
IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 20, 2021 39

Circuit Design Steps for Nano-Crossbar Arrays:
Area-Delay-Power Optimization With

Fault Tolerance
Muhammed Ceylan Morgul , Luca Frontini, Onur Tunali , Lorena Anghel,

Valentina Ciriani , Senior Member, IEEE, Elena Ioana Vatajelu , Csaba Andras Moritz,
Mircea R. Stan , Fellow, IEEE, Dan Alexandrescu , Senior Member, IEEE, and Mustafa Altun

Abstract—Nano-crossbar arrays have emerged to achieve high
performance computing beyond the limits of current CMOS with
the drawback of higher fault rates. They offer area and power effi-
ciency in terms of their easy-to-fabricate and dense physical struc-
tures. They consist of regularly placed crosspoints as computing
elements, which behave as diode, memristor, field effect transistor,
or novel four-terminal switching devices. In this study, we establish
a complete design framework for crossbar circuits explaining and
analyzing every step of the process. We comparatively elaborate
on these technologies in the sense of their capabilities for compu-
tation regarding area including a new logic synthesis technique
for memristors, fault tolerance including a novel paradigm for
four-terminal devices, delay, and power consumption. As a result,
this study introduces a synthesis methodology that considers basic
technology preference for switching crosspoints and fault rates of

Manuscript received July 10, 2019; revised April 13, 2020 and July 29,
2020; accepted December 2, 2020. Date of publication December 10, 2020;
date of current version January 1, 2021. This work was supported in part
by the European Union’s H2020 research and innovation programme under
the Marie Sklodowska-Curie under Grant Agreement #691178, in part by the
TUBITAK-Career Project #113E760 and TUBITAK-2501 Project #218E068.
The work of Muhammed Ceylan Morgul was primarily done when he was
with Istanbul Technical University. The review of this paper was arranged by
Associate Editor Professor Georgios Ch. Sirakoulis (Corresponding author:
Muhammed Ceylan Morgul.)

Muhammed Ceylan Morgul is with the Department of Electronics and
Communication Engineering of Istanbul Technical University, Istanbul 34469,
Turkey, and also with the Department of Electrical and Computer Engi-
neering, University of Virginia, Charlottesville, VA 22904 USA. The work
is primarily done when he was with Istanbul Technical University. (e-mail:
mcmorgul@yahoo.com).

Luca Frontini and Valentina Ciriani are with the Dipartimento di In-
formatica, Università degli Studi di Milano, 20133 Milan, Italy (e-mail:
luca.frontini@unimi.it; valentina.ciriani@unimi.it).

Onur Tunali is with the Department of Nanoscience and Nanoengi-
neering of Istanbul Technical University, Istanbul 34469, Turkey (e-mail:
onur.tunali@itu.edu.tr).

Lorena Anghel and Elena Ioana Vatajelu are with the TIMA laboratory,
Grenoble-Alpes University, 38031 Grenoble, France (e-mail: lorena.anghel@
grenoble-inp.fr; ioana.vatajelu@univ-grenoble-alpes.fr).

Csaba Andras Moritz is with the Department of Electrical and Com-
puter Engineering, University of Massachusetts, Amherst, MA 01002 USA
(e-mail: andras@ecs.umass.edu).

Mircea R. Stan is with the Department of Electrical and Computer En-
gineering, University of Virginia, Charlottesville, VA 22904 USA (e-mail:
mircea@virginia.edu).

Dan Alexandrescu is with the IROC Technologies, 38000 Grenoble, France
(e-mail: dan.alexandrescu@iroctech.com).

Mustafa Altun is with the Department of Electronics and Communication
Engineering of Istanbul Technical University, Istanbul 34469, Turkey (e-mail:
altunmus@itu.edu.tr).

Digital Object Identifier 10.1109/TNANO.2020.3044017

the given crossbar as well as their effects on performance metrics
including power, delay, and area.

Index Terms—Crossbar arrays, defect tolerance, fault tolerance,
logic synthesis, memristor arrays, performance optimization.

I. INTRODUCTION

NANO-CROSSBAR arrays have emerged to be an alterna-
tive/complementary technology to CMOS [46]. In their

fabrication, relatively cheap bottom-up nano-fabrication tech-
niques are used rather than pure lithography based conventional
production. Because of the novel manufacturing techniques, end
products have regular and dense forms with area and power
efficient structures [15], [4].

Main principle behind crossbar based computing is to utilize
crosspoints to behave like switches, either as two-terminal or
novel four-terminal [6]. This is illustrated in Fig. 1. Depending
on the used technology, a two-terminal switch behaves either
as a diode [18], a resistive/memristive switch [33], [20], or a
field effect transistor (FET) [34]. Diode and resistive switches
correspond to the crosspoint structure in Fig. 1(a); here, the
switch is controlled by the voltage difference between the ter-
minals. Fig. 1(b) shows a FET based switch; here, the red line
represents the controlling input. This is a unique opportunity
that allows us to integrate well developed conventional circuit
design techniques into nano-crossbar arrays. Finally, a novel
four-terminal switch is demonstrated in Fig. 1(c). Four terminal
architecture has either all of its terminals connected or discon-
nected. The desired state is actualized with a controlling input,
which is not present in the Fig. 1(c) and has a separate physical
formation from the crossbar which is thoroughly explained for
different technologies in [6], [30]. Detailed TCAD simulations
and technology development are presented in [30]. In addition, a
realization with standard CMOS process is demonstrated in [13].

Contrary to the conventional technologies, circuit design steps
of nano-crossbar arrays are not fully incorporated due to their
emerging nature. Motivated by this, we expand and update
our preliminary integrated synthesis methodology in [24], and
present it in length. Main steps of the methodology are logic
synthesis, defect/fault tolerance and performance optimization.
In Section II, overview of the methodology is stated with the
background information. Details of the design steps are stated

1536-125X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1484-6333
https://orcid.org/0000-0002-2326-0708
https://orcid.org/0000-0002-0469-4201
https://orcid.org/0000-0002-4588-1812
https://orcid.org/0000-0003-0577-9976
https://orcid.org/0000-0002-8294-7534
https://orcid.org/0000-0002-3103-1809
mailto:mcmorgul@yahoo.com
mailto:luca.frontini@unimi.it
mailto:valentina.ciriani@unimi.it
mailto:onur.tunali@itu.edu.tr
mailto:lorena.anghel@grenoble-inp.fr
mailto:ioana.vatajelu@univ-grenoble-alpes.fr
mailto:andras@ecs.umass.edu
mailto:mircea@virginia.edu
mailto:dan.alexandrescu@iroctech.com
mailto:altunmus@itu.edu.tr

40 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 20, 2021

Fig. 1. Switching models of a nano-crossbar array: crosspoint as a) two-
terminal switch with terminals in the crossed lines, b) two-terminal switch with
terminals in the same line, and c) four-terminal switch.

in the following Sections III IV V. We present a case study to
elaborate the methodology conclusively in Section VI. For sake
of clarity, the significant experimental results are shown in the
related sections. Main contributions are as follows:
� Expanded version of integrated synthesis methodology

presented in [24].
� Multi-output logic synthesis for four-terminal lattices and

comparison with others.
� A greedy optimization algorithm for two-level single-

output memristor crossbar (logic synthesis).
� Defect tolerance technique for four-terminal lattice.
� Performance (delay-power) analysis of diode, FET and

four-terminal arrays.

II. OVERVIEW OF CIRCUIT DESIGN STEPS

A. Background

Nano-crossbar arrays are first shown to be realizable
conceptually in [33], [36] and then physically in [46], [48]
as an integrated circuit. After that, research mostly follows
the order of technology demonstration such as logic synthesis
with ideal (non-defective) arrays, logic synthesis with defective
arrays, performance-aware design (performance analysis/
optimization), and technology development. This study targets
to integrate the current researches with completing missing parts.

1) Logic Synthesis: Main goal of logic synthesis process is
to optimize the area size of the circuit through formalizing
the circuit size specific to underlying technology. To illustrate
different approaches, we show examples for the realization
of fXOR2

= x1x2 + x1x2 in Fig. 2. Logic synthesis models
for diode and memristor based crossbars are quite similar to
Programmable Logic Array (PLA) as can be seen in Fig. 2(a)
and 2(b). Memristor based crossbars have one major difference
that establishing the output goes through several states/loops (for
further information refer to [44]). We chose the approach in [44]
for the memristive crossbars, because the proposed architecture
design does not lose its functionality due to the sneak path
issues [20]. For FET based crossbars, each logic function product
and dual function product is realized by a separate column, as
seen in Fig. 2(c). Each input is assigned to a row for controlling
all the FETs on corresponding row. Finally, a four-terminal based
crossbar; here every crosspoint performs switching on all four

Fig. 2. Realization of fXOR2
with different nano-crossbar types: crosspoint

as a) diode, b) memristor, c) FET, and d) four-terminal switch.

directions and connection between top and bottom yields 1 as
output and 0 otherwise. Control lines of crosspoints are not
shown in Fig. 2(d), and detailed explanation of control lines
can be found in [6], [30].

2) Defect/Fault Tolerance: Anticipated fault rates are much
higher for nano-crossbars, as expected, compared to those of
conventional CMOS circuits [35]. Therefore, during logic map-
ping, consideration of faults is mandatory. This applies to the
all technology types such as diode, FET based or novel four-
terminal based arrays. In short, contrasting the conventional
CMOS approach, certain switches cannot be used in mapping
process, therefore mapping procedure becomes an assignment
problem. Early attempts to overcome this issue consists of
locating a fault-free region so no crossbar specific assignment is
necessary as in [37]. However, it has quickly become apparent
that fault free region is not satisfactory in terms of area size [41].
For this reason, researchers focus on challenges including defect
and variance tolerances [40], [28]. In this study, we apply a new
fault tolerance technique for four-terminal crossbars (lattices).

3) Performance Optimization: With the process variabil-
ity data (as an extended concept of defects) of crossbars,
performance-aware design can be accomplished. Given that
targeted technologies have different performance characteris-
tics, to perform fair comparison, their dependencies on target
function should be analyzed. Previously, we have analyzed and
extracted delay and power characteristic with dependencies on
given function for memristor crossbars [43]. In this study, we
present delay and power model for diode, FET, and four-terminal
lattice. These models characterize the performance of crossbar
technologies for given target function. Idea is to optimize a
crossbar with given design specification. However, with the lack
of experimental results, optimization and comparison studies are
limited with modeled characteristics.

B. Overview of Integrated Methodology

As briefly stated, nano-fabrication produces switching nano-
crossbar arrays with varying properties, structurally and/or

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

MORGUL et al.: CIRCUIT DESIGN STEPS FOR NANO-CROSSBAR ARRAYS: AREA-DELAY-POWER OPTIMIZATION 41

Fig. 3. Integrated synthesis methodology scheme for nano-crossbar arrays.

component-wise. These random characteristics need to be con-
sidered carefully by the synthesis process. For example, a
competent methodology must regard basic technology prefer-
ence for switching elements, and defect or fault rate of the
given nano-crossbar. Presented synthesis methodology in this
study comprehensively covers the all specified factors and pro-
vides optimization algorithms for each step of the process.
The diagram, given in Fig. 3, summarizes the methodology
with demonstrating every step including annotated research
tasks.

The first step (logic synthesis) covers the decision of switch-
ing technology and generate logic function description in
crossbar form. The main goal is to determine which of the
diode/memristor, FET, or four-terminal based components are
to be used. This step is one of the most important procedures
determining the area size of the nano-crossbar that is the chief
optimization metric. Logic synthesis with diode/memristor,
FET, and four-terminal switching technology is in Section III.

The second step (fault tolerance) covers the permanent faults
(defects forming in the course of fabrication) and the transient

faults (which occur in-field). The main goal is to obtain a valid
mapping of a given logic function in crossbar form, produced
by logic synthesis step, and defect map. There are two distinct
approaches titled as defect− aware and defect− unaware.
The first approach employs faults existing in nano-crossbar
during the mapping ofthe function, hence the name aware.
The second approach avoids the defects by attempting to find
a defect-free region on the nano-crossbar at the beginning,
so that the mapping of the logic function is straightforward.
Finally, transient fault analysis is performed with respect to
fault rates/types and fed back to logic synthesis step. Detailed
explanations are given in Section IV.

The third step (performance optimization) covers final delay
and power issues. The main goal is to analyze delay and power
consumption of arrays by showing their dependencies on the
properties of a given logic function as well as specifics of the
used technology. Detailed explanations are given in Section V.

To demonstrate the whole process in work, a case study
is provided to elucidate the proposed synthesis mechanism in
Section VI.

III. LOGIC SYNTHESIS

At the start, crossbar (or array used interchangeably) switch-
ing technology, i.e., diode, memristor, FET, or four-terminal,
needs to be chosen based on the following criteria:
� Crossbar size (number of rows and columns)
� Number of outputs (single or multiple function realization)
� Fabrication complexity
� Power and delay specifications
� Application requirements
A decision can be made on the importance and priority of the

listed items, depending on the preference. For example, if an
application demands in-memory computing, then the memristor
technology can be chosen for the realization of logic functions,
since the memristor can also be used as a memory unit.

On the other hand, the realization of a logic function us-
ing a diode or a memristor based crossbar requires less num-
ber of crosspoints than those of the FET based crossbars.
However, the FET based designs consume less power than
the diode/memristor-based design. Moreover, the four-terminal
based crossbar includes less number of crosspoints than other
crossbar designs [26].

Initially, we examine the logic synthesis techniques developed
for diode, memristor, and FET based crossbars in the literature
and then we formulate their crossbar sizes required to implement
given logic functions. We also present results for four-terminal
switch based arrays to synthesize multi-output functions.

In the second part, we present a new two-level synthesis
technique for memristor based crossbars and compare them with
other techniques in the literature.

A. Area Comparisons for Different Crossbar Technologies

We present the Logic Synthesis step of the integrated method-
ology, considering only the number of crosspoints in the cross-
bar. The size of a crossbar array including diode, memristor,
FET, and four-terminal is given as follows:

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

42 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 20, 2021

� Diode: (# of products of all fi) + n)×
((# of literals in f) + n)

� Memristor: ((# of products of all fi) + n)× ((# of
literals in f)+2n) [worst-case]

� FET: (# of literals in f + n)× ((# of
products of all fi) + (# of products of all fD

i))
� Four-terminal: (largest of # of products# in fD

i s)
× (()# of products of all fi) + n− 1) [worst-case]

wheren is the number of logic functions (the number of outputs);
fi denotes the ith logic function, and fD

i stands for its dual with
1 ≤ i ≤ n.

As mentioned in Section I, the logic synthesis on diode and
memristive based crossbars is similar to the PLA like synthesis.
Thus, the techniques, such as product sharing and phase chang-
ing used in the PLA design, are also applicable in these designs.
Since, the array sizes can be further reduced using the product
sharing, these array size formulations can be considered as an
upper bound for the logic synthesis techniques.

For the single and multiple output function realization, the
synthesis methodology for FET crossbar does not allow us to
produce multi-level logic synthesis, only two-level approach can
be used [35]. However, multi-level logic synthesis approach is
feasible for the diode and memristive crossbars [42]. Therefore,
the optimization of array size still demands further research for
the diode and memristor based designs.

The logic synthesis using four-terminal crossbars, gener-
ally known as switching lattices, is a new method. As shown
in [6], Altun presented a useful logic synthesis technique for the
switching lattices. However, this method cannot find the optimal
solution in terms of the lattice size. Therefore, new specific
logic synthesis methodologies are needed to be presented. As
shown in [17] and [26], optimal synthesis methodologies are
provided. Moreover, decomposition based approximate tech-
niques are presented such as XOR based [25] [9], p-circuit [10],
and dimension reducibility [11] decompositions. Furthermore,
a very efficient (20x faster) technique for very large functions
is recently developed to make logic synthesis of four-terminal
nano-crossbar arrays more feasible [3].

However, all of these studies focus on the realization of a
single logic function using switching lattices. On the other hand,
in [2], [1], three main steps are presented to realize the multiple
functions using switching lattices. These steps are given as
follows: 1) find the realization of each logic function using a
switching lattice; 2) merge these lattices into a single lattice;
3) check if these lattices can be realized using a smaller number
of rows and columns such that the final lattice includes a small
number of four-terminal switches.

This article is the first to present the sizes of diode, memristor,
FET, and four-terminal based crossbar on the multiple output
functions. The results are given in Table I. Note that the results
given in bold under the four-terminal column indicates that they
are found using the approximate algorithm of [2] [1] (JANUS),
following the three steps described above. On the other hand, the
other results are found using a divide and conquer method, based
on the divide and synthesize (DS) method of [2] [1], following
the first two steps described above.

TABLE I
ARRAY SIZE COMPARISON OF DIODE, MEMRISTOR, FET, AND FOUR-TERMINAL

SWITCH BASED ARRAYS ON MULTIPLE OUTPUT FUNCTIONS

As can be observed from Table I, the four-terminal based
crossbar arrays include significantly less number of crosspoints
when compared to the diode, memristor, and FET based crossbar
arrays.

For the logic synthesis of memristor based crossbars, there
exists more area efficient techniques than in [44]; such as [8]
(SIMPLER MAGIC), [38], or [31] (which are essentially im-
proved versions of the MAGIC [21]). For example, misex1 can
be realized in an array which has the size of 33, 88 and 52
with [8], [38] and [31], respectively. However they require much
larger number of operation cycles: 83, 52 and 31 with [8], [38]
and [31], respectively. Note that, required number of cycles is
only 7 for [44]. This number can even be reduced to 5 with the
proposed technique [43]. On the other hand, as stated in [45], the
method in [44] can support the method MAGIC. Furthermore,
since the method of MAGIC (and improved versions of it)
uses all crosspoints in the array (density is 100%), its defect
intolerance is much higher than [44]. Therefore, we used the
approach in [44] and implemented the improved version to our
integrated synthesis methodology.

B. Proposed Greedy Algorithm for Two-Level Multi Output
Synthesis for Memristive Arrays

In memristive crossbar arrays, function outputs and their
negations are produced [44]. However production order changes
the array size. We have called phase_combination-0 and
phase_combination-1 realization, if realization is happened
based on an output itself and its negation, respectively. For
instance, for the realization of phase_combination-1, first its
negation is produced [43] and at last original function outputs.
Based on this property, array size of memristive crossbars can
be optimized. The realization in [44] is phase_combination-1
realization.

In our previous study [43], we have proposed a greedy algo-
rithm, which only considers outputs individually, and doesn’t
consider outputs interrelation (i.e. no product sharing at the
analysis). We can call this algorithm as “initial Greedy Algo-
rithm (GA-initial)”. In this algorithm, only product numbers of

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

MORGUL et al.: CIRCUIT DESIGN STEPS FOR NANO-CROSSBAR ARRAYS: AREA-DELAY-POWER OPTIMIZATION 43

Fig. 4. Block diagrams of two-level multi output logic synthesis algorithms:
initial Greedy Algorithm (GA-initial) [43] and Proposed Greedy Algorithm
(PGA).

individual outputs are considered. On the other hand our new
greedy algorithm considers product sharing with the change of
phase, meaning it considers total number of products of whole
(multi-output) function. We illustrate these two algorithms in
Fig. 4 side-by-side.

Proposed Greedy Algorithm (PGA): investigates outputs col-
lectively by changing phase of outputs, one at a time, start-
ing from phase_combination-0 and phase_combination-1. Com-
pares them; if any of the changed phase combination has less #
of total product; then keeps that phase and continues searching
with changing other outputs’ phase one at a time. Algorithm
(PGA) is as follows:

1) Calculate and Compare number of prod-
ucts of phase_combination-0 (00..0) and
phase_combination-1 (11..1), Assign minimum number
of products to Reference_Number, and the phase
combination to Reference_Phase,

2) Create two sets of candidate phase combinations; set0:
includes phase combinations that only one output is in
“phase-1” and set1: includes phase combinations that only
one output is in “phase-0”, and Assign SET = set0 ∪
set1,

3) Find the phase combinations (temp_phase) which yields
minimum number of products (temp_number) for the
function in SET .

TABLE II
AREA COMPARISON OF TWO-LEVEL LOGIC SYNTHESIS ALGORITHMS: INITIAL

GREEDY ALGORITHM (GA-INITIAL) AND PROPOSED GREEDY

ALGORITHM (PGA) WITH OPTIMAL (BRUTE FORCE) AND BASIC [44]
APPROACHES FOR MEMRISTIVE ARRAYS

** Time exceeds 600 seconds

4) Decide; if temp_number is less than
Reference_Number. If YES, Assign temp_number
to Reference_Number, and (temp_phase) to
Reference_Phase; If NO, Jump to 8 (end of the
algorithm),

5) Decide; If the found very first temp_phase is in set0,
5a) If YES (in set0), Create a newSET , with phase com-

binations, by changing “0”s ofReference_Phase to
“1”s,

5b) If NO (in set1), Create a new SET , with phase com-
binations, by changing “1”s ofReference_Phase to
“0”s,
(Note that, every phase combination inSET has only
one alteration with Reference_Phase)

6) Jump to 3,
7) Declare phase combinations as Reference_Phase.
For example, if we are given a function which has

three outputs. First we check phases “000” and “111”
(phase_combination-0 and phase_combination-1). Then calcu-
late product numbers of phase in phase sets; set0: “001, 010,
and 100” (changing zeros to one), and set1: “110, 101, and
011” (Changing ones to zero) (Note that, we change one at a
time). Let’s say we compared product numbers and found that
phase “110” yields the minimum number of products. Then we
continue from the phase “110”, with changing ones to zero.
Means, we check “100 and 010” and compare the results with
result of phase “110”. If there is one which yields less product
number chose it, or chose the phase “110” for the final phase
combination of the function. (Notice that, for a function, which
has only three outputs, looking to sets of set0 and set1 is enough)

To evaluate the algorithms and compare the results, we use
espresso and MATLAB on a 3.20 GHz Intel Core i7 CPU
with 4 GB memory. Results are shown in Table II. Algorithm
performances differs from function to function. For six of the
examples PGA results less area size than GA-initial. Overall,
PGA surpasses GA-initial, yet for two (clip and sao2) of the
functions GA-initial results less area size than PGA. For the rest

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

44 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 20, 2021

Fig. 5. Nano-crossbar array with faulty/defective crosspoints and mapping
process.

they produce the same result. GA-initial’s major advantages is
that it has almost no time cost. It can be used for any case.

IV. DEFECT/FAULT TOLERANCE

In this section, we investigate the effects of permanent and
transient faults on the behavior of a logic function mapped
on a given crossbar array. We categorize faults into 2 classes:
permanent, generated by physical defects, and transient faults.
As mentioned in Section I, actual nano-crossbar arrays being
fabricated with emerging technologies, are affected mostly by
defects, due to the poor technology yields. Indeed, immature
process technologies used for nanowires, memristive, etc. ele-
ments generate high defect density crossbars. At the same time,
these elements also show instabilities and variabilities (behaving
like transient or intermittent faults) and they are also affected by
transient phenomena occurring in the field.

Permanent fault (defect) tolerance, also called defect avoid-
ance, basically means finding defect-free regions or defect free
crosspoints that can still be employed during logic mapping, and
it is usually done by the logic function remapping (at the algo-
rithm level) and/or by reconfiguration, at algorithm or hardware
level. Permanent fault model can be seen in Fig. 5 demonstrating
only stuck-at-0 (open) and stuck-at-1 (close) faults as being the
most representative permanent faults observed. This categoriza-
tion is based on actual physical realization of nano-crossbar array
as reported in [22] and [12] which state that fault rates reach up
to 10% and the most common faults are stuck-at-0 (open).

Transient and intermittent faults, on the other hand, man-
ifest themselves due to particular combinations of topological,
environmental factors or process mismatches and instabilities.
They can be tolerated by proper architectural reconfiguration,
but also by instability and variation-aware design. That is to
say by using properly sized, or well estimated hardware re-
dundancy in term of spare cells, critically sensitive cells can
be circumvented or protected. Transient fault model can have
multiple forms meaning they can be seen as parasitic, 0-to-1
(1-to-0) transitions, parasitic positive (negative) pulses, neighbor
cells pattern dependent transitions, etc. Transient fault domain
is very closely related to a specific technology. Transient faults
are more efficiently covered by fault tolerance strategies, as fault

avoidance techniques will yield to a much higher area, but also
due to the complexity of the technology dependence analysis.

For both type of faults, it is mandatory to perform crossbar
sensitivity analysis as the mapping algorithm can be enhanced
with fault avoidance properties, and also can be used to further
drive the fault tolerance strategy.

A. Defect Tolerance for Diode, Memristor and FET

Defect tolerance is achieved by mapping a target logic func-
tion on a defective crossbar using a distinct input and output
assignment. This problem is considered as NP-complete [32].
For the worst-case, N !×M ! permutations are required to find
a successful mapping for N ×M crossbar. Algorithms in the
literature use defect-unaware or defect-aware approach.

Defect-unaware algorithms aim to find the largest possible
k × k defect-free sub-crossbar from a defectiveN ×N crossbar
where k ≤ N . The algorithms are inefficient for high fault rates
- obtained k values are much smaller than N . In this regard,
defect-aware algorithms perform much more satisfactorily [40].
Detailed analysis of both approaches can be found in [41].

Defect-aware algorithms consider the defect characteristics
(stuck-at-0 or stuck-at-1), then decide which switch to employ
during the mapping. In our previous work [40], we have pro-
posed an efficient heuristic algorithms which aims to match
defective crossbar and the given logic function. For this, it
denotes crossbars as matrices. Therefore, it can perform sorting,
matching and backtracking steps efficiently. It makes repetition
for a limit of permutation. This controls heuristic feature of the
algorithm.

Defect tolerance for nano-crossbars is a well established field
with numerous research papers and for this reason we focus on
four-terminal architectures which is, to our knowledge, exclu-
sive to this study.

B. Defect Tolerance for Four Terminals Devices

Four-terminal defect tolerance demands a different approach
than the architectures we have covered so far. For this reason,
we present a novel method, which is firstly introduced in this
paper. The proposed method utilizes a prior sensitivity analysis
of crossbar (latttice) to specify critical switches, and strengthens
them with proposed mitigation factors. The same naming con-
ventions are applicable, regarding defects which are categorized
as stuck-at-0 (SA0) and stuck-at-1 (SA1), called Stuck at Fault
Model (SAF). Furthermore, we describe a new model that can
be considered for crossbars (lattices), that consists in changing
a switching literal in a cell ci,j of the lattice with a literal that
is in a adjacent cell (i.e., ci−1,j , ci+1,j , ci,j−1, or ci,j+1). We
denote this fault model as Adjacent Cellular Fault Model (ACF).
In addition, we follow the same terminology adopted in [6]
and [17] by addressing crossbar as lattice and switch as cell
to be consistent and emphasize the distinction of four-terminal
approach. Finally, it should be noted that as opposed the previous
sections, we provide a more detailed explanation due to original
technical contribution presented in this section.

1) Defect Injection Methodology: The two fault injections
SAF and ACF are repeated for each cell of the lattice. Once a

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

MORGUL et al.: CIRCUIT DESIGN STEPS FOR NANO-CROSSBAR ARRAYS: AREA-DELAY-POWER OPTIMIZATION 45

Fig. 6. a) Lattice design for the example function f and its sensitivity map for
b) SAO and c) SA1.

“defective” lattice is obtained, both algorithms generate all the
possible 2n inputs (wheren is the number of variables). For each
input, the simulation algorithms compare the given output with
the correct one. The two fault injection algorithms (one for SAF
and one for ACF) differ in the calculation of number of defective
outputs in the two fault models, as explained in the following
subsections.

Fault Model 1: Stuck-at Faults (SAFs)
The sensitivity of the decomposition algorithm on a given

lattice is analyzed to face SA0 and SA1, as a model widely
adopted today for memristive crossbars. As there is no consensus
currently on the fault distribution, we have chosen a uniform
distribution for each type of SA0 and SA1 [14]. The fault rates
considered may be up to 10% of the crossbar, all faults being
independent, as reported in [14]. The fault injection in the above
lattices is performed substituting a single cell with an always
stuck-at 1 (SA1) or stack-at 0 (SA0) cell.

LetE0
ij (resp.,E1

ij), with1 ≤ i ≤ r,1 ≤ j ≤ s, be the number
of defective outputs with a SA0 (resp., SA1) in the cell (i, j)
of the given lattice. Note that 0 ≤ {E0

ij , E
1
ij} ≤ 2n. Moreover,

when E0
ij (resp., E1

ij) is equal to 0 we have that, for any
possible input, the lattice output is never changed by the SAF
in the cell ci,j . In this case, we call the cell ci,j robust w.r.t.
SA0 (resp., SA1). Let R0 (resp., R1) be the total number
of robust cells w.r.t. SA0 (resp., SA1) in the lattice. Finally,
let E0 =

∑i=r
i=1

∑j=s
j=1 E

0
ij (resp., E1 =

∑i=r
i=1

∑j=s
j=1 E

1
ij) be

the total number of defective outputs with SA0 (resp. SA1)
in the simulation. For an example of function f = x4x5x7 +
x4x6x7 + x4x5x6x7 + x4x6x7 + x4x6x7 realized in Fig. 6(a)
(with the method in [6]), in the Fig. 6(b) (resp., 6(c) shows the
map containing E0

ij (resp., E1
ij) in each cell. Consider SA0 case

(matrix in Fig. 6(b)). Each cell of the matrix contains the number
of faulty outputs due to a SA0 in the corresponding cell of the
lattice 6(a). When a cell of the matrices from Figures 6(b) (SA0)
and 6(c) (SA1), contains the value 0, the cell of the corresponding
lattice is robust. In this example, the overall number of robust
cells for the SA0 (resp., SA1) is R0 = 1 (resp., R1 = 10).

Fault Model 2: Adjacent Cellular Faults (ACFs)
In the classical CFM [16] used for CMOS circuits it is as-

sumed that a fault modifies the behavior of exactly one node
v in a given circuit C and that the modified behavior is still
combinational. In the case of a switching lattice L, the fault
model can be described as follows: a cellular fault in L is a
tuple (ci,j , lc, lf), where ci,j is the cell of the lattice L (i.e., fault
location), lc is the correct controlling literal in ci,j , and lf (�= lc)

is the faulty controlling literal. We denote adjacent cellular fault
a cellular fault where the faulty literal lf is the literal contained
in an adjacent cell. More precisely:

Definition 1: Let lh,k be the literal in the cell ch,k of a lattice
L, with 1 ≤ h ≤ r, 1 ≤ k ≤ s. We have that:

1) A Left Adjacent Cellular Fault (L-ACF) is the cellular fault
(ci,j , li,j , li,j−1),

2) A Right Adjacent Cellular Fault (R-ACF) is the cellular
fault (ci,j , li,j , li,j+1),

3) A Bottom Adjacent Cellular Fault (B-ACF) is the cellular
fault (ci,j , li,j , li+1,j),

4) A Top Adjacent Cellular Fault (T-ACF) is the cellular fault
(ci,j , li,j , li−1,j).

For example, consider the lattice depicted in Fig. 6(a) and the
cell c2,1 containing the literal x5 in the second row from top and
first column from left. In this cell we can have three possible
adjacent Cellular Faults: 1) R-ACF: (c2,1, x5, x7) that makes
x7 the faulty literal of the cell c2,1; 2) B-ACF: (c2,1, x5, x7)
that makes x7 the faulty literal of the cell c2,1; 3) T-ACF:
(c2,1, x5, x4) that makes x4 the faulty literal of the cell c2,1.
Notice that the cell c2,1 cannot be affected by a Left Adjacent
Cellular Fault.

LetEL
ij (resp.,ER

ij ,EB
ij , andET

ij), with 1 ≤ i ≤ r, 1 ≤ j ≤ s,
be the number of defective outputs with a L-ACF (resp., R-ACF,
B-ACF, and T-ACF) in the cell ci,j of the given lattice. Let Ra

(with a ∈ {L,R,B, T}) be the total number of robust cells w.r.t.
a-ACF in the lattice. Finally, let Ea =

∑i=r
i=1

∑j=s
j=1 E

a
ij be the

total number of defective outputs with a-ACF in the simulation.
2) Metrics Used for Sensitivity Analysis: Let us consider a

lattice with n input Boolean variables, the main aim of our sen-
sitivity analysis is to understand how many inputs combinations
(out of all the possible ones, which are 2n in number) give an
incorrect output value. For this purpose, we inject one error in
a cell of the lattice (one error at time), for all cells. This way,
we can compute the total number of defective outputs (Ei, with
i ∈ {0, 1, L,R,B, T}) and the total number of robust cells (Ri,
with i ∈ {0, 1, L,R,B, T}) as described in the previous section.
In order to evaluate the sensitivity of a lattice to SAF and ACF,
we propose two metrics. The first one measures the average
number of defective outputs face to defect-sensitive cells. The
second metric measures the average number of defective outputs
in the entire lattice, considering robust and defective, non-robust
cells. Note that the total number of cells is the area of the lattice
(i.e., r · s), the number of non-robust cells for SA0 (resp., SA1)
is r · s−R0 (resp., r · s−R1), and 2n is the total number of
possible distinct inputs. Moreover, the number of non-robust
cells for a-ACF (with a ∈ {L,R,B, T}) is r · s−Ra.

The sensitivity to defective cells is the total number of inputs
that give an uncorrected output (Ei, with i ∈ {0, 1, L,R,B, T})
divided by the total number of inputs (2n), for each non-robust
cell. The metric can be expressed as: Si

C = Ei/(2n · (r · s−
Ri)) for each fault i ∈ {0, 1, L,R,B, T}.

The sensitivity of lattice is the total number of inputs that
give an uncorrected output divided by the total number of
inputs for each cell: In particular, Si

L = Ei/(2n · r · s), with
i ∈ {0, 1, L,R,B, T}.

In summary, the first metric measures the impact of one cell
on the probability of failure of a logic function. The second

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 20, 2021

TABLE III
SAMPLE OF BENCHMARK FUNCTIONS SYNTHESIZED WITH [6] AND [17] APPROACHES AND THEIR SENSITIVITY VALUES

one allows us to evaluate the integrity of the entire lattice and
understand if it is possible to map strong, critical functions (for
a specific operation) in such lattice, which have high sensitivity
to faults or overall high robustness. For instance, if we have a
lattice where half of the cells are non robust we can understand
that we may not want to use it for critical functions (e.g., control,
decision making, etc).

For example, consider the lattice depicted in Fig. 6(a) and
the map in Fig. 6(c) showing the values of E1

ij in each cell in
the SA1 model. Note that the number of rows and columns is
r = s = 5 and the number of different variables in the lattice is
n = 4 (i.e., x4, x5, x6, and x7). Moreover, the total number of
incorrect outputs is the sum of all the errors, i.e., E1 = 21 and
the number of robust cells (i.e., cells with no errors) is R1 = 10.
Therefore, the sensitivity of defective cells is S1

C = E1/(2n ·
(r · s−R1)) = 21/(24 · (5 · 5− 10)) = 21/240. This means
that out of all possible errors, which are 240 in number, we have
21 errors. The second metrics does not take into account the
robust cells, therefore we have that S1

L = E1/(2n · (r · s)) =
21/(24 · (5 · 5)) = 21/400.

3) Benchmarks and Simulations: The defect simulations
have been run on a machine with two Intel Xeon E5-2683 for a
total of 64 CPUs and 756 GByte of main memory, running Linux
CentOS 7. The benchmarks functions are expressed in PLA form
and are taken from a subset of LGSynth93 [47]. Each output of a
function is implemented as a separate Boolean function for total
of about 1000 functions.

The software used for simulations is written in C++. We used
ESPRESSO [23] to implement the method described in [6], and
a collection of Python scripts for computing minimum-area lat-
tices by transformation to a series of SAT problems, to simulate
the results reported in [17].

In Table III, we report a sample of benchmark functions
and their sensitivity values, according to the metrics presented
before. In particular, Table III refers to lattice synthesized as
described in [6] and [17]. The benchmarks marked with a �
in Table III, were stopped after ten minutes of SAT execution
and, for this reason, they are missing from the benchmarks
synthesized using quantified Boolean logic.

More precisely, in both methods, the first column reports the
name and the number of the considered outputs of each function.

The following columns report dimension (r × s) required for the
synthesis of a given function according to each decomposition
method, and the number of input variables n. Columns from 4
to 11 refers to Stuck At fault model, columns from 12 to 27
to Adjacent Cellular Fault model showing the total number of
errors E, the Sensitivity of defective cells SC , the Sensitivity of
latticeSL and the percentage of robust cells %R/r × s. Table III
shows that the synthesis method proposed by [6] produces
lattices with a lower number of errors and a higher number of
robust cells. However, the area of these lattices is greater than
the area of the corresponding lattices synthesized using [17].
For example, consider the benchmark circuit alu3(2): the area
of the lattice minimized with [6] (resp., [17]) method is 10×11
(resp., 6×4), while the percentage of robust cells in the lattice
synthesized using [6] (resp., [17]) method is 98% (resp., 33%)
in the SA0 case. For the other fault models the percentage’s
comparison is similar.

Table IV describes the overall results for the considered
benchmarks. More precisely in the columns from one to three
is reported the synthesis method, the average lattice area, and
the average number of input. Columns from four to twenty-one
show the average values of SC , SL, and %R/r × s for each
fault injection methodology. The columns from twenty-two to
twenty-four contain the average value ofSC ,SL, and %R/r × s
obtained considering all the fault models.

Table IV shows that the percentage of cells that are considered
robust according to our metrics is higher in the first approach [6].
For example if we consider the benchmark prom2(0) with SA1
faults, using the approach [6] we have 100% of resilient cells,
instead using the approach [17] there are no resilient cells.
This is due to the more constrained structure of the lattices
produced by the first synthesis method. Indeed, the method
proposed in [6] computes a lattice for f and its dual, which it is
in general less compact than the lattice given by [17]. However,
we can note that the sensitivity of the lattices is quite low for
both methods. In fact, the experiments show that, in general,
non-robust cells compute a failed output for a very limited
number of inputs. In particular, lattices present lower sensitivity
to Adjacent Cellular faults, with respect to the Stuck-At faults.
This is due to the fact that when two adjacent cells contain
the same value, this situation will not show an impact on the

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

MORGUL et al.: CIRCUIT DESIGN STEPS FOR NANO-CROSSBAR ARRAYS: AREA-DELAY-POWER OPTIMIZATION 47

TABLE IV
OVERALL RESULTS OF THE SIMULATIONS

output. In both synthesis approaches, we observe that the lattice
is more sensitive to SA0 faults, while in the case of SA1 faults,
it requires higher percentage of redundant cells.

It is worth noting that we test lattices with up to 12 variables,
this makes interesting the use of this technology to implement
multipliers, or other complex arithmetic functions.

4) Mitigation by Defect Avoidance: From the above results,
it can be seen that the two analyzed mapping algorithms show
different sensitivities of the output of a given function. As a
matter of fact, the more restrictive an algorithm in terms of
area it is (closer to the optimal solution), the higher the defect
sensitivity of the output to a cell defect. It is thus mandatory to
include the mapping algorithm defect-avoidance heuristics, but
hardware-level defect tolerant scheme may also be necessary,
especially in the case of very high defect densities and transient
faults rates. Hardware redundancy schemes can be used at the
lattice column level, or at the block level [27], as the basic
computation unit of a memristor array is not the memristive cell,
as in classical CMOS based memories, but the entire column.
Therefore, several redundant columns or blocks can be added
to the initial design to replace the memristive RAM affected
columns but also to overcome the situation when potential SAFs
affect the redundant parts as well.

Besides Redundancy Repair Techniques, other defect toler-
ance techniques can be used. For example, Error Correcting
Codes (ECC) especially when transient faults are the main issue,
but also fault masking techniques to typically repair permanent
faults, or combinations of both. Various advanced error correc-
tion techniques have been proposed for emerging technologies
structures, which provide improvements over the conventional
ECC or Redundancy Repair techniques [19]. But it is worth
noting that all of them are generating quite significant area over-
head due to the encoding/decoding circuitry, or to the extra spare
rows and columns, or a more complex addressing and accessing
schemes, but they also impact the write/read margins of the
lattice, and increase the access latency, and power consumption.
Therefore, a combination of efficient defect avoidance mapping
algorithm combined with Redundancy based Repair techniques
and/or ECC codes will lead to fully functional lattices even for
high defect and transient fault rates.

Mapping of logic functions on crossbar arrays are thus divided
into two main phases: mapping phase to write the parameters of
functions in the memristive array and a read operation to check
the results from the crossbar. The objective here is to identify at
the writing time, if common literals and other multiple-choice
literals of the function can be mapped on highly critical cells, or
not, so that the output is not compromised.

Mitigation for Stuck at Faults
In order to mitigate the sensitivity of a lattice to SAF, we

propose the following possible strategy applied to the synthesis

Fig. 7. a) defect-free lattice; b) lattice with defects: SA0 in red and SA1 in
blue; and c) lattice with the defect fixed.

method proposed in [6] which has been proven a less sensitive
to SAF impact on the output functions: (1) For a given mapped
function, if a potential SA0, SA1 faults affects a robust cell iden-
tified by the defect injection campaign, the lattice still computes
the correct output, thus we do not need any more mitigation with
defect tolerant design. (2) However, if an injected defect occurs
in a multiple-choice cell, if a different literal can be chosen to
increase the robustness, we change the literal with the new one.
(3) Otherwise, if the injected SA0 fault is proven as being critical
for the output value, the column that contains that defective cell
has to be replaced by a spare one. In case of an SA1, the row
that contains the defective cell has to be replaced by a spare row.
Note that in this case, the output still provides a correct function
f from top to bottom, but the function from left to right could
be changed and become a function which will not be dual of f
anymore.

As an example, consider the lattice synthesized in Fig. 7(a)
with f = x4x5x7 + x4x6x7 + x4x5x6x7 + x4x6x7 + x4x6x7

by using synthesis method presented in [6]. The example shows
one case of mitigation of 3 independent SAD affecting the
lattice implementing the function, yielding an approximate 10%
defects. In Fig. 7, critical SA1 cells are marked in blue and SA0
cells a remarked in red.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 20, 2021

To avoid output errors due to these SAF we have used the
following strategy:

1) Identify robust cells for a given function mapping. Ex-
ample: the defect in the first row, fifth column is non-
significant on the value of the output (robust cell). The
sensitivity map obtained through defect injection cam-
paign, shows that this cell (x4) is not sensitive to SA1
for the mapped function.

2) Identify the swapping of literals during synthesis process
on a column of a high sensitive cell. Example: the defect
in fifth row, fourth column (i.e., blue cell) is sensitive to
SA1. We can note that the yellow cell (the fourth row,
fourth column cell) contains the literals x7. By Fig. 7(a)
we know that we can choose x4 instead of x7. With this
new literal (x4), we have an equivalent lattice where if the
blue cell is affected by a SA1 at fabrication time, this will
not affect the output of the function.

3) Identify the critical cell for the output value and add a
spare column per critical cell. Example: the defect in the
third row and second column will influence the value of
the output and no swapping operands is possible. Thus
the only solution remains to add a spare column (in green)
identical to the column containing the SA0 defect, and
perform the spare and replace strategy. By using spare
columns, the mapping algorithm can eliminate columns
of the lattice, with critical cells, susceptible to affect the
output value of the function, in case SA defect appear at
fabrication or in the field.

Mitigation for Adjacent Cellular Faults
In the case of adjacent cellular fault model, we can note that

adjacent cells containing the same controlling literal are robust
to faults. For example, consider the lattice depicted in Fig. 6(a),
and the two variables x4 at the end of the first row. The lattice
is obviously robust to a L-ACF in the last x4 (and to a R-ACF
in the forth cell, containing x4). For this reason, in sensitivity
analysis to ACF model, it is of huge importance to maximize
the number of adjacent cells with the same controlling literal.

Recall that the properties of the lattice synthesized with [6]
guarantee that row and column permutations for a given lattice
do not change the Boolean function computed by the switching
lattice. Because of the good level of flexibility, we consider
the lattice obtained by this synthesis method as a starting point
for increasing the number of robust cells without changing the
function represented.

Thus, given a lattice synthesized with [6], a possible strategy is
to perform column and row permutations in order to maximize
the number of adjacent cells containing the same literal. For
example, consider the R-ACF, the number of cells with the same
literal in the right-adjacent cell in the lattice in Fig. 6(a) is 1.
Suppose to simply swap the second and the third column, the
number of cells with the same literal in the right-adjacent cell
becomes 4 (i.e., the number of robust cells is incremented by 3).
Note also that while the number of robust cells to R-ACF and
L-ACF can be increased by column permutations, the number
of robust cells to T-ACF and B-ACF can be increased by row
permutations. Finally, observe that this method increases the

number of robust cells without increasing the dimension of the
lattice.

C. Transient Fault Tolerance

Before moving on to transient faults, one distinction should be
emphasized such that contrary to defects, transient faults are not
known in advance and occur in-field. For this reason, transient
fault tolerance works in predictive manner. In addition, since
nano-crossbars are in the early stage of development, there is
data deficiency regarding the occurrence rates and characteris-
tics of transient faults.

First, we follow the same naming conventions of defects
(permanent faults) for transient faults in modeling. Accordingly,
the effects of transient faults can be categorized with 4 different
scenarios:

1) Stuck-at-zero on unused crosspoint produces no effect
2) Stuck-at-zero on used crosspoint removes corresponding

input
3) Stuck-at-one on unused crosspoint adds corresponding

input
4) Stuck-at-one on used crosspoint produces no effect.
To mitigate faults, first approach is to introduce extra circuit

elements to compensate erroneous results. Inserting redundant
components can be constructed with adding extra rows and/or
columns as shown in [29] [7]. A detailed study of redundancy
techniques can be found in [41].

The second approach requires the knowledge of prevalent
fault types beforehand so that it is possible to modify the
target logic function accordingly. If stuck-at-zero faults are more
common, then using the logic function form with least number
of inputs implies many unused crosspoints and high tolerance
(scenario 1). If stuck-at-one faults are more common, then using
the logic function form with the most number of inputs (e.g.
using the minterm form) implies many used crosspoints and high
tolerance (scenario 4). Nevertheless, trade-off between area size
and transient fault tolerance is open to further research.

Finally, logic functions possess an inherent tolerance inde-
pendent of methodology and benefits from the equivalence of
different logic functions. This is an intrinsic feature of the
given logic function having many forms. Fig. 8 shows how
different faults modify the crossbar and resulted logic function
is equivalent to the original in Fig. 8(b) and not in Fig. 8(c).
These tolerated faults are limited to certain switches of crossbar
and can be found with using algebraic calculations as show
in [40]. As for the example in Fig. 8f = x1x2 + x2x3 + x1x3 +
x1 x2 x3, every following function is equivalent to the original
one:
� f1 = x1x2 + x2x3x1 + x1x3 + x1 x2 x3
� f2 = x1x2x3 + x2x3 + x1x3 + x1 x2 x3
� f3 = x1x2 + x2x3 + x1x3x2 + x1 x2 x3

For more detailed explanations of determining tolerable
switches, calculating the fault tolerance and effects of multi-
output functions reader can refer to [40].

Eventually, a more resource hungry approach would be
fault sensitivity analysis by performing extensive Monte Carlo

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

MORGUL et al.: CIRCUIT DESIGN STEPS FOR NANO-CROSSBAR ARRAYS: AREA-DELAY-POWER OPTIMIZATION 49

Fig. 8. Transient faults and how inherent tolerance works.

simulation and determining every possible case of fault occur-
rence, yet it is rather costly. As a final word, transient fault
tolerance, at the moment, is at its infancy and additional research
is needed for best practices.

V. PERFORMANCE OPTIMIZATION

We focus on area-oriented optimization for our methodology.
As stated in Section I, main motivation to use nano-crossbars is
that they are dense. Thus, logic functions can be realized with
smaller area. We first find the minimum sized array, and perform
defect tolerance analysis. If it is needed, we increase the area size
based on the defect tolerance results. Later, we perform delay
and power performance analysis with minor tuning. However,
as a downside we loose the benefit of further delay and power
minimization [13], [5].

Section III investigates the area performance. Here, we will
analyze the delay and power depending on number of products
and/or literals. Main purpose is to construct a fair metric for
performance comparison. In our previous study [43], we have
conducted this analysis for memristive crossbars. All supply
voltages of technologies are assumed to be the same. Therefore,
comparing their performance behaviors (for a given function)
is considered to be sufficient method for integrated synthesis
methodology.

1) Delay Analysis: We have used an approach of multiply-
ing resistive and capacitive loads (RC-delay) for delay. This
helps us to calculate maximum frequency with 1/delay. In
the delay analysis for diode, we see that “number of columns”
and “load resistor” dominate the capacitive load and resistive
load respectively. For memristive crossbars, it is proportional to
constant 7× tcycle (independent from the target function; i.e.
latency). Considering FET, we need to calculate resistive loads
and capacitive loads from the longest path for the worst-case
scenario. Lastly, four-terminal’s delay is directly proportional
to the longest path on the lattice, same as FET. The longest path

on the lattice can be calculated as explained in [6]:

Llong_path =

{
R R ≤ 2

⋃
C ≤ 1

3R−2
2

C
2 + 2+(−1)R+(−1)C

2 R > 2
⋂

C > 1

where R: number of rows, C: number of columns, Llong_path:
length of the longest path on the lattice.

Finally, Delay performances are proportional to:
� Diode: ∝ (load_resistor)× (# of literals in f)
� Memristor: ∝ 7× tcycle (latency) [43]
� FET: ∝ (degree of the largest product in f and fD)×
((# of products in f) + (# of products in fD) +
of literals in f)

� Four-terminal: ∝ Llong_path

2) Power Analysis: Power consumption is the total energy
used in unit time. Therefore we estimate consumed total energy
in a period, afterwards we divided it with delay (delay is
proportional with a period at maximum frequency). Because
we assumed that circuit will be used in maximum frequency.
For delay estimation, we will going to use the formulation in
above.

The power of diode based crossbar is dominated by static
power. So, it is inversely proportional only with a load resistor.
Load resistor can be considered as 10 times of diode’s inner
resistance. Total energy consumption of memristor is propor-
tional to total count, because it is assumed that all memristors
are changing their states one time only [43]. Note that, in this
memristor based crossbar, sneak path current is minimized [20],
so the power consumption caused by it can be neglected. Total
energy consumption of FET crossbars is directly proportional
to the capacitance of the output node and nodes related to
the output node. For four-terminal, we assume all crosspoints
consume energy at the worst-case scenario. Finally, we divide
energy consumption by the delay to find the complexity of power
consumption.

However, effect of the estimated switching activity of an input
to the power consumption is not the same for all technologies.
For memristor, even though change in inputs does not cause any
change for the state of the output, there will be dynamic power
consumption. Because every cycle (stage) will be recalculated.
Also, since the power of diode is dominated by static power, we
didn’t include the effect of switching activity to the calculation of
power consumption. For only FET and four-terminal, we include
the estimation of switching activity by multiplying it with 0.5.
(Notice that, supply voltages are assumed as the same.)

Finally, Power performances are proportional to:
� Diode:∝ 1 / (load_resistor)
� Memristor: ∝ (totalmemristor count in crossbar)/7

[43] [39]
� FET: ∝ 0.5 / (degree of the largest product in f
and fD) (@ maximum frequency)

� Four-terminal: ∝ (0.5 (# of products in rows)×
(# of products in columns)) /Llong_path

VI. CASE STUDY FOR BENCHMARK FUNCTION SQUAR5

In this section, we demonstrate the whole process with an
example. We have chosen the benchmark function Squar5 which

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 20, 2021

Fig. 9. Whole integrated synthesis pipeline of benchmark function squar5. R denotes the load_resistor.

has 5 inputs, 25 products and 8 outputs in PLA format. Diagram
of the process is given in Fig. 9.

First, we need to evaluate different technologies such as diode,
FET, memristor or four-terminal. Using logic synthesis, we can
generate function descriptions in crossbar (lattice) form and
obtain area sizes utilizing equations in Section III. Results are
as follows:

Diode: (# of products of all foi) + n)×
((# of literals in f) + n) = (25 + 8) × (10 + 8) = 594.

Memristor: ((# of products of all foi) + n)×
((# of literals in f) + 2n) = (25 + 8) × (10 + 16) =
858. However, our proposed greedy algorithm PGA decreases
the size to 832.

FET: (# of literals in f + n)×
((# of products of all foi) + (# of products of all fD

oi))
= (10 + 8) × (25 + 25) = 900. Coincidentally, its dual also has
the same number of products.

Four-terminal: (degree of the largest product in fD
oi)×

(# of products of all foi + n− 1) = 5 x (25 + 8-1) = 160.
First term is chosen according to the product which has the
maximum number of literals.

Secondly, we use function descriptions and defect map of a
crossbar. Applying the defect tolerant logic mapping methods in
Section IV, it is possible to measure defect/fault performance.
Key point is that diode, FET and memristor have a rich literature
of methods for reaching 100% defect tolerance for defect rates
up to 10% [41] [43]; nevertheless four-terminal is at its infancy
in terms of defect tolerance. In this paper, defect performance of
only single output functions are studied and we are planning to
extend the work into multi output functions as well in the future.

Lastly, we conduct a performance optimization specific to
technology dependent delay and power parameters of crossbars.
Since related equations are presented in immediate section, only
result are given:

Diode: Delay is R× 10 (Load_resistor is shown with R).
Power is 1/R. If assume R is 10 times than a diode’s inner
resistance, then Delay is 100 and Power is 1/10.

Memristor: Delay (latency) is constant (independent from
the function) and 7tcycle. Power is 133/7 ≈ 19. The number 133
denotes the number of memristors used in the crossbar.

FET: Delay is 300 and power is 1/10. Including the next
four-terminal, FET has the largest delay.

Four-terminal: The longest path is 73, so is the delay. Power
is 80/73 ≈ 1.

Note that, values only lights the complexity of delay and
power, they are not real elapsed time and power consumption.
Here we assume, they all fabricated with same technology. For
instance, in order to calculate the delay of diode crossbars, we
need to know value of R and the source voltage.

To provide an overall evaluation, four-terminal is the most
advantageous choice in terms of area size. However, defect
tolerance is poor especially regarding the complexity and com-
putation power needed to conduct experiments for four-terminal.
Delay of memristive crossbars is predictable, it doesn’t depend
on function. Therefore, it could be considered as the most advan-
tageous choice in terms of delay. For power consumption, diode
seems to have the least value, yet it is static power also depends
source voltage. On the other hand, FET crossbars has only
dynamic power consumption with complementary architecture.

VII. CONCLUSION AND DISCUSSION

In conclusion, we have presented an integrated synthesis
methodology regarding every design steps of a crossbar circuit
including novel optimization and defect tolerance algorithms for
each step.

Since the main motivation of crossbar technologies is that
they are able produce denser circuit structures comparing to
the conventional technologies, the synthesis methodology takes
area optimization as base. In addition to that, defect tolerance
analysis gets the size of the crossbar as the input. However,
devising area-oriented optimization causes only having course
delay and power analysis/optimization. An extension of the
selection of delay- or power-oriented optimizations will increase
the performance optimization capability of the methodology.

In logic synthesis section, comparison of four crossbar types
with multi-output logic functions is firstly presented. Also, a
new technique of logic synthesis for memristor based crossbars
is presented. Since developing new efficient algorithms for logic
synthesis is in progress and also the area sizes are depending on
different parameters of a logic, there has not been a verdict on
this race.

In defect tolerance section, we focus on four-terminal ar-
chitectures and design a novel sensitivity analysis and fault

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

MORGUL et al.: CIRCUIT DESIGN STEPS FOR NANO-CROSSBAR ARRAYS: AREA-DELAY-POWER OPTIMIZATION 51

tolerance approach. First step of the method locates the prob-
lematic cells and guides the second step through introducing
preventive measures such as reassignment of cell (if possible) or
adding redundant columns/rows to the lattice. Currently, method
is limited in term of input size, so an important improvement to
sensitivity analysis would be to increase the number of variables
the method can manage.

In performance optimization section, effects of the cross-
bar size and function parameters to the delay and power are
presented. Even though room for optimizations of delay and
power are limited due to the area-oriented optimization, the
paper presents a clear projections to the designer. However the
real values in the crossbar technologies (for different types) is
in process of evolving. Certain studies are in proof of concept
level. For instance, pitch sizes were given as micrometers in
the early 2000s [18] [34], yet they are reduced to tens of
manometers [20]. Also, a recent study [13] realizes four-terminal
switch based crossbar (lattice) with 65 nm CMOS-process for a
proof of concept. As expected, the situation is also same for the
comparison on the delay and power analysis. This is the inherent
reason that this study is independent from technology nodes,
thus it can be implemented to the every technology. 3D printing
electronics could be a promising candidate for comparing the
crossbar types with actual values.

As a future work, a fully automated software tool for the
synthesis methodology is planned to be developed. It will take
the target function, the used technology, and the performance
specifications (area, delay and/or power consumption) as input
and return the optimized crossbar-arrays structure as an output.
This software tool, to be developed, will benefit from the opti-
mization algorithms introduced in this study. It will also produce
the mapping using technology specification data. The tool is
expected to be updated based on established experimental results
and novel algorithms. Another direction could be the study of
transient faults on lattices, so that it can generate complete defect
tolerance analysis. The future study should evaluate how the
redundancies in lattices can limit the area overhead.

ACKNOWLEDGMENT

The authors would like to thank Dr. Levent Aksoy for his
contribution to synthesis process of multi-output functions with
four-terminal based switching arrays.

REFERENCES

[1] L. Aksoy and M. Altun, “Novel methods for efficient realization of logic
functions using switching lattices,” IEEE Trans. Comput., vol. 69, no. 3,
pp. 427–440, Mar. 2020.

[2] L. Aksoy and M. Altun, “A satisfiability-based approximate algorithm for
logic synthesis using switching lattices,” in Proc. Des., Autom. Test Eur.
Conf. Exhib., 2019, pp. 1637–1642.

[3] L. Aksoy and M. Altun, “A novel method for the realization of complex
logic functions using switching lattices,” in Proc. Des., Autom. Test Eur.
Conf. Exhib., 2020, pp. 1–5.

[4] D. Alexandrescu et al., “Synthesis and performance optimization of a
switching nano-crossbar computer,” in Proc. Euromicro Conf. Digit. Syst.
Des., 2016, pp. 334–341.

[5] M. Altun, I. Cevik, A. Erten, O. Eksik, M. Stan, and C. A. Moritz, “Nano-
crossbar based computing: Lessons learned and future directions,” in Proc.
Des., Autom. Test Eur. Conf. Exhib., 2020, pp. 382–387.

[6] M. Altun and M. D. Riedel, “Logic synthesis for switching lattices,” IEEE
Trans. Comput., vol. 61, no. 11, pp. 1588–1600, Nov. 2012.

[7] S. Baranov, I. Levin, O. Keren, and M. Karpovsky, “Designing fault
tolerant FSM by nano-PLA,” in Proc. 15th IEEE Int. On-Line Testing
Symp., 2009, pp. 229–234.

[8] R. Ben-Hur et al., “SIMPLER MAGIC: Synthesis and mapping of
in-memory logic executed in a single row to improve throughput,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 39, no. 10,
pp. 2434–2447, Oct. 2020.

[9] A. Bernasconi, “Composition of switching lattices and autosymmetric
Boolean function synthesis,” in Proc. Euromicro Conf. Digit. Syst. Des.,
2017, pp. 137–144.

[10] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and T. Villa,
“Logic synthesis for switching lattices by decomposition with p-circuits,”
in Proc. Euromicro Conf. Digit. Syst. Des., 2016, pp. 423–430.

[11] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Synthesis on
switching lattices of dimension-reducible Boolean functions,” in Proc.
IFIP/IEEE Int. Conf. Very Large Scale Integr., 2016, pp. 1–6.

[12] J. Borghetti et al., “A hybrid nanomemristor/transistor logic circuit ca-
pable of self-programming,” Proc. Nat. Acad. Sci., vol. 106, no. 6,
pp. 1699–1703, 2009.

[13] I. Cevik, L. Aksoy, and M. Altun, “Cmos implementation of switching
lattices,” in Proc. Des., Autom. Test Eur. Conf. Exhib., 2020, pp. 274–277.

[14] C.-Y. Chen et al., “RRAM defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Trans. Comput.,
vol. 64, no. 1, pp. 180–190, Jan. 2015.

[15] Y. Chen et al., “Nanoscale molecular-switch crossbar circuits,” Nanotech-
nology, vol. 14, pp. 462–468, 2003.

[16] A. D. Friedman, “Easily testable iterative systems,” IEEE Trans. Comput.,
vol. 100, no. 12, pp. 1061–1064, Dec. 1973.

[17] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing optimal
switching lattices,” ACM Trans. Des. Autom. Electron. Syst., vol. 20, no. 1,
pp. 1–14, 2014.

[18] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber,
“Logic gates and computation from assembled nanowire building blocks,”
Science, vol. 294, no. 5545, pp. 1313–1317, 2001.

[19] W. Kang et al., “A low-cost built-in error correction circuit design for STT-
MRAM reliability improvement,” Microelectron. Rel., vol. 53, no. 9–11,
pp. 1224–1229, 2013.

[20] K.-H. Kim et al., “A functional hybrid memristor crossbar-array/CMOS
system for data storage and neuromorphic applications,” Nano Lett.,
vol. 12, no. 1, pp. 389–395, 2012.

[21] S. Kvatinsky et al., “MAGIC-memristor-aided logic,” IEEE Trans. Circuits
Syst. II: Exp. Briefs, vol. 61, no. 11, pp. 895–899, Nov. 2014.

[22] C. Li and D. Belkin et al., “Efficient and self-adaptive in-situ learning
in multilayer memristor neural networks,” Nat. Commun., vol. 9, no. 1,
pp. 1–8, 2018.

[23] P. C. McGeer, J. V. Sanghavi, R. K. Brayton, and A. Sangiovanni-
Vicentelli, “ESPRESSO-SIGNATURE: A new exact minimizer for logic
functions,” IEEE Trans. Very Large Scale Integr. Syst., vol. 1, no. 4,
pp. 432–440, Dec. 1993.

[24] M. C. Morgul et al., “Integrated synthesis methodology for crossbar
arrays,” in Proc. 14th IEEE/ACM Int. Symp. Nanoscale Architectures,
2018, pp. 91–97.

[25] M. C. Morgül and M. Altun, “Anahtarlamalı nano dizinler ile lojik devre
tasarımı ve boyut optimizasyonu logic circuit design with switching nano
arrays and area optimization,” in ELECO, 2014.

[26] M. C. Morgul and M. Altun, “Synthesis and optimization of switching
nanoarrays,” in Proc. IEEE 18th Int. Symp. Des. Diagn. Electron. Circuits
Syst., 2015, pp. 161–164.

[27] M. Nicolaidis, L. Anghel, and N. Achouri, “Memory defect tolerance
architectures for nanotechnologies,” J. Electron. Testing, vol. 21, no. 4,
pp. 445–455, 2005.

[28] F. Peker and M. Altun, “A fast hill climbing algorithm for defect and
variation tolerant logic mapping of nano-crossbar arrays,” IEEE Trans.
Multi-Scale Comput. Syst., vol. 4, no. 4, pp. 522–532, Oct.–Dec. 2018.

[29] W. Rao, A. Orailoglu, and R. Karri, “Logic level fault tolerance approaches
targeting nanoelectronics PLAs,” in Proc. Des., Autom. Test Eur. Conf.
Exhib., 2007, pp. 1–5.

[30] S. Safaltin et al., “Realization of four-terminal switching lattices: Tech-
nology development and circuit modeling,” in Proc. Des., Autom. Test Eur.
Conf. Exhib., 2019, pp. 504–509.

[31] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Logic
synthesis for RRAM-based in-memory computing,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 37, no. 7, pp. 1422–1435, Jul. 2017.

[32] A. M. S. Shrestha, S. Tayu, and S. Ueno, “Orthogonal ray graphs and nano-
PLA design,” in Proc. IEEE Int. Symp. Circuits Syst., 2009, pp. 2930–2933.

[33] G. Snider, “Computing with hysteretic resistor crossbars,” Appl. Phys. A:
Mater. Sci. Process., vol. 80, no. 6, pp. 1165–1172, 2005.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 20, 2021

[34] G. Snider, P. Kuekes, T. Hogg, and R. S. Williams, “Nanoelectronic
architectures,” Appl. Phys. A, vol. 80, no. 6, pp. 1183–1195, 2005.

[35] G. Snider, P. Kuekes, and R. S. Williams, “CMOS-like logic in defective,
nanoscale crossbars,” Nanotechnology, vol. 15, no. 8, pp. 881–891, 2004.

[36] D. B. Strukov and K. K. Likharev, “CMOL FPGA: A reconfigurable
architecture for hybrid digital circuits with two-terminal nanodevices,”
Nanotechnology, vol. 16, no. 6, pp. 888–900, 2005.

[37] M. B. Tahoori, “A mapping algorithm for defect-tolerance of reconfig-
urable nano-architectures,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., 2005, pp. 668–672.

[38] P. L. Thangkhiew, A. Zulehner, R. Wille, K. Datta, and I. Sengupta, “An
efficient memristor crossbar architecture for mapping Boolean functions
using binary decision diagrams (bdd),” Integration, vol. 71, pp. 125–133,
2020.

[39] M. Traiola, M. Barbareschi, and A. Bosio, “Estimating dynamic power
consumption for memristor-based CiM architecture,” Microelectron. Rel.,
vol. 80, pp. 241–248, 2018.

[40] O. Tunali and M. Altun, “Permanent and transient fault tolerance for
reconfigurable nano-crossbar arrays,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 36, no. 5, pp. 747–760, May 2017.

[41] O. Tunali and M. Altun, “A survey of fault-tolerance algorithms for
reconfigurable nano-crossbar arrays,” ACM Comput. Surv., vol. 50, no. 6,
pp. 1–35, 2017.

[42] O. Tunali and M. Altun, “Logic synthesis and defect tolerance for mem-
ristive crossbar arrays,” in Proc. Des., Autom. Test Eur. Conf. Exhib., 2018,
pp. 425–430.

[43] O. Tunali, M. C. Morgul, and M. Altun, “Defect-tolerant logic synthesis for
memristor crossbars with performance evaluation,” IEEE Micro, vol. 38,
no. 5, pp. 22–31, Nov./Dec. 2018.

[44] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “Fast
Boolean logic mapped on memristor crossbar,” in Proc. 33rd IEEE Int.
Conf. Comput. Des., 2015, pp. 335–342.

[45] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “A
mapping methodology of Boolean logic circuits on memristor crossbar,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 2,
pp. 311–323, Feb. 2018.

[46] H. Yan et al., “Programmable nanowire circuits for nanoprocessors,”
Nature, vol. 470, no. 7333, pp. 240–244, 2011.

[47] S. Yang, Log. Synthesis and Optim. Benchmarks User Guide: Ver. 3.0,
Research Triangle Park, NC, USA: Microelectronics Center of North
Carolina, 1991.

[48] J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber,
“Nanowire nanocomputer as a finite-state machine,” Proc. Nat. Acad. Sci.,
vol. 111, no. 7, pp. 2431–2435, 2014.

Muhammed Ceylan Morgul received the B.Sc. de-
gree in electronics and communications engineering
and the M.Sc. degree in electronics engineering from
Istanbul Technical University, Istanbul, Turkey, in
2014 and 2017, respectively. He is currently working
toward the Ph.D. degree in electrical engineering with
the University of Virginia, Charlottesville, VA, USA.
He has been a Principal Investigator of oneTUBITAK,
and a Researcher of EU-H2020-RISE, SRC-JUMP,
and TUBITAK projects, in Turkey, USA, France,
Portugal, and Malaysia. His current research interests

include reliability and emerging computing.

Luca Frontini is Scientific Director and a Full pro-
fessor at Grenoble Institute of Technology, and a
member of the research staff of SPINTEC Labora-
tory. She received the PhD from Grenoble Institute
of Technology in 2000, Cum Laudae. Her research
interests include hardware design and test of neural
networks, on-line testing, fault tolerance, and digital
reliable design and verification. She is participant of
European and French National projects, recipient of
several Best Paper and Outstanding Paper Awards,
and author of more than 130 publications.

Onur Tunali received the B.Sc. degree in mathemat-
ics from Istanbul University and the M.Sc. degree
in nanoscience and nanoengineering from Istanbul
Technical University. He has worked as a Researcher
with various projects including TUBITAK and EU
H2020 RISE. His current research interests include
logic synthesis, re-configurable nano-crossbars, algo-
rithm design,emerging computing, and reliability.

Lorena Anghel received the Ph.D. degree (Cum
Laudae) from the Grenoble Institute of Technology,
Grenoble, France, in 2000. He is currently a Scien-
tific Director and a Full Professor with the Grenoble
Institute of Technology, and a Member with the Re-
search Staff of SPINTEC Laboratory. She has been
involved in several European Projects (FP5 and FP7)
and French National projects ANR. She has authored
or coauthored more than 130 publications in inter-
national conferences and symposia, and supervised
more than 54 engineering students. Her research in-

terests include hardware design and test of neural networks chips, online testing,
fault tolerance, and digital reliable design and verification. She has served on
numerous technical program committees of prestigious conferences and sympo-
siums, as a General Chair and a Program Chair. She is involved in the Steering
Committees of IEEE European Test Symposium and Design Automated and Test
in Europe. She was the recipient of several Best Paper and Outstanding Paper
Awards. From 2016 to 2020, she was the Deputy Vice-President of Grenoble
INP, in charge of Industrial relationships.

Valentina Ciriani received the Laurea and Ph.D.
degrees in computer science from the University of
Pisa, Pisa, Italy, in 1998 and 2003, respectively. She is
currently an Associate Professor in computer science
with the Department of Computer Science, Università
degli Studi di Milano, Milan, Italy. She has authored
more than 90 research papers and books chapters.
Her research interests include combinational logic for
emerging technologies, VLSI design of low-power
circuits, and test of Boolean circuits.

Elena Ioana Vatajelu received the Ph.D. degree
in electronics engineering from Universitat Politec-
nica de Catalunya, Barcelona, Spain, in 2011. She
is currently a CNRS researcher within TIMA Lab-
oratory, Grenoble, France. Her current research in-
cludes emerging memory technologies with special
emphasis on their use in architectures for emerging
computing paradigms, mainly the characterization of
fabrication induced process variability, fault model-
ing and defect characterization, design for reliability,
design for test, and design for security.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

MORGUL et al.: CIRCUIT DESIGN STEPS FOR NANO-CROSSBAR ARRAYS: AREA-DELAY-POWER OPTIMIZATION 53

Csaba Andras Moritz is a Professor of Electrical
and Computer Engineering with the University of
Massachusetts Amherst. He is the Founder and Chair-
man with BlueRISC Inc., a leading system-assurance
company, and EPRIVO.com in digital privacy. His
research interests include nano fabrics beyond 2D
CMOS and circuit styles with emerging technology,
new models of computation and inference for AI and
their realization through emerging technology, and
AI-driven cyber-security and system assurance.

Mircea R. Stan (Fellow, IEEE) is currently the Vir-
ginia Microelectronics Consortium Professor with
the University of Virginia, Charlottesville, VA, USA.
He was the recipient of the 2018 Influential ISCA
Paper Award, the NSF CAREER award in 1997,
and was the coauthor on best paper awards at
ASILOMAR19, LASCAS19, SELSE17, ISQED09,
GLSVLSI06, ISCA03, and SHAMAN02 and on
IEEE Micro Top Picks in 2008 and 2003. He gave
keynotes at several conferences, and is an Asso-
ciate Editor-in-Chief for the IEEE TRANSACTIONS ON

VLSI SYSTEMS, a Senior Editor for the IEEE TRANSACTIONS ON NANOTECH-
NOLOGY, and an Associate Editor for IEEE Design & Test.

Dan Alexandrescu (Senior Member, IEEE) received
the Ph.D. degree in microelectronics from INPG,
Grenoble Institute of Technology, France. He is the
CEO with IROC Technologies. He specializes in
the design, optimization and improvement of highly-
reliable microelectronic circuits. He contributed to
the organization of reliability-centric workshops and
symposia and he prepared many publications in the
field of reliability and radiation-induced effects.

Mustafa Altun received the Ph.D. degree in electrical
engineering with the Ph.D. minor in mathematics
from the University of Minnesota, Minneapolis, MN,
USA, in 2012. Since 2013, he has been a Faculty
Member of Istanbul Technical University, Istanbul,
Turkey, and runs the Emerging Circuits and Compu-
tation Group.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on February 23,2022 at 12:37:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

