional space and then, for each of
the N − m + 1 embedded vectors, the number of swaps
Bubble Sort requires to sort them is assessed (in ascending

order, but the result is invariant to the ordering selected).
The second-order Rényi entropy of the series of swaps is
computed as

Hm
swaps = − log

(m2 )∑
i=0

p2i ,

where pi is the probability mass function (pmf) of having
i swaps, estimated from the histogram of the counts. The
maximum values of Hm

swaps appears when pi is a uniform
distribution, that is when all the possible ordering of the
samples are equally likely. While there are m! permuta-
tions for a sequence of m samples, we need a maximum of
m(m− 1)/2 swaps to generate any sequence from a given
one. Thus, the maximum swap entropy is

Umswaps = log

[
(m− 1)m

2
+ 1

]
.

While other common entry measures, like Permutation En-
tropy [4], maximize when the input signal is generated by
a white noise, this is not the case here. In fact, we re-
cently derived [5] an exact formula for the swap entropy of
a white Gaussian noise (WGN) and proved that when m is
large

Wm
swaps ≈

1

2
log

[
π
m(m− 1)(2m+ 5)

18

]
< Umswaps.

This was clearly exemplified in [6], where signal produced
by autoregressive (AR) models with a large and positive
one-step autocorrelation required a broader range of swaps
than WGN. This is not surprising, as with bEn, the com-
plexity of a time series is measured is term of added diver-
sity in the ordering of the samples across scales, and not as
lack of similar patterns (which would favor WGN).

Finally, bEn is computed as the increase (entropy rate)
in swap entropy, when an extra element is added to each
of the vectors, normalized with respect to bEn of uniform
pmfs

bEn =
Hm+1
swaps −Hm

swaps

Um+1
swaps − Umswaps

.
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As a (slightly) alternative definition, in [5] we proposed to
change the normalization factor to

bEn∗ =
Hm+1
swaps −Hm

swaps

Wm+1
swaps −Wm

swaps

,

so that a value bEn∗ = 1 corresponds always to a WGN.
Heart Rate Variability (HRV), as well as series generated

from long-memory processes, displays ephemeral regular-
ities and periodicity at multiple time scales, which then
vanishes to reform differently. The persistence between
subsequent values (e.g., continuously growing or decaying
trends) and the self-similarity across different scales sug-
gest that a broad range of sorting swaps might be required
to bubble sort the m dimensional vectors embedded from
these series. As a consequence, fractal processes should
display a value of bEn∗ larger than one. In this paper,
we investigated this hypothesis and assessed the values of
bEn and bEn∗ for synthetic series generated by Guassian
process displaying long memory.

2. Methods

As shown in [5, 6], estimates of bubble entropy for se-
ries derived from an AR process grow while the process
approaches a Gaussian random walk, which is the limit-
ing case of x[n] = −a1x[n − 1] + w[n] for a1 → 1,
with w[n] ∼ N (0, σ2). A random walk is a time-discrete
process, which weakly converges to a (time-continuous)
Brownian motion, when the length of the sequence tends
to infinity (Donsker’s theorem, see [7]). More gener-
ally, fractional Brownian motion (fBM) is a non-stationary
time-continuous long-memory process, displaying self-
similarity and a slope of the (generalized) spectral density
in the low frequencies scaling as 1/fα. fBm, along with
its increments, i.e., the fractional Gaussian noise (fGn), a
time-discrete stationary Gaussian process [8], have largely
been used in modelling heart rate variability series. Both
fBm and fGn are parametrized by a scalar parameter, H ,
the Hurst exponent, which specifies the extent of the cor-
relations. For H = 1/2, fGn becomes a WGN and fBm a
Brownian motion. For H > 1/2 fGn displays long mem-
ory (autocorrelation decaying at a polynomial rate), as well
as fBn for any value of H .

We generated synthetic fGn and (sampled) fBm series
using the algorithms proposed by [9] and [10], respec-
tively, by varying the value of the Hurst parameter between
0 and 1 (both excluded), in steps of 0.025. For each value
of H , 1000 series of 106 samples were produced and for
each we computed the values of bEn and bEn∗ for several
values of m, from 3 to 200.

Given the computational load, due to the length of the
series, we implemented a very fast algorithm which was
O(N). In practice (please also check [11]), once ordered

the first vector, composed of the samples x1 · · ·xm, the
first element x1 was removed from the ordered sequence
(decreasing the number of swaps) and the new element
xm+1 added in the sequence in its ordered position (in-
crementing accordingly the number of swaps). Then the
process was repeated for any remaining sample xi. While
requiring a bit more of memory and bookkeeping, the com-
putational time was significantly reduced, in particular for
large value of m (at m = 200, ≈ 330× speedup on an
Intel Core i7-7500U CPU).

3. Results

The results are reported in fig. 1. For clarity the hori-
zontal axis is given in terms of α, the slope of the power
spectral density for f → 0 (or generalized power spec-
tral density for fBm, which is a non stationary process)
in a log-log plot, linked to H by the two scaling relations
α = 2H − 1 (fGn, red axis) and α = 2H + 1 (fBm, blue
axis). Empirically, we verified, that while getting to the
same values, a faster convergence was obtained averaging,
over the Monte Carlo runs, the estimates of the pmf pi in-
stead ofHm

swaps (rare events more likely appear in the final
pmf). These are the values reported in the figure.

For small value of m, bEn increased with growing val-
ues of α up to about α = 2, which corresponds to a random
walk. Then it decreased. For large m, and an increasingly
larger range of α values around 2, it reached a plateau
where bEn saturated to a value close to 1. In these cir-
cumstances, with the augmenting long-range correlation,
Hm
swaps tends to Umswaps (the swaps pmf tends to uniform).

Then, the pmf starts displaying peaks of probability at the
two extremes (no swaps and m(m− 1)/2 swaps) and bEn
decays after growing over 1. These is due to the fact that
when the memory of the process is large, growing and de-
caying trends of length m are likely in the signal.

These conclusions can be reached more clearly looking
at bEn∗ in the the top panel of the same figure. For fGn,
which is a stationary process, except when m = 200 and
α < −0.5, the values of bEn∗ are well described by the
line bEn? ≈ H/2 + 3/4 (also shown) and bubble entropy
behaves like a scaling exponent estimator. When the pro-
cess is non-stationary (fBm), for small values of H a lin-
ear growth with about the same slope can be still observed.
Then, close to α = 2,

bEn∗ ≈ lim
m→∞

Um+1
swaps − Umswaps

Wm+1
swaps −Wm

swaps

= lim
m→∞

log
[
m(m+1)+2
(m−1)m+2

]
1
2 log

[
(m+1)(2m+7)
(m−1)(2m+5)

] =
4

3
,

which supports the idea that the pmf tend to uniform.
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Figure 1. Values of bEn∗ (top) and bEn (bottom) for synthetic series obtained from a fGn (left, red axis) and fBm (rigth,
blue axis) as a function of α, the slope of the (generalized) power spectral density in the low frequencies. The slope is
linked by different scaling algebraic relations to the Hurst exponents H , as specified in the axes. Each dot is the average of
1000 Monte Carlo simulations on sequences of 106 samples. Values of bEn∗ for fGn are well approximated by the dashed
line bEn∗ = H/2 + 3/4. For large values of m, likely due to the non-stationary nature of fBm, the swaps’ pmf tends to
uniform for a large range of values around H = 0.5 or α = 2 (which corresponds to the random walk) and the values of
Bubble Entropy approach the limit set for a uniform distribution, the horizontal line at the level bEn∗ = 4/3 or bEn = 1.
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In the context of HRV series obtained from Holter 24h
recordings, the slope α is usually found to be in the range
0.9− 1.2 for normal subjects, > 1.33 for congestive heart
failure (CHF) patients and > 1.5 for subjects who under-
went a myocardial infarction [12]. In this entire range, on
the synthetic fGn and fBm signals, bEn and bEn∗ dis-
played to grow linearly with α.

4. Discussion

In this work, we studied, experimentally, the behaviour
of bubble entropy for long-memory Gaussian processes.
We verified than when the extent of the correlations in-
creases, the number of swaps necessary to sort sequences
of length m tend to be uniformly distributed. As a conse-
quence, bubble entropy is larger for fBm and fGn, than for
uncorrelated white noises. This is coherent with the empir-
ical understanding that in series displaying ephemeral reg-
ularities and periodicity at multiple time scales, as those
produced by long-memory processes, always growing and
decaying portions have a finite probability, which tend to
be of the same magnitude of any other ordering.

For fGn and all them values considered, bubble entropy
scaled linearly withH (and α), thus behaving like a scaling
exponent estimator. Similarly happened for fBm and some
values of m. Many other estimators do exists, and one of
the most common in the context of HRV is the long-term
detrended fluctuation analysis DFAα2 exponent [13]. In
this respect, we can reconsider figure 6 of [5], which com-
pared the discriminative capabilities of bubble entropy and
DFA between long term HRV of normal subjects and CHF
patients. bEn was always significantly different between
the two groups form ≥ 11, but DFAα2 (estimated for lags
≥ 11) was not. Thus, the differences in the ordering of the
samples seem to tell something more than the aggregated
scaling exponent.

Interestingly, the simulations we performed explored a
much larger range of scales m, than what possible with
techniques like permutation entropy (and even more for
sample entropy). In fact, while there are m! permuta-
tions for a sequence of m samples, we need a maximum of
m(m − 1)/2 swaps (a much smaller number) to generate
any sequence from a given one. As a concluding remark,
the number of swaps is related to the length of the shortest
program which is needed to generate any sequence. Thus,
the swaps pmf is also the pmf of the length of the codes re-
quired to produce any m sequence contained in the series.
There might be interesting connections between bEn with
the description length theory, which might be worthwhile
of further analysis.

References

[1] Manis G, Aktaruzzaman M, Sassi R. Bubble entropy: An
entropy almost free of parameters. IEEE Trans Biomed Eng
2017;64:2711–2718.

[2] Pincus SM. Approximate entropy as a measure of system
complexity. Proc Natl Acad Sci 1991;88:2297–2301.

[3] Lake DE, Richman JS, Griffin MP, Moorman JR. Sample
entropy analysis of neonatal heart rate variability. Am J
Physiol Regul Integr Comp Physiol 2002;283:R789–R797.

[4] Bandt C, Pompe B. Permutation entropy: A natural com-
plexity measure for time series. Phys Rev Lett 2002;88.

[5] Manis G, Bodini M, Rivolta MW, Sassi R. A two-steps-
ahead estimator for bubble entropy. Entropy 2021;23(6).

[6] Bodini M, Rivolta MW, Manis G, Sassi R. Analytical for-
mulation of bubble entropy for autoregressive processes. In
2020 11th Conference of the European Study Group on Car-
diovascular Oscillations (ESGCO). 2020; 1–2.

[7] Taqqu MS. Weak convergence to fractional Brownian mo-
tion and to the Rosenblatt process. Z Wahrscheinlichkeit
1975;31(4):287–302.

[8] Cerutti S, Esposti F, Ferrario M, Sassi R, Signorini MG.
Long-term invariant parameters obtained from 24-h holter
recordings: A comparison between different analysis tech-
niques. Chaos 2007;17(1):015108.

[9] Paxson V. Fast approximation of self-similar network traf-
fic. Technical report, LBL-36750/UC-405, 1995.

[10] Abry P, Sellan F. The wavelet-based synthesis for fractional
brownian motion proposed by F. Sellan and Y. Meyer: Re-
marks and fast implementation. Appl Comput Harmon
Anal 1996;3(4):377–383.

[11] Manis G, Sassi R. A Python library with fast algorithms
for popular entropy definitions. In Proc. of Computing in
Cardiology. 2021; 4 pages.

[12] Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng
CK, Schmidt G, Yamamoto Y, Reviewers: D, Gorenek B,
Lip GY, Grassi G, Kudaiberdieva G, Fisher JP, Zabel M,
Macfadyen R. Advances in heart rate variability signal
analysis: joint position statement by the e-Cardiology ESC
Working Group and the EHRA co-endorsed by the APHRS.
EP Europace 2015;17(9):1341–1353.

[13] Peng CK, Havlin S, Stanley HE, Goldberger AL. Quan-
tification of scaling exponents and crossover phenomena in
nonstationary heartbeat time series. Chaos 1995;5(1):82–
87.

Address for correspondence:

Roberto Sassi
Dipartimento di Informatica
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